Properties

Label 936.2.dg.e.901.9
Level $936$
Weight $2$
Character 936.901
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.9
Character \(\chi\) \(=\) 936.901
Dual form 936.2.dg.e.829.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.662081 + 1.24966i) q^{2} +(-1.12330 - 1.65475i) q^{4} -1.88587 q^{5} +(3.80954 - 2.19944i) q^{7} +(2.81159 - 0.308157i) q^{8} +(1.24860 - 2.35669i) q^{10} +(0.0662772 - 0.114795i) q^{11} +(-3.59512 - 0.274112i) q^{13} +(0.226324 + 6.21684i) q^{14} +(-1.47641 + 3.71755i) q^{16} +(-1.14806 - 1.98850i) q^{17} +(-2.18964 - 3.79257i) q^{19} +(2.11839 + 3.12064i) q^{20} +(0.0995743 + 0.158828i) q^{22} +(-1.97584 + 3.42225i) q^{23} -1.44351 q^{25} +(2.72281 - 4.31119i) q^{26} +(-7.91878 - 3.83323i) q^{28} +(-2.20762 - 1.27457i) q^{29} +1.06736i q^{31} +(-3.66817 - 4.30633i) q^{32} +(3.24505 - 0.118136i) q^{34} +(-7.18429 + 4.14785i) q^{35} +(-5.28540 + 9.15458i) q^{37} +(6.18914 - 0.225315i) q^{38} +(-5.30228 + 0.581142i) q^{40} +(-7.14559 - 4.12551i) q^{41} +(8.32354 - 4.80560i) q^{43} +(-0.264407 + 0.0192770i) q^{44} +(-2.96848 - 4.73493i) q^{46} -10.1114i q^{47} +(6.17508 - 10.6956i) q^{49} +(0.955719 - 1.80389i) q^{50} +(3.58479 + 6.25694i) q^{52} -8.28514i q^{53} +(-0.124990 + 0.216489i) q^{55} +(10.0331 - 7.35786i) q^{56} +(3.05440 - 1.91490i) q^{58} +(-1.65394 - 2.86472i) q^{59} +(6.40470 - 3.69775i) q^{61} +(-1.33383 - 0.706678i) q^{62} +(7.81008 - 1.73282i) q^{64} +(6.77991 + 0.516938i) q^{65} +(0.540655 - 0.936442i) q^{67} +(-2.00086 + 4.13343i) q^{68} +(-0.426816 - 11.7241i) q^{70} +(-6.45016 + 3.72400i) q^{71} -6.14363i q^{73} +(-7.94074 - 12.6660i) q^{74} +(-3.81615 + 7.88349i) q^{76} -0.583091i q^{77} -15.9309 q^{79} +(2.78431 - 7.01081i) q^{80} +(9.88644 - 6.19813i) q^{82} -0.144468 q^{83} +(2.16509 + 3.75004i) q^{85} +(0.494498 + 13.5833i) q^{86} +(0.150969 - 0.343181i) q^{88} +(14.2114 + 8.20498i) q^{89} +(-14.2986 + 6.86301i) q^{91} +(7.88243 - 0.574680i) q^{92} +(12.6359 + 6.69460i) q^{94} +(4.12937 + 7.15228i) q^{95} +(6.11866 - 3.53261i) q^{97} +(9.27740 + 14.7981i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.662081 + 1.24966i −0.468162 + 0.883643i
\(3\) 0 0
\(4\) −1.12330 1.65475i −0.561648 0.827376i
\(5\) −1.88587 −0.843385 −0.421693 0.906739i \(-0.638564\pi\)
−0.421693 + 0.906739i \(0.638564\pi\)
\(6\) 0 0
\(7\) 3.80954 2.19944i 1.43987 0.831311i 0.442032 0.896999i \(-0.354258\pi\)
0.997840 + 0.0656885i \(0.0209244\pi\)
\(8\) 2.81159 0.308157i 0.994047 0.108950i
\(9\) 0 0
\(10\) 1.24860 2.35669i 0.394841 0.745251i
\(11\) 0.0662772 0.114795i 0.0199833 0.0346121i −0.855861 0.517206i \(-0.826972\pi\)
0.875844 + 0.482594i \(0.160305\pi\)
\(12\) 0 0
\(13\) −3.59512 0.274112i −0.997106 0.0760249i
\(14\) 0.226324 + 6.21684i 0.0604875 + 1.66152i
\(15\) 0 0
\(16\) −1.47641 + 3.71755i −0.369103 + 0.929389i
\(17\) −1.14806 1.98850i −0.278446 0.482282i 0.692553 0.721367i \(-0.256486\pi\)
−0.970999 + 0.239085i \(0.923152\pi\)
\(18\) 0 0
\(19\) −2.18964 3.79257i −0.502338 0.870075i −0.999996 0.00270169i \(-0.999140\pi\)
0.497658 0.867373i \(-0.334193\pi\)
\(20\) 2.11839 + 3.12064i 0.473686 + 0.697797i
\(21\) 0 0
\(22\) 0.0995743 + 0.158828i 0.0212293 + 0.0338622i
\(23\) −1.97584 + 3.42225i −0.411991 + 0.713589i −0.995107 0.0987997i \(-0.968500\pi\)
0.583117 + 0.812388i \(0.301833\pi\)
\(24\) 0 0
\(25\) −1.44351 −0.288701
\(26\) 2.72281 4.31119i 0.533986 0.845493i
\(27\) 0 0
\(28\) −7.91878 3.83323i −1.49651 0.724412i
\(29\) −2.20762 1.27457i −0.409944 0.236682i 0.280821 0.959760i \(-0.409393\pi\)
−0.690766 + 0.723078i \(0.742726\pi\)
\(30\) 0 0
\(31\) 1.06736i 0.191703i 0.995396 + 0.0958516i \(0.0305574\pi\)
−0.995396 + 0.0958516i \(0.969443\pi\)
\(32\) −3.66817 4.30633i −0.648447 0.761260i
\(33\) 0 0
\(34\) 3.24505 0.118136i 0.556522 0.0202601i
\(35\) −7.18429 + 4.14785i −1.21437 + 0.701115i
\(36\) 0 0
\(37\) −5.28540 + 9.15458i −0.868914 + 1.50500i −0.00580626 + 0.999983i \(0.501848\pi\)
−0.863108 + 0.505020i \(0.831485\pi\)
\(38\) 6.18914 0.225315i 1.00401 0.0365509i
\(39\) 0 0
\(40\) −5.30228 + 0.581142i −0.838365 + 0.0918867i
\(41\) −7.14559 4.12551i −1.11595 0.644296i −0.175589 0.984464i \(-0.556183\pi\)
−0.940365 + 0.340168i \(0.889516\pi\)
\(42\) 0 0
\(43\) 8.32354 4.80560i 1.26933 0.732847i 0.294467 0.955662i \(-0.404858\pi\)
0.974861 + 0.222815i \(0.0715247\pi\)
\(44\) −0.264407 + 0.0192770i −0.0398608 + 0.00290611i
\(45\) 0 0
\(46\) −2.96848 4.73493i −0.437679 0.698128i
\(47\) 10.1114i 1.47491i −0.675399 0.737453i \(-0.736028\pi\)
0.675399 0.737453i \(-0.263972\pi\)
\(48\) 0 0
\(49\) 6.17508 10.6956i 0.882155 1.52794i
\(50\) 0.955719 1.80389i 0.135159 0.255109i
\(51\) 0 0
\(52\) 3.58479 + 6.25694i 0.497121 + 0.867681i
\(53\) 8.28514i 1.13805i −0.822320 0.569026i \(-0.807320\pi\)
0.822320 0.569026i \(-0.192680\pi\)
\(54\) 0 0
\(55\) −0.124990 + 0.216489i −0.0168536 + 0.0291914i
\(56\) 10.0331 7.35786i 1.34073 0.983236i
\(57\) 0 0
\(58\) 3.05440 1.91490i 0.401062 0.251439i
\(59\) −1.65394 2.86472i −0.215325 0.372954i 0.738048 0.674748i \(-0.235748\pi\)
−0.953373 + 0.301794i \(0.902415\pi\)
\(60\) 0 0
\(61\) 6.40470 3.69775i 0.820038 0.473449i −0.0303918 0.999538i \(-0.509675\pi\)
0.850429 + 0.526089i \(0.176342\pi\)
\(62\) −1.33383 0.706678i −0.169397 0.0897482i
\(63\) 0 0
\(64\) 7.81008 1.73282i 0.976260 0.216603i
\(65\) 6.77991 + 0.516938i 0.840944 + 0.0641183i
\(66\) 0 0
\(67\) 0.540655 0.936442i 0.0660515 0.114405i −0.831108 0.556110i \(-0.812293\pi\)
0.897160 + 0.441706i \(0.145627\pi\)
\(68\) −2.00086 + 4.13343i −0.242640 + 0.501252i
\(69\) 0 0
\(70\) −0.426816 11.7241i −0.0510143 1.40130i
\(71\) −6.45016 + 3.72400i −0.765493 + 0.441958i −0.831265 0.555877i \(-0.812383\pi\)
0.0657714 + 0.997835i \(0.479049\pi\)
\(72\) 0 0
\(73\) 6.14363i 0.719057i −0.933134 0.359529i \(-0.882938\pi\)
0.933134 0.359529i \(-0.117062\pi\)
\(74\) −7.94074 12.6660i −0.923092 1.47239i
\(75\) 0 0
\(76\) −3.81615 + 7.88349i −0.437742 + 0.904298i
\(77\) 0.583091i 0.0664494i
\(78\) 0 0
\(79\) −15.9309 −1.79236 −0.896182 0.443688i \(-0.853670\pi\)
−0.896182 + 0.443688i \(0.853670\pi\)
\(80\) 2.78431 7.01081i 0.311296 0.783833i
\(81\) 0 0
\(82\) 9.88644 6.19813i 1.09177 0.684469i
\(83\) −0.144468 −0.0158574 −0.00792871 0.999969i \(-0.502524\pi\)
−0.00792871 + 0.999969i \(0.502524\pi\)
\(84\) 0 0
\(85\) 2.16509 + 3.75004i 0.234837 + 0.406749i
\(86\) 0.494498 + 13.5833i 0.0533231 + 1.46472i
\(87\) 0 0
\(88\) 0.150969 0.343181i 0.0160934 0.0365833i
\(89\) 14.2114 + 8.20498i 1.50641 + 0.869726i 0.999972 + 0.00744871i \(0.00237102\pi\)
0.506437 + 0.862277i \(0.330962\pi\)
\(90\) 0 0
\(91\) −14.2986 + 6.86301i −1.49891 + 0.719439i
\(92\) 7.88243 0.574680i 0.821800 0.0599145i
\(93\) 0 0
\(94\) 12.6359 + 6.69460i 1.30329 + 0.690495i
\(95\) 4.12937 + 7.15228i 0.423664 + 0.733808i
\(96\) 0 0
\(97\) 6.11866 3.53261i 0.621256 0.358682i −0.156102 0.987741i \(-0.549893\pi\)
0.777358 + 0.629059i \(0.216560\pi\)
\(98\) 9.27740 + 14.7981i 0.937159 + 1.49483i
\(99\) 0 0
\(100\) 1.62149 + 2.38865i 0.162149 + 0.238865i
\(101\) −9.34844 5.39732i −0.930204 0.537054i −0.0433280 0.999061i \(-0.513796\pi\)
−0.886876 + 0.462007i \(0.847129\pi\)
\(102\) 0 0
\(103\) −10.9719 −1.08110 −0.540548 0.841313i \(-0.681783\pi\)
−0.540548 + 0.841313i \(0.681783\pi\)
\(104\) −10.1925 + 0.337169i −0.999453 + 0.0330622i
\(105\) 0 0
\(106\) 10.3536 + 5.48544i 1.00563 + 0.532793i
\(107\) −3.34576 1.93168i −0.323447 0.186742i 0.329481 0.944162i \(-0.393126\pi\)
−0.652928 + 0.757420i \(0.726460\pi\)
\(108\) 0 0
\(109\) −1.14546 −0.109716 −0.0548578 0.998494i \(-0.517471\pi\)
−0.0548578 + 0.998494i \(0.517471\pi\)
\(110\) −0.187784 0.299528i −0.0179045 0.0285589i
\(111\) 0 0
\(112\) 2.55209 + 17.4095i 0.241150 + 1.64504i
\(113\) −4.88900 8.46799i −0.459918 0.796601i 0.539038 0.842281i \(-0.318788\pi\)
−0.998956 + 0.0456800i \(0.985455\pi\)
\(114\) 0 0
\(115\) 3.72617 6.45391i 0.347467 0.601830i
\(116\) 0.370713 + 5.08478i 0.0344199 + 0.472110i
\(117\) 0 0
\(118\) 4.67497 0.170192i 0.430365 0.0156674i
\(119\) −8.74717 5.05018i −0.801852 0.462949i
\(120\) 0 0
\(121\) 5.49121 + 9.51106i 0.499201 + 0.864642i
\(122\) 0.380501 + 10.4519i 0.0344489 + 0.946271i
\(123\) 0 0
\(124\) 1.76621 1.19896i 0.158611 0.107670i
\(125\) 12.1516 1.08687
\(126\) 0 0
\(127\) −7.37989 + 12.7824i −0.654860 + 1.13425i 0.327069 + 0.945000i \(0.393939\pi\)
−0.981929 + 0.189250i \(0.939394\pi\)
\(128\) −3.00547 + 10.9072i −0.265649 + 0.964070i
\(129\) 0 0
\(130\) −5.13485 + 8.13032i −0.450356 + 0.713076i
\(131\) 1.23181i 0.107624i 0.998551 + 0.0538118i \(0.0171371\pi\)
−0.998551 + 0.0538118i \(0.982863\pi\)
\(132\) 0 0
\(133\) −16.6831 9.63197i −1.44660 0.835198i
\(134\) 0.812275 + 1.29563i 0.0701699 + 0.111926i
\(135\) 0 0
\(136\) −3.84064 5.23706i −0.329332 0.449074i
\(137\) 15.7493 9.09286i 1.34555 0.776856i 0.357938 0.933745i \(-0.383480\pi\)
0.987616 + 0.156890i \(0.0501467\pi\)
\(138\) 0 0
\(139\) 4.13153 2.38534i 0.350432 0.202322i −0.314444 0.949276i \(-0.601818\pi\)
0.664875 + 0.746954i \(0.268485\pi\)
\(140\) 14.9338 + 7.22896i 1.26213 + 0.610958i
\(141\) 0 0
\(142\) −0.383202 10.5261i −0.0321576 0.883330i
\(143\) −0.269741 + 0.394536i −0.0225569 + 0.0329927i
\(144\) 0 0
\(145\) 4.16327 + 2.40367i 0.345741 + 0.199614i
\(146\) 7.67744 + 4.06758i 0.635390 + 0.336635i
\(147\) 0 0
\(148\) 21.0856 1.53728i 1.73323 0.126363i
\(149\) −3.97531 6.88544i −0.325670 0.564077i 0.655978 0.754780i \(-0.272257\pi\)
−0.981648 + 0.190703i \(0.938923\pi\)
\(150\) 0 0
\(151\) 13.5552i 1.10311i 0.834139 + 0.551554i \(0.185965\pi\)
−0.834139 + 0.551554i \(0.814035\pi\)
\(152\) −7.32508 9.98839i −0.594142 0.810166i
\(153\) 0 0
\(154\) 0.728665 + 0.386054i 0.0587175 + 0.0311091i
\(155\) 2.01290i 0.161680i
\(156\) 0 0
\(157\) 0.0648041i 0.00517193i −0.999997 0.00258597i \(-0.999177\pi\)
0.999997 0.00258597i \(-0.000823140\pi\)
\(158\) 10.5475 19.9082i 0.839117 1.58381i
\(159\) 0 0
\(160\) 6.91768 + 8.12117i 0.546891 + 0.642035i
\(161\) 17.3830i 1.36997i
\(162\) 0 0
\(163\) −5.26292 9.11565i −0.412224 0.713993i 0.582909 0.812538i \(-0.301915\pi\)
−0.995133 + 0.0985448i \(0.968581\pi\)
\(164\) 1.19992 + 16.4583i 0.0936980 + 1.28518i
\(165\) 0 0
\(166\) 0.0956496 0.180536i 0.00742385 0.0140123i
\(167\) 12.4804 + 7.20556i 0.965762 + 0.557583i 0.897942 0.440115i \(-0.145062\pi\)
0.0678204 + 0.997698i \(0.478396\pi\)
\(168\) 0 0
\(169\) 12.8497 + 1.97093i 0.988440 + 0.151610i
\(170\) −6.11974 + 0.222789i −0.469363 + 0.0170871i
\(171\) 0 0
\(172\) −17.3019 8.37528i −1.31926 0.638609i
\(173\) 7.41252 4.27962i 0.563564 0.325374i −0.191011 0.981588i \(-0.561177\pi\)
0.754575 + 0.656214i \(0.227843\pi\)
\(174\) 0 0
\(175\) −5.49910 + 3.17491i −0.415693 + 0.240000i
\(176\) 0.328906 + 0.415874i 0.0247922 + 0.0313477i
\(177\) 0 0
\(178\) −19.6626 + 12.3271i −1.47377 + 0.923954i
\(179\) −14.8169 8.55453i −1.10747 0.639396i −0.169294 0.985566i \(-0.554149\pi\)
−0.938172 + 0.346170i \(0.887482\pi\)
\(180\) 0 0
\(181\) 11.8391i 0.879992i −0.898000 0.439996i \(-0.854980\pi\)
0.898000 0.439996i \(-0.145020\pi\)
\(182\) 0.890449 22.4123i 0.0660045 1.66131i
\(183\) 0 0
\(184\) −4.50066 + 10.2308i −0.331793 + 0.754227i
\(185\) 9.96755 17.2643i 0.732829 1.26930i
\(186\) 0 0
\(187\) −0.304361 −0.0222571
\(188\) −16.7319 + 11.3581i −1.22030 + 0.828378i
\(189\) 0 0
\(190\) −11.6719 + 0.424914i −0.846768 + 0.0308265i
\(191\) 3.55694 + 6.16081i 0.257371 + 0.445780i 0.965537 0.260266i \(-0.0838103\pi\)
−0.708166 + 0.706046i \(0.750477\pi\)
\(192\) 0 0
\(193\) −12.1721 7.02758i −0.876169 0.505857i −0.00677591 0.999977i \(-0.502157\pi\)
−0.869393 + 0.494120i \(0.835490\pi\)
\(194\) 0.363507 + 9.98511i 0.0260983 + 0.716889i
\(195\) 0 0
\(196\) −24.6350 + 1.79605i −1.75964 + 0.128289i
\(197\) −11.2731 + 19.5256i −0.803178 + 1.39114i 0.114337 + 0.993442i \(0.463526\pi\)
−0.917514 + 0.397702i \(0.869808\pi\)
\(198\) 0 0
\(199\) −6.49779 11.2545i −0.460616 0.797811i 0.538375 0.842705i \(-0.319038\pi\)
−0.998992 + 0.0448942i \(0.985705\pi\)
\(200\) −4.05855 + 0.444826i −0.286983 + 0.0314540i
\(201\) 0 0
\(202\) 12.9342 8.10889i 0.910050 0.570540i
\(203\) −11.2134 −0.787024
\(204\) 0 0
\(205\) 13.4756 + 7.78016i 0.941179 + 0.543390i
\(206\) 7.26431 13.7112i 0.506129 0.955303i
\(207\) 0 0
\(208\) 6.32689 12.9603i 0.438691 0.898638i
\(209\) −0.580493 −0.0401535
\(210\) 0 0
\(211\) −8.91704 5.14826i −0.613875 0.354421i 0.160606 0.987019i \(-0.448655\pi\)
−0.774480 + 0.632598i \(0.781989\pi\)
\(212\) −13.7099 + 9.30667i −0.941597 + 0.639184i
\(213\) 0 0
\(214\) 4.62910 2.90214i 0.316439 0.198386i
\(215\) −15.6971 + 9.06271i −1.07053 + 0.618072i
\(216\) 0 0
\(217\) 2.34759 + 4.06615i 0.159365 + 0.276028i
\(218\) 0.758391 1.43144i 0.0513647 0.0969494i
\(219\) 0 0
\(220\) 0.498636 0.0363538i 0.0336180 0.00245097i
\(221\) 3.58234 + 7.46358i 0.240974 + 0.502055i
\(222\) 0 0
\(223\) 2.03847 + 1.17691i 0.136506 + 0.0788117i 0.566698 0.823926i \(-0.308221\pi\)
−0.430192 + 0.902737i \(0.641554\pi\)
\(224\) −23.4456 8.33724i −1.56652 0.557055i
\(225\) 0 0
\(226\) 13.8190 0.503080i 0.919227 0.0334644i
\(227\) 13.6449 + 23.6336i 0.905643 + 1.56862i 0.820051 + 0.572290i \(0.193945\pi\)
0.0855919 + 0.996330i \(0.472722\pi\)
\(228\) 0 0
\(229\) 14.1611 0.935794 0.467897 0.883783i \(-0.345012\pi\)
0.467897 + 0.883783i \(0.345012\pi\)
\(230\) 5.59816 + 8.92945i 0.369132 + 0.588791i
\(231\) 0 0
\(232\) −6.59969 2.90327i −0.433291 0.190609i
\(233\) −12.3422 −0.808562 −0.404281 0.914635i \(-0.632478\pi\)
−0.404281 + 0.914635i \(0.632478\pi\)
\(234\) 0 0
\(235\) 19.0688i 1.24391i
\(236\) −2.88253 + 5.95479i −0.187636 + 0.387624i
\(237\) 0 0
\(238\) 12.1023 7.58735i 0.784479 0.491815i
\(239\) 17.4020i 1.12564i 0.826578 + 0.562822i \(0.190285\pi\)
−0.826578 + 0.562822i \(0.809715\pi\)
\(240\) 0 0
\(241\) 12.5141 7.22501i 0.806103 0.465404i −0.0394975 0.999220i \(-0.512576\pi\)
0.845601 + 0.533816i \(0.179242\pi\)
\(242\) −15.5212 + 0.565049i −0.997742 + 0.0363227i
\(243\) 0 0
\(244\) −13.3132 6.44452i −0.852293 0.412568i
\(245\) −11.6454 + 20.1704i −0.743996 + 1.28864i
\(246\) 0 0
\(247\) 6.83242 + 14.2349i 0.434737 + 0.905747i
\(248\) 0.328913 + 3.00097i 0.0208860 + 0.190562i
\(249\) 0 0
\(250\) −8.04535 + 15.1854i −0.508832 + 0.960406i
\(251\) 26.7083 15.4201i 1.68581 0.973305i 0.728150 0.685418i \(-0.240381\pi\)
0.957664 0.287887i \(-0.0929528\pi\)
\(252\) 0 0
\(253\) 0.261906 + 0.453634i 0.0164659 + 0.0285197i
\(254\) −11.0875 17.6853i −0.695691 1.10968i
\(255\) 0 0
\(256\) −11.6404 10.9773i −0.727526 0.686080i
\(257\) −9.77864 + 16.9371i −0.609975 + 1.05651i 0.381269 + 0.924464i \(0.375487\pi\)
−0.991244 + 0.132044i \(0.957846\pi\)
\(258\) 0 0
\(259\) 46.4997i 2.88935i
\(260\) −6.76044 11.7997i −0.419265 0.731789i
\(261\) 0 0
\(262\) −1.53934 0.815558i −0.0951008 0.0503853i
\(263\) 15.8081 27.3804i 0.974769 1.68835i 0.294074 0.955783i \(-0.404989\pi\)
0.680695 0.732567i \(-0.261678\pi\)
\(264\) 0 0
\(265\) 15.6247i 0.959816i
\(266\) 23.0822 14.4710i 1.41526 0.887274i
\(267\) 0 0
\(268\) −2.15689 + 0.157252i −0.131753 + 0.00960567i
\(269\) −0.118107 + 0.0681891i −0.00720111 + 0.00415756i −0.503596 0.863939i \(-0.667990\pi\)
0.496395 + 0.868097i \(0.334657\pi\)
\(270\) 0 0
\(271\) 13.1075 + 7.56763i 0.796226 + 0.459701i 0.842150 0.539244i \(-0.181290\pi\)
−0.0459241 + 0.998945i \(0.514623\pi\)
\(272\) 9.08736 1.33214i 0.551002 0.0807726i
\(273\) 0 0
\(274\) 0.935660 + 25.7015i 0.0565253 + 1.55268i
\(275\) −0.0956715 + 0.165708i −0.00576921 + 0.00999256i
\(276\) 0 0
\(277\) −10.7192 + 6.18871i −0.644051 + 0.371843i −0.786174 0.618006i \(-0.787941\pi\)
0.142122 + 0.989849i \(0.454607\pi\)
\(278\) 0.245452 + 6.74229i 0.0147213 + 0.404376i
\(279\) 0 0
\(280\) −18.9211 + 13.8760i −1.13075 + 0.829247i
\(281\) 1.09096i 0.0650813i 0.999470 + 0.0325406i \(0.0103598\pi\)
−0.999470 + 0.0325406i \(0.989640\pi\)
\(282\) 0 0
\(283\) −4.12015 2.37877i −0.244917 0.141403i 0.372517 0.928025i \(-0.378495\pi\)
−0.617435 + 0.786622i \(0.711828\pi\)
\(284\) 13.4077 + 6.49026i 0.795603 + 0.385126i
\(285\) 0 0
\(286\) −0.314445 0.598299i −0.0185935 0.0353782i
\(287\) −36.2952 −2.14244
\(288\) 0 0
\(289\) 5.86392 10.1566i 0.344936 0.597447i
\(290\) −5.76019 + 3.61125i −0.338250 + 0.212060i
\(291\) 0 0
\(292\) −10.1662 + 6.90111i −0.594931 + 0.403857i
\(293\) 0.923728 + 1.59994i 0.0539647 + 0.0934697i 0.891746 0.452537i \(-0.149481\pi\)
−0.837781 + 0.546006i \(0.816147\pi\)
\(294\) 0 0
\(295\) 3.11912 + 5.40247i 0.181602 + 0.314544i
\(296\) −12.0393 + 27.3676i −0.699772 + 1.59071i
\(297\) 0 0
\(298\) 11.2364 0.409061i 0.650909 0.0236963i
\(299\) 8.04144 11.7618i 0.465049 0.680202i
\(300\) 0 0
\(301\) 21.1393 36.6143i 1.21845 2.11041i
\(302\) −16.9394 8.97466i −0.974753 0.516434i
\(303\) 0 0
\(304\) 17.3319 2.54072i 0.994052 0.145720i
\(305\) −12.0784 + 6.97347i −0.691608 + 0.399300i
\(306\) 0 0
\(307\) −14.5220 −0.828815 −0.414408 0.910091i \(-0.636011\pi\)
−0.414408 + 0.910091i \(0.636011\pi\)
\(308\) −0.964871 + 0.654984i −0.0549786 + 0.0373212i
\(309\) 0 0
\(310\) 2.51543 + 1.33270i 0.142867 + 0.0756923i
\(311\) 15.6062 0.884944 0.442472 0.896782i \(-0.354102\pi\)
0.442472 + 0.896782i \(0.354102\pi\)
\(312\) 0 0
\(313\) −29.5504 −1.67029 −0.835143 0.550032i \(-0.814615\pi\)
−0.835143 + 0.550032i \(0.814615\pi\)
\(314\) 0.0809831 + 0.0429056i 0.00457014 + 0.00242130i
\(315\) 0 0
\(316\) 17.8951 + 26.3616i 1.00668 + 1.48296i
\(317\) 14.3523 0.806105 0.403052 0.915177i \(-0.367949\pi\)
0.403052 + 0.915177i \(0.367949\pi\)
\(318\) 0 0
\(319\) −0.292629 + 0.168950i −0.0163841 + 0.00945936i
\(320\) −14.7288 + 3.26787i −0.823363 + 0.182679i
\(321\) 0 0
\(322\) −21.7228 11.5089i −1.21056 0.641368i
\(323\) −5.02768 + 8.70819i −0.279747 + 0.484537i
\(324\) 0 0
\(325\) 5.18957 + 0.395682i 0.287866 + 0.0219485i
\(326\) 14.8759 0.541557i 0.823902 0.0299941i
\(327\) 0 0
\(328\) −21.3618 9.39728i −1.17951 0.518878i
\(329\) −22.2395 38.5200i −1.22610 2.12368i
\(330\) 0 0
\(331\) 11.0998 + 19.2255i 0.610102 + 1.05673i 0.991223 + 0.132203i \(0.0422050\pi\)
−0.381120 + 0.924525i \(0.624462\pi\)
\(332\) 0.162280 + 0.239059i 0.00890630 + 0.0131201i
\(333\) 0 0
\(334\) −17.2675 + 10.8256i −0.944837 + 0.592349i
\(335\) −1.01960 + 1.76600i −0.0557069 + 0.0964871i
\(336\) 0 0
\(337\) 16.9924 0.925633 0.462817 0.886454i \(-0.346839\pi\)
0.462817 + 0.886454i \(0.346839\pi\)
\(338\) −10.9706 + 14.7529i −0.596719 + 0.802450i
\(339\) 0 0
\(340\) 3.77336 7.79510i 0.204639 0.422748i
\(341\) 0.122528 + 0.0707415i 0.00663525 + 0.00383086i
\(342\) 0 0
\(343\) 23.5348i 1.27076i
\(344\) 21.9215 16.0763i 1.18193 0.866777i
\(345\) 0 0
\(346\) 0.440375 + 12.0966i 0.0236747 + 0.650317i
\(347\) 10.8759 6.27918i 0.583846 0.337084i −0.178814 0.983883i \(-0.557226\pi\)
0.762660 + 0.646799i \(0.223893\pi\)
\(348\) 0 0
\(349\) −14.8271 + 25.6812i −0.793674 + 1.37468i 0.130004 + 0.991513i \(0.458501\pi\)
−0.923678 + 0.383170i \(0.874832\pi\)
\(350\) −0.326700 8.97405i −0.0174628 0.479683i
\(351\) 0 0
\(352\) −0.737463 + 0.135678i −0.0393069 + 0.00723164i
\(353\) 28.0507 + 16.1951i 1.49299 + 0.861977i 0.999968 0.00804129i \(-0.00255965\pi\)
0.493020 + 0.870018i \(0.335893\pi\)
\(354\) 0 0
\(355\) 12.1641 7.02297i 0.645606 0.372741i
\(356\) −2.38645 32.7330i −0.126482 1.73485i
\(357\) 0 0
\(358\) 20.5002 12.8523i 1.08347 0.679263i
\(359\) 2.96930i 0.156714i 0.996925 + 0.0783568i \(0.0249673\pi\)
−0.996925 + 0.0783568i \(0.975033\pi\)
\(360\) 0 0
\(361\) −0.0890480 + 0.154236i −0.00468674 + 0.00811767i
\(362\) 14.7948 + 7.83844i 0.777598 + 0.411979i
\(363\) 0 0
\(364\) 27.4182 + 15.9515i 1.43710 + 0.836087i
\(365\) 11.5861i 0.606442i
\(366\) 0 0
\(367\) −2.58053 + 4.46960i −0.134702 + 0.233311i −0.925484 0.378787i \(-0.876341\pi\)
0.790781 + 0.612099i \(0.209674\pi\)
\(368\) −9.80526 12.3979i −0.511134 0.646287i
\(369\) 0 0
\(370\) 14.9752 + 23.8864i 0.778522 + 1.24180i
\(371\) −18.2227 31.5626i −0.946074 1.63865i
\(372\) 0 0
\(373\) 4.57477 2.64124i 0.236873 0.136758i −0.376866 0.926268i \(-0.622998\pi\)
0.613738 + 0.789509i \(0.289665\pi\)
\(374\) 0.201512 0.380347i 0.0104199 0.0196673i
\(375\) 0 0
\(376\) −3.11591 28.4292i −0.160691 1.46613i
\(377\) 7.58727 + 5.18736i 0.390764 + 0.267163i
\(378\) 0 0
\(379\) 18.1432 31.4249i 0.931951 1.61419i 0.151970 0.988385i \(-0.451438\pi\)
0.779982 0.625802i \(-0.215228\pi\)
\(380\) 7.19674 14.8672i 0.369185 0.762672i
\(381\) 0 0
\(382\) −10.0539 + 0.366011i −0.514402 + 0.0187268i
\(383\) −8.44275 + 4.87443i −0.431405 + 0.249072i −0.699945 0.714197i \(-0.746792\pi\)
0.268540 + 0.963268i \(0.413459\pi\)
\(384\) 0 0
\(385\) 1.09963i 0.0560424i
\(386\) 16.8410 10.5582i 0.857186 0.537398i
\(387\) 0 0
\(388\) −12.7187 6.15670i −0.645692 0.312559i
\(389\) 14.8911i 0.755010i −0.926008 0.377505i \(-0.876782\pi\)
0.926008 0.377505i \(-0.123218\pi\)
\(390\) 0 0
\(391\) 9.07352 0.458868
\(392\) 14.0659 31.9744i 0.710435 1.61495i
\(393\) 0 0
\(394\) −16.9367 27.0151i −0.853257 1.36100i
\(395\) 30.0435 1.51165
\(396\) 0 0
\(397\) 10.5034 + 18.1925i 0.527152 + 0.913055i 0.999499 + 0.0316419i \(0.0100736\pi\)
−0.472347 + 0.881413i \(0.656593\pi\)
\(398\) 18.3664 0.668626i 0.920623 0.0335152i
\(399\) 0 0
\(400\) 2.13121 5.36631i 0.106560 0.268316i
\(401\) −13.7620 7.94551i −0.687243 0.396780i 0.115335 0.993327i \(-0.463206\pi\)
−0.802578 + 0.596547i \(0.796539\pi\)
\(402\) 0 0
\(403\) 0.292575 3.83728i 0.0145742 0.191148i
\(404\) 1.56983 + 21.5321i 0.0781020 + 1.07126i
\(405\) 0 0
\(406\) 7.42416 14.0129i 0.368455 0.695448i
\(407\) 0.700602 + 1.21348i 0.0347276 + 0.0601499i
\(408\) 0 0
\(409\) 13.7176 7.91987i 0.678292 0.391612i −0.120919 0.992662i \(-0.538584\pi\)
0.799211 + 0.601050i \(0.205251\pi\)
\(410\) −18.6445 + 11.6888i −0.920787 + 0.577271i
\(411\) 0 0
\(412\) 12.3247 + 18.1558i 0.607196 + 0.894474i
\(413\) −12.6016 7.27551i −0.620082 0.358004i
\(414\) 0 0
\(415\) 0.272448 0.0133739
\(416\) 12.0071 + 16.4873i 0.588696 + 0.808355i
\(417\) 0 0
\(418\) 0.384333 0.725418i 0.0187984 0.0354813i
\(419\) 19.4162 + 11.2100i 0.948544 + 0.547642i 0.892628 0.450793i \(-0.148859\pi\)
0.0559155 + 0.998436i \(0.482192\pi\)
\(420\) 0 0
\(421\) −1.50715 −0.0734541 −0.0367270 0.999325i \(-0.511693\pi\)
−0.0367270 + 0.999325i \(0.511693\pi\)
\(422\) 12.3374 7.73470i 0.600574 0.376519i
\(423\) 0 0
\(424\) −2.55312 23.2944i −0.123991 1.13128i
\(425\) 1.65723 + 2.87041i 0.0803876 + 0.139235i
\(426\) 0 0
\(427\) 16.2660 28.1735i 0.787166 1.36341i
\(428\) 0.561836 + 7.70625i 0.0271573 + 0.372496i
\(429\) 0 0
\(430\) −0.932558 25.6163i −0.0449719 1.23533i
\(431\) −20.0881 11.5979i −0.967609 0.558649i −0.0691026 0.997610i \(-0.522014\pi\)
−0.898507 + 0.438960i \(0.855347\pi\)
\(432\) 0 0
\(433\) −7.02656 12.1704i −0.337675 0.584870i 0.646320 0.763066i \(-0.276307\pi\)
−0.983995 + 0.178197i \(0.942974\pi\)
\(434\) −6.63560 + 0.241568i −0.318519 + 0.0115956i
\(435\) 0 0
\(436\) 1.28670 + 1.89546i 0.0616216 + 0.0907761i
\(437\) 17.3055 0.827834
\(438\) 0 0
\(439\) 6.40295 11.0902i 0.305596 0.529308i −0.671798 0.740735i \(-0.734478\pi\)
0.977394 + 0.211426i \(0.0678109\pi\)
\(440\) −0.284708 + 0.647194i −0.0135729 + 0.0308538i
\(441\) 0 0
\(442\) −11.6987 0.464795i −0.556452 0.0221080i
\(443\) 6.06204i 0.288016i 0.989577 + 0.144008i \(0.0459992\pi\)
−0.989577 + 0.144008i \(0.954001\pi\)
\(444\) 0 0
\(445\) −26.8009 15.4735i −1.27048 0.733514i
\(446\) −2.82037 + 1.76818i −0.133548 + 0.0837257i
\(447\) 0 0
\(448\) 25.9416 23.7791i 1.22563 1.12346i
\(449\) 6.72376 3.88197i 0.317314 0.183201i −0.332881 0.942969i \(-0.608021\pi\)
0.650195 + 0.759768i \(0.274687\pi\)
\(450\) 0 0
\(451\) −0.947179 + 0.546854i −0.0446009 + 0.0257503i
\(452\) −8.52063 + 17.6021i −0.400777 + 0.827935i
\(453\) 0 0
\(454\) −38.5680 + 1.40407i −1.81009 + 0.0658961i
\(455\) 26.9653 12.9427i 1.26415 0.606764i
\(456\) 0 0
\(457\) −11.5888 6.69082i −0.542103 0.312983i 0.203828 0.979007i \(-0.434662\pi\)
−0.745931 + 0.666023i \(0.767995\pi\)
\(458\) −9.37582 + 17.6966i −0.438103 + 0.826907i
\(459\) 0 0
\(460\) −14.8652 + 1.08377i −0.693094 + 0.0505310i
\(461\) 17.4992 + 30.3095i 0.815019 + 1.41165i 0.909314 + 0.416110i \(0.136607\pi\)
−0.0942954 + 0.995544i \(0.530060\pi\)
\(462\) 0 0
\(463\) 18.2272i 0.847092i −0.905875 0.423546i \(-0.860785\pi\)
0.905875 0.423546i \(-0.139215\pi\)
\(464\) 7.99763 6.32515i 0.371281 0.293638i
\(465\) 0 0
\(466\) 8.17152 15.4235i 0.378538 0.714480i
\(467\) 11.4947i 0.531910i 0.963985 + 0.265955i \(0.0856873\pi\)
−0.963985 + 0.265955i \(0.914313\pi\)
\(468\) 0 0
\(469\) 4.75655i 0.219637i
\(470\) −23.8295 12.6251i −1.09917 0.582353i
\(471\) 0 0
\(472\) −5.53300 7.54473i −0.254677 0.347275i
\(473\) 1.27401i 0.0585788i
\(474\) 0 0
\(475\) 3.16076 + 5.47460i 0.145026 + 0.251192i
\(476\) 1.46886 + 20.1473i 0.0673253 + 0.923448i
\(477\) 0 0
\(478\) −21.7466 11.5216i −0.994668 0.526984i
\(479\) −3.75092 2.16560i −0.171384 0.0989487i 0.411854 0.911250i \(-0.364881\pi\)
−0.583238 + 0.812301i \(0.698215\pi\)
\(480\) 0 0
\(481\) 21.5110 31.4630i 0.980817 1.43459i
\(482\) 0.743457 + 20.4219i 0.0338635 + 0.930192i
\(483\) 0 0
\(484\) 9.57019 19.7703i 0.435009 0.898652i
\(485\) −11.5390 + 6.66203i −0.523958 + 0.302507i
\(486\) 0 0
\(487\) −25.1811 + 14.5383i −1.14107 + 0.658795i −0.946694 0.322133i \(-0.895600\pi\)
−0.194372 + 0.980928i \(0.562267\pi\)
\(488\) 16.8679 12.3702i 0.763574 0.559974i
\(489\) 0 0
\(490\) −17.4959 27.9072i −0.790386 1.26072i
\(491\) 15.9306 + 9.19753i 0.718938 + 0.415079i 0.814362 0.580358i \(-0.197087\pi\)
−0.0954238 + 0.995437i \(0.530421\pi\)
\(492\) 0 0
\(493\) 5.85313i 0.263612i
\(494\) −22.3124 0.886481i −1.00388 0.0398847i
\(495\) 0 0
\(496\) −3.96796 1.57586i −0.178167 0.0707582i
\(497\) −16.3814 + 28.3735i −0.734808 + 1.27273i
\(498\) 0 0
\(499\) 3.03922 0.136054 0.0680270 0.997683i \(-0.478330\pi\)
0.0680270 + 0.997683i \(0.478330\pi\)
\(500\) −13.6498 20.1079i −0.610439 0.899252i
\(501\) 0 0
\(502\) 1.58673 + 43.5856i 0.0708193 + 1.94532i
\(503\) 0.148336 + 0.256925i 0.00661396 + 0.0114557i 0.869313 0.494261i \(-0.164561\pi\)
−0.862699 + 0.505717i \(0.831228\pi\)
\(504\) 0 0
\(505\) 17.6299 + 10.1786i 0.784520 + 0.452943i
\(506\) −0.740291 + 0.0269502i −0.0329100 + 0.00119808i
\(507\) 0 0
\(508\) 29.4414 2.14647i 1.30625 0.0952342i
\(509\) 12.2950 21.2955i 0.544965 0.943906i −0.453645 0.891183i \(-0.649876\pi\)
0.998609 0.0527236i \(-0.0167902\pi\)
\(510\) 0 0
\(511\) −13.5125 23.4044i −0.597760 1.03535i
\(512\) 21.4248 7.27871i 0.946850 0.321677i
\(513\) 0 0
\(514\) −14.6914 23.4337i −0.648008 1.03362i
\(515\) 20.6916 0.911781
\(516\) 0 0
\(517\) −1.16075 0.670158i −0.0510496 0.0294735i
\(518\) −58.1088 30.7866i −2.55315 1.35268i
\(519\) 0 0
\(520\) 19.2216 0.635857i 0.842924 0.0278842i
\(521\) 27.3639 1.19883 0.599417 0.800437i \(-0.295399\pi\)
0.599417 + 0.800437i \(0.295399\pi\)
\(522\) 0 0
\(523\) −18.8023 10.8555i −0.822167 0.474678i 0.0289964 0.999580i \(-0.490769\pi\)
−0.851163 + 0.524901i \(0.824102\pi\)
\(524\) 2.03834 1.38369i 0.0890452 0.0604466i
\(525\) 0 0
\(526\) 23.7500 + 37.8828i 1.03555 + 1.65177i
\(527\) 2.12244 1.22539i 0.0924549 0.0533789i
\(528\) 0 0
\(529\) 3.69213 + 6.39496i 0.160527 + 0.278042i
\(530\) −19.5255 10.3448i −0.848134 0.449350i
\(531\) 0 0
\(532\) 2.80150 + 38.4259i 0.121460 + 1.66597i
\(533\) 24.5584 + 16.7904i 1.06374 + 0.727272i
\(534\) 0 0
\(535\) 6.30966 + 3.64288i 0.272790 + 0.157496i
\(536\) 1.23153 2.79950i 0.0531940 0.120920i
\(537\) 0 0
\(538\) −0.00701669 0.192740i −0.000302511 0.00830962i
\(539\) −0.818534 1.41774i −0.0352568 0.0610665i
\(540\) 0 0
\(541\) 33.0198 1.41963 0.709816 0.704387i \(-0.248778\pi\)
0.709816 + 0.704387i \(0.248778\pi\)
\(542\) −18.1352 + 11.3696i −0.778974 + 0.488364i
\(543\) 0 0
\(544\) −4.35186 + 12.2381i −0.186584 + 0.524704i
\(545\) 2.16019 0.0925325
\(546\) 0 0
\(547\) 29.1932i 1.24821i 0.781340 + 0.624105i \(0.214536\pi\)
−0.781340 + 0.624105i \(0.785464\pi\)
\(548\) −32.7376 15.8472i −1.39848 0.676960i
\(549\) 0 0
\(550\) −0.143736 0.229269i −0.00612893 0.00977606i
\(551\) 11.1634i 0.475576i
\(552\) 0 0
\(553\) −60.6894 + 35.0390i −2.58077 + 1.49001i
\(554\) −0.636821 17.4927i −0.0270559 0.743194i
\(555\) 0 0
\(556\) −8.58807 4.15721i −0.364215 0.176305i
\(557\) 5.03804 8.72614i 0.213469 0.369739i −0.739329 0.673344i \(-0.764857\pi\)
0.952798 + 0.303606i \(0.0981905\pi\)
\(558\) 0 0
\(559\) −31.2414 + 14.9951i −1.32137 + 0.634225i
\(560\) −4.81290 32.8319i −0.203382 1.38740i
\(561\) 0 0
\(562\) −1.36333 0.722305i −0.0575086 0.0304686i
\(563\) −20.2190 + 11.6734i −0.852128 + 0.491977i −0.861368 0.507981i \(-0.830392\pi\)
0.00923997 + 0.999957i \(0.497059\pi\)
\(564\) 0 0
\(565\) 9.22000 + 15.9695i 0.387888 + 0.671842i
\(566\) 5.70052 3.57384i 0.239611 0.150220i
\(567\) 0 0
\(568\) −16.9876 + 12.4580i −0.712785 + 0.522727i
\(569\) 21.2506 36.8071i 0.890870 1.54303i 0.0520365 0.998645i \(-0.483429\pi\)
0.838834 0.544388i \(-0.183238\pi\)
\(570\) 0 0
\(571\) 5.43630i 0.227502i −0.993509 0.113751i \(-0.963713\pi\)
0.993509 0.113751i \(-0.0362866\pi\)
\(572\) 0.955858 + 0.00317407i 0.0399664 + 0.000132714i
\(573\) 0 0
\(574\) 24.0304 45.3567i 1.00301 1.89315i
\(575\) 2.85213 4.94004i 0.118942 0.206014i
\(576\) 0 0
\(577\) 4.39252i 0.182863i 0.995811 + 0.0914316i \(0.0291443\pi\)
−0.995811 + 0.0914316i \(0.970856\pi\)
\(578\) 8.80990 + 14.0524i 0.366443 + 0.584502i
\(579\) 0 0
\(580\) −0.699116 9.58922i −0.0290292 0.398171i
\(581\) −0.550357 + 0.317749i −0.0228327 + 0.0131825i
\(582\) 0 0
\(583\) −0.951096 0.549116i −0.0393904 0.0227420i
\(584\) −1.89320 17.2734i −0.0783412 0.714777i
\(585\) 0 0
\(586\) −2.61097 + 0.0950520i −0.107858 + 0.00392656i
\(587\) −15.7922 + 27.3529i −0.651813 + 1.12897i 0.330869 + 0.943677i \(0.392658\pi\)
−0.982683 + 0.185297i \(0.940675\pi\)
\(588\) 0 0
\(589\) 4.04803 2.33713i 0.166796 0.0962998i
\(590\) −8.81636 + 0.320959i −0.362964 + 0.0132137i
\(591\) 0 0
\(592\) −26.2292 33.1647i −1.07801 1.36306i
\(593\) 8.50710i 0.349345i 0.984627 + 0.174672i \(0.0558866\pi\)
−0.984627 + 0.174672i \(0.944113\pi\)
\(594\) 0 0
\(595\) 16.4960 + 9.52397i 0.676270 + 0.390445i
\(596\) −6.92825 + 14.3125i −0.283792 + 0.586265i
\(597\) 0 0
\(598\) 9.37414 + 17.8363i 0.383337 + 0.729382i
\(599\) −26.3372 −1.07611 −0.538055 0.842910i \(-0.680841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(600\) 0 0
\(601\) 3.29321 5.70401i 0.134333 0.232672i −0.791009 0.611804i \(-0.790444\pi\)
0.925342 + 0.379132i \(0.123777\pi\)
\(602\) 31.7594 + 50.6585i 1.29442 + 2.06469i
\(603\) 0 0
\(604\) 22.4305 15.2265i 0.912685 0.619559i
\(605\) −10.3557 17.9366i −0.421019 0.729226i
\(606\) 0 0
\(607\) −2.47666 4.28970i −0.100524 0.174113i 0.811376 0.584524i \(-0.198719\pi\)
−0.911901 + 0.410411i \(0.865385\pi\)
\(608\) −8.30009 + 23.3411i −0.336613 + 0.946607i
\(609\) 0 0
\(610\) −0.717574 19.7109i −0.0290537 0.798071i
\(611\) −2.77166 + 36.3518i −0.112130 + 1.47064i
\(612\) 0 0
\(613\) 6.25855 10.8401i 0.252780 0.437828i −0.711510 0.702676i \(-0.751988\pi\)
0.964290 + 0.264848i \(0.0853217\pi\)
\(614\) 9.61476 18.1476i 0.388020 0.732376i
\(615\) 0 0
\(616\) −0.179683 1.63941i −0.00723965 0.0660538i
\(617\) −22.7830 + 13.1538i −0.917210 + 0.529551i −0.882744 0.469855i \(-0.844306\pi\)
−0.0344658 + 0.999406i \(0.510973\pi\)
\(618\) 0 0
\(619\) 2.56782 0.103209 0.0516047 0.998668i \(-0.483566\pi\)
0.0516047 + 0.998668i \(0.483566\pi\)
\(620\) −3.33084 + 2.26108i −0.133770 + 0.0908071i
\(621\) 0 0
\(622\) −10.3325 + 19.5024i −0.414297 + 0.781974i
\(623\) 72.1855 2.89205
\(624\) 0 0
\(625\) −15.6988 −0.627950
\(626\) 19.5648 36.9279i 0.781965 1.47594i
\(627\) 0 0
\(628\) −0.107235 + 0.0727942i −0.00427913 + 0.00290481i
\(629\) 24.2718 0.967781
\(630\) 0 0
\(631\) 32.2263 18.6058i 1.28291 0.740687i 0.305528 0.952183i \(-0.401167\pi\)
0.977379 + 0.211496i \(0.0678337\pi\)
\(632\) −44.7911 + 4.90920i −1.78169 + 0.195278i
\(633\) 0 0
\(634\) −9.50238 + 17.9355i −0.377388 + 0.712309i
\(635\) 13.9175 24.1058i 0.552299 0.956610i
\(636\) 0 0
\(637\) −25.1319 + 36.7591i −0.995763 + 1.45645i
\(638\) −0.0173850 0.477545i −0.000688279 0.0189062i
\(639\) 0 0
\(640\) 5.66792 20.5695i 0.224044 0.813082i
\(641\) −23.2163 40.2117i −0.916987 1.58827i −0.803966 0.594675i \(-0.797281\pi\)
−0.113021 0.993593i \(-0.536053\pi\)
\(642\) 0 0
\(643\) −8.31198 14.3968i −0.327792 0.567753i 0.654281 0.756251i \(-0.272971\pi\)
−0.982073 + 0.188498i \(0.939638\pi\)
\(644\) 28.7645 19.5262i 1.13348 0.769440i
\(645\) 0 0
\(646\) −7.55354 12.0484i −0.297190 0.474039i
\(647\) 14.5656 25.2283i 0.572632 0.991828i −0.423662 0.905820i \(-0.639256\pi\)
0.996294 0.0860076i \(-0.0274109\pi\)
\(648\) 0 0
\(649\) −0.438475 −0.0172117
\(650\) −3.93039 + 6.22323i −0.154163 + 0.244095i
\(651\) 0 0
\(652\) −9.17232 + 18.9484i −0.359216 + 0.742077i
\(653\) −13.0481 7.53330i −0.510610 0.294801i 0.222475 0.974938i \(-0.428587\pi\)
−0.733084 + 0.680138i \(0.761920\pi\)
\(654\) 0 0
\(655\) 2.32303i 0.0907682i
\(656\) 25.8866 20.4732i 1.01070 0.799343i
\(657\) 0 0
\(658\) 62.8612 2.28846i 2.45059 0.0892134i
\(659\) −42.5147 + 24.5459i −1.65614 + 0.956171i −0.681664 + 0.731665i \(0.738744\pi\)
−0.974473 + 0.224506i \(0.927923\pi\)
\(660\) 0 0
\(661\) −3.87600 + 6.71343i −0.150759 + 0.261122i −0.931507 0.363724i \(-0.881505\pi\)
0.780748 + 0.624846i \(0.214838\pi\)
\(662\) −31.3743 + 1.14218i −1.21940 + 0.0443920i
\(663\) 0 0
\(664\) −0.406185 + 0.0445188i −0.0157630 + 0.00172766i
\(665\) 31.4620 + 18.1646i 1.22005 + 0.704393i
\(666\) 0 0
\(667\) 8.72379 5.03668i 0.337787 0.195021i
\(668\) −2.09576 28.7459i −0.0810876 1.11221i
\(669\) 0 0
\(670\) −1.53184 2.44339i −0.0591803 0.0943966i
\(671\) 0.980307i 0.0378443i
\(672\) 0 0
\(673\) −4.40466 + 7.62909i −0.169787 + 0.294080i −0.938345 0.345700i \(-0.887641\pi\)
0.768558 + 0.639780i \(0.220975\pi\)
\(674\) −11.2503 + 21.2347i −0.433347 + 0.817929i
\(675\) 0 0
\(676\) −11.1727 23.4770i −0.429717 0.902963i
\(677\) 33.6470i 1.29316i −0.762846 0.646580i \(-0.776198\pi\)
0.762846 0.646580i \(-0.223802\pi\)
\(678\) 0 0
\(679\) 15.5395 26.9153i 0.596353 1.03291i
\(680\) 7.24294 + 9.87640i 0.277754 + 0.378743i
\(681\) 0 0
\(682\) −0.169526 + 0.106281i −0.00649149 + 0.00406972i
\(683\) −1.34924 2.33695i −0.0516273 0.0894211i 0.839057 0.544044i \(-0.183107\pi\)
−0.890684 + 0.454623i \(0.849774\pi\)
\(684\) 0 0
\(685\) −29.7011 + 17.1479i −1.13482 + 0.655189i
\(686\) 29.4104 + 15.5819i 1.12290 + 0.594921i
\(687\) 0 0
\(688\) 5.57610 + 38.0382i 0.212587 + 1.45019i
\(689\) −2.27105 + 29.7860i −0.0865202 + 1.13476i
\(690\) 0 0
\(691\) −2.01331 + 3.48715i −0.0765898 + 0.132657i −0.901777 0.432203i \(-0.857737\pi\)
0.825187 + 0.564860i \(0.191070\pi\)
\(692\) −15.4082 7.45861i −0.585731 0.283534i
\(693\) 0 0
\(694\) 0.646130 + 17.7484i 0.0245268 + 0.673721i
\(695\) −7.79151 + 4.49843i −0.295549 + 0.170635i
\(696\) 0 0
\(697\) 18.9453i 0.717605i
\(698\) −22.2760 35.5318i −0.843161 1.34490i
\(699\) 0 0
\(700\) 11.4308 + 5.53329i 0.432044 + 0.209139i
\(701\) 26.9620i 1.01834i −0.860666 0.509171i \(-0.829952\pi\)
0.860666 0.509171i \(-0.170048\pi\)
\(702\) 0 0
\(703\) 46.2925 1.74595
\(704\) 0.318710 1.01141i 0.0120118 0.0381189i
\(705\) 0 0
\(706\) −38.8102 + 24.3313i −1.46064 + 0.915722i
\(707\) −47.4844 −1.78583
\(708\) 0 0
\(709\) 1.66790 + 2.88889i 0.0626393 + 0.108494i 0.895644 0.444771i \(-0.146715\pi\)
−0.833005 + 0.553265i \(0.813382\pi\)
\(710\) 0.722667 + 19.8508i 0.0271212 + 0.744988i
\(711\) 0 0
\(712\) 42.4852 + 18.6897i 1.59220 + 0.700425i
\(713\) −3.65277 2.10893i −0.136797 0.0789799i
\(714\) 0 0
\(715\) 0.508695 0.744041i 0.0190241 0.0278256i
\(716\) 2.48812 + 34.1276i 0.0929854 + 1.27541i
\(717\) 0 0
\(718\) −3.71061 1.96592i −0.138479 0.0733674i
\(719\) −3.27398 5.67070i −0.122099 0.211481i 0.798496 0.602000i \(-0.205629\pi\)
−0.920595 + 0.390518i \(0.872296\pi\)
\(720\) 0 0
\(721\) −41.7981 + 24.1321i −1.55664 + 0.898727i
\(722\) −0.133785 0.213396i −0.00497896 0.00794179i
\(723\) 0 0
\(724\) −19.5908 + 13.2988i −0.728085 + 0.494246i
\(725\) 3.18671 + 1.83985i 0.118351 + 0.0683303i
\(726\) 0 0
\(727\) 39.4666 1.46374 0.731868 0.681447i \(-0.238649\pi\)
0.731868 + 0.681447i \(0.238649\pi\)
\(728\) −38.0871 + 23.7022i −1.41160 + 0.878462i
\(729\) 0 0
\(730\) −14.4786 7.67092i −0.535878 0.283913i
\(731\) −19.1118 11.0342i −0.706877 0.408116i
\(732\) 0 0
\(733\) −23.7942 −0.878860 −0.439430 0.898277i \(-0.644820\pi\)
−0.439430 + 0.898277i \(0.644820\pi\)
\(734\) −3.87696 6.18402i −0.143101 0.228256i
\(735\) 0 0
\(736\) 21.9851 4.04479i 0.810380 0.149093i
\(737\) −0.0716661 0.124129i −0.00263986 0.00457236i
\(738\) 0 0
\(739\) −1.53475 + 2.65827i −0.0564568 + 0.0977861i −0.892873 0.450309i \(-0.851314\pi\)
0.836416 + 0.548096i \(0.184647\pi\)
\(740\) −39.7647 + 2.89910i −1.46178 + 0.106573i
\(741\) 0 0
\(742\) 51.5074 1.87512i 1.89090 0.0688379i
\(743\) 32.7810 + 18.9261i 1.20262 + 0.694332i 0.961137 0.276073i \(-0.0890331\pi\)
0.241482 + 0.970405i \(0.422366\pi\)
\(744\) 0 0
\(745\) 7.49691 + 12.9850i 0.274665 + 0.475734i
\(746\) 0.271785 + 7.46562i 0.00995076 + 0.273336i
\(747\) 0 0
\(748\) 0.341887 + 0.503642i 0.0125006 + 0.0184150i
\(749\) −16.9944 −0.620963
\(750\) 0 0
\(751\) 2.75896 4.77866i 0.100676 0.174376i −0.811287 0.584647i \(-0.801233\pi\)
0.911963 + 0.410272i \(0.134566\pi\)
\(752\) 37.5898 + 14.9286i 1.37076 + 0.544392i
\(753\) 0 0
\(754\) −11.5058 + 6.04705i −0.419017 + 0.220221i
\(755\) 25.5633i 0.930345i
\(756\) 0 0
\(757\) 18.7724 + 10.8383i 0.682296 + 0.393924i 0.800720 0.599039i \(-0.204451\pi\)
−0.118424 + 0.992963i \(0.537784\pi\)
\(758\) 27.2581 + 43.4786i 0.990060 + 1.57921i
\(759\) 0 0
\(760\) 13.8141 + 18.8368i 0.501091 + 0.683282i
\(761\) −16.0378 + 9.25942i −0.581369 + 0.335654i −0.761677 0.647957i \(-0.775624\pi\)
0.180308 + 0.983610i \(0.442291\pi\)
\(762\) 0 0
\(763\) −4.36370 + 2.51938i −0.157976 + 0.0912078i
\(764\) 6.19911 12.8063i 0.224276 0.463315i
\(765\) 0 0
\(766\) −0.501581 13.7778i −0.0181229 0.497813i
\(767\) 5.16087 + 10.7524i 0.186348 + 0.388245i
\(768\) 0 0
\(769\) 1.51439 + 0.874333i 0.0546103 + 0.0315293i 0.527057 0.849830i \(-0.323296\pi\)
−0.472446 + 0.881359i \(0.656629\pi\)
\(770\) −1.37417 0.728046i −0.0495215 0.0262370i
\(771\) 0 0
\(772\) 2.04400 + 28.0359i 0.0735652 + 1.00904i
\(773\) −3.35588 5.81256i −0.120703 0.209063i 0.799342 0.600876i \(-0.205181\pi\)
−0.920045 + 0.391813i \(0.871848\pi\)
\(774\) 0 0
\(775\) 1.54074i 0.0553449i
\(776\) 16.1146 11.8178i 0.578479 0.424233i
\(777\) 0 0
\(778\) 18.6088 + 9.85914i 0.667159 + 0.353467i
\(779\) 36.1335i 1.29462i
\(780\) 0 0
\(781\) 0.987265i 0.0353271i
\(782\) −6.00741 + 11.3388i −0.214825 + 0.405475i
\(783\) 0 0
\(784\) 30.6444 + 38.7473i 1.09444 + 1.38383i
\(785\) 0.122212i 0.00436193i
\(786\) 0 0
\(787\) −25.3707 43.9434i −0.904369 1.56641i −0.821762 0.569831i \(-0.807009\pi\)
−0.0826068 0.996582i \(-0.526325\pi\)
\(788\) 44.9732 3.27883i 1.60210 0.116804i
\(789\) 0 0
\(790\) −19.8912 + 37.5441i −0.707699 + 1.33576i
\(791\) −37.2497 21.5061i −1.32445 0.764670i
\(792\) 0 0
\(793\) −24.0392 + 11.5383i −0.853658 + 0.409735i
\(794\) −29.6885 + 1.08081i −1.05361 + 0.0383565i
\(795\) 0 0
\(796\) −11.3245 + 23.3944i −0.401385 + 0.829192i
\(797\) −8.65924 + 4.99942i −0.306726 + 0.177088i −0.645461 0.763794i \(-0.723335\pi\)
0.338734 + 0.940882i \(0.390001\pi\)
\(798\) 0 0
\(799\) −20.1066 + 11.6085i −0.711320 + 0.410681i
\(800\) 5.29503 + 6.21622i 0.187208 + 0.219777i
\(801\) 0 0
\(802\) 19.0408 11.9373i 0.672353 0.421520i
\(803\) −0.705260 0.407182i −0.0248881 0.0143691i
\(804\) 0 0
\(805\) 32.7819i 1.15541i
\(806\) 4.60158 + 2.90621i 0.162084 + 0.102367i
\(807\) 0 0
\(808\) −27.9472 12.2943i −0.983179 0.432511i
\(809\) −1.54330 + 2.67308i −0.0542596 + 0.0939804i −0.891879 0.452273i \(-0.850613\pi\)
0.837620 + 0.546254i \(0.183947\pi\)
\(810\) 0 0
\(811\) 28.0084 0.983508 0.491754 0.870734i \(-0.336356\pi\)
0.491754 + 0.870734i \(0.336356\pi\)
\(812\) 12.5959 + 18.5553i 0.442030 + 0.651165i
\(813\) 0 0
\(814\) −1.98029 + 0.0720923i −0.0694092 + 0.00252683i
\(815\) 9.92517 + 17.1909i 0.347664 + 0.602171i
\(816\) 0 0
\(817\) −36.4511 21.0451i −1.27526 0.736273i
\(818\) 0.814958 + 22.3859i 0.0284943 + 0.782706i
\(819\) 0 0
\(820\) −2.26289 31.0382i −0.0790235 1.08390i
\(821\) 11.8321 20.4937i 0.412942 0.715236i −0.582268 0.812997i \(-0.697835\pi\)
0.995210 + 0.0977607i \(0.0311680\pi\)
\(822\) 0 0
\(823\) −7.69409 13.3266i −0.268199 0.464535i 0.700198 0.713949i \(-0.253095\pi\)
−0.968397 + 0.249414i \(0.919762\pi\)
\(824\) −30.8486 + 3.38107i −1.07466 + 0.117785i
\(825\) 0 0
\(826\) 17.4352 10.9307i 0.606647 0.380326i
\(827\) −32.9357 −1.14529 −0.572643 0.819805i \(-0.694082\pi\)
−0.572643 + 0.819805i \(0.694082\pi\)
\(828\) 0 0
\(829\) −7.25966 4.19137i −0.252138 0.145572i 0.368605 0.929586i \(-0.379836\pi\)
−0.620743 + 0.784014i \(0.713169\pi\)
\(830\) −0.180382 + 0.340467i −0.00626117 + 0.0118178i
\(831\) 0 0
\(832\) −28.5531 + 4.08886i −0.989902 + 0.141756i
\(833\) −28.3575 −0.982528
\(834\) 0 0
\(835\) −23.5364 13.5887i −0.814509 0.470257i
\(836\) 0.652065 + 0.960571i 0.0225521 + 0.0332221i
\(837\) 0 0
\(838\) −26.8637 + 16.8417i −0.927992 + 0.581788i
\(839\) −24.9098 + 14.3817i −0.859983 + 0.496512i −0.864007 0.503480i \(-0.832053\pi\)
0.00402335 + 0.999992i \(0.498719\pi\)
\(840\) 0 0
\(841\) −11.2509 19.4872i −0.387964 0.671973i
\(842\) 0.997857 1.88343i 0.0343884 0.0649072i
\(843\) 0 0
\(844\) 1.49739 + 20.5385i 0.0515423 + 0.706965i
\(845\) −24.2329 3.71691i −0.833636 0.127865i
\(846\) 0 0
\(847\) 41.8381 + 24.1552i 1.43757 + 0.829983i
\(848\) 30.8005 + 12.2323i 1.05769 + 0.420058i
\(849\) 0 0
\(850\) −4.68426 + 0.170530i −0.160669 + 0.00584913i
\(851\) −20.8862 36.1759i −0.715969 1.24009i
\(852\) 0 0
\(853\) 23.9537 0.820160 0.410080 0.912049i \(-0.365501\pi\)
0.410080 + 0.912049i \(0.365501\pi\)
\(854\) 24.4379 + 38.9801i 0.836247 + 1.33387i
\(855\) 0 0
\(856\) −10.0022 4.40006i −0.341867 0.150391i
\(857\) −35.6876 −1.21907 −0.609533 0.792761i \(-0.708643\pi\)
−0.609533 + 0.792761i \(0.708643\pi\)
\(858\) 0 0
\(859\) 34.6818i 1.18333i −0.806185 0.591664i \(-0.798471\pi\)
0.806185 0.591664i \(-0.201529\pi\)
\(860\) 32.6290 + 15.7947i 1.11264 + 0.538594i
\(861\) 0 0
\(862\) 27.7933 17.4245i 0.946645 0.593482i
\(863\) 23.4077i 0.796807i −0.917210 0.398404i \(-0.869564\pi\)
0.917210 0.398404i \(-0.130436\pi\)
\(864\) 0 0
\(865\) −13.9790 + 8.07080i −0.475301 + 0.274415i
\(866\) 19.8609 0.723036i 0.674902 0.0245698i
\(867\) 0 0
\(868\) 4.09143 8.45217i 0.138872 0.286885i
\(869\) −1.05585 + 1.82879i −0.0358174 + 0.0620375i
\(870\) 0 0
\(871\) −2.20041 + 3.21842i −0.0745579 + 0.109052i
\(872\) −3.22058 + 0.352983i −0.109063 + 0.0119535i
\(873\) 0 0
\(874\) −11.4576 + 21.6260i −0.387561 + 0.731509i
\(875\) 46.2920 26.7267i 1.56496 0.903528i
\(876\) 0 0
\(877\) −22.9591 39.7663i −0.775274 1.34281i −0.934641 0.355594i \(-0.884279\pi\)
0.159367 0.987219i \(-0.449055\pi\)
\(878\) 9.61975 + 15.3442i 0.324651 + 0.517840i
\(879\) 0 0
\(880\) −0.620273 0.784283i −0.0209094 0.0264382i
\(881\) −3.74833 + 6.49229i −0.126284 + 0.218731i −0.922234 0.386632i \(-0.873638\pi\)
0.795950 + 0.605362i \(0.206972\pi\)
\(882\) 0 0
\(883\) 50.0570i 1.68455i 0.539046 + 0.842276i \(0.318785\pi\)
−0.539046 + 0.842276i \(0.681215\pi\)
\(884\) 8.32635 14.3117i 0.280045 0.481354i
\(885\) 0 0
\(886\) −7.57549 4.01357i −0.254503 0.134838i
\(887\) −11.5973 + 20.0872i −0.389400 + 0.674461i −0.992369 0.123304i \(-0.960651\pi\)
0.602969 + 0.797765i \(0.293984\pi\)
\(888\) 0 0
\(889\) 64.9266i 2.17757i
\(890\) 37.0810 23.2472i 1.24296 0.779249i
\(891\) 0 0
\(892\) −0.342309 4.69518i −0.0114613 0.157206i
\(893\) −38.3483 + 22.1404i −1.28328 + 0.740901i
\(894\) 0 0
\(895\) 27.9427 + 16.1327i 0.934021 + 0.539257i
\(896\) 12.5403 + 48.1618i 0.418941 + 1.60897i
\(897\) 0 0
\(898\) 0.399456 + 10.9726i 0.0133300 + 0.366160i
\(899\) 1.36042 2.35632i 0.0453726 0.0785877i
\(900\) 0 0
\(901\) −16.4750 + 9.51184i −0.548861 + 0.316885i
\(902\) −0.0562715 1.54571i −0.00187364 0.0514666i
\(903\) 0 0
\(904\) −16.3553 22.3019i −0.543970 0.741751i
\(905\) 22.3269i 0.742172i
\(906\) 0 0
\(907\) 19.4736 + 11.2431i 0.646610 + 0.373321i 0.787156 0.616754i \(-0.211553\pi\)
−0.140546 + 0.990074i \(0.544886\pi\)
\(908\) 23.7806 49.1265i 0.789186 1.63032i
\(909\) 0 0
\(910\) −1.67927 + 42.2666i −0.0556672 + 1.40112i
\(911\) 3.74738 0.124156 0.0620781 0.998071i \(-0.480227\pi\)
0.0620781 + 0.998071i \(0.480227\pi\)
\(912\) 0 0
\(913\) −0.00957493 + 0.0165843i −0.000316884 + 0.000548859i
\(914\) 16.0340 10.0522i 0.530358 0.332498i
\(915\) 0 0
\(916\) −15.9071 23.4332i −0.525587 0.774253i
\(917\) 2.70929 + 4.69263i 0.0894687 + 0.154964i
\(918\) 0 0
\(919\) −6.20682 10.7505i −0.204744 0.354627i 0.745307 0.666721i \(-0.232303\pi\)
−0.950051 + 0.312094i \(0.898970\pi\)
\(920\) 8.48764 19.2940i 0.279829 0.636104i
\(921\) 0 0
\(922\) −49.4624 + 1.80068i −1.62896 + 0.0593021i
\(923\) 24.2099 11.6202i 0.796877 0.382482i
\(924\) 0 0
\(925\) 7.62950 13.2147i 0.250857 0.434496i
\(926\) 22.7778 + 12.0679i 0.748527 + 0.396577i
\(927\) 0 0
\(928\) 2.60920 + 14.1821i 0.0856513 + 0.465550i
\(929\) −35.0237 + 20.2210i −1.14909 + 0.663428i −0.948666 0.316280i \(-0.897566\pi\)
−0.200426 + 0.979709i \(0.564233\pi\)
\(930\) 0 0
\(931\) −54.0849 −1.77256
\(932\) 13.8639 + 20.4232i 0.454127 + 0.668985i
\(933\) 0 0
\(934\) −14.3644 7.61041i −0.470019 0.249020i
\(935\) 0.573984 0.0187713
\(936\) 0 0
\(937\) 2.03951 0.0666277 0.0333139 0.999445i \(-0.489394\pi\)
0.0333139 + 0.999445i \(0.489394\pi\)
\(938\) 5.94407 + 3.14923i 0.194081 + 0.102826i
\(939\) 0 0
\(940\) 31.5542 21.4199i 1.02918 0.698642i
\(941\) −35.2677 −1.14969 −0.574847 0.818261i \(-0.694938\pi\)
−0.574847 + 0.818261i \(0.694938\pi\)
\(942\) 0 0
\(943\) 28.2370 16.3027i 0.919525 0.530888i
\(944\) 13.0916 1.91913i 0.426097 0.0624624i
\(945\) 0 0
\(946\) 1.59207 + 0.843495i 0.0517627 + 0.0274244i
\(947\) −12.6695 + 21.9442i −0.411702 + 0.713089i −0.995076 0.0991144i \(-0.968399\pi\)
0.583374 + 0.812204i \(0.301732\pi\)
\(948\) 0 0
\(949\) −1.68404 + 22.0871i −0.0546662 + 0.716976i
\(950\) −8.93406 + 0.325244i −0.289859 + 0.0105523i
\(951\) 0 0
\(952\) −26.1497 11.5035i −0.847517 0.372832i
\(953\) −16.5824 28.7215i −0.537155 0.930380i −0.999056 0.0434482i \(-0.986166\pi\)
0.461901 0.886932i \(-0.347168\pi\)
\(954\) 0 0
\(955\) −6.70792 11.6185i −0.217063 0.375965i
\(956\) 28.7961 19.5477i 0.931332 0.632216i
\(957\) 0 0
\(958\) 5.18968 3.25358i 0.167671 0.105118i
\(959\) 39.9984 69.2793i 1.29162 2.23715i
\(960\) 0 0
\(961\) 29.8607 0.963250
\(962\) 25.0760 + 47.7125i 0.808482 + 1.53831i
\(963\) 0 0
\(964\) −26.0126 12.5919i −0.837811 0.405557i
\(965\) 22.9550 + 13.2531i 0.738948 + 0.426632i
\(966\) 0 0
\(967\) 24.5985i 0.791035i 0.918459 + 0.395517i \(0.129435\pi\)
−0.918459 + 0.395517i \(0.870565\pi\)
\(968\) 18.3699 + 25.0491i 0.590432 + 0.805107i
\(969\) 0 0
\(970\) −0.685526 18.8306i −0.0220109 0.604614i
\(971\) 16.8251 9.71399i 0.539944 0.311737i −0.205112 0.978738i \(-0.565756\pi\)
0.745056 + 0.667002i \(0.232423\pi\)
\(972\) 0 0
\(973\) 10.4928 18.1741i 0.336384 0.582635i
\(974\) −1.49600 41.0934i −0.0479350 1.31672i
\(975\) 0 0
\(976\) 4.29064 + 29.2692i 0.137340 + 0.936885i
\(977\) 10.4801 + 6.05071i 0.335290 + 0.193580i 0.658187 0.752854i \(-0.271324\pi\)
−0.322898 + 0.946434i \(0.604657\pi\)
\(978\) 0 0
\(979\) 1.88379 1.08761i 0.0602061 0.0347600i
\(980\) 46.4582 3.38711i 1.48405 0.108197i
\(981\) 0 0
\(982\) −22.0411 + 13.8183i −0.703361 + 0.440960i
\(983\) 26.8688i 0.856983i −0.903546 0.428492i \(-0.859045\pi\)
0.903546 0.428492i \(-0.140955\pi\)
\(984\) 0 0
\(985\) 21.2596 36.8228i 0.677388 1.17327i
\(986\) −7.31442 3.87525i −0.232938 0.123413i
\(987\) 0 0
\(988\) 15.8804 27.2960i 0.505224 0.868402i
\(989\) 37.9803i 1.20770i
\(990\) 0 0
\(991\) 3.63276 6.29212i 0.115398 0.199876i −0.802541 0.596598i \(-0.796519\pi\)
0.917939 + 0.396722i \(0.129852\pi\)
\(992\) 4.59640 3.91525i 0.145936 0.124309i
\(993\) 0 0
\(994\) −24.6113 39.2568i −0.780625 1.24515i
\(995\) 12.2540 + 21.2245i 0.388477 + 0.672862i
\(996\) 0 0
\(997\) −17.0286 + 9.83147i −0.539301 + 0.311366i −0.744796 0.667293i \(-0.767453\pi\)
0.205494 + 0.978658i \(0.434120\pi\)
\(998\) −2.01221 + 3.79798i −0.0636954 + 0.120223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.901.9 48
3.2 odd 2 312.2.bk.b.277.16 yes 48
8.5 even 2 inner 936.2.dg.e.901.17 48
12.11 even 2 1248.2.ca.b.433.15 48
13.10 even 6 inner 936.2.dg.e.829.17 48
24.5 odd 2 312.2.bk.b.277.8 yes 48
24.11 even 2 1248.2.ca.b.433.10 48
39.23 odd 6 312.2.bk.b.205.8 48
104.101 even 6 inner 936.2.dg.e.829.9 48
156.23 even 6 1248.2.ca.b.49.10 48
312.101 odd 6 312.2.bk.b.205.16 yes 48
312.179 even 6 1248.2.ca.b.49.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.8 48 39.23 odd 6
312.2.bk.b.205.16 yes 48 312.101 odd 6
312.2.bk.b.277.8 yes 48 24.5 odd 2
312.2.bk.b.277.16 yes 48 3.2 odd 2
936.2.dg.e.829.9 48 104.101 even 6 inner
936.2.dg.e.829.17 48 13.10 even 6 inner
936.2.dg.e.901.9 48 1.1 even 1 trivial
936.2.dg.e.901.17 48 8.5 even 2 inner
1248.2.ca.b.49.10 48 156.23 even 6
1248.2.ca.b.49.15 48 312.179 even 6
1248.2.ca.b.433.10 48 24.11 even 2
1248.2.ca.b.433.15 48 12.11 even 2