| L(s) = 1 | + (−0.215 + 1.71i)3-s + (−1.80 − 3.11i)5-s + (−2.42 + 4.20i)7-s + (−2.90 − 0.739i)9-s + (2.96 − 5.14i)11-s + (−0.5 − 0.866i)13-s + (5.74 − 2.42i)15-s + 3.14·17-s + 4.53·19-s + (−6.69 − 5.07i)21-s + (2.40 + 4.16i)23-s + (−3.98 + 6.89i)25-s + (1.89 − 4.83i)27-s + (0.967 − 1.67i)29-s + (2.30 + 4.00i)31-s + ⋯ |
| L(s) = 1 | + (−0.124 + 0.992i)3-s + (−0.805 − 1.39i)5-s + (−0.916 + 1.58i)7-s + (−0.969 − 0.246i)9-s + (0.895 − 1.55i)11-s + (−0.138 − 0.240i)13-s + (1.48 − 0.625i)15-s + 0.762·17-s + 1.04·19-s + (−1.46 − 1.10i)21-s + (0.501 + 0.868i)23-s + (−0.796 + 1.37i)25-s + (0.364 − 0.931i)27-s + (0.179 − 0.311i)29-s + (0.414 + 0.718i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.14078 + 0.0571043i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.14078 + 0.0571043i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.215 - 1.71i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (1.80 + 3.11i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.42 - 4.20i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.96 + 5.14i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.14T + 17T^{2} \) |
| 19 | \( 1 - 4.53T + 19T^{2} \) |
| 23 | \( 1 + (-2.40 - 4.16i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.967 + 1.67i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.30 - 4.00i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 10.7T + 37T^{2} \) |
| 41 | \( 1 + (-0.389 - 0.674i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.164 - 0.285i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.01 + 3.48i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.03T + 53T^{2} \) |
| 59 | \( 1 + (1.75 + 3.03i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.77 + 4.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.91 + 5.04i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.18T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 + (-1.97 + 3.41i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.28 - 2.22i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 11.4T + 89T^{2} \) |
| 97 | \( 1 + (-2.58 + 4.46i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.552589428760266218726090456522, −9.380036211518316987306039489488, −8.581684473237718244374397857854, −7.999326417452499140435456059145, −6.24230607326108647081929580252, −5.58061580024683342998878095458, −4.92465323648073206103644474656, −3.61660964090936577877976566197, −3.07972334959876327356157147858, −0.77267566003477173609734947857,
0.959652382538705131504090521676, 2.65533536560560297961408318704, 3.59115615124550858199231266660, 4.49005239000959131344022350177, 6.28573873374418878925897564430, 6.81827501286846439311084844312, 7.40541242682766354586536387326, 7.76957541303410393727857446852, 9.449246094481393199035747275068, 10.10554416545879290967845117354