Properties

Label 936.2.q.g
Level $936$
Weight $2$
Character orbit 936.q
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
313.1 0 −1.73199 0.0148978i 0 0.550001 + 0.952629i 0 −2.20940 + 3.82679i 0 2.99956 + 0.0516057i 0
313.2 0 −1.73144 + 0.0459606i 0 −1.66784 2.88878i 0 1.59859 2.76884i 0 2.99578 0.159156i 0
313.3 0 −1.06380 + 1.36687i 0 0.662426 + 1.14736i 0 0.798467 1.38299i 0 −0.736678 2.90814i 0
313.4 0 −0.722210 1.57430i 0 −1.89006 3.27368i 0 −0.659907 + 1.14299i 0 −1.95682 + 2.27395i 0
313.5 0 −0.377983 1.69030i 0 2.15452 + 3.73175i 0 −0.803576 + 1.39183i 0 −2.71426 + 1.27781i 0
313.6 0 −0.215114 + 1.71864i 0 −1.80041 3.11840i 0 −2.42567 + 4.20138i 0 −2.90745 0.739406i 0
313.7 0 0.400278 + 1.68516i 0 0.618351 + 1.07102i 0 2.31092 4.00263i 0 −2.67955 + 1.34907i 0
313.8 0 1.17494 1.27260i 0 0.279527 + 0.484154i 0 −0.154587 + 0.267752i 0 −0.239012 2.99046i 0
313.9 0 1.26749 + 1.18045i 0 1.53775 + 2.66347i 0 −0.728405 + 1.26163i 0 0.213067 + 2.99242i 0
313.10 0 1.41854 + 0.993855i 0 −0.804884 1.39410i 0 −1.44881 + 2.50941i 0 1.02450 + 2.81964i 0
313.11 0 1.58128 0.706796i 0 −1.13939 1.97349i 0 1.72237 2.98324i 0 2.00088 2.23528i 0
625.1 0 −1.73199 + 0.0148978i 0 0.550001 0.952629i 0 −2.20940 3.82679i 0 2.99956 0.0516057i 0
625.2 0 −1.73144 0.0459606i 0 −1.66784 + 2.88878i 0 1.59859 + 2.76884i 0 2.99578 + 0.159156i 0
625.3 0 −1.06380 1.36687i 0 0.662426 1.14736i 0 0.798467 + 1.38299i 0 −0.736678 + 2.90814i 0
625.4 0 −0.722210 + 1.57430i 0 −1.89006 + 3.27368i 0 −0.659907 1.14299i 0 −1.95682 2.27395i 0
625.5 0 −0.377983 + 1.69030i 0 2.15452 3.73175i 0 −0.803576 1.39183i 0 −2.71426 1.27781i 0
625.6 0 −0.215114 1.71864i 0 −1.80041 + 3.11840i 0 −2.42567 4.20138i 0 −2.90745 + 0.739406i 0
625.7 0 0.400278 1.68516i 0 0.618351 1.07102i 0 2.31092 + 4.00263i 0 −2.67955 1.34907i 0
625.8 0 1.17494 + 1.27260i 0 0.279527 0.484154i 0 −0.154587 0.267752i 0 −0.239012 + 2.99046i 0
625.9 0 1.26749 1.18045i 0 1.53775 2.66347i 0 −0.728405 1.26163i 0 0.213067 2.99242i 0
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 313.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.q.g 22
3.b odd 2 1 2808.2.q.g 22
9.c even 3 1 inner 936.2.q.g 22
9.c even 3 1 8424.2.a.bf 11
9.d odd 6 1 2808.2.q.g 22
9.d odd 6 1 8424.2.a.be 11
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.q.g 22 1.a even 1 1 trivial
936.2.q.g 22 9.c even 3 1 inner
2808.2.q.g 22 3.b odd 2 1
2808.2.q.g 22 9.d odd 6 1
8424.2.a.be 11 9.d odd 6 1
8424.2.a.bf 11 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):

\( T_{5}^{22} + 3 T_{5}^{21} + 44 T_{5}^{20} + 97 T_{5}^{19} + 1126 T_{5}^{18} + 2123 T_{5}^{17} + \cdots + 4946176 \) Copy content Toggle raw display
\( T_{7}^{22} + 4 T_{7}^{21} + 60 T_{7}^{20} + 180 T_{7}^{19} + 2056 T_{7}^{18} + 5711 T_{7}^{17} + \cdots + 23270976 \) Copy content Toggle raw display