Properties

Label 2808.2.q.g.937.10
Level $2808$
Weight $2$
Character 2808.937
Analytic conductor $22.422$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(937,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.937"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 937.10
Character \(\chi\) \(=\) 2808.937
Dual form 2808.2.q.g.1873.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80041 + 3.11840i) q^{5} +(-2.42567 + 4.20138i) q^{7} +(-2.96999 + 5.14417i) q^{11} +(-0.500000 - 0.866025i) q^{13} -3.14211 q^{17} +4.53444 q^{19} +(-2.40410 - 4.16402i) q^{23} +(-3.98293 + 6.89863i) q^{25} +(-0.967295 + 1.67540i) q^{29} +(2.30944 + 4.00007i) q^{31} -17.4688 q^{35} +10.7700 q^{37} +(-0.389576 - 0.674766i) q^{41} +(-0.164787 + 0.285420i) q^{43} +(-2.01335 + 3.48722i) q^{47} +(-8.26774 - 14.3202i) q^{49} +6.03880 q^{53} -21.3888 q^{55} +(1.75266 + 3.03569i) q^{59} +(2.77604 - 4.80825i) q^{61} +(1.80041 - 3.11840i) q^{65} +(-2.91273 - 5.04500i) q^{67} -3.18402 q^{71} +11.7545 q^{73} +(-14.4084 - 24.9561i) q^{77} +(1.97184 - 3.41532i) q^{79} +(1.28229 - 2.22100i) q^{83} +(-5.65708 - 9.79835i) q^{85} -11.4418 q^{89} +4.85134 q^{91} +(8.16383 + 14.1402i) q^{95} +(2.58047 - 4.46950i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 3 q^{5} - 4 q^{7} - 5 q^{11} - 11 q^{13} - 8 q^{17} + 10 q^{19} - 9 q^{23} - 24 q^{25} + 16 q^{29} - q^{31} + 18 q^{37} + 6 q^{41} - 7 q^{43} - 21 q^{47} - 27 q^{49} - 32 q^{53} + 34 q^{55} - 11 q^{59}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.80041 + 3.11840i 0.805166 + 1.39459i 0.916179 + 0.400770i \(0.131257\pi\)
−0.111013 + 0.993819i \(0.535409\pi\)
\(6\) 0 0
\(7\) −2.42567 + 4.20138i −0.916817 + 1.58797i −0.112598 + 0.993641i \(0.535917\pi\)
−0.804219 + 0.594333i \(0.797416\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.96999 + 5.14417i −0.895486 + 1.55103i −0.0622837 + 0.998058i \(0.519838\pi\)
−0.833202 + 0.552969i \(0.813495\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.14211 −0.762074 −0.381037 0.924560i \(-0.624433\pi\)
−0.381037 + 0.924560i \(0.624433\pi\)
\(18\) 0 0
\(19\) 4.53444 1.04027 0.520136 0.854084i \(-0.325881\pi\)
0.520136 + 0.854084i \(0.325881\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.40410 4.16402i −0.501289 0.868258i −0.999999 0.00148934i \(-0.999526\pi\)
0.498710 0.866769i \(-0.333807\pi\)
\(24\) 0 0
\(25\) −3.98293 + 6.89863i −0.796585 + 1.37973i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.967295 + 1.67540i −0.179622 + 0.311115i −0.941751 0.336310i \(-0.890821\pi\)
0.762129 + 0.647425i \(0.224154\pi\)
\(30\) 0 0
\(31\) 2.30944 + 4.00007i 0.414787 + 0.718433i 0.995406 0.0957427i \(-0.0305226\pi\)
−0.580619 + 0.814176i \(0.697189\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −17.4688 −2.95276
\(36\) 0 0
\(37\) 10.7700 1.77058 0.885290 0.465039i \(-0.153960\pi\)
0.885290 + 0.465039i \(0.153960\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.389576 0.674766i −0.0608416 0.105381i 0.834000 0.551764i \(-0.186045\pi\)
−0.894842 + 0.446383i \(0.852712\pi\)
\(42\) 0 0
\(43\) −0.164787 + 0.285420i −0.0251298 + 0.0435261i −0.878317 0.478079i \(-0.841333\pi\)
0.853187 + 0.521605i \(0.174667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.01335 + 3.48722i −0.293677 + 0.508663i −0.974676 0.223621i \(-0.928212\pi\)
0.680999 + 0.732284i \(0.261546\pi\)
\(48\) 0 0
\(49\) −8.26774 14.3202i −1.18111 2.04574i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.03880 0.829493 0.414747 0.909937i \(-0.363870\pi\)
0.414747 + 0.909937i \(0.363870\pi\)
\(54\) 0 0
\(55\) −21.3888 −2.88406
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.75266 + 3.03569i 0.228176 + 0.395213i 0.957268 0.289203i \(-0.0933903\pi\)
−0.729091 + 0.684417i \(0.760057\pi\)
\(60\) 0 0
\(61\) 2.77604 4.80825i 0.355436 0.615633i −0.631757 0.775167i \(-0.717666\pi\)
0.987192 + 0.159534i \(0.0509991\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.80041 3.11840i 0.223313 0.386789i
\(66\) 0 0
\(67\) −2.91273 5.04500i −0.355847 0.616345i 0.631415 0.775445i \(-0.282474\pi\)
−0.987263 + 0.159099i \(0.949141\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.18402 −0.377873 −0.188937 0.981989i \(-0.560504\pi\)
−0.188937 + 0.981989i \(0.560504\pi\)
\(72\) 0 0
\(73\) 11.7545 1.37576 0.687879 0.725826i \(-0.258542\pi\)
0.687879 + 0.725826i \(0.258542\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.4084 24.9561i −1.64199 2.84402i
\(78\) 0 0
\(79\) 1.97184 3.41532i 0.221849 0.384254i −0.733520 0.679667i \(-0.762124\pi\)
0.955369 + 0.295414i \(0.0954575\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.28229 2.22100i 0.140750 0.243786i −0.787029 0.616916i \(-0.788382\pi\)
0.927779 + 0.373130i \(0.121715\pi\)
\(84\) 0 0
\(85\) −5.65708 9.79835i −0.613596 1.06278i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.4418 −1.21282 −0.606412 0.795150i \(-0.707392\pi\)
−0.606412 + 0.795150i \(0.707392\pi\)
\(90\) 0 0
\(91\) 4.85134 0.508559
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.16383 + 14.1402i 0.837591 + 1.45075i
\(96\) 0 0
\(97\) 2.58047 4.46950i 0.262007 0.453809i −0.704768 0.709437i \(-0.748949\pi\)
0.966775 + 0.255629i \(0.0822824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.09235 8.82021i 0.506708 0.877644i −0.493262 0.869881i \(-0.664196\pi\)
0.999970 0.00776297i \(-0.00247106\pi\)
\(102\) 0 0
\(103\) −1.59094 2.75559i −0.156760 0.271516i 0.776938 0.629577i \(-0.216772\pi\)
−0.933698 + 0.358060i \(0.883438\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.4926 −1.59440 −0.797201 0.603714i \(-0.793687\pi\)
−0.797201 + 0.603714i \(0.793687\pi\)
\(108\) 0 0
\(109\) −6.31192 −0.604572 −0.302286 0.953217i \(-0.597750\pi\)
−0.302286 + 0.953217i \(0.597750\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.06899 + 7.04770i 0.382779 + 0.662992i 0.991458 0.130424i \(-0.0416339\pi\)
−0.608680 + 0.793416i \(0.708301\pi\)
\(114\) 0 0
\(115\) 8.65671 14.9939i 0.807242 1.39818i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.62173 13.2012i 0.698682 1.21015i
\(120\) 0 0
\(121\) −12.1417 21.0300i −1.10379 1.91182i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.6795 −0.955201
\(126\) 0 0
\(127\) 9.41029 0.835028 0.417514 0.908671i \(-0.362901\pi\)
0.417514 + 0.908671i \(0.362901\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.18147 + 15.9028i 0.802189 + 1.38943i 0.918173 + 0.396180i \(0.129664\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(132\) 0 0
\(133\) −10.9990 + 19.0509i −0.953738 + 1.65192i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.72459 + 6.45117i −0.318213 + 0.551161i −0.980115 0.198429i \(-0.936416\pi\)
0.661902 + 0.749590i \(0.269749\pi\)
\(138\) 0 0
\(139\) 11.5014 + 19.9210i 0.975537 + 1.68968i 0.678151 + 0.734923i \(0.262782\pi\)
0.297387 + 0.954757i \(0.403885\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.93998 0.496726
\(144\) 0 0
\(145\) −6.96610 −0.578503
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.82412 + 4.89152i 0.231361 + 0.400729i 0.958209 0.286069i \(-0.0923488\pi\)
−0.726848 + 0.686799i \(0.759015\pi\)
\(150\) 0 0
\(151\) −5.96305 + 10.3283i −0.485266 + 0.840506i −0.999857 0.0169303i \(-0.994611\pi\)
0.514590 + 0.857436i \(0.327944\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.31586 + 14.4035i −0.667946 + 1.15692i
\(156\) 0 0
\(157\) −4.04029 6.99798i −0.322450 0.558500i 0.658543 0.752543i \(-0.271173\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.3262 1.83836
\(162\) 0 0
\(163\) 12.7054 0.995160 0.497580 0.867418i \(-0.334222\pi\)
0.497580 + 0.867418i \(0.334222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.13446 10.6252i −0.474699 0.822202i 0.524881 0.851175i \(-0.324110\pi\)
−0.999580 + 0.0289730i \(0.990776\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.38764 11.0637i 0.485643 0.841159i −0.514221 0.857658i \(-0.671919\pi\)
0.999864 + 0.0164990i \(0.00525204\pi\)
\(174\) 0 0
\(175\) −19.3225 33.4676i −1.46065 2.52991i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.65209 0.422457 0.211229 0.977437i \(-0.432254\pi\)
0.211229 + 0.977437i \(0.432254\pi\)
\(180\) 0 0
\(181\) −11.9835 −0.890723 −0.445362 0.895351i \(-0.646925\pi\)
−0.445362 + 0.895351i \(0.646925\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 19.3904 + 33.5852i 1.42561 + 2.46923i
\(186\) 0 0
\(187\) 9.33204 16.1636i 0.682427 1.18200i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.69583 + 11.5975i −0.484493 + 0.839167i −0.999841 0.0178139i \(-0.994329\pi\)
0.515348 + 0.856981i \(0.327663\pi\)
\(192\) 0 0
\(193\) −0.00315107 0.00545781i −0.000226819 0.000392862i 0.865912 0.500196i \(-0.166739\pi\)
−0.866139 + 0.499804i \(0.833406\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.67863 −0.689574 −0.344787 0.938681i \(-0.612049\pi\)
−0.344787 + 0.938681i \(0.612049\pi\)
\(198\) 0 0
\(199\) −26.2710 −1.86230 −0.931149 0.364638i \(-0.881193\pi\)
−0.931149 + 0.364638i \(0.881193\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.69268 8.12795i −0.329361 0.570470i
\(204\) 0 0
\(205\) 1.40279 2.42971i 0.0979752 0.169698i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.4672 + 23.3259i −0.931548 + 1.61349i
\(210\) 0 0
\(211\) −0.764674 1.32445i −0.0526424 0.0911792i 0.838503 0.544896i \(-0.183431\pi\)
−0.891146 + 0.453717i \(0.850098\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.18674 −0.0809347
\(216\) 0 0
\(217\) −22.4077 −1.52114
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.57106 + 2.72115i 0.105681 + 0.183044i
\(222\) 0 0
\(223\) −6.79374 + 11.7671i −0.454943 + 0.787984i −0.998685 0.0512684i \(-0.983674\pi\)
0.543742 + 0.839252i \(0.317007\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.46880 + 12.9363i −0.495722 + 0.858615i −0.999988 0.00493317i \(-0.998430\pi\)
0.504266 + 0.863548i \(0.331763\pi\)
\(228\) 0 0
\(229\) 1.41828 + 2.45653i 0.0937225 + 0.162332i 0.909075 0.416633i \(-0.136790\pi\)
−0.815352 + 0.578965i \(0.803457\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.7200 0.833312 0.416656 0.909064i \(-0.363202\pi\)
0.416656 + 0.909064i \(0.363202\pi\)
\(234\) 0 0
\(235\) −14.4994 −0.945834
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.06154 + 1.83865i 0.0686655 + 0.118932i 0.898314 0.439354i \(-0.144793\pi\)
−0.829649 + 0.558286i \(0.811459\pi\)
\(240\) 0 0
\(241\) 1.66094 2.87684i 0.106991 0.185313i −0.807559 0.589787i \(-0.799212\pi\)
0.914550 + 0.404473i \(0.132545\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 29.7706 51.5642i 1.90197 3.29432i
\(246\) 0 0
\(247\) −2.26722 3.92694i −0.144260 0.249865i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.9517 −0.943746 −0.471873 0.881667i \(-0.656422\pi\)
−0.471873 + 0.881667i \(0.656422\pi\)
\(252\) 0 0
\(253\) 28.5606 1.79559
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.01395 8.68441i −0.312761 0.541719i 0.666198 0.745775i \(-0.267921\pi\)
−0.978959 + 0.204057i \(0.934587\pi\)
\(258\) 0 0
\(259\) −26.1245 + 45.2490i −1.62330 + 2.81163i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.40234 + 4.16098i −0.148135 + 0.256577i −0.930538 0.366195i \(-0.880660\pi\)
0.782403 + 0.622772i \(0.213994\pi\)
\(264\) 0 0
\(265\) 10.8723 + 18.8314i 0.667880 + 1.15680i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.4507 0.637190 0.318595 0.947891i \(-0.396789\pi\)
0.318595 + 0.947891i \(0.396789\pi\)
\(270\) 0 0
\(271\) 12.4552 0.756596 0.378298 0.925684i \(-0.376509\pi\)
0.378298 + 0.925684i \(0.376509\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −23.6585 40.9777i −1.42666 2.47105i
\(276\) 0 0
\(277\) 6.23063 10.7918i 0.374362 0.648414i −0.615869 0.787848i \(-0.711195\pi\)
0.990231 + 0.139434i \(0.0445283\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.0408 + 26.0515i −0.897261 + 1.55410i −0.0662788 + 0.997801i \(0.521113\pi\)
−0.830982 + 0.556300i \(0.812221\pi\)
\(282\) 0 0
\(283\) 10.8709 + 18.8289i 0.646207 + 1.11926i 0.984021 + 0.178050i \(0.0569790\pi\)
−0.337814 + 0.941213i \(0.609688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.77993 0.223122
\(288\) 0 0
\(289\) −7.12713 −0.419243
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.200069 0.346530i −0.0116882 0.0202445i 0.860122 0.510088i \(-0.170387\pi\)
−0.871810 + 0.489844i \(0.837054\pi\)
\(294\) 0 0
\(295\) −6.31099 + 10.9310i −0.367440 + 0.636425i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.40410 + 4.16402i −0.139033 + 0.240812i
\(300\) 0 0
\(301\) −0.799438 1.38467i −0.0460789 0.0798109i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 19.9920 1.14474
\(306\) 0 0
\(307\) −23.5084 −1.34169 −0.670847 0.741596i \(-0.734069\pi\)
−0.670847 + 0.741596i \(0.734069\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.79013 15.2249i −0.498442 0.863328i 0.501556 0.865125i \(-0.332761\pi\)
−0.999998 + 0.00179754i \(0.999428\pi\)
\(312\) 0 0
\(313\) −15.4108 + 26.6924i −0.871073 + 1.50874i −0.0101841 + 0.999948i \(0.503242\pi\)
−0.860888 + 0.508794i \(0.830092\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.02914 + 1.78252i −0.0578021 + 0.100116i −0.893479 0.449106i \(-0.851743\pi\)
0.835676 + 0.549222i \(0.185076\pi\)
\(318\) 0 0
\(319\) −5.74571 9.95187i −0.321698 0.557198i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.2477 −0.792764
\(324\) 0 0
\(325\) 7.96585 0.441866
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.76743 16.9177i −0.538496 0.932702i
\(330\) 0 0
\(331\) −2.56919 + 4.44997i −0.141216 + 0.244593i −0.927955 0.372693i \(-0.878434\pi\)
0.786739 + 0.617286i \(0.211768\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.4882 18.1661i 0.573032 0.992521i
\(336\) 0 0
\(337\) 10.6912 + 18.5177i 0.582388 + 1.00873i 0.995196 + 0.0979071i \(0.0312148\pi\)
−0.412808 + 0.910818i \(0.635452\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −27.4360 −1.48575
\(342\) 0 0
\(343\) 46.2599 2.49780
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.80180 + 13.5131i 0.418822 + 0.725422i 0.995821 0.0913233i \(-0.0291097\pi\)
−0.576999 + 0.816745i \(0.695776\pi\)
\(348\) 0 0
\(349\) −11.5993 + 20.0905i −0.620895 + 1.07542i 0.368425 + 0.929658i \(0.379897\pi\)
−0.989319 + 0.145764i \(0.953436\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.36520 14.4889i 0.445235 0.771169i −0.552834 0.833291i \(-0.686454\pi\)
0.998069 + 0.0621226i \(0.0197870\pi\)
\(354\) 0 0
\(355\) −5.73252 9.92902i −0.304251 0.526978i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.8608 0.731543 0.365772 0.930705i \(-0.380805\pi\)
0.365772 + 0.930705i \(0.380805\pi\)
\(360\) 0 0
\(361\) 1.56113 0.0821647
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 21.1628 + 36.6551i 1.10771 + 1.91862i
\(366\) 0 0
\(367\) 3.39093 5.87326i 0.177005 0.306582i −0.763848 0.645396i \(-0.776692\pi\)
0.940853 + 0.338814i \(0.110026\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14.6481 + 25.3713i −0.760494 + 1.31721i
\(372\) 0 0
\(373\) −14.4619 25.0488i −0.748811 1.29698i −0.948393 0.317097i \(-0.897292\pi\)
0.199582 0.979881i \(-0.436041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.93459 0.0996364
\(378\) 0 0
\(379\) 4.07463 0.209300 0.104650 0.994509i \(-0.466628\pi\)
0.104650 + 0.994509i \(0.466628\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.9208 31.0398i −0.915711 1.58606i −0.805857 0.592110i \(-0.798295\pi\)
−0.109853 0.993948i \(-0.535038\pi\)
\(384\) 0 0
\(385\) 51.8821 89.8624i 2.64415 4.57981i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.2149 + 22.8888i −0.670020 + 1.16051i 0.307878 + 0.951426i \(0.400381\pi\)
−0.977898 + 0.209083i \(0.932952\pi\)
\(390\) 0 0
\(391\) 7.55395 + 13.0838i 0.382020 + 0.661677i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.2004 0.714501
\(396\) 0 0
\(397\) 12.0428 0.604413 0.302206 0.953243i \(-0.402277\pi\)
0.302206 + 0.953243i \(0.402277\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.35012 + 12.7308i 0.367047 + 0.635744i 0.989102 0.147229i \(-0.0470354\pi\)
−0.622055 + 0.782973i \(0.713702\pi\)
\(402\) 0 0
\(403\) 2.30944 4.00007i 0.115041 0.199257i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −31.9869 + 55.4029i −1.58553 + 2.74622i
\(408\) 0 0
\(409\) 5.45923 + 9.45566i 0.269941 + 0.467552i 0.968846 0.247662i \(-0.0796623\pi\)
−0.698905 + 0.715214i \(0.746329\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −17.0055 −0.836784
\(414\) 0 0
\(415\) 9.23459 0.453308
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.9845 24.2219i −0.683187 1.18332i −0.974003 0.226536i \(-0.927260\pi\)
0.290815 0.956779i \(-0.406073\pi\)
\(420\) 0 0
\(421\) 4.71722 8.17046i 0.229903 0.398204i −0.727876 0.685709i \(-0.759492\pi\)
0.957779 + 0.287505i \(0.0928257\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.5148 21.6763i 0.607057 1.05145i
\(426\) 0 0
\(427\) 13.4675 + 23.3264i 0.651739 + 1.12885i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.51693 −0.410246 −0.205123 0.978736i \(-0.565759\pi\)
−0.205123 + 0.978736i \(0.565759\pi\)
\(432\) 0 0
\(433\) 21.6386 1.03989 0.519943 0.854201i \(-0.325953\pi\)
0.519943 + 0.854201i \(0.325953\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.9012 18.8815i −0.521477 0.903224i
\(438\) 0 0
\(439\) 17.4828 30.2811i 0.834409 1.44524i −0.0601023 0.998192i \(-0.519143\pi\)
0.894511 0.447046i \(-0.147524\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.7585 29.0265i 0.796219 1.37909i −0.125844 0.992050i \(-0.540164\pi\)
0.922062 0.387041i \(-0.126503\pi\)
\(444\) 0 0
\(445\) −20.5998 35.6799i −0.976525 1.69139i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.27418 0.296097 0.148048 0.988980i \(-0.452701\pi\)
0.148048 + 0.988980i \(0.452701\pi\)
\(450\) 0 0
\(451\) 4.62815 0.217931
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.73438 + 15.1284i 0.409474 + 0.709230i
\(456\) 0 0
\(457\) −8.38237 + 14.5187i −0.392111 + 0.679155i −0.992728 0.120381i \(-0.961588\pi\)
0.600617 + 0.799537i \(0.294922\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.3348 + 30.0248i −0.807362 + 1.39839i 0.107323 + 0.994224i \(0.465772\pi\)
−0.914685 + 0.404168i \(0.867561\pi\)
\(462\) 0 0
\(463\) 16.1627 + 27.9946i 0.751143 + 1.30102i 0.947269 + 0.320439i \(0.103830\pi\)
−0.196126 + 0.980579i \(0.562836\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.51171 0.393875 0.196937 0.980416i \(-0.436900\pi\)
0.196937 + 0.980416i \(0.436900\pi\)
\(468\) 0 0
\(469\) 28.2613 1.30499
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.978833 1.69539i −0.0450068 0.0779540i
\(474\) 0 0
\(475\) −18.0603 + 31.2814i −0.828665 + 1.43529i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.650570 + 1.12682i −0.0297253 + 0.0514857i −0.880505 0.474036i \(-0.842797\pi\)
0.850780 + 0.525522i \(0.176130\pi\)
\(480\) 0 0
\(481\) −5.38501 9.32711i −0.245535 0.425280i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.5835 0.843835
\(486\) 0 0
\(487\) −26.7805 −1.21354 −0.606771 0.794877i \(-0.707536\pi\)
−0.606771 + 0.794877i \(0.707536\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.9518 27.6293i −0.719895 1.24690i −0.961041 0.276406i \(-0.910857\pi\)
0.241146 0.970489i \(-0.422477\pi\)
\(492\) 0 0
\(493\) 3.03935 5.26431i 0.136885 0.237092i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.72337 13.3773i 0.346440 0.600052i
\(498\) 0 0
\(499\) −3.26459 5.65444i −0.146143 0.253127i 0.783656 0.621195i \(-0.213353\pi\)
−0.929799 + 0.368068i \(0.880019\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.4117 1.62352 0.811758 0.583994i \(-0.198511\pi\)
0.811758 + 0.583994i \(0.198511\pi\)
\(504\) 0 0
\(505\) 36.6732 1.63194
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.36812 2.36966i −0.0606410 0.105033i 0.834111 0.551596i \(-0.185981\pi\)
−0.894752 + 0.446563i \(0.852648\pi\)
\(510\) 0 0
\(511\) −28.5125 + 49.3851i −1.26132 + 2.18467i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.72868 9.92236i 0.252436 0.437231i
\(516\) 0 0
\(517\) −11.9592 20.7140i −0.525967 0.911001i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.7588 1.47900 0.739500 0.673157i \(-0.235062\pi\)
0.739500 + 0.673157i \(0.235062\pi\)
\(522\) 0 0
\(523\) 18.0617 0.789782 0.394891 0.918728i \(-0.370782\pi\)
0.394891 + 0.918728i \(0.370782\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.25652 12.5687i −0.316099 0.547499i
\(528\) 0 0
\(529\) −0.0593818 + 0.102852i −0.00258182 + 0.00447184i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.389576 + 0.674766i −0.0168744 + 0.0292274i
\(534\) 0 0
\(535\) −29.6934 51.4305i −1.28376 2.22354i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 98.2205 4.23066
\(540\) 0 0
\(541\) 9.82851 0.422561 0.211280 0.977426i \(-0.432237\pi\)
0.211280 + 0.977426i \(0.432237\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.3640 19.6831i −0.486781 0.843129i
\(546\) 0 0
\(547\) −6.09142 + 10.5506i −0.260450 + 0.451113i −0.966362 0.257187i \(-0.917204\pi\)
0.705911 + 0.708300i \(0.250538\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.38614 + 7.59702i −0.186856 + 0.323644i
\(552\) 0 0
\(553\) 9.56605 + 16.5689i 0.406790 + 0.704581i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.07479 −0.384511 −0.192256 0.981345i \(-0.561580\pi\)
−0.192256 + 0.981345i \(0.561580\pi\)
\(558\) 0 0
\(559\) 0.329574 0.0139395
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.3055 + 28.2419i 0.687193 + 1.19025i 0.972742 + 0.231889i \(0.0744907\pi\)
−0.285549 + 0.958364i \(0.592176\pi\)
\(564\) 0 0
\(565\) −14.6517 + 25.3775i −0.616401 + 1.06764i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.2251 + 17.7105i −0.428660 + 0.742461i −0.996754 0.0805022i \(-0.974348\pi\)
0.568094 + 0.822964i \(0.307681\pi\)
\(570\) 0 0
\(571\) 12.7365 + 22.0603i 0.533007 + 0.923195i 0.999257 + 0.0385419i \(0.0122713\pi\)
−0.466250 + 0.884653i \(0.654395\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.3014 1.59728
\(576\) 0 0
\(577\) 42.2188 1.75759 0.878795 0.477199i \(-0.158348\pi\)
0.878795 + 0.477199i \(0.158348\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.22083 + 10.7748i 0.258084 + 0.447014i
\(582\) 0 0
\(583\) −17.9352 + 31.0647i −0.742800 + 1.28657i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.3873 23.1875i 0.552555 0.957053i −0.445535 0.895265i \(-0.646986\pi\)
0.998089 0.0617879i \(-0.0196802\pi\)
\(588\) 0 0
\(589\) 10.4720 + 18.1380i 0.431492 + 0.747365i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.74780 −0.194969 −0.0974844 0.995237i \(-0.531080\pi\)
−0.0974844 + 0.995237i \(0.531080\pi\)
\(594\) 0 0
\(595\) 54.8888 2.25022
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.9972 31.1721i −0.735347 1.27366i −0.954571 0.297984i \(-0.903686\pi\)
0.219224 0.975675i \(-0.429647\pi\)
\(600\) 0 0
\(601\) 2.62645 4.54915i 0.107135 0.185564i −0.807473 0.589904i \(-0.799166\pi\)
0.914609 + 0.404340i \(0.132499\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 43.7199 75.7252i 1.77747 3.07867i
\(606\) 0 0
\(607\) 0.624003 + 1.08081i 0.0253275 + 0.0438685i 0.878411 0.477905i \(-0.158604\pi\)
−0.853084 + 0.521774i \(0.825270\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.02669 0.162903
\(612\) 0 0
\(613\) −18.4731 −0.746120 −0.373060 0.927807i \(-0.621692\pi\)
−0.373060 + 0.927807i \(0.621692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0419 + 31.2495i 0.726340 + 1.25806i 0.958420 + 0.285361i \(0.0921136\pi\)
−0.232080 + 0.972697i \(0.574553\pi\)
\(618\) 0 0
\(619\) 22.2098 38.4685i 0.892688 1.54618i 0.0560473 0.998428i \(-0.482150\pi\)
0.836640 0.547752i \(-0.184516\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 27.7539 48.0712i 1.11194 1.92593i
\(624\) 0 0
\(625\) 0.687235 + 1.19033i 0.0274894 + 0.0476131i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −33.8406 −1.34931
\(630\) 0 0
\(631\) 27.2686 1.08555 0.542773 0.839880i \(-0.317375\pi\)
0.542773 + 0.839880i \(0.317375\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.9423 + 29.3450i 0.672336 + 1.16452i
\(636\) 0 0
\(637\) −8.26774 + 14.3202i −0.327580 + 0.567385i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.1339 17.5524i 0.400265 0.693280i −0.593492 0.804840i \(-0.702251\pi\)
0.993758 + 0.111560i \(0.0355846\pi\)
\(642\) 0 0
\(643\) −10.0914 17.4789i −0.397967 0.689299i 0.595508 0.803349i \(-0.296951\pi\)
−0.993475 + 0.114051i \(0.963617\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.41833 0.370273 0.185136 0.982713i \(-0.440727\pi\)
0.185136 + 0.982713i \(0.440727\pi\)
\(648\) 0 0
\(649\) −20.8215 −0.817315
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.8178 + 41.2537i 0.932063 + 1.61438i 0.779790 + 0.626042i \(0.215326\pi\)
0.152273 + 0.988338i \(0.451341\pi\)
\(654\) 0 0
\(655\) −33.0607 + 57.2629i −1.29179 + 2.23745i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.5791 18.3235i 0.412102 0.713781i −0.583017 0.812460i \(-0.698128\pi\)
0.995119 + 0.0986782i \(0.0314614\pi\)
\(660\) 0 0
\(661\) −11.3505 19.6596i −0.441482 0.764669i 0.556318 0.830969i \(-0.312214\pi\)
−0.997800 + 0.0663009i \(0.978880\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −79.2110 −3.07167
\(666\) 0 0
\(667\) 9.30189 0.360171
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.4896 + 28.5609i 0.636576 + 1.10258i
\(672\) 0 0
\(673\) 4.80850 8.32857i 0.185354 0.321043i −0.758342 0.651857i \(-0.773990\pi\)
0.943696 + 0.330815i \(0.107323\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.82985 + 4.90145i −0.108760 + 0.188378i −0.915268 0.402845i \(-0.868021\pi\)
0.806508 + 0.591223i \(0.201355\pi\)
\(678\) 0 0
\(679\) 12.5187 + 21.6830i 0.480424 + 0.832119i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33.6477 −1.28749 −0.643747 0.765239i \(-0.722621\pi\)
−0.643747 + 0.765239i \(0.722621\pi\)
\(684\) 0 0
\(685\) −26.8231 −1.02486
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.01940 5.22976i −0.115030 0.199238i
\(690\) 0 0
\(691\) −4.26302 + 7.38378i −0.162173 + 0.280892i −0.935648 0.352935i \(-0.885184\pi\)
0.773475 + 0.633827i \(0.218517\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −41.4144 + 71.7319i −1.57094 + 2.72095i
\(696\) 0 0
\(697\) 1.22409 + 2.12019i 0.0463658 + 0.0803079i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −13.9968 −0.528651 −0.264326 0.964434i \(-0.585149\pi\)
−0.264326 + 0.964434i \(0.585149\pi\)
\(702\) 0 0
\(703\) 48.8360 1.84188
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.7047 + 42.7898i 0.929117 + 1.60928i
\(708\) 0 0
\(709\) −8.16793 + 14.1473i −0.306753 + 0.531312i −0.977650 0.210238i \(-0.932576\pi\)
0.670897 + 0.741551i \(0.265909\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.1042 19.2331i 0.415857 0.720285i
\(714\) 0 0
\(715\) 10.6944 + 18.5232i 0.399947 + 0.692729i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.1133 −0.638219 −0.319110 0.947718i \(-0.603384\pi\)
−0.319110 + 0.947718i \(0.603384\pi\)
\(720\) 0 0
\(721\) 15.4364 0.574881
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.70533 13.3460i −0.286169 0.495659i
\(726\) 0 0
\(727\) −3.23624 + 5.60534i −0.120026 + 0.207890i −0.919778 0.392440i \(-0.871631\pi\)
0.799752 + 0.600331i \(0.204964\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.517780 0.896821i 0.0191508 0.0331701i
\(732\) 0 0
\(733\) 24.1525 + 41.8334i 0.892093 + 1.54515i 0.837361 + 0.546650i \(0.184097\pi\)
0.0547322 + 0.998501i \(0.482569\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.6032 1.27462
\(738\) 0 0
\(739\) −18.1182 −0.666488 −0.333244 0.942841i \(-0.608143\pi\)
−0.333244 + 0.942841i \(0.608143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.4567 + 31.9680i 0.677112 + 1.17279i 0.975847 + 0.218457i \(0.0701022\pi\)
−0.298734 + 0.954336i \(0.596564\pi\)
\(744\) 0 0
\(745\) −10.1691 + 17.6135i −0.372568 + 0.645307i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 40.0057 69.2918i 1.46177 2.53187i
\(750\) 0 0
\(751\) −22.5544 39.0654i −0.823023 1.42552i −0.903421 0.428755i \(-0.858952\pi\)
0.0803976 0.996763i \(-0.474381\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −42.9437 −1.56288
\(756\) 0 0
\(757\) −14.8646 −0.540263 −0.270132 0.962823i \(-0.587067\pi\)
−0.270132 + 0.962823i \(0.587067\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.24075 3.88109i −0.0812271 0.140689i 0.822550 0.568693i \(-0.192551\pi\)
−0.903777 + 0.428003i \(0.859217\pi\)
\(762\) 0 0
\(763\) 15.3106 26.5188i 0.554282 0.960044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.75266 3.03569i 0.0632848 0.109612i
\(768\) 0 0
\(769\) 2.08442 + 3.61031i 0.0751659 + 0.130191i 0.901158 0.433490i \(-0.142718\pi\)
−0.825992 + 0.563681i \(0.809385\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −33.3000 −1.19772 −0.598858 0.800855i \(-0.704379\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(774\) 0 0
\(775\) −36.7933 −1.32165
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.76651 3.05968i −0.0632918 0.109625i
\(780\) 0 0
\(781\) 9.45650 16.3791i 0.338380 0.586091i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.5483 25.1984i 0.519252 0.899370i
\(786\) 0 0
\(787\) −6.82197 11.8160i −0.243177 0.421195i 0.718441 0.695588i \(-0.244856\pi\)
−0.961617 + 0.274394i \(0.911523\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −39.4801 −1.40375
\(792\) 0 0
\(793\) −5.55209 −0.197160
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.4935 28.5676i −0.584230 1.01192i −0.994971 0.100164i \(-0.968063\pi\)
0.410741 0.911752i \(-0.365270\pi\)
\(798\) 0 0
\(799\) 6.32616 10.9572i 0.223803 0.387639i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −34.9107 + 60.4671i −1.23197 + 2.13384i
\(804\) 0 0
\(805\) 41.9966 + 72.7403i 1.48019 + 2.56376i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.2406 1.06320 0.531601 0.846995i \(-0.321590\pi\)
0.531601 + 0.846995i \(0.321590\pi\)
\(810\) 0 0
\(811\) −38.3497 −1.34664 −0.673320 0.739351i \(-0.735132\pi\)
−0.673320 + 0.739351i \(0.735132\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 22.8748 + 39.6203i 0.801270 + 1.38784i
\(816\) 0 0
\(817\) −0.747217 + 1.29422i −0.0261418 + 0.0452790i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.5824 + 26.9896i −0.543831 + 0.941942i 0.454849 + 0.890569i \(0.349693\pi\)
−0.998680 + 0.0513735i \(0.983640\pi\)
\(822\) 0 0
\(823\) 1.44096 + 2.49581i 0.0502287 + 0.0869986i 0.890047 0.455870i \(-0.150672\pi\)
−0.839818 + 0.542868i \(0.817338\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.9312 0.797396 0.398698 0.917082i \(-0.369462\pi\)
0.398698 + 0.917082i \(0.369462\pi\)
\(828\) 0 0
\(829\) −44.0256 −1.52907 −0.764536 0.644581i \(-0.777032\pi\)
−0.764536 + 0.644581i \(0.777032\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.9782 + 44.9955i 0.900091 + 1.55900i
\(834\) 0 0
\(835\) 22.0890 38.2593i 0.764423 1.32402i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.75434 6.50270i 0.129614 0.224498i −0.793913 0.608031i \(-0.791960\pi\)
0.923527 + 0.383533i \(0.125293\pi\)
\(840\) 0 0
\(841\) 12.6287 + 21.8735i 0.435472 + 0.754259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.60081 −0.123872
\(846\) 0 0
\(847\) 117.807 4.04789
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −25.8922 44.8466i −0.887573 1.53732i
\(852\) 0 0
\(853\) −17.4967 + 30.3052i −0.599076 + 1.03763i 0.393882 + 0.919161i \(0.371132\pi\)
−0.992958 + 0.118469i \(0.962201\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.94529 + 3.36935i −0.0664500 + 0.115095i −0.897336 0.441347i \(-0.854501\pi\)
0.830886 + 0.556442i \(0.187834\pi\)
\(858\) 0 0
\(859\) −7.39306 12.8052i −0.252248 0.436906i 0.711896 0.702285i \(-0.247837\pi\)
−0.964144 + 0.265378i \(0.914503\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.4680 1.34351 0.671753 0.740775i \(-0.265541\pi\)
0.671753 + 0.740775i \(0.265541\pi\)
\(864\) 0 0
\(865\) 46.0014 1.56409
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.7127 + 20.2869i 0.397325 + 0.688188i
\(870\) 0 0
\(871\) −2.91273 + 5.04500i −0.0986942 + 0.170943i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25.9049 44.8686i 0.875745 1.51683i
\(876\) 0 0
\(877\) −15.9102 27.5573i −0.537249 0.930543i −0.999051 0.0435599i \(-0.986130\pi\)
0.461801 0.886983i \(-0.347203\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.104015 0.00350437 0.00175218 0.999998i \(-0.499442\pi\)
0.00175218 + 0.999998i \(0.499442\pi\)
\(882\) 0 0
\(883\) −37.7445 −1.27020 −0.635102 0.772428i \(-0.719042\pi\)
−0.635102 + 0.772428i \(0.719042\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.0832 24.3928i −0.472867 0.819031i 0.526650 0.850082i \(-0.323448\pi\)
−0.999518 + 0.0310515i \(0.990114\pi\)
\(888\) 0 0
\(889\) −22.8262 + 39.5362i −0.765568 + 1.32600i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.12939 + 15.8126i −0.305504 + 0.529148i
\(894\) 0 0
\(895\) 10.1761 + 17.6255i 0.340148 + 0.589154i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.93563 −0.298020
\(900\) 0 0
\(901\) −18.9746 −0.632136
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.5751 37.3691i −0.717180 1.24219i
\(906\) 0 0
\(907\) 18.1360 31.4125i 0.602197 1.04304i −0.390291 0.920692i \(-0.627626\pi\)
0.992488 0.122344i \(-0.0390411\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.43178 7.67607i 0.146831 0.254319i −0.783223 0.621740i \(-0.786426\pi\)
0.930055 + 0.367421i \(0.119759\pi\)
\(912\) 0 0
\(913\) 7.61679 + 13.1927i 0.252079 + 0.436614i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −89.0848 −2.94184
\(918\) 0 0
\(919\) 17.7678 0.586106 0.293053 0.956096i \(-0.405329\pi\)
0.293053 + 0.956096i \(0.405329\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.59201 + 2.75744i 0.0524016 + 0.0907622i
\(924\) 0 0
\(925\) −42.8962 + 74.2984i −1.41042 + 2.44292i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.7193 30.6908i 0.581352 1.00693i −0.413967 0.910292i \(-0.635857\pi\)
0.995319 0.0966396i \(-0.0308094\pi\)
\(930\) 0 0
\(931\) −37.4896 64.9339i −1.22867 2.12812i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 67.2059 2.19787
\(936\) 0 0
\(937\) 26.0877 0.852248 0.426124 0.904665i \(-0.359879\pi\)
0.426124 + 0.904665i \(0.359879\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.2832 + 17.8111i 0.335223 + 0.580624i 0.983528 0.180757i \(-0.0578549\pi\)
−0.648304 + 0.761381i \(0.724522\pi\)
\(942\) 0 0
\(943\) −1.87316 + 3.24441i −0.0609985 + 0.105652i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11.2111 19.4182i 0.364311 0.631006i −0.624354 0.781141i \(-0.714638\pi\)
0.988665 + 0.150136i \(0.0479711\pi\)
\(948\) 0 0
\(949\) −5.87724 10.1797i −0.190783 0.330446i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.5106 0.502438 0.251219 0.967930i \(-0.419168\pi\)
0.251219 + 0.967930i \(0.419168\pi\)
\(954\) 0 0
\(955\) −48.2209 −1.56039
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.0692 31.2968i −0.583486 1.01063i
\(960\) 0 0
\(961\) 4.83299 8.37098i 0.155903 0.270031i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.0113464 0.0196526i 0.000365254 0.000632638i
\(966\) 0 0
\(967\) −6.61051 11.4497i −0.212580 0.368199i 0.739942 0.672671i \(-0.234853\pi\)
−0.952521 + 0.304473i \(0.901520\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.0317 −0.707031 −0.353515 0.935429i \(-0.615014\pi\)
−0.353515 + 0.935429i \(0.615014\pi\)
\(972\) 0 0
\(973\) −111.595 −3.57756
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.8551 + 41.3182i 0.763192 + 1.32189i 0.941197 + 0.337858i \(0.109702\pi\)
−0.178005 + 0.984030i \(0.556964\pi\)
\(978\) 0 0
\(979\) 33.9819 58.8584i 1.08607 1.88112i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.5800 33.9135i 0.624504 1.08167i −0.364132 0.931347i \(-0.618634\pi\)
0.988637 0.150326i \(-0.0480322\pi\)
\(984\) 0 0
\(985\) −17.4255 30.1818i −0.555221 0.961672i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.58466 0.0503892
\(990\) 0 0
\(991\) −46.7781 −1.48596 −0.742978 0.669316i \(-0.766587\pi\)
−0.742978 + 0.669316i \(0.766587\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −47.2984 81.9232i −1.49946 2.59714i
\(996\) 0 0
\(997\) 11.2351 19.4598i 0.355819 0.616297i −0.631439 0.775426i \(-0.717535\pi\)
0.987258 + 0.159129i \(0.0508686\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.q.g.937.10 22
3.2 odd 2 936.2.q.g.313.6 22
9.2 odd 6 8424.2.a.bf.1.10 11
9.4 even 3 inner 2808.2.q.g.1873.10 22
9.5 odd 6 936.2.q.g.625.6 yes 22
9.7 even 3 8424.2.a.be.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.6 22 3.2 odd 2
936.2.q.g.625.6 yes 22 9.5 odd 6
2808.2.q.g.937.10 22 1.1 even 1 trivial
2808.2.q.g.1873.10 22 9.4 even 3 inner
8424.2.a.be.1.2 11 9.7 even 3
8424.2.a.bf.1.10 11 9.2 odd 6