Properties

Label 936.2.q.g.313.6
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.6
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.215114 + 1.71864i) q^{3} +(-1.80041 - 3.11840i) q^{5} +(-2.42567 + 4.20138i) q^{7} +(-2.90745 - 0.739406i) q^{9} +(2.96999 - 5.14417i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(5.74669 - 2.42344i) q^{15} +3.14211 q^{17} +4.53444 q^{19} +(-6.69887 - 5.07263i) q^{21} +(2.40410 + 4.16402i) q^{23} +(-3.98293 + 6.89863i) q^{25} +(1.89621 - 4.83781i) q^{27} +(0.967295 - 1.67540i) q^{29} +(2.30944 + 4.00007i) q^{31} +(8.20210 + 6.21093i) q^{33} +17.4688 q^{35} +10.7700 q^{37} +(1.59594 - 0.673027i) q^{39} +(0.389576 + 0.674766i) q^{41} +(-0.164787 + 0.285420i) q^{43} +(2.92884 + 10.3978i) q^{45} +(2.01335 - 3.48722i) q^{47} +(-8.26774 - 14.3202i) q^{49} +(-0.675911 + 5.40016i) q^{51} -6.03880 q^{53} -21.3888 q^{55} +(-0.975419 + 7.79307i) q^{57} +(-1.75266 - 3.03569i) q^{59} +(2.77604 - 4.80825i) q^{61} +(10.1590 - 10.4218i) q^{63} +(-1.80041 + 3.11840i) q^{65} +(-2.91273 - 5.04500i) q^{67} +(-7.67361 + 3.23604i) q^{69} +3.18402 q^{71} +11.7545 q^{73} +(-10.9995 - 8.32921i) q^{75} +(14.4084 + 24.9561i) q^{77} +(1.97184 - 3.41532i) q^{79} +(7.90656 + 4.29958i) q^{81} +(-1.28229 + 2.22100i) q^{83} +(-5.65708 - 9.79835i) q^{85} +(2.67134 + 2.02283i) q^{87} +11.4418 q^{89} +4.85134 q^{91} +(-7.37147 + 3.10863i) q^{93} +(-8.16383 - 14.1402i) q^{95} +(2.58047 - 4.46950i) q^{97} +(-12.4387 + 12.7604i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.215114 + 1.71864i −0.124196 + 0.992258i
\(4\) 0 0
\(5\) −1.80041 3.11840i −0.805166 1.39459i −0.916179 0.400770i \(-0.868743\pi\)
0.111013 0.993819i \(-0.464591\pi\)
\(6\) 0 0
\(7\) −2.42567 + 4.20138i −0.916817 + 1.58797i −0.112598 + 0.993641i \(0.535917\pi\)
−0.804219 + 0.594333i \(0.797416\pi\)
\(8\) 0 0
\(9\) −2.90745 0.739406i −0.969151 0.246469i
\(10\) 0 0
\(11\) 2.96999 5.14417i 0.895486 1.55103i 0.0622837 0.998058i \(-0.480162\pi\)
0.833202 0.552969i \(-0.186505\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 5.74669 2.42344i 1.48379 0.625730i
\(16\) 0 0
\(17\) 3.14211 0.762074 0.381037 0.924560i \(-0.375567\pi\)
0.381037 + 0.924560i \(0.375567\pi\)
\(18\) 0 0
\(19\) 4.53444 1.04027 0.520136 0.854084i \(-0.325881\pi\)
0.520136 + 0.854084i \(0.325881\pi\)
\(20\) 0 0
\(21\) −6.69887 5.07263i −1.46181 1.10694i
\(22\) 0 0
\(23\) 2.40410 + 4.16402i 0.501289 + 0.868258i 0.999999 + 0.00148934i \(0.000474070\pi\)
−0.498710 + 0.866769i \(0.666193\pi\)
\(24\) 0 0
\(25\) −3.98293 + 6.89863i −0.796585 + 1.37973i
\(26\) 0 0
\(27\) 1.89621 4.83781i 0.364925 0.931037i
\(28\) 0 0
\(29\) 0.967295 1.67540i 0.179622 0.311115i −0.762129 0.647425i \(-0.775846\pi\)
0.941751 + 0.336310i \(0.109179\pi\)
\(30\) 0 0
\(31\) 2.30944 + 4.00007i 0.414787 + 0.718433i 0.995406 0.0957427i \(-0.0305226\pi\)
−0.580619 + 0.814176i \(0.697189\pi\)
\(32\) 0 0
\(33\) 8.20210 + 6.21093i 1.42780 + 1.08118i
\(34\) 0 0
\(35\) 17.4688 2.95276
\(36\) 0 0
\(37\) 10.7700 1.77058 0.885290 0.465039i \(-0.153960\pi\)
0.885290 + 0.465039i \(0.153960\pi\)
\(38\) 0 0
\(39\) 1.59594 0.673027i 0.255555 0.107770i
\(40\) 0 0
\(41\) 0.389576 + 0.674766i 0.0608416 + 0.105381i 0.894842 0.446383i \(-0.147288\pi\)
−0.834000 + 0.551764i \(0.813955\pi\)
\(42\) 0 0
\(43\) −0.164787 + 0.285420i −0.0251298 + 0.0435261i −0.878317 0.478079i \(-0.841333\pi\)
0.853187 + 0.521605i \(0.174667\pi\)
\(44\) 0 0
\(45\) 2.92884 + 10.3978i 0.436605 + 1.55001i
\(46\) 0 0
\(47\) 2.01335 3.48722i 0.293677 0.508663i −0.680999 0.732284i \(-0.738454\pi\)
0.974676 + 0.223621i \(0.0717877\pi\)
\(48\) 0 0
\(49\) −8.26774 14.3202i −1.18111 2.04574i
\(50\) 0 0
\(51\) −0.675911 + 5.40016i −0.0946465 + 0.756174i
\(52\) 0 0
\(53\) −6.03880 −0.829493 −0.414747 0.909937i \(-0.636130\pi\)
−0.414747 + 0.909937i \(0.636130\pi\)
\(54\) 0 0
\(55\) −21.3888 −2.88406
\(56\) 0 0
\(57\) −0.975419 + 7.79307i −0.129197 + 1.03222i
\(58\) 0 0
\(59\) −1.75266 3.03569i −0.228176 0.395213i 0.729091 0.684417i \(-0.239943\pi\)
−0.957268 + 0.289203i \(0.906610\pi\)
\(60\) 0 0
\(61\) 2.77604 4.80825i 0.355436 0.615633i −0.631757 0.775167i \(-0.717666\pi\)
0.987192 + 0.159534i \(0.0509991\pi\)
\(62\) 0 0
\(63\) 10.1590 10.4218i 1.27992 1.31302i
\(64\) 0 0
\(65\) −1.80041 + 3.11840i −0.223313 + 0.386789i
\(66\) 0 0
\(67\) −2.91273 5.04500i −0.355847 0.616345i 0.631415 0.775445i \(-0.282474\pi\)
−0.987263 + 0.159099i \(0.949141\pi\)
\(68\) 0 0
\(69\) −7.67361 + 3.23604i −0.923794 + 0.389574i
\(70\) 0 0
\(71\) 3.18402 0.377873 0.188937 0.981989i \(-0.439496\pi\)
0.188937 + 0.981989i \(0.439496\pi\)
\(72\) 0 0
\(73\) 11.7545 1.37576 0.687879 0.725826i \(-0.258542\pi\)
0.687879 + 0.725826i \(0.258542\pi\)
\(74\) 0 0
\(75\) −10.9995 8.32921i −1.27011 0.961774i
\(76\) 0 0
\(77\) 14.4084 + 24.9561i 1.64199 + 2.84402i
\(78\) 0 0
\(79\) 1.97184 3.41532i 0.221849 0.384254i −0.733520 0.679667i \(-0.762124\pi\)
0.955369 + 0.295414i \(0.0954575\pi\)
\(80\) 0 0
\(81\) 7.90656 + 4.29958i 0.878506 + 0.477731i
\(82\) 0 0
\(83\) −1.28229 + 2.22100i −0.140750 + 0.243786i −0.927779 0.373130i \(-0.878285\pi\)
0.787029 + 0.616916i \(0.211618\pi\)
\(84\) 0 0
\(85\) −5.65708 9.79835i −0.613596 1.06278i
\(86\) 0 0
\(87\) 2.67134 + 2.02283i 0.286398 + 0.216871i
\(88\) 0 0
\(89\) 11.4418 1.21282 0.606412 0.795150i \(-0.292608\pi\)
0.606412 + 0.795150i \(0.292608\pi\)
\(90\) 0 0
\(91\) 4.85134 0.508559
\(92\) 0 0
\(93\) −7.37147 + 3.10863i −0.764386 + 0.322350i
\(94\) 0 0
\(95\) −8.16383 14.1402i −0.837591 1.45075i
\(96\) 0 0
\(97\) 2.58047 4.46950i 0.262007 0.453809i −0.704768 0.709437i \(-0.748949\pi\)
0.966775 + 0.255629i \(0.0822824\pi\)
\(98\) 0 0
\(99\) −12.4387 + 12.7604i −1.25014 + 1.28247i
\(100\) 0 0
\(101\) −5.09235 + 8.82021i −0.506708 + 0.877644i 0.493262 + 0.869881i \(0.335804\pi\)
−0.999970 + 0.00776297i \(0.997529\pi\)
\(102\) 0 0
\(103\) −1.59094 2.75559i −0.156760 0.271516i 0.776938 0.629577i \(-0.216772\pi\)
−0.933698 + 0.358060i \(0.883438\pi\)
\(104\) 0 0
\(105\) −3.75777 + 30.0225i −0.366721 + 2.92990i
\(106\) 0 0
\(107\) 16.4926 1.59440 0.797201 0.603714i \(-0.206313\pi\)
0.797201 + 0.603714i \(0.206313\pi\)
\(108\) 0 0
\(109\) −6.31192 −0.604572 −0.302286 0.953217i \(-0.597750\pi\)
−0.302286 + 0.953217i \(0.597750\pi\)
\(110\) 0 0
\(111\) −2.31678 + 18.5098i −0.219899 + 1.75687i
\(112\) 0 0
\(113\) −4.06899 7.04770i −0.382779 0.662992i 0.608680 0.793416i \(-0.291699\pi\)
−0.991458 + 0.130424i \(0.958366\pi\)
\(114\) 0 0
\(115\) 8.65671 14.9939i 0.807242 1.39818i
\(116\) 0 0
\(117\) 0.813382 + 2.88763i 0.0751972 + 0.266962i
\(118\) 0 0
\(119\) −7.62173 + 13.2012i −0.698682 + 1.21015i
\(120\) 0 0
\(121\) −12.1417 21.0300i −1.10379 1.91182i
\(122\) 0 0
\(123\) −1.24348 + 0.524390i −0.112121 + 0.0472827i
\(124\) 0 0
\(125\) 10.6795 0.955201
\(126\) 0 0
\(127\) 9.41029 0.835028 0.417514 0.908671i \(-0.362901\pi\)
0.417514 + 0.908671i \(0.362901\pi\)
\(128\) 0 0
\(129\) −0.455086 0.344608i −0.0400681 0.0303410i
\(130\) 0 0
\(131\) −9.18147 15.9028i −0.802189 1.38943i −0.918173 0.396180i \(-0.870336\pi\)
0.115984 0.993251i \(-0.462998\pi\)
\(132\) 0 0
\(133\) −10.9990 + 19.0509i −0.953738 + 1.65192i
\(134\) 0 0
\(135\) −18.5001 + 2.79690i −1.59224 + 0.240719i
\(136\) 0 0
\(137\) 3.72459 6.45117i 0.318213 0.551161i −0.661902 0.749590i \(-0.730251\pi\)
0.980115 + 0.198429i \(0.0635840\pi\)
\(138\) 0 0
\(139\) 11.5014 + 19.9210i 0.975537 + 1.68968i 0.678151 + 0.734923i \(0.262782\pi\)
0.297387 + 0.954757i \(0.403885\pi\)
\(140\) 0 0
\(141\) 5.56018 + 4.21037i 0.468251 + 0.354577i
\(142\) 0 0
\(143\) −5.93998 −0.496726
\(144\) 0 0
\(145\) −6.96610 −0.578503
\(146\) 0 0
\(147\) 26.3897 11.1288i 2.17659 0.917890i
\(148\) 0 0
\(149\) −2.82412 4.89152i −0.231361 0.400729i 0.726848 0.686799i \(-0.240985\pi\)
−0.958209 + 0.286069i \(0.907651\pi\)
\(150\) 0 0
\(151\) −5.96305 + 10.3283i −0.485266 + 0.840506i −0.999857 0.0169303i \(-0.994611\pi\)
0.514590 + 0.857436i \(0.327944\pi\)
\(152\) 0 0
\(153\) −9.13554 2.32330i −0.738565 0.187827i
\(154\) 0 0
\(155\) 8.31586 14.4035i 0.667946 1.15692i
\(156\) 0 0
\(157\) −4.04029 6.99798i −0.322450 0.558500i 0.658543 0.752543i \(-0.271173\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(158\) 0 0
\(159\) 1.29903 10.3785i 0.103020 0.823071i
\(160\) 0 0
\(161\) −23.3262 −1.83836
\(162\) 0 0
\(163\) 12.7054 0.995160 0.497580 0.867418i \(-0.334222\pi\)
0.497580 + 0.867418i \(0.334222\pi\)
\(164\) 0 0
\(165\) 4.60101 36.7596i 0.358188 2.86173i
\(166\) 0 0
\(167\) 6.13446 + 10.6252i 0.474699 + 0.822202i 0.999580 0.0289730i \(-0.00922368\pi\)
−0.524881 + 0.851175i \(0.675890\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) −13.1837 3.35279i −1.00818 0.256394i
\(172\) 0 0
\(173\) −6.38764 + 11.0637i −0.485643 + 0.841159i −0.999864 0.0164990i \(-0.994748\pi\)
0.514221 + 0.857658i \(0.328081\pi\)
\(174\) 0 0
\(175\) −19.3225 33.4676i −1.46065 2.52991i
\(176\) 0 0
\(177\) 5.59428 2.35917i 0.420492 0.177326i
\(178\) 0 0
\(179\) −5.65209 −0.422457 −0.211229 0.977437i \(-0.567746\pi\)
−0.211229 + 0.977437i \(0.567746\pi\)
\(180\) 0 0
\(181\) −11.9835 −0.890723 −0.445362 0.895351i \(-0.646925\pi\)
−0.445362 + 0.895351i \(0.646925\pi\)
\(182\) 0 0
\(183\) 7.66649 + 5.80534i 0.566723 + 0.429143i
\(184\) 0 0
\(185\) −19.3904 33.5852i −1.42561 2.46923i
\(186\) 0 0
\(187\) 9.33204 16.1636i 0.682427 1.18200i
\(188\) 0 0
\(189\) 15.7259 + 19.7016i 1.14389 + 1.43308i
\(190\) 0 0
\(191\) 6.69583 11.5975i 0.484493 0.839167i −0.515348 0.856981i \(-0.672337\pi\)
0.999841 + 0.0178139i \(0.00567065\pi\)
\(192\) 0 0
\(193\) −0.00315107 0.00545781i −0.000226819 0.000392862i 0.865912 0.500196i \(-0.166739\pi\)
−0.866139 + 0.499804i \(0.833406\pi\)
\(194\) 0 0
\(195\) −4.97211 3.76506i −0.356060 0.269622i
\(196\) 0 0
\(197\) 9.67863 0.689574 0.344787 0.938681i \(-0.387951\pi\)
0.344787 + 0.938681i \(0.387951\pi\)
\(198\) 0 0
\(199\) −26.2710 −1.86230 −0.931149 0.364638i \(-0.881193\pi\)
−0.931149 + 0.364638i \(0.881193\pi\)
\(200\) 0 0
\(201\) 9.29712 3.92070i 0.655768 0.276545i
\(202\) 0 0
\(203\) 4.69268 + 8.12795i 0.329361 + 0.570470i
\(204\) 0 0
\(205\) 1.40279 2.42971i 0.0979752 0.169698i
\(206\) 0 0
\(207\) −3.91090 13.8843i −0.271826 0.965025i
\(208\) 0 0
\(209\) 13.4672 23.3259i 0.931548 1.61349i
\(210\) 0 0
\(211\) −0.764674 1.32445i −0.0526424 0.0911792i 0.838503 0.544896i \(-0.183431\pi\)
−0.891146 + 0.453717i \(0.850098\pi\)
\(212\) 0 0
\(213\) −0.684925 + 5.47218i −0.0469303 + 0.374948i
\(214\) 0 0
\(215\) 1.18674 0.0809347
\(216\) 0 0
\(217\) −22.4077 −1.52114
\(218\) 0 0
\(219\) −2.52855 + 20.2017i −0.170863 + 1.36511i
\(220\) 0 0
\(221\) −1.57106 2.72115i −0.105681 0.183044i
\(222\) 0 0
\(223\) −6.79374 + 11.7671i −0.454943 + 0.787984i −0.998685 0.0512684i \(-0.983674\pi\)
0.543742 + 0.839252i \(0.317007\pi\)
\(224\) 0 0
\(225\) 16.6811 17.1124i 1.11207 1.14083i
\(226\) 0 0
\(227\) 7.46880 12.9363i 0.495722 0.858615i −0.504266 0.863548i \(-0.668237\pi\)
0.999988 + 0.00493317i \(0.00157028\pi\)
\(228\) 0 0
\(229\) 1.41828 + 2.45653i 0.0937225 + 0.162332i 0.909075 0.416633i \(-0.136790\pi\)
−0.815352 + 0.578965i \(0.803457\pi\)
\(230\) 0 0
\(231\) −45.9901 + 19.3945i −3.02593 + 1.27607i
\(232\) 0 0
\(233\) −12.7200 −0.833312 −0.416656 0.909064i \(-0.636798\pi\)
−0.416656 + 0.909064i \(0.636798\pi\)
\(234\) 0 0
\(235\) −14.4994 −0.945834
\(236\) 0 0
\(237\) 5.44554 + 4.12356i 0.353726 + 0.267854i
\(238\) 0 0
\(239\) −1.06154 1.83865i −0.0686655 0.118932i 0.829649 0.558286i \(-0.188541\pi\)
−0.898314 + 0.439354i \(0.855207\pi\)
\(240\) 0 0
\(241\) 1.66094 2.87684i 0.106991 0.185313i −0.807559 0.589787i \(-0.799212\pi\)
0.914550 + 0.404473i \(0.132545\pi\)
\(242\) 0 0
\(243\) −9.09023 + 12.6636i −0.583139 + 0.812373i
\(244\) 0 0
\(245\) −29.7706 + 51.5642i −1.90197 + 3.29432i
\(246\) 0 0
\(247\) −2.26722 3.92694i −0.144260 0.249865i
\(248\) 0 0
\(249\) −3.54125 2.68157i −0.224418 0.169937i
\(250\) 0 0
\(251\) 14.9517 0.943746 0.471873 0.881667i \(-0.343578\pi\)
0.471873 + 0.881667i \(0.343578\pi\)
\(252\) 0 0
\(253\) 28.5606 1.79559
\(254\) 0 0
\(255\) 18.0568 7.61473i 1.13076 0.476853i
\(256\) 0 0
\(257\) 5.01395 + 8.68441i 0.312761 + 0.541719i 0.978959 0.204057i \(-0.0654126\pi\)
−0.666198 + 0.745775i \(0.732079\pi\)
\(258\) 0 0
\(259\) −26.1245 + 45.2490i −1.62330 + 2.81163i
\(260\) 0 0
\(261\) −4.05117 + 4.15593i −0.250761 + 0.257246i
\(262\) 0 0
\(263\) 2.40234 4.16098i 0.148135 0.256577i −0.782403 0.622772i \(-0.786006\pi\)
0.930538 + 0.366195i \(0.119340\pi\)
\(264\) 0 0
\(265\) 10.8723 + 18.8314i 0.667880 + 1.15680i
\(266\) 0 0
\(267\) −2.46128 + 19.6643i −0.150628 + 1.20343i
\(268\) 0 0
\(269\) −10.4507 −0.637190 −0.318595 0.947891i \(-0.603211\pi\)
−0.318595 + 0.947891i \(0.603211\pi\)
\(270\) 0 0
\(271\) 12.4552 0.756596 0.378298 0.925684i \(-0.376509\pi\)
0.378298 + 0.925684i \(0.376509\pi\)
\(272\) 0 0
\(273\) −1.04359 + 8.33771i −0.0631609 + 0.504621i
\(274\) 0 0
\(275\) 23.6585 + 40.9777i 1.42666 + 2.47105i
\(276\) 0 0
\(277\) 6.23063 10.7918i 0.374362 0.648414i −0.615869 0.787848i \(-0.711195\pi\)
0.990231 + 0.139434i \(0.0445283\pi\)
\(278\) 0 0
\(279\) −3.75691 13.3376i −0.224920 0.798502i
\(280\) 0 0
\(281\) 15.0408 26.0515i 0.897261 1.55410i 0.0662788 0.997801i \(-0.478887\pi\)
0.830982 0.556300i \(-0.187779\pi\)
\(282\) 0 0
\(283\) 10.8709 + 18.8289i 0.646207 + 1.11926i 0.984021 + 0.178050i \(0.0569790\pi\)
−0.337814 + 0.941213i \(0.609688\pi\)
\(284\) 0 0
\(285\) 26.0580 10.9890i 1.54354 0.650929i
\(286\) 0 0
\(287\) −3.77993 −0.223122
\(288\) 0 0
\(289\) −7.12713 −0.419243
\(290\) 0 0
\(291\) 7.12637 + 5.39634i 0.417755 + 0.316339i
\(292\) 0 0
\(293\) 0.200069 + 0.346530i 0.0116882 + 0.0202445i 0.871810 0.489844i \(-0.162946\pi\)
−0.860122 + 0.510088i \(0.829613\pi\)
\(294\) 0 0
\(295\) −6.31099 + 10.9310i −0.367440 + 0.636425i
\(296\) 0 0
\(297\) −19.2548 24.1227i −1.11728 1.39974i
\(298\) 0 0
\(299\) 2.40410 4.16402i 0.139033 0.240812i
\(300\) 0 0
\(301\) −0.799438 1.38467i −0.0460789 0.0798109i
\(302\) 0 0
\(303\) −14.0633 10.6493i −0.807918 0.611785i
\(304\) 0 0
\(305\) −19.9920 −1.14474
\(306\) 0 0
\(307\) −23.5084 −1.34169 −0.670847 0.741596i \(-0.734069\pi\)
−0.670847 + 0.741596i \(0.734069\pi\)
\(308\) 0 0
\(309\) 5.07810 2.14149i 0.288883 0.121825i
\(310\) 0 0
\(311\) 8.79013 + 15.2249i 0.498442 + 0.863328i 0.999998 0.00179754i \(-0.000572174\pi\)
−0.501556 + 0.865125i \(0.667239\pi\)
\(312\) 0 0
\(313\) −15.4108 + 26.6924i −0.871073 + 1.50874i −0.0101841 + 0.999948i \(0.503242\pi\)
−0.860888 + 0.508794i \(0.830092\pi\)
\(314\) 0 0
\(315\) −50.7896 12.9165i −2.86167 0.727763i
\(316\) 0 0
\(317\) 1.02914 1.78252i 0.0578021 0.100116i −0.835676 0.549222i \(-0.814924\pi\)
0.893479 + 0.449106i \(0.148257\pi\)
\(318\) 0 0
\(319\) −5.74571 9.95187i −0.321698 0.557198i
\(320\) 0 0
\(321\) −3.54779 + 28.3449i −0.198018 + 1.58206i
\(322\) 0 0
\(323\) 14.2477 0.792764
\(324\) 0 0
\(325\) 7.96585 0.441866
\(326\) 0 0
\(327\) 1.35778 10.8479i 0.0750854 0.599891i
\(328\) 0 0
\(329\) 9.76743 + 16.9177i 0.538496 + 0.932702i
\(330\) 0 0
\(331\) −2.56919 + 4.44997i −0.141216 + 0.244593i −0.927955 0.372693i \(-0.878434\pi\)
0.786739 + 0.617286i \(0.211768\pi\)
\(332\) 0 0
\(333\) −31.3133 7.96342i −1.71596 0.436393i
\(334\) 0 0
\(335\) −10.4882 + 18.1661i −0.573032 + 0.992521i
\(336\) 0 0
\(337\) 10.6912 + 18.5177i 0.582388 + 1.00873i 0.995196 + 0.0979071i \(0.0312148\pi\)
−0.412808 + 0.910818i \(0.635452\pi\)
\(338\) 0 0
\(339\) 12.9878 5.47708i 0.705398 0.297474i
\(340\) 0 0
\(341\) 27.4360 1.48575
\(342\) 0 0
\(343\) 46.2599 2.49780
\(344\) 0 0
\(345\) 23.9069 + 18.1032i 1.28710 + 0.974641i
\(346\) 0 0
\(347\) −7.80180 13.5131i −0.418822 0.725422i 0.576999 0.816745i \(-0.304224\pi\)
−0.995821 + 0.0913233i \(0.970890\pi\)
\(348\) 0 0
\(349\) −11.5993 + 20.0905i −0.620895 + 1.07542i 0.368425 + 0.929658i \(0.379897\pi\)
−0.989319 + 0.145764i \(0.953436\pi\)
\(350\) 0 0
\(351\) −5.13777 + 0.776743i −0.274234 + 0.0414594i
\(352\) 0 0
\(353\) −8.36520 + 14.4889i −0.445235 + 0.771169i −0.998069 0.0621226i \(-0.980213\pi\)
0.552834 + 0.833291i \(0.313546\pi\)
\(354\) 0 0
\(355\) −5.73252 9.92902i −0.304251 0.526978i
\(356\) 0 0
\(357\) −21.0486 15.9388i −1.11401 0.843569i
\(358\) 0 0
\(359\) −13.8608 −0.731543 −0.365772 0.930705i \(-0.619195\pi\)
−0.365772 + 0.930705i \(0.619195\pi\)
\(360\) 0 0
\(361\) 1.56113 0.0821647
\(362\) 0 0
\(363\) 38.7549 16.3434i 2.03410 0.857804i
\(364\) 0 0
\(365\) −21.1628 36.6551i −1.10771 1.91862i
\(366\) 0 0
\(367\) 3.39093 5.87326i 0.177005 0.306582i −0.763848 0.645396i \(-0.776692\pi\)
0.940853 + 0.338814i \(0.110026\pi\)
\(368\) 0 0
\(369\) −0.633748 2.24990i −0.0329916 0.117125i
\(370\) 0 0
\(371\) 14.6481 25.3713i 0.760494 1.31721i
\(372\) 0 0
\(373\) −14.4619 25.0488i −0.748811 1.29698i −0.948393 0.317097i \(-0.897292\pi\)
0.199582 0.979881i \(-0.436041\pi\)
\(374\) 0 0
\(375\) −2.29730 + 18.3542i −0.118632 + 0.947806i
\(376\) 0 0
\(377\) −1.93459 −0.0996364
\(378\) 0 0
\(379\) 4.07463 0.209300 0.104650 0.994509i \(-0.466628\pi\)
0.104650 + 0.994509i \(0.466628\pi\)
\(380\) 0 0
\(381\) −2.02428 + 16.1729i −0.103707 + 0.828563i
\(382\) 0 0
\(383\) 17.9208 + 31.0398i 0.915711 + 1.58606i 0.805857 + 0.592110i \(0.201705\pi\)
0.109853 + 0.993948i \(0.464962\pi\)
\(384\) 0 0
\(385\) 51.8821 89.8624i 2.64415 4.57981i
\(386\) 0 0
\(387\) 0.690152 0.708000i 0.0350824 0.0359896i
\(388\) 0 0
\(389\) 13.2149 22.8888i 0.670020 1.16051i −0.307878 0.951426i \(-0.599619\pi\)
0.977898 0.209083i \(-0.0670478\pi\)
\(390\) 0 0
\(391\) 7.55395 + 13.0838i 0.382020 + 0.661677i
\(392\) 0 0
\(393\) 29.3062 12.3587i 1.47830 0.623416i
\(394\) 0 0
\(395\) −14.2004 −0.714501
\(396\) 0 0
\(397\) 12.0428 0.604413 0.302206 0.953243i \(-0.402277\pi\)
0.302206 + 0.953243i \(0.402277\pi\)
\(398\) 0 0
\(399\) −30.3756 23.0015i −1.52068 1.15152i
\(400\) 0 0
\(401\) −7.35012 12.7308i −0.367047 0.635744i 0.622055 0.782973i \(-0.286298\pi\)
−0.989102 + 0.147229i \(0.952965\pi\)
\(402\) 0 0
\(403\) 2.30944 4.00007i 0.115041 0.199257i
\(404\) 0 0
\(405\) −0.827241 32.3968i −0.0411059 1.60981i
\(406\) 0 0
\(407\) 31.9869 55.4029i 1.58553 2.74622i
\(408\) 0 0
\(409\) 5.45923 + 9.45566i 0.269941 + 0.467552i 0.968846 0.247662i \(-0.0796623\pi\)
−0.698905 + 0.715214i \(0.746329\pi\)
\(410\) 0 0
\(411\) 10.2860 + 7.78896i 0.507373 + 0.384201i
\(412\) 0 0
\(413\) 17.0055 0.836784
\(414\) 0 0
\(415\) 9.23459 0.453308
\(416\) 0 0
\(417\) −36.7112 + 15.4815i −1.79776 + 0.758133i
\(418\) 0 0
\(419\) 13.9845 + 24.2219i 0.683187 + 1.18332i 0.974003 + 0.226536i \(0.0727401\pi\)
−0.290815 + 0.956779i \(0.593927\pi\)
\(420\) 0 0
\(421\) 4.71722 8.17046i 0.229903 0.398204i −0.727876 0.685709i \(-0.759492\pi\)
0.957779 + 0.287505i \(0.0928257\pi\)
\(422\) 0 0
\(423\) −8.43218 + 8.65024i −0.409987 + 0.420589i
\(424\) 0 0
\(425\) −12.5148 + 21.6763i −0.607057 + 1.05145i
\(426\) 0 0
\(427\) 13.4675 + 23.3264i 0.651739 + 1.12885i
\(428\) 0 0
\(429\) 1.27777 10.2087i 0.0616914 0.492880i
\(430\) 0 0
\(431\) 8.51693 0.410246 0.205123 0.978736i \(-0.434241\pi\)
0.205123 + 0.978736i \(0.434241\pi\)
\(432\) 0 0
\(433\) 21.6386 1.03989 0.519943 0.854201i \(-0.325953\pi\)
0.519943 + 0.854201i \(0.325953\pi\)
\(434\) 0 0
\(435\) 1.49850 11.9722i 0.0718477 0.574024i
\(436\) 0 0
\(437\) 10.9012 + 18.8815i 0.521477 + 0.903224i
\(438\) 0 0
\(439\) 17.4828 30.2811i 0.834409 1.44524i −0.0601023 0.998192i \(-0.519143\pi\)
0.894511 0.447046i \(-0.147524\pi\)
\(440\) 0 0
\(441\) 13.4497 + 47.7484i 0.640460 + 2.27373i
\(442\) 0 0
\(443\) −16.7585 + 29.0265i −0.796219 + 1.37909i 0.125844 + 0.992050i \(0.459836\pi\)
−0.922062 + 0.387041i \(0.873497\pi\)
\(444\) 0 0
\(445\) −20.5998 35.6799i −0.976525 1.69139i
\(446\) 0 0
\(447\) 9.01428 3.80142i 0.426361 0.179801i
\(448\) 0 0
\(449\) −6.27418 −0.296097 −0.148048 0.988980i \(-0.547299\pi\)
−0.148048 + 0.988980i \(0.547299\pi\)
\(450\) 0 0
\(451\) 4.62815 0.217931
\(452\) 0 0
\(453\) −16.4679 12.4701i −0.773730 0.585897i
\(454\) 0 0
\(455\) −8.73438 15.1284i −0.409474 0.709230i
\(456\) 0 0
\(457\) −8.38237 + 14.5187i −0.392111 + 0.679155i −0.992728 0.120381i \(-0.961588\pi\)
0.600617 + 0.799537i \(0.294922\pi\)
\(458\) 0 0
\(459\) 5.95809 15.2009i 0.278100 0.709519i
\(460\) 0 0
\(461\) 17.3348 30.0248i 0.807362 1.39839i −0.107323 0.994224i \(-0.534228\pi\)
0.914685 0.404168i \(-0.132439\pi\)
\(462\) 0 0
\(463\) 16.1627 + 27.9946i 0.751143 + 1.30102i 0.947269 + 0.320439i \(0.103830\pi\)
−0.196126 + 0.980579i \(0.562836\pi\)
\(464\) 0 0
\(465\) 22.9656 + 17.3904i 1.06500 + 0.806458i
\(466\) 0 0
\(467\) −8.51171 −0.393875 −0.196937 0.980416i \(-0.563100\pi\)
−0.196937 + 0.980416i \(0.563100\pi\)
\(468\) 0 0
\(469\) 28.2613 1.30499
\(470\) 0 0
\(471\) 12.8961 5.43844i 0.594223 0.250590i
\(472\) 0 0
\(473\) 0.978833 + 1.69539i 0.0450068 + 0.0779540i
\(474\) 0 0
\(475\) −18.0603 + 31.2814i −0.828665 + 1.43529i
\(476\) 0 0
\(477\) 17.5575 + 4.46513i 0.803904 + 0.204444i
\(478\) 0 0
\(479\) 0.650570 1.12682i 0.0297253 0.0514857i −0.850780 0.525522i \(-0.823870\pi\)
0.880505 + 0.474036i \(0.157203\pi\)
\(480\) 0 0
\(481\) −5.38501 9.32711i −0.245535 0.425280i
\(482\) 0 0
\(483\) 5.01778 40.0894i 0.228317 1.82413i
\(484\) 0 0
\(485\) −18.5835 −0.843835
\(486\) 0 0
\(487\) −26.7805 −1.21354 −0.606771 0.794877i \(-0.707536\pi\)
−0.606771 + 0.794877i \(0.707536\pi\)
\(488\) 0 0
\(489\) −2.73310 + 21.8359i −0.123595 + 0.987456i
\(490\) 0 0
\(491\) 15.9518 + 27.6293i 0.719895 + 1.24690i 0.961041 + 0.276406i \(0.0891435\pi\)
−0.241146 + 0.970489i \(0.577523\pi\)
\(492\) 0 0
\(493\) 3.03935 5.26431i 0.136885 0.237092i
\(494\) 0 0
\(495\) 62.1868 + 15.8150i 2.79509 + 0.710830i
\(496\) 0 0
\(497\) −7.72337 + 13.3773i −0.346440 + 0.600052i
\(498\) 0 0
\(499\) −3.26459 5.65444i −0.146143 0.253127i 0.783656 0.621195i \(-0.213353\pi\)
−0.929799 + 0.368068i \(0.880019\pi\)
\(500\) 0 0
\(501\) −19.5805 + 8.25731i −0.874792 + 0.368909i
\(502\) 0 0
\(503\) −36.4117 −1.62352 −0.811758 0.583994i \(-0.801489\pi\)
−0.811758 + 0.583994i \(0.801489\pi\)
\(504\) 0 0
\(505\) 36.6732 1.63194
\(506\) 0 0
\(507\) −1.38083 1.04561i −0.0613248 0.0464374i
\(508\) 0 0
\(509\) 1.36812 + 2.36966i 0.0606410 + 0.105033i 0.894752 0.446563i \(-0.147352\pi\)
−0.834111 + 0.551596i \(0.814019\pi\)
\(510\) 0 0
\(511\) −28.5125 + 49.3851i −1.26132 + 2.18467i
\(512\) 0 0
\(513\) 8.59823 21.9367i 0.379621 0.968531i
\(514\) 0 0
\(515\) −5.72868 + 9.92236i −0.252436 + 0.437231i
\(516\) 0 0
\(517\) −11.9592 20.7140i −0.525967 0.911001i
\(518\) 0 0
\(519\) −17.6405 13.3580i −0.774332 0.586352i
\(520\) 0 0
\(521\) −33.7588 −1.47900 −0.739500 0.673157i \(-0.764938\pi\)
−0.739500 + 0.673157i \(0.764938\pi\)
\(522\) 0 0
\(523\) 18.0617 0.789782 0.394891 0.918728i \(-0.370782\pi\)
0.394891 + 0.918728i \(0.370782\pi\)
\(524\) 0 0
\(525\) 61.6753 26.0091i 2.69173 1.13513i
\(526\) 0 0
\(527\) 7.25652 + 12.5687i 0.316099 + 0.547499i
\(528\) 0 0
\(529\) −0.0593818 + 0.102852i −0.00258182 + 0.00447184i
\(530\) 0 0
\(531\) 2.85116 + 10.1221i 0.123730 + 0.439260i
\(532\) 0 0
\(533\) 0.389576 0.674766i 0.0168744 0.0292274i
\(534\) 0 0
\(535\) −29.6934 51.4305i −1.28376 2.22354i
\(536\) 0 0
\(537\) 1.21584 9.71392i 0.0524675 0.419187i
\(538\) 0 0
\(539\) −98.2205 −4.23066
\(540\) 0 0
\(541\) 9.82851 0.422561 0.211280 0.977426i \(-0.432237\pi\)
0.211280 + 0.977426i \(0.432237\pi\)
\(542\) 0 0
\(543\) 2.57780 20.5953i 0.110624 0.883827i
\(544\) 0 0
\(545\) 11.3640 + 19.6831i 0.486781 + 0.843129i
\(546\) 0 0
\(547\) −6.09142 + 10.5506i −0.260450 + 0.451113i −0.966362 0.257187i \(-0.917204\pi\)
0.705911 + 0.708300i \(0.250538\pi\)
\(548\) 0 0
\(549\) −11.6265 + 11.9271i −0.496205 + 0.509037i
\(550\) 0 0
\(551\) 4.38614 7.59702i 0.186856 0.323644i
\(552\) 0 0
\(553\) 9.56605 + 16.5689i 0.406790 + 0.704581i
\(554\) 0 0
\(555\) 61.8920 26.1005i 2.62717 1.10791i
\(556\) 0 0
\(557\) 9.07479 0.384511 0.192256 0.981345i \(-0.438420\pi\)
0.192256 + 0.981345i \(0.438420\pi\)
\(558\) 0 0
\(559\) 0.329574 0.0139395
\(560\) 0 0
\(561\) 25.7719 + 19.5154i 1.08809 + 0.823942i
\(562\) 0 0
\(563\) −16.3055 28.2419i −0.687193 1.19025i −0.972742 0.231889i \(-0.925509\pi\)
0.285549 0.958364i \(-0.407824\pi\)
\(564\) 0 0
\(565\) −14.6517 + 25.3775i −0.616401 + 1.06764i
\(566\) 0 0
\(567\) −37.2429 + 22.7891i −1.56405 + 0.957053i
\(568\) 0 0
\(569\) 10.2251 17.7105i 0.428660 0.742461i −0.568094 0.822964i \(-0.692319\pi\)
0.996754 + 0.0805022i \(0.0256524\pi\)
\(570\) 0 0
\(571\) 12.7365 + 22.0603i 0.533007 + 0.923195i 0.999257 + 0.0385419i \(0.0122713\pi\)
−0.466250 + 0.884653i \(0.654395\pi\)
\(572\) 0 0
\(573\) 18.4916 + 14.0025i 0.772498 + 0.584963i
\(574\) 0 0
\(575\) −38.3014 −1.59728
\(576\) 0 0
\(577\) 42.2188 1.75759 0.878795 0.477199i \(-0.158348\pi\)
0.878795 + 0.477199i \(0.158348\pi\)
\(578\) 0 0
\(579\) 0.0100579 0.00424151i 0.000417990 0.000176271i
\(580\) 0 0
\(581\) −6.22083 10.7748i −0.258084 0.447014i
\(582\) 0 0
\(583\) −17.9352 + 31.0647i −0.742800 + 1.28657i
\(584\) 0 0
\(585\) 7.54036 7.73535i 0.311755 0.319818i
\(586\) 0 0
\(587\) −13.3873 + 23.1875i −0.552555 + 0.957053i 0.445535 + 0.895265i \(0.353014\pi\)
−0.998089 + 0.0617879i \(0.980320\pi\)
\(588\) 0 0
\(589\) 10.4720 + 18.1380i 0.431492 + 0.747365i
\(590\) 0 0
\(591\) −2.08200 + 16.6341i −0.0856422 + 0.684235i
\(592\) 0 0
\(593\) 4.74780 0.194969 0.0974844 0.995237i \(-0.468920\pi\)
0.0974844 + 0.995237i \(0.468920\pi\)
\(594\) 0 0
\(595\) 54.8888 2.25022
\(596\) 0 0
\(597\) 5.65124 45.1503i 0.231290 1.84788i
\(598\) 0 0
\(599\) 17.9972 + 31.1721i 0.735347 + 1.27366i 0.954571 + 0.297984i \(0.0963141\pi\)
−0.219224 + 0.975675i \(0.570353\pi\)
\(600\) 0 0
\(601\) 2.62645 4.54915i 0.107135 0.185564i −0.807473 0.589904i \(-0.799166\pi\)
0.914609 + 0.404340i \(0.132499\pi\)
\(602\) 0 0
\(603\) 4.73833 + 16.8218i 0.192960 + 0.685037i
\(604\) 0 0
\(605\) −43.7199 + 75.7252i −1.77747 + 3.07867i
\(606\) 0 0
\(607\) 0.624003 + 1.08081i 0.0253275 + 0.0438685i 0.878411 0.477905i \(-0.158604\pi\)
−0.853084 + 0.521774i \(0.825270\pi\)
\(608\) 0 0
\(609\) −14.9785 + 6.31659i −0.606959 + 0.255961i
\(610\) 0 0
\(611\) −4.02669 −0.162903
\(612\) 0 0
\(613\) −18.4731 −0.746120 −0.373060 0.927807i \(-0.621692\pi\)
−0.373060 + 0.927807i \(0.621692\pi\)
\(614\) 0 0
\(615\) 3.87403 + 2.93356i 0.156216 + 0.118292i
\(616\) 0 0
\(617\) −18.0419 31.2495i −0.726340 1.25806i −0.958420 0.285361i \(-0.907886\pi\)
0.232080 0.972697i \(-0.425447\pi\)
\(618\) 0 0
\(619\) 22.2098 38.4685i 0.892688 1.54618i 0.0560473 0.998428i \(-0.482150\pi\)
0.836640 0.547752i \(-0.184516\pi\)
\(620\) 0 0
\(621\) 24.7034 3.73473i 0.991314 0.149870i
\(622\) 0 0
\(623\) −27.7539 + 48.0712i −1.11194 + 1.92593i
\(624\) 0 0
\(625\) 0.687235 + 1.19033i 0.0274894 + 0.0476131i
\(626\) 0 0
\(627\) 37.1919 + 28.1631i 1.48530 + 1.12472i
\(628\) 0 0
\(629\) 33.8406 1.34931
\(630\) 0 0
\(631\) 27.2686 1.08555 0.542773 0.839880i \(-0.317375\pi\)
0.542773 + 0.839880i \(0.317375\pi\)
\(632\) 0 0
\(633\) 2.44075 1.02929i 0.0970113 0.0409107i
\(634\) 0 0
\(635\) −16.9423 29.3450i −0.672336 1.16452i
\(636\) 0 0
\(637\) −8.26774 + 14.3202i −0.327580 + 0.567385i
\(638\) 0 0
\(639\) −9.25737 2.35428i −0.366216 0.0931339i
\(640\) 0 0
\(641\) −10.1339 + 17.5524i −0.400265 + 0.693280i −0.993758 0.111560i \(-0.964415\pi\)
0.593492 + 0.804840i \(0.297749\pi\)
\(642\) 0 0
\(643\) −10.0914 17.4789i −0.397967 0.689299i 0.595508 0.803349i \(-0.296951\pi\)
−0.993475 + 0.114051i \(0.963617\pi\)
\(644\) 0 0
\(645\) −0.255283 + 2.03957i −0.0100518 + 0.0803081i
\(646\) 0 0
\(647\) −9.41833 −0.370273 −0.185136 0.982713i \(-0.559273\pi\)
−0.185136 + 0.982713i \(0.559273\pi\)
\(648\) 0 0
\(649\) −20.8215 −0.817315
\(650\) 0 0
\(651\) 4.82021 38.5109i 0.188919 1.50936i
\(652\) 0 0
\(653\) −23.8178 41.2537i −0.932063 1.61438i −0.779790 0.626042i \(-0.784674\pi\)
−0.152273 0.988338i \(-0.548659\pi\)
\(654\) 0 0
\(655\) −33.0607 + 57.2629i −1.29179 + 2.23745i
\(656\) 0 0
\(657\) −34.1756 8.69133i −1.33332 0.339081i
\(658\) 0 0
\(659\) −10.5791 + 18.3235i −0.412102 + 0.713781i −0.995119 0.0986782i \(-0.968539\pi\)
0.583017 + 0.812460i \(0.301872\pi\)
\(660\) 0 0
\(661\) −11.3505 19.6596i −0.441482 0.764669i 0.556318 0.830969i \(-0.312214\pi\)
−0.997800 + 0.0663009i \(0.978880\pi\)
\(662\) 0 0
\(663\) 5.01463 2.11473i 0.194752 0.0821291i
\(664\) 0 0
\(665\) 79.2110 3.07167
\(666\) 0 0
\(667\) 9.30189 0.360171
\(668\) 0 0
\(669\) −18.7620 14.2073i −0.725381 0.549285i
\(670\) 0 0
\(671\) −16.4896 28.5609i −0.636576 1.10258i
\(672\) 0 0
\(673\) 4.80850 8.32857i 0.185354 0.321043i −0.758342 0.651857i \(-0.773990\pi\)
0.943696 + 0.330815i \(0.107323\pi\)
\(674\) 0 0
\(675\) 25.8218 + 32.3499i 0.993882 + 1.24515i
\(676\) 0 0
\(677\) 2.82985 4.90145i 0.108760 0.188378i −0.806508 0.591223i \(-0.798645\pi\)
0.915268 + 0.402845i \(0.131979\pi\)
\(678\) 0 0
\(679\) 12.5187 + 21.6830i 0.480424 + 0.832119i
\(680\) 0 0
\(681\) 20.6263 + 15.6190i 0.790401 + 0.598520i
\(682\) 0 0
\(683\) 33.6477 1.28749 0.643747 0.765239i \(-0.277379\pi\)
0.643747 + 0.765239i \(0.277379\pi\)
\(684\) 0 0
\(685\) −26.8231 −1.02486
\(686\) 0 0
\(687\) −4.52698 + 1.90908i −0.172715 + 0.0728359i
\(688\) 0 0
\(689\) 3.01940 + 5.22976i 0.115030 + 0.199238i
\(690\) 0 0
\(691\) −4.26302 + 7.38378i −0.162173 + 0.280892i −0.935648 0.352935i \(-0.885184\pi\)
0.773475 + 0.633827i \(0.218517\pi\)
\(692\) 0 0
\(693\) −23.4391 83.2125i −0.890378 3.16098i
\(694\) 0 0
\(695\) 41.4144 71.7319i 1.57094 2.72095i
\(696\) 0 0
\(697\) 1.22409 + 2.12019i 0.0463658 + 0.0803079i
\(698\) 0 0
\(699\) 2.73624 21.8610i 0.103494 0.826861i
\(700\) 0 0
\(701\) 13.9968 0.528651 0.264326 0.964434i \(-0.414851\pi\)
0.264326 + 0.964434i \(0.414851\pi\)
\(702\) 0 0
\(703\) 48.8360 1.84188
\(704\) 0 0
\(705\) 3.11901 24.9192i 0.117469 0.938511i
\(706\) 0 0
\(707\) −24.7047 42.7898i −0.929117 1.60928i
\(708\) 0 0
\(709\) −8.16793 + 14.1473i −0.306753 + 0.531312i −0.977650 0.210238i \(-0.932576\pi\)
0.670897 + 0.741551i \(0.265909\pi\)
\(710\) 0 0
\(711\) −8.25833 + 8.47190i −0.309712 + 0.317721i
\(712\) 0 0
\(713\) −11.1042 + 19.2331i −0.415857 + 0.720285i
\(714\) 0 0
\(715\) 10.6944 + 18.5232i 0.399947 + 0.692729i
\(716\) 0 0
\(717\) 3.38832 1.42889i 0.126539 0.0533630i
\(718\) 0 0
\(719\) 17.1133 0.638219 0.319110 0.947718i \(-0.396616\pi\)
0.319110 + 0.947718i \(0.396616\pi\)
\(720\) 0 0
\(721\) 15.4364 0.574881
\(722\) 0 0
\(723\) 4.58696 + 3.47341i 0.170591 + 0.129177i
\(724\) 0 0
\(725\) 7.70533 + 13.3460i 0.286169 + 0.495659i
\(726\) 0 0
\(727\) −3.23624 + 5.60534i −0.120026 + 0.207890i −0.919778 0.392440i \(-0.871631\pi\)
0.799752 + 0.600331i \(0.204964\pi\)
\(728\) 0 0
\(729\) −19.8088 18.3470i −0.733660 0.679517i
\(730\) 0 0
\(731\) −0.517780 + 0.896821i −0.0191508 + 0.0331701i
\(732\) 0 0
\(733\) 24.1525 + 41.8334i 0.892093 + 1.54515i 0.837361 + 0.546650i \(0.184097\pi\)
0.0547322 + 0.998501i \(0.482569\pi\)
\(734\) 0 0
\(735\) −82.2163 62.2571i −3.03259 2.29639i
\(736\) 0 0
\(737\) −34.6032 −1.27462
\(738\) 0 0
\(739\) −18.1182 −0.666488 −0.333244 0.942841i \(-0.608143\pi\)
−0.333244 + 0.942841i \(0.608143\pi\)
\(740\) 0 0
\(741\) 7.23671 3.05180i 0.265847 0.112111i
\(742\) 0 0
\(743\) −18.4567 31.9680i −0.677112 1.17279i −0.975847 0.218457i \(-0.929898\pi\)
0.298734 0.954336i \(-0.403436\pi\)
\(744\) 0 0
\(745\) −10.1691 + 17.6135i −0.372568 + 0.645307i
\(746\) 0 0
\(747\) 5.37042 5.50930i 0.196493 0.201575i
\(748\) 0 0
\(749\) −40.0057 + 69.2918i −1.46177 + 2.53187i
\(750\) 0 0
\(751\) −22.5544 39.0654i −0.823023 1.42552i −0.903421 0.428755i \(-0.858952\pi\)
0.0803976 0.996763i \(-0.474381\pi\)
\(752\) 0 0
\(753\) −3.21632 + 25.6967i −0.117209 + 0.936439i
\(754\) 0 0
\(755\) 42.9437 1.56288
\(756\) 0 0
\(757\) −14.8646 −0.540263 −0.270132 0.962823i \(-0.587067\pi\)
−0.270132 + 0.962823i \(0.587067\pi\)
\(758\) 0 0
\(759\) −6.14377 + 49.0854i −0.223005 + 1.78169i
\(760\) 0 0
\(761\) 2.24075 + 3.88109i 0.0812271 + 0.140689i 0.903777 0.428003i \(-0.140783\pi\)
−0.822550 + 0.568693i \(0.807449\pi\)
\(762\) 0 0
\(763\) 15.3106 26.5188i 0.554282 0.960044i
\(764\) 0 0
\(765\) 9.20273 + 32.6711i 0.332725 + 1.18123i
\(766\) 0 0
\(767\) −1.75266 + 3.03569i −0.0632848 + 0.109612i
\(768\) 0 0
\(769\) 2.08442 + 3.61031i 0.0751659 + 0.130191i 0.901158 0.433490i \(-0.142718\pi\)
−0.825992 + 0.563681i \(0.809385\pi\)
\(770\) 0 0
\(771\) −16.0040 + 6.74904i −0.576368 + 0.243061i
\(772\) 0 0
\(773\) 33.3000 1.19772 0.598858 0.800855i \(-0.295621\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(774\) 0 0
\(775\) −36.7933 −1.32165
\(776\) 0 0
\(777\) −72.1470 54.6323i −2.58826 1.95992i
\(778\) 0 0
\(779\) 1.76651 + 3.05968i 0.0632918 + 0.109625i
\(780\) 0 0
\(781\) 9.45650 16.3791i 0.338380 0.586091i
\(782\) 0 0
\(783\) −6.27110 7.85650i −0.224111 0.280768i
\(784\) 0 0
\(785\) −14.5483 + 25.1984i −0.519252 + 0.899370i
\(786\) 0 0
\(787\) −6.82197 11.8160i −0.243177 0.421195i 0.718441 0.695588i \(-0.244856\pi\)
−0.961617 + 0.274394i \(0.911523\pi\)
\(788\) 0 0
\(789\) 6.63445 + 5.02385i 0.236193 + 0.178854i
\(790\) 0 0
\(791\) 39.4801 1.40375
\(792\) 0 0
\(793\) −5.55209 −0.197160
\(794\) 0 0
\(795\) −34.7031 + 14.6347i −1.23079 + 0.519039i
\(796\) 0 0
\(797\) 16.4935 + 28.5676i 0.584230 + 1.01192i 0.994971 + 0.100164i \(0.0319367\pi\)
−0.410741 + 0.911752i \(0.634730\pi\)
\(798\) 0 0
\(799\) 6.32616 10.9572i 0.223803 0.387639i
\(800\) 0 0
\(801\) −33.2664 8.46011i −1.17541 0.298923i
\(802\) 0 0
\(803\) 34.9107 60.4671i 1.23197 2.13384i
\(804\) 0 0
\(805\) 41.9966 + 72.7403i 1.48019 + 2.56376i
\(806\) 0 0
\(807\) 2.24809 17.9610i 0.0791364 0.632257i
\(808\) 0 0
\(809\) −30.2406 −1.06320 −0.531601 0.846995i \(-0.678410\pi\)
−0.531601 + 0.846995i \(0.678410\pi\)
\(810\) 0 0
\(811\) −38.3497 −1.34664 −0.673320 0.739351i \(-0.735132\pi\)
−0.673320 + 0.739351i \(0.735132\pi\)
\(812\) 0 0
\(813\) −2.67927 + 21.4059i −0.0939662 + 0.750739i
\(814\) 0 0
\(815\) −22.8748 39.6203i −0.801270 1.38784i
\(816\) 0 0
\(817\) −0.747217 + 1.29422i −0.0261418 + 0.0452790i
\(818\) 0 0
\(819\) −14.1050 3.58711i −0.492870 0.125344i
\(820\) 0 0
\(821\) 15.5824 26.9896i 0.543831 0.941942i −0.454849 0.890569i \(-0.650307\pi\)
0.998680 0.0513735i \(-0.0163599\pi\)
\(822\) 0 0
\(823\) 1.44096 + 2.49581i 0.0502287 + 0.0869986i 0.890047 0.455870i \(-0.150672\pi\)
−0.839818 + 0.542868i \(0.817338\pi\)
\(824\) 0 0
\(825\) −75.5153 + 31.8456i −2.62910 + 1.10872i
\(826\) 0 0
\(827\) −22.9312 −0.797396 −0.398698 0.917082i \(-0.630538\pi\)
−0.398698 + 0.917082i \(0.630538\pi\)
\(828\) 0 0
\(829\) −44.0256 −1.52907 −0.764536 0.644581i \(-0.777032\pi\)
−0.764536 + 0.644581i \(0.777032\pi\)
\(830\) 0 0
\(831\) 17.2069 + 13.0297i 0.596900 + 0.451994i
\(832\) 0 0
\(833\) −25.9782 44.9955i −0.900091 1.55900i
\(834\) 0 0
\(835\) 22.0890 38.2593i 0.764423 1.32402i
\(836\) 0 0
\(837\) 23.7307 3.58768i 0.820254 0.124008i
\(838\) 0 0
\(839\) −3.75434 + 6.50270i −0.129614 + 0.224498i −0.923527 0.383533i \(-0.874707\pi\)
0.793913 + 0.608031i \(0.208040\pi\)
\(840\) 0 0
\(841\) 12.6287 + 21.8735i 0.435472 + 0.754259i
\(842\) 0 0
\(843\) 41.5376 + 31.4538i 1.43063 + 1.08333i
\(844\) 0 0
\(845\) 3.60081 0.123872
\(846\) 0 0
\(847\) 117.807 4.04789
\(848\) 0 0
\(849\) −34.6986 + 14.6328i −1.19085 + 0.502196i
\(850\) 0 0
\(851\) 25.8922 + 44.8466i 0.887573 + 1.53732i
\(852\) 0 0
\(853\) −17.4967 + 30.3052i −0.599076 + 1.03763i 0.393882 + 0.919161i \(0.371132\pi\)
−0.992958 + 0.118469i \(0.962201\pi\)
\(854\) 0 0
\(855\) 13.2806 + 47.1483i 0.454188 + 1.61244i
\(856\) 0 0
\(857\) 1.94529 3.36935i 0.0664500 0.115095i −0.830886 0.556442i \(-0.812166\pi\)
0.897336 + 0.441347i \(0.145499\pi\)
\(858\) 0 0
\(859\) −7.39306 12.8052i −0.252248 0.436906i 0.711896 0.702285i \(-0.247837\pi\)
−0.964144 + 0.265378i \(0.914503\pi\)
\(860\) 0 0
\(861\) 0.813115 6.49635i 0.0277109 0.221395i
\(862\) 0 0
\(863\) −39.4680 −1.34351 −0.671753 0.740775i \(-0.734459\pi\)
−0.671753 + 0.740775i \(0.734459\pi\)
\(864\) 0 0
\(865\) 46.0014 1.56409
\(866\) 0 0
\(867\) 1.53314 12.2490i 0.0520682 0.415997i
\(868\) 0 0
\(869\) −11.7127 20.2869i −0.397325 0.688188i
\(870\) 0 0
\(871\) −2.91273 + 5.04500i −0.0986942 + 0.170943i
\(872\) 0 0
\(873\) −10.8074 + 11.0868i −0.365774 + 0.375233i
\(874\) 0 0
\(875\) −25.9049 + 44.8686i −0.875745 + 1.51683i
\(876\) 0 0
\(877\) −15.9102 27.5573i −0.537249 0.930543i −0.999051 0.0435599i \(-0.986130\pi\)
0.461801 0.886983i \(-0.347203\pi\)
\(878\) 0 0
\(879\) −0.638598 + 0.269304i −0.0215394 + 0.00908339i
\(880\) 0 0
\(881\) −0.104015 −0.00350437 −0.00175218 0.999998i \(-0.500558\pi\)
−0.00175218 + 0.999998i \(0.500558\pi\)
\(882\) 0 0
\(883\) −37.7445 −1.27020 −0.635102 0.772428i \(-0.719042\pi\)
−0.635102 + 0.772428i \(0.719042\pi\)
\(884\) 0 0
\(885\) −17.4288 13.1977i −0.585863 0.443636i
\(886\) 0 0
\(887\) 14.0832 + 24.3928i 0.472867 + 0.819031i 0.999518 0.0310515i \(-0.00988559\pi\)
−0.526650 + 0.850082i \(0.676552\pi\)
\(888\) 0 0
\(889\) −22.8262 + 39.5362i −0.765568 + 1.32600i
\(890\) 0 0
\(891\) 45.6002 27.9030i 1.52766 0.934786i
\(892\) 0 0
\(893\) 9.12939 15.8126i 0.305504 0.529148i
\(894\) 0 0
\(895\) 10.1761 + 17.6255i 0.340148 + 0.589154i
\(896\) 0 0
\(897\) 6.63930 + 5.02752i 0.221680 + 0.167864i
\(898\) 0 0
\(899\) 8.93563 0.298020
\(900\) 0 0
\(901\) −18.9746 −0.632136
\(902\) 0 0
\(903\) 2.55172 1.07609i 0.0849158 0.0358099i
\(904\) 0 0
\(905\) 21.5751 + 37.3691i 0.717180 + 1.24219i
\(906\) 0 0
\(907\) 18.1360 31.4125i 0.602197 1.04304i −0.390291 0.920692i \(-0.627626\pi\)
0.992488 0.122344i \(-0.0390411\pi\)
\(908\) 0 0
\(909\) 21.3275 21.8790i 0.707388 0.725682i
\(910\) 0 0
\(911\) −4.43178 + 7.67607i −0.146831 + 0.254319i −0.930055 0.367421i \(-0.880241\pi\)
0.783223 + 0.621740i \(0.213574\pi\)
\(912\) 0 0
\(913\) 7.61679 + 13.1927i 0.252079 + 0.436614i
\(914\) 0 0
\(915\) 4.30056 34.3591i 0.142172 1.13588i
\(916\) 0 0
\(917\) 89.0848 2.94184
\(918\) 0 0
\(919\) 17.7678 0.586106 0.293053 0.956096i \(-0.405329\pi\)
0.293053 + 0.956096i \(0.405329\pi\)
\(920\) 0 0
\(921\) 5.05697 40.4024i 0.166633 1.33131i
\(922\) 0 0
\(923\) −1.59201 2.75744i −0.0524016 0.0907622i
\(924\) 0 0
\(925\) −42.8962 + 74.2984i −1.41042 + 2.44292i
\(926\) 0 0
\(927\) 2.58808 + 9.18810i 0.0850038 + 0.301777i
\(928\) 0 0
\(929\) −17.7193 + 30.6908i −0.581352 + 1.00693i 0.413967 + 0.910292i \(0.364143\pi\)
−0.995319 + 0.0966396i \(0.969191\pi\)
\(930\) 0 0
\(931\) −37.4896 64.9339i −1.22867 2.12812i
\(932\) 0 0
\(933\) −28.0571 + 11.8320i −0.918548 + 0.387362i
\(934\) 0 0
\(935\) −67.2059 −2.19787
\(936\) 0 0
\(937\) 26.0877 0.852248 0.426124 0.904665i \(-0.359879\pi\)
0.426124 + 0.904665i \(0.359879\pi\)
\(938\) 0 0
\(939\) −42.5595 32.2276i −1.38888 1.05171i
\(940\) 0 0
\(941\) −10.2832 17.8111i −0.335223 0.580624i 0.648304 0.761381i \(-0.275478\pi\)
−0.983528 + 0.180757i \(0.942145\pi\)
\(942\) 0 0
\(943\) −1.87316 + 3.24441i −0.0609985 + 0.105652i
\(944\) 0 0
\(945\) 33.1244 84.5105i 1.07754 2.74913i
\(946\) 0 0
\(947\) −11.2111 + 19.4182i −0.364311 + 0.631006i −0.988665 0.150136i \(-0.952029\pi\)
0.624354 + 0.781141i \(0.285362\pi\)
\(948\) 0 0
\(949\) −5.87724 10.1797i −0.190783 0.330446i
\(950\) 0 0
\(951\) 2.84213 + 2.15216i 0.0921623 + 0.0697886i
\(952\) 0 0
\(953\) −15.5106 −0.502438 −0.251219 0.967930i \(-0.580832\pi\)
−0.251219 + 0.967930i \(0.580832\pi\)
\(954\) 0 0
\(955\) −48.2209 −1.56039
\(956\) 0 0
\(957\) 18.3397 7.73404i 0.592837 0.250006i
\(958\) 0 0
\(959\) 18.0692 + 31.2968i 0.583486 + 1.01063i
\(960\) 0 0
\(961\) 4.83299 8.37098i 0.155903 0.270031i
\(962\) 0 0
\(963\) −47.9515 12.1947i −1.54522 0.392970i
\(964\) 0 0
\(965\) −0.0113464 + 0.0196526i −0.000365254 + 0.000632638i
\(966\) 0 0
\(967\) −6.61051 11.4497i −0.212580 0.368199i 0.739942 0.672671i \(-0.234853\pi\)
−0.952521 + 0.304473i \(0.901520\pi\)
\(968\) 0 0
\(969\) −3.06488 + 24.4867i −0.0984580 + 0.786626i
\(970\) 0 0
\(971\) 22.0317 0.707031 0.353515 0.935429i \(-0.384986\pi\)
0.353515 + 0.935429i \(0.384986\pi\)
\(972\) 0 0
\(973\) −111.595 −3.57756
\(974\) 0 0
\(975\) −1.71356 + 13.6904i −0.0548779 + 0.438445i
\(976\) 0 0
\(977\) −23.8551 41.3182i −0.763192 1.32189i −0.941197 0.337858i \(-0.890298\pi\)
0.178005 0.984030i \(-0.443036\pi\)
\(978\) 0 0
\(979\) 33.9819 58.8584i 1.08607 1.88112i
\(980\) 0 0
\(981\) 18.3516 + 4.66707i 0.585921 + 0.149008i
\(982\) 0 0
\(983\) −19.5800 + 33.9135i −0.624504 + 1.08167i 0.364132 + 0.931347i \(0.381366\pi\)
−0.988637 + 0.150326i \(0.951968\pi\)
\(984\) 0 0
\(985\) −17.4255 30.1818i −0.555221 0.961672i
\(986\) 0 0
\(987\) −31.1765 + 13.1475i −0.992359 + 0.418489i
\(988\) 0 0
\(989\) −1.58466 −0.0503892
\(990\) 0 0
\(991\) −46.7781 −1.48596 −0.742978 0.669316i \(-0.766587\pi\)
−0.742978 + 0.669316i \(0.766587\pi\)
\(992\) 0 0
\(993\) −7.09523 5.37277i −0.225160 0.170500i
\(994\) 0 0
\(995\) 47.2984 + 81.9232i 1.49946 + 2.59714i
\(996\) 0 0
\(997\) 11.2351 19.4598i 0.355819 0.616297i −0.631439 0.775426i \(-0.717535\pi\)
0.987258 + 0.159129i \(0.0508686\pi\)
\(998\) 0 0
\(999\) 20.4222 52.1033i 0.646129 1.64848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.6 22
3.2 odd 2 2808.2.q.g.937.10 22
9.2 odd 6 8424.2.a.be.1.2 11
9.4 even 3 inner 936.2.q.g.625.6 yes 22
9.5 odd 6 2808.2.q.g.1873.10 22
9.7 even 3 8424.2.a.bf.1.10 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.6 22 1.1 even 1 trivial
936.2.q.g.625.6 yes 22 9.4 even 3 inner
2808.2.q.g.937.10 22 3.2 odd 2
2808.2.q.g.1873.10 22 9.5 odd 6
8424.2.a.be.1.2 11 9.2 odd 6
8424.2.a.bf.1.10 11 9.7 even 3