Properties

Label 936.2.dg.e.829.17
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.17
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.e.901.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.751196 + 1.19821i) q^{2} +(-0.871409 + 1.80018i) q^{4} +1.88587 q^{5} +(3.80954 + 2.19944i) q^{7} +(-2.81159 + 0.308157i) q^{8} +(1.41666 + 2.25966i) q^{10} +(-0.0662772 - 0.114795i) q^{11} +(3.59512 - 0.274112i) q^{13} +(0.226324 + 6.21684i) q^{14} +(-2.48129 - 3.13739i) q^{16} +(-1.14806 + 1.98850i) q^{17} +(2.18964 - 3.79257i) q^{19} +(-1.64336 + 3.39490i) q^{20} +(0.0877618 - 0.165648i) q^{22} +(-1.97584 - 3.42225i) q^{23} -1.44351 q^{25} +(3.02908 + 4.10179i) q^{26} +(-7.27906 + 4.94125i) q^{28} +(2.20762 - 1.27457i) q^{29} -1.06736i q^{31} +(1.89531 - 5.32990i) q^{32} +(-3.24505 + 0.118136i) q^{34} +(7.18429 + 4.14785i) q^{35} +(5.28540 + 9.15458i) q^{37} +(6.18914 - 0.225315i) q^{38} +(-5.30228 + 0.581142i) q^{40} +(-7.14559 + 4.12551i) q^{41} +(-8.32354 - 4.80560i) q^{43} +(0.264407 - 0.0192770i) q^{44} +(2.61633 - 4.93825i) q^{46} +10.1114i q^{47} +(6.17508 + 10.6956i) q^{49} +(-1.08436 - 1.72962i) q^{50} +(-2.63937 + 6.71072i) q^{52} -8.28514i q^{53} +(-0.124990 - 0.216489i) q^{55} +(-11.3886 - 5.00999i) q^{56} +(3.18555 + 1.68774i) q^{58} +(1.65394 - 2.86472i) q^{59} +(-6.40470 - 3.69775i) q^{61} +(1.27892 - 0.801795i) q^{62} +(7.81008 - 1.73282i) q^{64} +(6.77991 - 0.516938i) q^{65} +(-0.540655 - 0.936442i) q^{67} +(-2.57922 - 3.79951i) q^{68} +(0.426816 + 11.7241i) q^{70} +(-6.45016 - 3.72400i) q^{71} +6.14363i q^{73} +(-6.99873 + 13.2099i) q^{74} +(4.91923 + 7.24662i) q^{76} -0.583091i q^{77} -15.9309 q^{79} +(-4.67938 - 5.91669i) q^{80} +(-10.3110 - 5.46284i) q^{82} +0.144468 q^{83} +(-2.16509 + 3.75004i) q^{85} +(-0.494498 - 13.5833i) q^{86} +(0.221719 + 0.302334i) q^{88} +(14.2114 - 8.20498i) q^{89} +(14.2986 + 6.86301i) q^{91} +(7.88243 - 0.574680i) q^{92} +(-12.1156 + 7.59567i) q^{94} +(4.12937 - 7.15228i) q^{95} +(6.11866 + 3.53261i) q^{97} +(-8.17682 + 15.4335i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.751196 + 1.19821i 0.531176 + 0.847262i
\(3\) 0 0
\(4\) −0.871409 + 1.80018i −0.435705 + 0.900090i
\(5\) 1.88587 0.843385 0.421693 0.906739i \(-0.361436\pi\)
0.421693 + 0.906739i \(0.361436\pi\)
\(6\) 0 0
\(7\) 3.80954 + 2.19944i 1.43987 + 0.831311i 0.997840 0.0656885i \(-0.0209244\pi\)
0.442032 + 0.896999i \(0.354258\pi\)
\(8\) −2.81159 + 0.308157i −0.994047 + 0.108950i
\(9\) 0 0
\(10\) 1.41666 + 2.25966i 0.447986 + 0.714568i
\(11\) −0.0662772 0.114795i −0.0199833 0.0346121i 0.855861 0.517206i \(-0.173028\pi\)
−0.875844 + 0.482594i \(0.839695\pi\)
\(12\) 0 0
\(13\) 3.59512 0.274112i 0.997106 0.0760249i
\(14\) 0.226324 + 6.21684i 0.0604875 + 1.66152i
\(15\) 0 0
\(16\) −2.48129 3.13739i −0.620323 0.784347i
\(17\) −1.14806 + 1.98850i −0.278446 + 0.482282i −0.970999 0.239085i \(-0.923152\pi\)
0.692553 + 0.721367i \(0.256486\pi\)
\(18\) 0 0
\(19\) 2.18964 3.79257i 0.502338 0.870075i −0.497658 0.867373i \(-0.665807\pi\)
0.999996 0.00270169i \(-0.000859974\pi\)
\(20\) −1.64336 + 3.39490i −0.367467 + 0.759122i
\(21\) 0 0
\(22\) 0.0877618 0.165648i 0.0187109 0.0353162i
\(23\) −1.97584 3.42225i −0.411991 0.713589i 0.583117 0.812388i \(-0.301833\pi\)
−0.995107 + 0.0987997i \(0.968500\pi\)
\(24\) 0 0
\(25\) −1.44351 −0.288701
\(26\) 3.02908 + 4.10179i 0.594051 + 0.804427i
\(27\) 0 0
\(28\) −7.27906 + 4.94125i −1.37561 + 0.933808i
\(29\) 2.20762 1.27457i 0.409944 0.236682i −0.280821 0.959760i \(-0.590607\pi\)
0.690766 + 0.723078i \(0.257274\pi\)
\(30\) 0 0
\(31\) 1.06736i 0.191703i −0.995396 0.0958516i \(-0.969443\pi\)
0.995396 0.0958516i \(-0.0305574\pi\)
\(32\) 1.89531 5.32990i 0.335046 0.942202i
\(33\) 0 0
\(34\) −3.24505 + 0.118136i −0.556522 + 0.0202601i
\(35\) 7.18429 + 4.14785i 1.21437 + 0.701115i
\(36\) 0 0
\(37\) 5.28540 + 9.15458i 0.868914 + 1.50500i 0.863108 + 0.505020i \(0.168515\pi\)
0.00580626 + 0.999983i \(0.498152\pi\)
\(38\) 6.18914 0.225315i 1.00401 0.0365509i
\(39\) 0 0
\(40\) −5.30228 + 0.581142i −0.838365 + 0.0918867i
\(41\) −7.14559 + 4.12551i −1.11595 + 0.644296i −0.940365 0.340168i \(-0.889516\pi\)
−0.175589 + 0.984464i \(0.556183\pi\)
\(42\) 0 0
\(43\) −8.32354 4.80560i −1.26933 0.732847i −0.294467 0.955662i \(-0.595142\pi\)
−0.974861 + 0.222815i \(0.928475\pi\)
\(44\) 0.264407 0.0192770i 0.0398608 0.00290611i
\(45\) 0 0
\(46\) 2.61633 4.93825i 0.385757 0.728105i
\(47\) 10.1114i 1.47491i 0.675399 + 0.737453i \(0.263972\pi\)
−0.675399 + 0.737453i \(0.736028\pi\)
\(48\) 0 0
\(49\) 6.17508 + 10.6956i 0.882155 + 1.52794i
\(50\) −1.08436 1.72962i −0.153351 0.244606i
\(51\) 0 0
\(52\) −2.63937 + 6.71072i −0.366015 + 0.930609i
\(53\) 8.28514i 1.13805i −0.822320 0.569026i \(-0.807320\pi\)
0.822320 0.569026i \(-0.192680\pi\)
\(54\) 0 0
\(55\) −0.124990 0.216489i −0.0168536 0.0291914i
\(56\) −11.3886 5.00999i −1.52187 0.669488i
\(57\) 0 0
\(58\) 3.18555 + 1.68774i 0.418284 + 0.221611i
\(59\) 1.65394 2.86472i 0.215325 0.372954i −0.738048 0.674748i \(-0.764252\pi\)
0.953373 + 0.301794i \(0.0975855\pi\)
\(60\) 0 0
\(61\) −6.40470 3.69775i −0.820038 0.473449i 0.0303918 0.999538i \(-0.490325\pi\)
−0.850429 + 0.526089i \(0.823658\pi\)
\(62\) 1.27892 0.801795i 0.162423 0.101828i
\(63\) 0 0
\(64\) 7.81008 1.73282i 0.976260 0.216603i
\(65\) 6.77991 0.516938i 0.840944 0.0641183i
\(66\) 0 0
\(67\) −0.540655 0.936442i −0.0660515 0.114405i 0.831108 0.556110i \(-0.187707\pi\)
−0.897160 + 0.441706i \(0.854373\pi\)
\(68\) −2.57922 3.79951i −0.312777 0.460758i
\(69\) 0 0
\(70\) 0.426816 + 11.7241i 0.0510143 + 1.40130i
\(71\) −6.45016 3.72400i −0.765493 0.441958i 0.0657714 0.997835i \(-0.479049\pi\)
−0.831265 + 0.555877i \(0.812383\pi\)
\(72\) 0 0
\(73\) 6.14363i 0.719057i 0.933134 + 0.359529i \(0.117062\pi\)
−0.933134 + 0.359529i \(0.882938\pi\)
\(74\) −6.99873 + 13.2099i −0.813585 + 1.53562i
\(75\) 0 0
\(76\) 4.91923 + 7.24662i 0.564274 + 0.831245i
\(77\) 0.583091i 0.0664494i
\(78\) 0 0
\(79\) −15.9309 −1.79236 −0.896182 0.443688i \(-0.853670\pi\)
−0.896182 + 0.443688i \(0.853670\pi\)
\(80\) −4.67938 5.91669i −0.523171 0.661506i
\(81\) 0 0
\(82\) −10.3110 5.46284i −1.13865 0.603270i
\(83\) 0.144468 0.0158574 0.00792871 0.999969i \(-0.497476\pi\)
0.00792871 + 0.999969i \(0.497476\pi\)
\(84\) 0 0
\(85\) −2.16509 + 3.75004i −0.234837 + 0.406749i
\(86\) −0.494498 13.5833i −0.0533231 1.46472i
\(87\) 0 0
\(88\) 0.221719 + 0.302334i 0.0236353 + 0.0322289i
\(89\) 14.2114 8.20498i 1.50641 0.869726i 0.506437 0.862277i \(-0.330962\pi\)
0.999972 0.00744871i \(-0.00237102\pi\)
\(90\) 0 0
\(91\) 14.2986 + 6.86301i 1.49891 + 0.719439i
\(92\) 7.88243 0.574680i 0.821800 0.0599145i
\(93\) 0 0
\(94\) −12.1156 + 7.59567i −1.24963 + 0.783434i
\(95\) 4.12937 7.15228i 0.423664 0.733808i
\(96\) 0 0
\(97\) 6.11866 + 3.53261i 0.621256 + 0.358682i 0.777358 0.629059i \(-0.216560\pi\)
−0.156102 + 0.987741i \(0.549893\pi\)
\(98\) −8.17682 + 15.4335i −0.825983 + 1.55902i
\(99\) 0 0
\(100\) 1.25789 2.59857i 0.125789 0.259857i
\(101\) 9.34844 5.39732i 0.930204 0.537054i 0.0433280 0.999061i \(-0.486204\pi\)
0.886876 + 0.462007i \(0.152871\pi\)
\(102\) 0 0
\(103\) −10.9719 −1.08110 −0.540548 0.841313i \(-0.681783\pi\)
−0.540548 + 0.841313i \(0.681783\pi\)
\(104\) −10.0235 + 1.87855i −0.982887 + 0.184207i
\(105\) 0 0
\(106\) 9.92733 6.22376i 0.964227 0.604505i
\(107\) 3.34576 1.93168i 0.323447 0.186742i −0.329481 0.944162i \(-0.606874\pi\)
0.652928 + 0.757420i \(0.273540\pi\)
\(108\) 0 0
\(109\) 1.14546 0.109716 0.0548578 0.998494i \(-0.482529\pi\)
0.0548578 + 0.998494i \(0.482529\pi\)
\(110\) 0.165507 0.312390i 0.0157805 0.0297852i
\(111\) 0 0
\(112\) −2.55209 17.4095i −0.241150 1.64504i
\(113\) −4.88900 + 8.46799i −0.459918 + 0.796601i −0.998956 0.0456800i \(-0.985455\pi\)
0.539038 + 0.842281i \(0.318788\pi\)
\(114\) 0 0
\(115\) −3.72617 6.45391i −0.347467 0.601830i
\(116\) 0.370713 + 5.08478i 0.0344199 + 0.472110i
\(117\) 0 0
\(118\) 4.67497 0.170192i 0.430365 0.0156674i
\(119\) −8.74717 + 5.05018i −0.801852 + 0.462949i
\(120\) 0 0
\(121\) 5.49121 9.51106i 0.499201 0.864642i
\(122\) −0.380501 10.4519i −0.0344489 0.946271i
\(123\) 0 0
\(124\) 1.92144 + 0.930106i 0.172550 + 0.0835260i
\(125\) −12.1516 −1.08687
\(126\) 0 0
\(127\) −7.37989 12.7824i −0.654860 1.13425i −0.981929 0.189250i \(-0.939394\pi\)
0.327069 0.945000i \(-0.393939\pi\)
\(128\) 7.94318 + 8.05642i 0.702085 + 0.712094i
\(129\) 0 0
\(130\) 5.71244 + 7.73543i 0.501014 + 0.678442i
\(131\) 1.23181i 0.107624i 0.998551 + 0.0538118i \(0.0171371\pi\)
−0.998551 + 0.0538118i \(0.982863\pi\)
\(132\) 0 0
\(133\) 16.6831 9.63197i 1.44660 0.835198i
\(134\) 0.715915 1.35127i 0.0618456 0.116732i
\(135\) 0 0
\(136\) 2.61511 5.94463i 0.224243 0.509747i
\(137\) 15.7493 + 9.09286i 1.34555 + 0.776856i 0.987616 0.156890i \(-0.0501467\pi\)
0.357938 + 0.933745i \(0.383480\pi\)
\(138\) 0 0
\(139\) −4.13153 2.38534i −0.350432 0.202322i 0.314444 0.949276i \(-0.398182\pi\)
−0.664875 + 0.746954i \(0.731515\pi\)
\(140\) −13.7273 + 9.31854i −1.16017 + 0.787560i
\(141\) 0 0
\(142\) −0.383202 10.5261i −0.0321576 0.883330i
\(143\) −0.269741 0.394536i −0.0225569 0.0329927i
\(144\) 0 0
\(145\) 4.16327 2.40367i 0.345741 0.199614i
\(146\) −7.36135 + 4.61507i −0.609230 + 0.381946i
\(147\) 0 0
\(148\) −21.0856 + 1.53728i −1.73323 + 0.126363i
\(149\) 3.97531 6.88544i 0.325670 0.564077i −0.655978 0.754780i \(-0.727743\pi\)
0.981648 + 0.190703i \(0.0610768\pi\)
\(150\) 0 0
\(151\) 13.5552i 1.10311i −0.834139 0.551554i \(-0.814035\pi\)
0.834139 0.551554i \(-0.185965\pi\)
\(152\) −4.98767 + 11.3379i −0.404553 + 0.919625i
\(153\) 0 0
\(154\) 0.698665 0.438016i 0.0563000 0.0352963i
\(155\) 2.01290i 0.161680i
\(156\) 0 0
\(157\) 0.0648041i 0.00517193i −0.999997 0.00258597i \(-0.999177\pi\)
0.999997 0.00258597i \(-0.000823140\pi\)
\(158\) −11.9672 19.0885i −0.952060 1.51860i
\(159\) 0 0
\(160\) 3.57430 10.0515i 0.282573 0.794639i
\(161\) 17.3830i 1.36997i
\(162\) 0 0
\(163\) 5.26292 9.11565i 0.412224 0.713993i −0.582909 0.812538i \(-0.698085\pi\)
0.995133 + 0.0985448i \(0.0314188\pi\)
\(164\) −1.19992 16.4583i −0.0936980 1.28518i
\(165\) 0 0
\(166\) 0.108524 + 0.173103i 0.00842308 + 0.0134354i
\(167\) 12.4804 7.20556i 0.965762 0.557583i 0.0678204 0.997698i \(-0.478396\pi\)
0.897942 + 0.440115i \(0.145062\pi\)
\(168\) 0 0
\(169\) 12.8497 1.97093i 0.988440 0.151610i
\(170\) −6.11974 + 0.222789i −0.469363 + 0.0170871i
\(171\) 0 0
\(172\) 15.9041 10.7962i 1.21268 0.823204i
\(173\) −7.41252 4.27962i −0.563564 0.325374i 0.191011 0.981588i \(-0.438823\pi\)
−0.754575 + 0.656214i \(0.772157\pi\)
\(174\) 0 0
\(175\) −5.49910 3.17491i −0.415693 0.240000i
\(176\) −0.195705 + 0.492778i −0.0147518 + 0.0371445i
\(177\) 0 0
\(178\) 20.5068 + 10.8647i 1.53705 + 0.814346i
\(179\) 14.8169 8.55453i 1.10747 0.639396i 0.169294 0.985566i \(-0.445851\pi\)
0.938172 + 0.346170i \(0.112518\pi\)
\(180\) 0 0
\(181\) 11.8391i 0.879992i −0.898000 0.439996i \(-0.854980\pi\)
0.898000 0.439996i \(-0.145020\pi\)
\(182\) 2.51777 + 22.2882i 0.186629 + 1.65211i
\(183\) 0 0
\(184\) 6.60983 + 9.01310i 0.487283 + 0.664455i
\(185\) 9.96755 + 17.2643i 0.732829 + 1.26930i
\(186\) 0 0
\(187\) 0.304361 0.0222571
\(188\) −18.2024 8.81121i −1.32755 0.642623i
\(189\) 0 0
\(190\) 11.6719 0.424914i 0.846768 0.0308265i
\(191\) 3.55694 6.16081i 0.257371 0.445780i −0.708166 0.706046i \(-0.750477\pi\)
0.965537 + 0.260266i \(0.0838103\pi\)
\(192\) 0 0
\(193\) −12.1721 + 7.02758i −0.876169 + 0.505857i −0.869393 0.494120i \(-0.835490\pi\)
−0.00677591 + 0.999977i \(0.502157\pi\)
\(194\) 0.363507 + 9.98511i 0.0260983 + 0.716889i
\(195\) 0 0
\(196\) −24.6350 + 1.79605i −1.75964 + 0.128289i
\(197\) 11.2731 + 19.5256i 0.803178 + 1.39114i 0.917514 + 0.397702i \(0.130192\pi\)
−0.114337 + 0.993442i \(0.536474\pi\)
\(198\) 0 0
\(199\) −6.49779 + 11.2545i −0.460616 + 0.797811i −0.998992 0.0448942i \(-0.985705\pi\)
0.538375 + 0.842705i \(0.319038\pi\)
\(200\) 4.05855 0.444826i 0.286983 0.0314540i
\(201\) 0 0
\(202\) 13.4896 + 7.14693i 0.949127 + 0.502856i
\(203\) 11.2134 0.787024
\(204\) 0 0
\(205\) −13.4756 + 7.78016i −0.941179 + 0.543390i
\(206\) −8.24207 13.1467i −0.574252 0.915972i
\(207\) 0 0
\(208\) −9.78052 10.5991i −0.678157 0.734917i
\(209\) −0.580493 −0.0401535
\(210\) 0 0
\(211\) 8.91704 5.14826i 0.613875 0.354421i −0.160606 0.987019i \(-0.551345\pi\)
0.774480 + 0.632598i \(0.218011\pi\)
\(212\) 14.9147 + 7.21975i 1.02435 + 0.495854i
\(213\) 0 0
\(214\) 4.82788 + 2.55785i 0.330027 + 0.174851i
\(215\) −15.6971 9.06271i −1.07053 0.618072i
\(216\) 0 0
\(217\) 2.34759 4.06615i 0.159365 0.276028i
\(218\) 0.860468 + 1.37251i 0.0582783 + 0.0929578i
\(219\) 0 0
\(220\) 0.498636 0.0363538i 0.0336180 0.00245097i
\(221\) −3.58234 + 7.46358i −0.240974 + 0.502055i
\(222\) 0 0
\(223\) 2.03847 1.17691i 0.136506 0.0788117i −0.430192 0.902737i \(-0.641554\pi\)
0.566698 + 0.823926i \(0.308221\pi\)
\(224\) 18.9431 16.1359i 1.26569 1.07812i
\(225\) 0 0
\(226\) −13.8190 + 0.503080i −0.919227 + 0.0334644i
\(227\) −13.6449 + 23.6336i −0.905643 + 1.56862i −0.0855919 + 0.996330i \(0.527278\pi\)
−0.820051 + 0.572290i \(0.806055\pi\)
\(228\) 0 0
\(229\) −14.1611 −0.935794 −0.467897 0.883783i \(-0.654988\pi\)
−0.467897 + 0.883783i \(0.654988\pi\)
\(230\) 4.93405 9.31288i 0.325342 0.614073i
\(231\) 0 0
\(232\) −5.81415 + 4.26386i −0.381718 + 0.279936i
\(233\) −12.3422 −0.808562 −0.404281 0.914635i \(-0.632478\pi\)
−0.404281 + 0.914635i \(0.632478\pi\)
\(234\) 0 0
\(235\) 19.0688i 1.24391i
\(236\) 3.71574 + 5.47374i 0.241874 + 0.356310i
\(237\) 0 0
\(238\) −12.6220 6.68726i −0.818164 0.433471i
\(239\) 17.4020i 1.12564i −0.826578 0.562822i \(-0.809715\pi\)
0.826578 0.562822i \(-0.190285\pi\)
\(240\) 0 0
\(241\) 12.5141 + 7.22501i 0.806103 + 0.465404i 0.845601 0.533816i \(-0.179242\pi\)
−0.0394975 + 0.999220i \(0.512576\pi\)
\(242\) 15.5212 0.565049i 0.997742 0.0363227i
\(243\) 0 0
\(244\) 12.2377 8.30735i 0.783441 0.531823i
\(245\) 11.6454 + 20.1704i 0.743996 + 1.28864i
\(246\) 0 0
\(247\) 6.83242 14.2349i 0.434737 0.905747i
\(248\) 0.328913 + 3.00097i 0.0208860 + 0.190562i
\(249\) 0 0
\(250\) −9.12823 14.5601i −0.577320 0.920865i
\(251\) −26.7083 15.4201i −1.68581 0.973305i −0.957664 0.287887i \(-0.907047\pi\)
−0.728150 0.685418i \(-0.759619\pi\)
\(252\) 0 0
\(253\) −0.261906 + 0.453634i −0.0164659 + 0.0285197i
\(254\) 9.77218 18.4447i 0.613161 1.15732i
\(255\) 0 0
\(256\) −3.68639 + 15.5695i −0.230399 + 0.973096i
\(257\) −9.77864 16.9371i −0.609975 1.05651i −0.991244 0.132044i \(-0.957846\pi\)
0.381269 0.924464i \(-0.375487\pi\)
\(258\) 0 0
\(259\) 46.4997i 2.88935i
\(260\) −4.97750 + 12.6555i −0.308691 + 0.784862i
\(261\) 0 0
\(262\) −1.47596 + 0.925330i −0.0911854 + 0.0571671i
\(263\) 15.8081 + 27.3804i 0.974769 + 1.68835i 0.680695 + 0.732567i \(0.261678\pi\)
0.294074 + 0.955783i \(0.404989\pi\)
\(264\) 0 0
\(265\) 15.6247i 0.959816i
\(266\) 24.0734 + 12.7543i 1.47603 + 0.782016i
\(267\) 0 0
\(268\) 2.15689 0.157252i 0.131753 0.00960567i
\(269\) 0.118107 + 0.0681891i 0.00720111 + 0.00415756i 0.503596 0.863939i \(-0.332010\pi\)
−0.496395 + 0.868097i \(0.665343\pi\)
\(270\) 0 0
\(271\) 13.1075 7.56763i 0.796226 0.459701i −0.0459241 0.998945i \(-0.514623\pi\)
0.842150 + 0.539244i \(0.181290\pi\)
\(272\) 9.08736 1.33214i 0.551002 0.0807726i
\(273\) 0 0
\(274\) 0.935660 + 25.7015i 0.0565253 + 1.55268i
\(275\) 0.0956715 + 0.165708i 0.00576921 + 0.00999256i
\(276\) 0 0
\(277\) 10.7192 + 6.18871i 0.644051 + 0.371843i 0.786174 0.618006i \(-0.212059\pi\)
−0.142122 + 0.989849i \(0.545393\pi\)
\(278\) −0.245452 6.74229i −0.0147213 0.404376i
\(279\) 0 0
\(280\) −21.4775 9.44818i −1.28352 0.564637i
\(281\) 1.09096i 0.0650813i −0.999470 0.0325406i \(-0.989640\pi\)
0.999470 0.0325406i \(-0.0103598\pi\)
\(282\) 0 0
\(283\) 4.12015 2.37877i 0.244917 0.141403i −0.372517 0.928025i \(-0.621505\pi\)
0.617435 + 0.786622i \(0.288172\pi\)
\(284\) 12.3246 8.36631i 0.731330 0.496449i
\(285\) 0 0
\(286\) 0.270108 0.619579i 0.0159718 0.0366365i
\(287\) −36.2952 −2.14244
\(288\) 0 0
\(289\) 5.86392 + 10.1566i 0.344936 + 0.597447i
\(290\) 6.00753 + 3.18285i 0.352774 + 0.186903i
\(291\) 0 0
\(292\) −11.0596 5.35362i −0.647216 0.313297i
\(293\) −0.923728 + 1.59994i −0.0539647 + 0.0934697i −0.891746 0.452537i \(-0.850519\pi\)
0.837781 + 0.546006i \(0.183853\pi\)
\(294\) 0 0
\(295\) 3.11912 5.40247i 0.181602 0.314544i
\(296\) −17.6814 24.1102i −1.02771 1.40138i
\(297\) 0 0
\(298\) 11.2364 0.409061i 0.650909 0.0236963i
\(299\) −8.04144 11.7618i −0.465049 0.680202i
\(300\) 0 0
\(301\) −21.1393 36.6143i −1.21845 2.11041i
\(302\) 16.2420 10.1826i 0.934621 0.585944i
\(303\) 0 0
\(304\) −17.3319 + 2.54072i −0.994052 + 0.145720i
\(305\) −12.0784 6.97347i −0.691608 0.399300i
\(306\) 0 0
\(307\) 14.5220 0.828815 0.414408 0.910091i \(-0.363989\pi\)
0.414408 + 0.910091i \(0.363989\pi\)
\(308\) 1.04967 + 0.508111i 0.0598104 + 0.0289523i
\(309\) 0 0
\(310\) 2.41187 1.51208i 0.136985 0.0858803i
\(311\) 15.6062 0.884944 0.442472 0.896782i \(-0.354102\pi\)
0.442472 + 0.896782i \(0.354102\pi\)
\(312\) 0 0
\(313\) −29.5504 −1.67029 −0.835143 0.550032i \(-0.814615\pi\)
−0.835143 + 0.550032i \(0.814615\pi\)
\(314\) 0.0776489 0.0486806i 0.00438198 0.00274721i
\(315\) 0 0
\(316\) 13.8823 28.6784i 0.780941 1.61329i
\(317\) −14.3523 −0.806105 −0.403052 0.915177i \(-0.632051\pi\)
−0.403052 + 0.915177i \(0.632051\pi\)
\(318\) 0 0
\(319\) −0.292629 0.168950i −0.0163841 0.00945936i
\(320\) 14.7288 3.26787i 0.823363 0.182679i
\(321\) 0 0
\(322\) 20.8284 13.0580i 1.16072 0.727694i
\(323\) 5.02768 + 8.70819i 0.279747 + 0.484537i
\(324\) 0 0
\(325\) −5.18957 + 0.395682i −0.287866 + 0.0219485i
\(326\) 14.8759 0.541557i 0.823902 0.0299941i
\(327\) 0 0
\(328\) 18.8192 13.8012i 1.03911 0.762044i
\(329\) −22.2395 + 38.5200i −1.22610 + 2.12368i
\(330\) 0 0
\(331\) −11.0998 + 19.2255i −0.610102 + 1.05673i 0.381120 + 0.924525i \(0.375538\pi\)
−0.991223 + 0.132203i \(0.957795\pi\)
\(332\) −0.125891 + 0.260068i −0.00690916 + 0.0142731i
\(333\) 0 0
\(334\) 18.0090 + 9.54134i 0.985408 + 0.522079i
\(335\) −1.01960 1.76600i −0.0557069 0.0964871i
\(336\) 0 0
\(337\) 16.9924 0.925633 0.462817 0.886454i \(-0.346839\pi\)
0.462817 + 0.886454i \(0.346839\pi\)
\(338\) 12.0142 + 13.9161i 0.653489 + 0.756936i
\(339\) 0 0
\(340\) −4.86407 7.16537i −0.263791 0.388597i
\(341\) −0.122528 + 0.0707415i −0.00663525 + 0.00383086i
\(342\) 0 0
\(343\) 23.5348i 1.27076i
\(344\) 24.8832 + 10.9464i 1.34161 + 0.590191i
\(345\) 0 0
\(346\) −0.440375 12.0966i −0.0236747 0.650317i
\(347\) −10.8759 6.27918i −0.583846 0.337084i 0.178814 0.983883i \(-0.442774\pi\)
−0.762660 + 0.646799i \(0.776107\pi\)
\(348\) 0 0
\(349\) 14.8271 + 25.6812i 0.793674 + 1.37468i 0.923678 + 0.383170i \(0.125168\pi\)
−0.130004 + 0.991513i \(0.541499\pi\)
\(350\) −0.326700 8.97405i −0.0174628 0.479683i
\(351\) 0 0
\(352\) −0.737463 + 0.135678i −0.0393069 + 0.00723164i
\(353\) 28.0507 16.1951i 1.49299 0.861977i 0.493020 0.870018i \(-0.335893\pi\)
0.999968 + 0.00804129i \(0.00255965\pi\)
\(354\) 0 0
\(355\) −12.1641 7.02297i −0.645606 0.372741i
\(356\) 2.38645 + 32.7330i 0.126482 + 1.73485i
\(357\) 0 0
\(358\) 21.3805 + 11.3276i 1.12999 + 0.598682i
\(359\) 2.96930i 0.156714i −0.996925 0.0783568i \(-0.975033\pi\)
0.996925 0.0783568i \(-0.0249673\pi\)
\(360\) 0 0
\(361\) −0.0890480 0.154236i −0.00468674 0.00811767i
\(362\) 14.1857 8.89347i 0.745584 0.467430i
\(363\) 0 0
\(364\) −24.8146 + 19.7596i −1.30064 + 1.03569i
\(365\) 11.5861i 0.606442i
\(366\) 0 0
\(367\) −2.58053 4.46960i −0.134702 0.233311i 0.790781 0.612099i \(-0.209674\pi\)
−0.925484 + 0.378787i \(0.876341\pi\)
\(368\) −5.83430 + 14.6906i −0.304134 + 0.765799i
\(369\) 0 0
\(370\) −13.1987 + 24.9121i −0.686166 + 1.29512i
\(371\) 18.2227 31.5626i 0.946074 1.63865i
\(372\) 0 0
\(373\) −4.57477 2.64124i −0.236873 0.136758i 0.376866 0.926268i \(-0.377002\pi\)
−0.613738 + 0.789509i \(0.710335\pi\)
\(374\) 0.228635 + 0.364688i 0.0118224 + 0.0188576i
\(375\) 0 0
\(376\) −3.11591 28.4292i −0.160691 1.46613i
\(377\) 7.58727 5.18736i 0.390764 0.267163i
\(378\) 0 0
\(379\) −18.1432 31.4249i −0.931951 1.61419i −0.779982 0.625802i \(-0.784772\pi\)
−0.151970 0.988385i \(-0.548562\pi\)
\(380\) 9.27701 + 13.6662i 0.475901 + 0.701060i
\(381\) 0 0
\(382\) 10.0539 0.366011i 0.514402 0.0187268i
\(383\) −8.44275 4.87443i −0.431405 0.249072i 0.268540 0.963268i \(-0.413459\pi\)
−0.699945 + 0.714197i \(0.746792\pi\)
\(384\) 0 0
\(385\) 1.09963i 0.0560424i
\(386\) −17.5642 9.30567i −0.893993 0.473646i
\(387\) 0 0
\(388\) −11.6912 + 7.93633i −0.593530 + 0.402906i
\(389\) 14.8911i 0.755010i −0.926008 0.377505i \(-0.876782\pi\)
0.926008 0.377505i \(-0.123218\pi\)
\(390\) 0 0
\(391\) 9.07352 0.458868
\(392\) −20.6577 28.1686i −1.04337 1.42273i
\(393\) 0 0
\(394\) −14.9275 + 28.1752i −0.752035 + 1.41944i
\(395\) −30.0435 −1.51165
\(396\) 0 0
\(397\) −10.5034 + 18.1925i −0.527152 + 0.913055i 0.472347 + 0.881413i \(0.343407\pi\)
−0.999499 + 0.0316419i \(0.989926\pi\)
\(398\) −18.3664 + 0.668626i −0.920623 + 0.0335152i
\(399\) 0 0
\(400\) 3.58176 + 4.52884i 0.179088 + 0.226442i
\(401\) −13.7620 + 7.94551i −0.687243 + 0.396780i −0.802578 0.596547i \(-0.796539\pi\)
0.115335 + 0.993327i \(0.463206\pi\)
\(402\) 0 0
\(403\) −0.292575 3.83728i −0.0145742 0.191148i
\(404\) 1.56983 + 21.5321i 0.0781020 + 1.07126i
\(405\) 0 0
\(406\) 8.42343 + 13.4359i 0.418048 + 0.666815i
\(407\) 0.700602 1.21348i 0.0347276 0.0601499i
\(408\) 0 0
\(409\) 13.7176 + 7.91987i 0.678292 + 0.391612i 0.799211 0.601050i \(-0.205251\pi\)
−0.120919 + 0.992662i \(0.538584\pi\)
\(410\) −19.4451 10.3022i −0.960325 0.508789i
\(411\) 0 0
\(412\) 9.56105 19.7515i 0.471039 0.973084i
\(413\) 12.6016 7.27551i 0.620082 0.358004i
\(414\) 0 0
\(415\) 0.272448 0.0133739
\(416\) 5.35287 19.6811i 0.262446 0.964947i
\(417\) 0 0
\(418\) −0.436064 0.695551i −0.0213286 0.0340205i
\(419\) −19.4162 + 11.2100i −0.948544 + 0.547642i −0.892628 0.450793i \(-0.851141\pi\)
−0.0559155 + 0.998436i \(0.517808\pi\)
\(420\) 0 0
\(421\) 1.50715 0.0734541 0.0367270 0.999325i \(-0.488307\pi\)
0.0367270 + 0.999325i \(0.488307\pi\)
\(422\) 12.8671 + 6.81713i 0.626362 + 0.331853i
\(423\) 0 0
\(424\) 2.55312 + 23.2944i 0.123991 + 1.13128i
\(425\) 1.65723 2.87041i 0.0803876 0.139235i
\(426\) 0 0
\(427\) −16.2660 28.1735i −0.787166 1.36341i
\(428\) 0.561836 + 7.70625i 0.0271573 + 0.372496i
\(429\) 0 0
\(430\) −0.932558 25.6163i −0.0449719 1.23533i
\(431\) −20.0881 + 11.5979i −0.967609 + 0.558649i −0.898507 0.438960i \(-0.855347\pi\)
−0.0691026 + 0.997610i \(0.522014\pi\)
\(432\) 0 0
\(433\) −7.02656 + 12.1704i −0.337675 + 0.584870i −0.983995 0.178197i \(-0.942974\pi\)
0.646320 + 0.763066i \(0.276307\pi\)
\(434\) 6.63560 0.241568i 0.318519 0.0115956i
\(435\) 0 0
\(436\) −0.998169 + 2.06204i −0.0478036 + 0.0987539i
\(437\) −17.3055 −0.827834
\(438\) 0 0
\(439\) 6.40295 + 11.0902i 0.305596 + 0.529308i 0.977394 0.211426i \(-0.0678109\pi\)
−0.671798 + 0.740735i \(0.734478\pi\)
\(440\) 0.418133 + 0.570161i 0.0199337 + 0.0271814i
\(441\) 0 0
\(442\) −11.6340 + 1.31422i −0.553371 + 0.0625111i
\(443\) 6.06204i 0.288016i 0.989577 + 0.144008i \(0.0459992\pi\)
−0.989577 + 0.144008i \(0.954001\pi\)
\(444\) 0 0
\(445\) 26.8009 15.4735i 1.27048 0.733514i
\(446\) 2.94147 + 1.55842i 0.139283 + 0.0737933i
\(447\) 0 0
\(448\) 33.5641 + 10.5766i 1.58575 + 0.499695i
\(449\) 6.72376 + 3.88197i 0.317314 + 0.183201i 0.650195 0.759768i \(-0.274687\pi\)
−0.332881 + 0.942969i \(0.608021\pi\)
\(450\) 0 0
\(451\) 0.947179 + 0.546854i 0.0446009 + 0.0257503i
\(452\) −10.9836 16.1802i −0.516624 0.761050i
\(453\) 0 0
\(454\) −38.5680 + 1.40407i −1.81009 + 0.0658961i
\(455\) 26.9653 + 12.9427i 1.26415 + 0.606764i
\(456\) 0 0
\(457\) −11.5888 + 6.69082i −0.542103 + 0.312983i −0.745931 0.666023i \(-0.767995\pi\)
0.203828 + 0.979007i \(0.434662\pi\)
\(458\) −10.6378 16.9680i −0.497071 0.792862i
\(459\) 0 0
\(460\) 14.8652 1.08377i 0.693094 0.0505310i
\(461\) −17.4992 + 30.3095i −0.815019 + 1.41165i 0.0942954 + 0.995544i \(0.469940\pi\)
−0.909314 + 0.416110i \(0.863393\pi\)
\(462\) 0 0
\(463\) 18.2272i 0.847092i 0.905875 + 0.423546i \(0.139215\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(464\) −9.47656 3.76358i −0.439938 0.174720i
\(465\) 0 0
\(466\) −9.27138 14.7885i −0.429488 0.685063i
\(467\) 11.4947i 0.531910i 0.963985 + 0.265955i \(0.0856873\pi\)
−0.963985 + 0.265955i \(0.914313\pi\)
\(468\) 0 0
\(469\) 4.75655i 0.219637i
\(470\) −22.8484 + 14.3244i −1.05392 + 0.660737i
\(471\) 0 0
\(472\) −3.76743 + 8.56408i −0.173410 + 0.394194i
\(473\) 1.27401i 0.0585788i
\(474\) 0 0
\(475\) −3.16076 + 5.47460i −0.145026 + 0.251192i
\(476\) −1.46886 20.1473i −0.0673253 0.923448i
\(477\) 0 0
\(478\) 20.8513 13.0723i 0.953716 0.597915i
\(479\) −3.75092 + 2.16560i −0.171384 + 0.0989487i −0.583238 0.812301i \(-0.698215\pi\)
0.411854 + 0.911250i \(0.364881\pi\)
\(480\) 0 0
\(481\) 21.5110 + 31.4630i 0.980817 + 1.43459i
\(482\) 0.743457 + 20.4219i 0.0338635 + 0.930192i
\(483\) 0 0
\(484\) 12.3365 + 18.1732i 0.560751 + 0.826055i
\(485\) 11.5390 + 6.66203i 0.523958 + 0.302507i
\(486\) 0 0
\(487\) −25.1811 14.5383i −1.14107 0.658795i −0.194372 0.980928i \(-0.562267\pi\)
−0.946694 + 0.322133i \(0.895600\pi\)
\(488\) 19.1469 + 8.42292i 0.866738 + 0.381288i
\(489\) 0 0
\(490\) −15.4204 + 29.1055i −0.696622 + 1.31485i
\(491\) −15.9306 + 9.19753i −0.718938 + 0.415079i −0.814362 0.580358i \(-0.802913\pi\)
0.0954238 + 0.995437i \(0.469579\pi\)
\(492\) 0 0
\(493\) 5.85313i 0.263612i
\(494\) 22.1889 2.50655i 0.998326 0.112775i
\(495\) 0 0
\(496\) −3.34871 + 2.64843i −0.150362 + 0.118918i
\(497\) −16.3814 28.3735i −0.734808 1.27273i
\(498\) 0 0
\(499\) −3.03922 −0.136054 −0.0680270 0.997683i \(-0.521670\pi\)
−0.0680270 + 0.997683i \(0.521670\pi\)
\(500\) 10.5890 21.8750i 0.473555 0.978282i
\(501\) 0 0
\(502\) −1.58673 43.5856i −0.0708193 1.94532i
\(503\) 0.148336 0.256925i 0.00661396 0.0114557i −0.862699 0.505717i \(-0.831228\pi\)
0.869313 + 0.494261i \(0.164561\pi\)
\(504\) 0 0
\(505\) 17.6299 10.1786i 0.784520 0.452943i
\(506\) −0.740291 + 0.0269502i −0.0329100 + 0.00119808i
\(507\) 0 0
\(508\) 29.4414 2.14647i 1.30625 0.0952342i
\(509\) −12.2950 21.2955i −0.544965 0.943906i −0.998609 0.0527236i \(-0.983210\pi\)
0.453645 0.891183i \(-0.350124\pi\)
\(510\) 0 0
\(511\) −13.5125 + 23.4044i −0.597760 + 1.03535i
\(512\) −21.4248 + 7.27871i −0.946850 + 0.321677i
\(513\) 0 0
\(514\) 12.9485 24.4399i 0.571135 1.07800i
\(515\) −20.6916 −0.911781
\(516\) 0 0
\(517\) 1.16075 0.670158i 0.0510496 0.0294735i
\(518\) −55.7163 + 34.9304i −2.44804 + 1.53475i
\(519\) 0 0
\(520\) −18.9030 + 3.54269i −0.828953 + 0.155357i
\(521\) 27.3639 1.19883 0.599417 0.800437i \(-0.295399\pi\)
0.599417 + 0.800437i \(0.295399\pi\)
\(522\) 0 0
\(523\) 18.8023 10.8555i 0.822167 0.474678i −0.0289964 0.999580i \(-0.509231\pi\)
0.851163 + 0.524901i \(0.175898\pi\)
\(524\) −2.21748 1.07341i −0.0968709 0.0468921i
\(525\) 0 0
\(526\) −20.9325 + 39.5095i −0.912700 + 1.72269i
\(527\) 2.12244 + 1.22539i 0.0924549 + 0.0533789i
\(528\) 0 0
\(529\) 3.69213 6.39496i 0.160527 0.278042i
\(530\) 18.7216 11.7372i 0.813215 0.509831i
\(531\) 0 0
\(532\) 2.80150 + 38.4259i 0.121460 + 1.66597i
\(533\) −24.5584 + 16.7904i −1.06374 + 0.727272i
\(534\) 0 0
\(535\) 6.30966 3.64288i 0.272790 0.157496i
\(536\) 1.80867 + 2.46628i 0.0781227 + 0.106527i
\(537\) 0 0
\(538\) 0.00701669 + 0.192740i 0.000302511 + 0.00830962i
\(539\) 0.818534 1.41774i 0.0352568 0.0610665i
\(540\) 0 0
\(541\) −33.0198 −1.41963 −0.709816 0.704387i \(-0.751222\pi\)
−0.709816 + 0.704387i \(0.751222\pi\)
\(542\) 18.9139 + 10.0208i 0.812423 + 0.430429i
\(543\) 0 0
\(544\) 8.42256 + 9.88786i 0.361114 + 0.423939i
\(545\) 2.16019 0.0925325
\(546\) 0 0
\(547\) 29.1932i 1.24821i 0.781340 + 0.624105i \(0.214536\pi\)
−0.781340 + 0.624105i \(0.785464\pi\)
\(548\) −30.0929 + 20.4280i −1.28550 + 0.872639i
\(549\) 0 0
\(550\) −0.126685 + 0.239114i −0.00540185 + 0.0101958i
\(551\) 11.1634i 0.475576i
\(552\) 0 0
\(553\) −60.6894 35.0390i −2.58077 1.49001i
\(554\) 0.636821 + 17.4927i 0.0270559 + 0.743194i
\(555\) 0 0
\(556\) 7.89429 5.35888i 0.334792 0.227267i
\(557\) −5.03804 8.72614i −0.213469 0.369739i 0.739329 0.673344i \(-0.235143\pi\)
−0.952798 + 0.303606i \(0.901809\pi\)
\(558\) 0 0
\(559\) −31.2414 14.9951i −1.32137 0.634225i
\(560\) −4.81290 32.8319i −0.203382 1.38740i
\(561\) 0 0
\(562\) 1.30720 0.819525i 0.0551409 0.0345696i
\(563\) 20.2190 + 11.6734i 0.852128 + 0.491977i 0.861368 0.507981i \(-0.169608\pi\)
−0.00923997 + 0.999957i \(0.502941\pi\)
\(564\) 0 0
\(565\) −9.22000 + 15.9695i −0.387888 + 0.671842i
\(566\) 5.94530 + 3.14988i 0.249899 + 0.132399i
\(567\) 0 0
\(568\) 19.2828 + 8.48271i 0.809088 + 0.355926i
\(569\) 21.2506 + 36.8071i 0.890870 + 1.54303i 0.838834 + 0.544388i \(0.183238\pi\)
0.0520365 + 0.998645i \(0.483429\pi\)
\(570\) 0 0
\(571\) 5.43630i 0.227502i −0.993509 0.113751i \(-0.963713\pi\)
0.993509 0.113751i \(-0.0362866\pi\)
\(572\) 0.945290 0.141780i 0.0395245 0.00592812i
\(573\) 0 0
\(574\) −27.2648 43.4893i −1.13801 1.81521i
\(575\) 2.85213 + 4.94004i 0.118942 + 0.206014i
\(576\) 0 0
\(577\) 4.39252i 0.182863i −0.995811 0.0914316i \(-0.970856\pi\)
0.995811 0.0914316i \(-0.0291443\pi\)
\(578\) −7.76478 + 14.6558i −0.322972 + 0.609601i
\(579\) 0 0
\(580\) 0.699116 + 9.58922i 0.0290292 + 0.398171i
\(581\) 0.550357 + 0.317749i 0.0228327 + 0.0131825i
\(582\) 0 0
\(583\) −0.951096 + 0.549116i −0.0393904 + 0.0227420i
\(584\) −1.89320 17.2734i −0.0783412 0.714777i
\(585\) 0 0
\(586\) −2.61097 + 0.0950520i −0.107858 + 0.00392656i
\(587\) 15.7922 + 27.3529i 0.651813 + 1.12897i 0.982683 + 0.185297i \(0.0593248\pi\)
−0.330869 + 0.943677i \(0.607342\pi\)
\(588\) 0 0
\(589\) −4.04803 2.33713i −0.166796 0.0962998i
\(590\) 8.81636 0.320959i 0.362964 0.0132137i
\(591\) 0 0
\(592\) 15.6068 39.2975i 0.641437 1.61512i
\(593\) 8.50710i 0.349345i −0.984627 0.174672i \(-0.944113\pi\)
0.984627 0.174672i \(-0.0558866\pi\)
\(594\) 0 0
\(595\) −16.4960 + 9.52397i −0.676270 + 0.390445i
\(596\) 8.93090 + 13.1563i 0.365824 + 0.538903i
\(597\) 0 0
\(598\) 8.05238 18.4707i 0.329286 0.755325i
\(599\) −26.3372 −1.07611 −0.538055 0.842910i \(-0.680841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(600\) 0 0
\(601\) 3.29321 + 5.70401i 0.134333 + 0.232672i 0.925342 0.379132i \(-0.123777\pi\)
−0.791009 + 0.611804i \(0.790444\pi\)
\(602\) 27.9918 52.8337i 1.14086 2.15334i
\(603\) 0 0
\(604\) 24.4018 + 11.8121i 0.992896 + 0.480629i
\(605\) 10.3557 17.9366i 0.421019 0.729226i
\(606\) 0 0
\(607\) −2.47666 + 4.28970i −0.100524 + 0.174113i −0.911901 0.410411i \(-0.865385\pi\)
0.811376 + 0.584524i \(0.198719\pi\)
\(608\) −16.0640 18.8586i −0.651479 0.764819i
\(609\) 0 0
\(610\) −0.717574 19.7109i −0.0290537 0.798071i
\(611\) 2.77166 + 36.3518i 0.112130 + 1.47064i
\(612\) 0 0
\(613\) −6.25855 10.8401i −0.252780 0.437828i 0.711510 0.702676i \(-0.248012\pi\)
−0.964290 + 0.264848i \(0.914678\pi\)
\(614\) 10.9089 + 17.4004i 0.440247 + 0.702223i
\(615\) 0 0
\(616\) 0.179683 + 1.63941i 0.00723965 + 0.0660538i
\(617\) −22.7830 13.1538i −0.917210 0.529551i −0.0344658 0.999406i \(-0.510973\pi\)
−0.882744 + 0.469855i \(0.844306\pi\)
\(618\) 0 0
\(619\) −2.56782 −0.103209 −0.0516047 0.998668i \(-0.516434\pi\)
−0.0516047 + 0.998668i \(0.516434\pi\)
\(620\) 3.62357 + 1.75406i 0.145526 + 0.0704446i
\(621\) 0 0
\(622\) 11.7233 + 18.6994i 0.470061 + 0.749779i
\(623\) 72.1855 2.89205
\(624\) 0 0
\(625\) −15.6988 −0.627950
\(626\) −22.1981 35.4075i −0.887216 1.41517i
\(627\) 0 0
\(628\) 0.116659 + 0.0564709i 0.00465520 + 0.00225344i
\(629\) −24.2718 −0.967781
\(630\) 0 0
\(631\) 32.2263 + 18.6058i 1.28291 + 0.740687i 0.977379 0.211496i \(-0.0678337\pi\)
0.305528 + 0.952183i \(0.401167\pi\)
\(632\) 44.7911 4.90920i 1.78169 0.195278i
\(633\) 0 0
\(634\) −10.7814 17.1970i −0.428183 0.682982i
\(635\) −13.9175 24.1058i −0.552299 0.956610i
\(636\) 0 0
\(637\) 25.1319 + 36.7591i 0.995763 + 1.45645i
\(638\) −0.0173850 0.477545i −0.000688279 0.0189062i
\(639\) 0 0
\(640\) 14.9798 + 15.1933i 0.592128 + 0.600569i
\(641\) −23.2163 + 40.2117i −0.916987 + 1.58827i −0.113021 + 0.993593i \(0.536053\pi\)
−0.803966 + 0.594675i \(0.797281\pi\)
\(642\) 0 0
\(643\) 8.31198 14.3968i 0.327792 0.567753i −0.654281 0.756251i \(-0.727029\pi\)
0.982073 + 0.188498i \(0.0603620\pi\)
\(644\) 31.2924 + 15.1477i 1.23309 + 0.596902i
\(645\) 0 0
\(646\) −6.65746 + 12.5658i −0.261934 + 0.494393i
\(647\) 14.5656 + 25.2283i 0.572632 + 0.991828i 0.996294 + 0.0860076i \(0.0274109\pi\)
−0.423662 + 0.905820i \(0.639256\pi\)
\(648\) 0 0
\(649\) −0.438475 −0.0172117
\(650\) −4.37250 5.92096i −0.171503 0.232239i
\(651\) 0 0
\(652\) 11.8236 + 17.4177i 0.463050 + 0.682129i
\(653\) 13.0481 7.53330i 0.510610 0.294801i −0.222475 0.974938i \(-0.571413\pi\)
0.733084 + 0.680138i \(0.238080\pi\)
\(654\) 0 0
\(655\) 2.32303i 0.0907682i
\(656\) 30.6736 + 12.1819i 1.19760 + 0.475623i
\(657\) 0 0
\(658\) −62.8612 + 2.28846i −2.45059 + 0.0892134i
\(659\) 42.5147 + 24.5459i 1.65614 + 0.956171i 0.974473 + 0.224506i \(0.0720769\pi\)
0.681664 + 0.731665i \(0.261256\pi\)
\(660\) 0 0
\(661\) 3.87600 + 6.71343i 0.150759 + 0.261122i 0.931507 0.363724i \(-0.118495\pi\)
−0.780748 + 0.624846i \(0.785162\pi\)
\(662\) −31.3743 + 1.14218i −1.21940 + 0.0443920i
\(663\) 0 0
\(664\) −0.406185 + 0.0445188i −0.0157630 + 0.00172766i
\(665\) 31.4620 18.1646i 1.22005 0.704393i
\(666\) 0 0
\(667\) −8.72379 5.03668i −0.337787 0.195021i
\(668\) 2.09576 + 28.7459i 0.0810876 + 1.11221i
\(669\) 0 0
\(670\) 1.35012 2.54831i 0.0521597 0.0984499i
\(671\) 0.980307i 0.0378443i
\(672\) 0 0
\(673\) −4.40466 7.62909i −0.169787 0.294080i 0.768558 0.639780i \(-0.220975\pi\)
−0.938345 + 0.345700i \(0.887641\pi\)
\(674\) 12.7646 + 20.3604i 0.491674 + 0.784254i
\(675\) 0 0
\(676\) −7.64935 + 24.8493i −0.294206 + 0.955742i
\(677\) 33.6470i 1.29316i −0.762846 0.646580i \(-0.776198\pi\)
0.762846 0.646580i \(-0.223802\pi\)
\(678\) 0 0
\(679\) 15.5395 + 26.9153i 0.596353 + 1.03291i
\(680\) 4.93174 11.2108i 0.189124 0.429913i
\(681\) 0 0
\(682\) −0.176805 0.0936732i −0.00677023 0.00358693i
\(683\) 1.34924 2.33695i 0.0516273 0.0894211i −0.839057 0.544044i \(-0.816893\pi\)
0.890684 + 0.454623i \(0.150226\pi\)
\(684\) 0 0
\(685\) 29.7011 + 17.1479i 1.13482 + 0.655189i
\(686\) −28.1996 + 17.6792i −1.07666 + 0.674996i
\(687\) 0 0
\(688\) 5.57610 + 38.0382i 0.212587 + 1.45019i
\(689\) −2.27105 29.7860i −0.0865202 1.13476i
\(690\) 0 0
\(691\) 2.01331 + 3.48715i 0.0765898 + 0.132657i 0.901777 0.432203i \(-0.142263\pi\)
−0.825187 + 0.564860i \(0.808930\pi\)
\(692\) 14.1634 9.61457i 0.538413 0.365491i
\(693\) 0 0
\(694\) −0.646130 17.7484i −0.0245268 0.673721i
\(695\) −7.79151 4.49843i −0.295549 0.170635i
\(696\) 0 0
\(697\) 18.9453i 0.717605i
\(698\) −19.6334 + 37.0575i −0.743136 + 1.40265i
\(699\) 0 0
\(700\) 10.5074 7.13272i 0.397141 0.269592i
\(701\) 26.9620i 1.01834i −0.860666 0.509171i \(-0.829952\pi\)
0.860666 0.509171i \(-0.170048\pi\)
\(702\) 0 0
\(703\) 46.2925 1.74595
\(704\) −0.716550 0.781715i −0.0270060 0.0294620i
\(705\) 0 0
\(706\) 40.4766 + 21.4449i 1.52336 + 0.807090i
\(707\) 47.4844 1.78583
\(708\) 0 0
\(709\) −1.66790 + 2.88889i −0.0626393 + 0.108494i −0.895644 0.444771i \(-0.853285\pi\)
0.833005 + 0.553265i \(0.186618\pi\)
\(710\) −0.722667 19.8508i −0.0271212 0.744988i
\(711\) 0 0
\(712\) −37.4283 + 27.4484i −1.40269 + 1.02867i
\(713\) −3.65277 + 2.10893i −0.136797 + 0.0789799i
\(714\) 0 0
\(715\) −0.508695 0.744041i −0.0190241 0.0278256i
\(716\) 2.48812 + 34.1276i 0.0929854 + 1.27541i
\(717\) 0 0
\(718\) 3.55784 2.23053i 0.132777 0.0832425i
\(719\) −3.27398 + 5.67070i −0.122099 + 0.211481i −0.920595 0.390518i \(-0.872296\pi\)
0.798496 + 0.602000i \(0.205629\pi\)
\(720\) 0 0
\(721\) −41.7981 24.1321i −1.55664 0.898727i
\(722\) 0.117914 0.222559i 0.00438831 0.00828280i
\(723\) 0 0
\(724\) 21.3125 + 10.3167i 0.792072 + 0.383417i
\(725\) −3.18671 + 1.83985i −0.118351 + 0.0683303i
\(726\) 0 0
\(727\) 39.4666 1.46374 0.731868 0.681447i \(-0.238649\pi\)
0.731868 + 0.681447i \(0.238649\pi\)
\(728\) −42.3168 14.8897i −1.56837 0.551851i
\(729\) 0 0
\(730\) −13.8825 + 8.70340i −0.513815 + 0.322127i
\(731\) 19.1118 11.0342i 0.706877 0.408116i
\(732\) 0 0
\(733\) 23.7942 0.878860 0.439430 0.898277i \(-0.355180\pi\)
0.439430 + 0.898277i \(0.355180\pi\)
\(734\) 3.41704 6.44955i 0.126125 0.238057i
\(735\) 0 0
\(736\) −21.9851 + 4.04479i −0.810380 + 0.149093i
\(737\) −0.0716661 + 0.124129i −0.00263986 + 0.00457236i
\(738\) 0 0
\(739\) 1.53475 + 2.65827i 0.0564568 + 0.0977861i 0.892873 0.450309i \(-0.148686\pi\)
−0.836416 + 0.548096i \(0.815353\pi\)
\(740\) −39.7647 + 2.89910i −1.46178 + 0.106573i
\(741\) 0 0
\(742\) 51.5074 1.87512i 1.89090 0.0688379i
\(743\) 32.7810 18.9261i 1.20262 0.694332i 0.241482 0.970405i \(-0.422366\pi\)
0.961137 + 0.276073i \(0.0890331\pi\)
\(744\) 0 0
\(745\) 7.49691 12.9850i 0.274665 0.475734i
\(746\) −0.271785 7.46562i −0.00995076 0.273336i
\(747\) 0 0
\(748\) −0.265223 + 0.547904i −0.00969751 + 0.0200333i
\(749\) 16.9944 0.620963
\(750\) 0 0
\(751\) 2.75896 + 4.77866i 0.100676 + 0.174376i 0.911963 0.410272i \(-0.134566\pi\)
−0.811287 + 0.584647i \(0.801233\pi\)
\(752\) 31.7235 25.0894i 1.15684 0.914917i
\(753\) 0 0
\(754\) 11.9151 + 5.19441i 0.433921 + 0.189169i
\(755\) 25.5633i 0.930345i
\(756\) 0 0
\(757\) −18.7724 + 10.8383i −0.682296 + 0.393924i −0.800720 0.599039i \(-0.795549\pi\)
0.118424 + 0.992963i \(0.462216\pi\)
\(758\) 24.0245 45.3455i 0.872609 1.64702i
\(759\) 0 0
\(760\) −9.40607 + 21.3818i −0.341194 + 0.775598i
\(761\) −16.0378 9.25942i −0.581369 0.335654i 0.180308 0.983610i \(-0.442291\pi\)
−0.761677 + 0.647957i \(0.775624\pi\)
\(762\) 0 0
\(763\) 4.36370 + 2.51938i 0.157976 + 0.0912078i
\(764\) 7.99100 + 11.7717i 0.289104 + 0.425886i
\(765\) 0 0
\(766\) −0.501581 13.7778i −0.0181229 0.497813i
\(767\) 5.16087 10.7524i 0.186348 0.388245i
\(768\) 0 0
\(769\) 1.51439 0.874333i 0.0546103 0.0315293i −0.472446 0.881359i \(-0.656629\pi\)
0.527057 + 0.849830i \(0.323296\pi\)
\(770\) 1.31759 0.826039i 0.0474826 0.0297684i
\(771\) 0 0
\(772\) −2.04400 28.0359i −0.0735652 1.00904i
\(773\) 3.35588 5.81256i 0.120703 0.209063i −0.799342 0.600876i \(-0.794819\pi\)
0.920045 + 0.391813i \(0.128152\pi\)
\(774\) 0 0
\(775\) 1.54074i 0.0553449i
\(776\) −18.2918 8.04674i −0.656636 0.288861i
\(777\) 0 0
\(778\) 17.8427 11.1862i 0.639691 0.401043i
\(779\) 36.1335i 1.29462i
\(780\) 0 0
\(781\) 0.987265i 0.0353271i
\(782\) 6.81599 + 10.8720i 0.243739 + 0.388781i
\(783\) 0 0
\(784\) 18.2339 45.9124i 0.651212 1.63973i
\(785\) 0.122212i 0.00436193i
\(786\) 0 0
\(787\) 25.3707 43.9434i 0.904369 1.56641i 0.0826068 0.996582i \(-0.473675\pi\)
0.821762 0.569831i \(-0.192991\pi\)
\(788\) −44.9732 + 3.27883i −1.60210 + 0.116804i
\(789\) 0 0
\(790\) −22.5686 35.9984i −0.802953 1.28077i
\(791\) −37.2497 + 21.5061i −1.32445 + 0.764670i
\(792\) 0 0
\(793\) −24.0392 11.5383i −0.853658 0.409735i
\(794\) −29.6885 + 1.08081i −1.05361 + 0.0383565i
\(795\) 0 0
\(796\) −14.5979 21.5045i −0.517409 0.762206i
\(797\) 8.65924 + 4.99942i 0.306726 + 0.177088i 0.645461 0.763794i \(-0.276665\pi\)
−0.338734 + 0.940882i \(0.609999\pi\)
\(798\) 0 0
\(799\) −20.1066 11.6085i −0.711320 0.410681i
\(800\) −2.73589 + 7.69374i −0.0967284 + 0.272015i
\(801\) 0 0
\(802\) −19.8584 10.5212i −0.701223 0.371515i
\(803\) 0.705260 0.407182i 0.0248881 0.0143691i
\(804\) 0 0
\(805\) 32.7819i 1.15541i
\(806\) 4.37808 3.23311i 0.154211 0.113882i
\(807\) 0 0
\(808\) −24.6207 + 18.0558i −0.866155 + 0.635202i
\(809\) −1.54330 2.67308i −0.0542596 0.0939804i 0.837620 0.546254i \(-0.183947\pi\)
−0.891879 + 0.452273i \(0.850613\pi\)
\(810\) 0 0
\(811\) −28.0084 −0.983508 −0.491754 0.870734i \(-0.663644\pi\)
−0.491754 + 0.870734i \(0.663644\pi\)
\(812\) −9.77143 + 20.1861i −0.342910 + 0.708392i
\(813\) 0 0
\(814\) 1.98029 0.0720923i 0.0694092 0.00252683i
\(815\) 9.92517 17.1909i 0.347664 0.602171i
\(816\) 0 0
\(817\) −36.4511 + 21.0451i −1.27526 + 0.736273i
\(818\) 0.814958 + 22.3859i 0.0284943 + 0.782706i
\(819\) 0 0
\(820\) −2.26289 31.0382i −0.0790235 1.08390i
\(821\) −11.8321 20.4937i −0.412942 0.715236i 0.582268 0.812997i \(-0.302165\pi\)
−0.995210 + 0.0977607i \(0.968832\pi\)
\(822\) 0 0
\(823\) −7.69409 + 13.3266i −0.268199 + 0.464535i −0.968397 0.249414i \(-0.919762\pi\)
0.700198 + 0.713949i \(0.253095\pi\)
\(824\) 30.8486 3.38107i 1.07466 0.117785i
\(825\) 0 0
\(826\) 18.1838 + 9.63396i 0.632696 + 0.335208i
\(827\) 32.9357 1.14529 0.572643 0.819805i \(-0.305918\pi\)
0.572643 + 0.819805i \(0.305918\pi\)
\(828\) 0 0
\(829\) 7.25966 4.19137i 0.252138 0.145572i −0.368605 0.929586i \(-0.620164\pi\)
0.620743 + 0.784014i \(0.286831\pi\)
\(830\) 0.204661 + 0.326449i 0.00710390 + 0.0113312i
\(831\) 0 0
\(832\) 27.6032 8.37053i 0.956967 0.290196i
\(833\) −28.3575 −0.982528
\(834\) 0 0
\(835\) 23.5364 13.5887i 0.814509 0.470257i
\(836\) 0.505847 1.04499i 0.0174951 0.0361418i
\(837\) 0 0
\(838\) −28.0172 14.8438i −0.967840 0.512771i
\(839\) −24.9098 14.3817i −0.859983 0.496512i 0.00402335 0.999992i \(-0.498719\pi\)
−0.864007 + 0.503480i \(0.832053\pi\)
\(840\) 0 0
\(841\) −11.2509 + 19.4872i −0.387964 + 0.671973i
\(842\) 1.13217 + 1.80588i 0.0390170 + 0.0622348i
\(843\) 0 0
\(844\) 1.49739 + 20.5385i 0.0515423 + 0.706965i
\(845\) 24.2329 3.71691i 0.833636 0.127865i
\(846\) 0 0
\(847\) 41.8381 24.1552i 1.43757 0.829983i
\(848\) −25.9937 + 20.5578i −0.892627 + 0.705959i
\(849\) 0 0
\(850\) 4.68426 0.170530i 0.160669 0.00584913i
\(851\) 20.8862 36.1759i 0.715969 1.24009i
\(852\) 0 0
\(853\) −23.9537 −0.820160 −0.410080 0.912049i \(-0.634499\pi\)
−0.410080 + 0.912049i \(0.634499\pi\)
\(854\) 21.5388 40.6539i 0.737043 1.39115i
\(855\) 0 0
\(856\) −8.81165 + 6.46210i −0.301176 + 0.220870i
\(857\) −35.6876 −1.21907 −0.609533 0.792761i \(-0.708643\pi\)
−0.609533 + 0.792761i \(0.708643\pi\)
\(858\) 0 0
\(859\) 34.6818i 1.18333i −0.806185 0.591664i \(-0.798471\pi\)
0.806185 0.591664i \(-0.201529\pi\)
\(860\) 29.9931 20.3602i 1.02276 0.694278i
\(861\) 0 0
\(862\) −28.9868 15.3575i −0.987293 0.523077i
\(863\) 23.4077i 0.796807i 0.917210 + 0.398404i \(0.130436\pi\)
−0.917210 + 0.398404i \(0.869564\pi\)
\(864\) 0 0
\(865\) −13.9790 8.07080i −0.475301 0.274415i
\(866\) −19.8609 + 0.723036i −0.674902 + 0.0245698i
\(867\) 0 0
\(868\) 5.27408 + 7.76936i 0.179014 + 0.263709i
\(869\) 1.05585 + 1.82879i 0.0358174 + 0.0620375i
\(870\) 0 0
\(871\) −2.20041 3.21842i −0.0745579 0.109052i
\(872\) −3.22058 + 0.352983i −0.109063 + 0.0119535i
\(873\) 0 0
\(874\) −12.9998 20.7356i −0.439725 0.701392i
\(875\) −46.2920 26.7267i −1.56496 0.903528i
\(876\) 0 0
\(877\) 22.9591 39.7663i 0.775274 1.34281i −0.159367 0.987219i \(-0.550945\pi\)
0.934641 0.355594i \(-0.115721\pi\)
\(878\) −8.47855 + 16.0030i −0.286137 + 0.540076i
\(879\) 0 0
\(880\) −0.369073 + 0.929314i −0.0124414 + 0.0313272i
\(881\) −3.74833 6.49229i −0.126284 0.218731i 0.795950 0.605362i \(-0.206972\pi\)
−0.922234 + 0.386632i \(0.873638\pi\)
\(882\) 0 0
\(883\) 50.0570i 1.68455i 0.539046 + 0.842276i \(0.318785\pi\)
−0.539046 + 0.842276i \(0.681215\pi\)
\(884\) −10.3141 12.9527i −0.346901 0.435646i
\(885\) 0 0
\(886\) −7.26359 + 4.55378i −0.244025 + 0.152987i
\(887\) −11.5973 20.0872i −0.389400 0.674461i 0.602969 0.797765i \(-0.293984\pi\)
−0.992369 + 0.123304i \(0.960651\pi\)
\(888\) 0 0
\(889\) 64.9266i 2.17757i
\(890\) 38.6732 + 20.4894i 1.29633 + 0.686807i
\(891\) 0 0
\(892\) 0.342309 + 4.69518i 0.0114613 + 0.157206i
\(893\) 38.3483 + 22.1404i 1.28328 + 0.740901i
\(894\) 0 0
\(895\) 27.9427 16.1327i 0.934021 0.539257i
\(896\) 12.5403 + 48.1618i 0.418941 + 1.60897i
\(897\) 0 0
\(898\) 0.399456 + 10.9726i 0.0133300 + 0.366160i
\(899\) −1.36042 2.35632i −0.0453726 0.0785877i
\(900\) 0 0
\(901\) 16.4750 + 9.51184i 0.548861 + 0.316885i
\(902\) 0.0562715 + 1.54571i 0.00187364 + 0.0514666i
\(903\) 0 0
\(904\) 11.1364 25.3151i 0.370391 0.841967i
\(905\) 22.3269i 0.742172i
\(906\) 0 0
\(907\) −19.4736 + 11.2431i −0.646610 + 0.373321i −0.787156 0.616754i \(-0.788447\pi\)
0.140546 + 0.990074i \(0.455114\pi\)
\(908\) −30.6545 45.1578i −1.01731 1.49862i
\(909\) 0 0
\(910\) 4.74818 + 42.0326i 0.157400 + 1.39337i
\(911\) 3.74738 0.124156 0.0620781 0.998071i \(-0.480227\pi\)
0.0620781 + 0.998071i \(0.480227\pi\)
\(912\) 0 0
\(913\) −0.00957493 0.0165843i −0.000316884 0.000548859i
\(914\) −16.7225 8.85974i −0.553131 0.293054i
\(915\) 0 0
\(916\) 12.3401 25.4926i 0.407730 0.842298i
\(917\) −2.70929 + 4.69263i −0.0894687 + 0.154964i
\(918\) 0 0
\(919\) −6.20682 + 10.7505i −0.204744 + 0.354627i −0.950051 0.312094i \(-0.898970\pi\)
0.745307 + 0.666721i \(0.232303\pi\)
\(920\) 12.4653 + 16.9975i 0.410968 + 0.560391i
\(921\) 0 0
\(922\) −49.4624 + 1.80068i −1.62896 + 0.0593021i
\(923\) −24.2099 11.6202i −0.796877 0.382482i
\(924\) 0 0
\(925\) −7.62950 13.2147i −0.250857 0.434496i
\(926\) −21.8401 + 13.6922i −0.717709 + 0.449955i
\(927\) 0 0
\(928\) −2.60920 14.1821i −0.0856513 0.465550i
\(929\) −35.0237 20.2210i −1.14909 0.663428i −0.200426 0.979709i \(-0.564233\pi\)
−0.948666 + 0.316280i \(0.897566\pi\)
\(930\) 0 0
\(931\) 54.0849 1.77256
\(932\) 10.7551 22.2181i 0.352294 0.727778i
\(933\) 0 0
\(934\) −13.7730 + 8.63476i −0.450667 + 0.282538i
\(935\) 0.573984 0.0187713
\(936\) 0 0
\(937\) 2.03951 0.0666277 0.0333139 0.999445i \(-0.489394\pi\)
0.0333139 + 0.999445i \(0.489394\pi\)
\(938\) 5.69935 3.57310i 0.186090 0.116666i
\(939\) 0 0
\(940\) −34.3273 16.6168i −1.11963 0.541979i
\(941\) 35.2677 1.14969 0.574847 0.818261i \(-0.305062\pi\)
0.574847 + 0.818261i \(0.305062\pi\)
\(942\) 0 0
\(943\) 28.2370 + 16.3027i 0.919525 + 0.530888i
\(944\) −13.0916 + 1.91913i −0.426097 + 0.0624624i
\(945\) 0 0
\(946\) −1.52652 + 0.957027i −0.0496316 + 0.0311156i
\(947\) 12.6695 + 21.9442i 0.411702 + 0.713089i 0.995076 0.0991144i \(-0.0316010\pi\)
−0.583374 + 0.812204i \(0.698268\pi\)
\(948\) 0 0
\(949\) 1.68404 + 22.0871i 0.0546662 + 0.716976i
\(950\) −8.93406 + 0.325244i −0.289859 + 0.0105523i
\(951\) 0 0
\(952\) 23.0372 16.8945i 0.746640 0.547555i
\(953\) −16.5824 + 28.7215i −0.537155 + 0.930380i 0.461901 + 0.886932i \(0.347168\pi\)
−0.999056 + 0.0434482i \(0.986166\pi\)
\(954\) 0 0
\(955\) 6.70792 11.6185i 0.217063 0.375965i
\(956\) 31.3268 + 15.1643i 1.01318 + 0.490449i
\(957\) 0 0
\(958\) −5.41252 2.86760i −0.174870 0.0926481i
\(959\) 39.9984 + 69.2793i 1.29162 + 2.23715i
\(960\) 0 0
\(961\) 29.8607 0.963250
\(962\) −21.5403 + 49.4095i −0.694486 + 1.59303i
\(963\) 0 0
\(964\) −23.9112 + 16.2317i −0.770128 + 0.522787i
\(965\) −22.9550 + 13.2531i −0.738948 + 0.426632i
\(966\) 0 0
\(967\) 24.5985i 0.791035i −0.918459 0.395517i \(-0.870565\pi\)
0.918459 0.395517i \(-0.129435\pi\)
\(968\) −12.5081 + 28.4334i −0.402027 + 0.913883i
\(969\) 0 0
\(970\) 0.685526 + 18.8306i 0.0220109 + 0.604614i
\(971\) −16.8251 9.71399i −0.539944 0.311737i 0.205112 0.978738i \(-0.434244\pi\)
−0.745056 + 0.667002i \(0.767577\pi\)
\(972\) 0 0
\(973\) −10.4928 18.1741i −0.336384 0.582635i
\(974\) −1.49600 41.0934i −0.0479350 1.31672i
\(975\) 0 0
\(976\) 4.29064 + 29.2692i 0.137340 + 0.936885i
\(977\) 10.4801 6.05071i 0.335290 0.193580i −0.322898 0.946434i \(-0.604657\pi\)
0.658187 + 0.752854i \(0.271324\pi\)
\(978\) 0 0
\(979\) −1.88379 1.08761i −0.0602061 0.0347600i
\(980\) −46.4582 + 3.38711i −1.48405 + 0.108197i
\(981\) 0 0
\(982\) −22.9876 12.1790i −0.733563 0.388649i
\(983\) 26.8688i 0.856983i 0.903546 + 0.428492i \(0.140955\pi\)
−0.903546 + 0.428492i \(0.859045\pi\)
\(984\) 0 0
\(985\) 21.2596 + 36.8228i 0.677388 + 1.17327i
\(986\) −7.01327 + 4.39685i −0.223348 + 0.140024i
\(987\) 0 0
\(988\) 19.6716 + 24.7040i 0.625837 + 0.785940i
\(989\) 37.9803i 1.20770i
\(990\) 0 0
\(991\) 3.63276 + 6.29212i 0.115398 + 0.199876i 0.917939 0.396722i \(-0.129852\pi\)
−0.802541 + 0.596598i \(0.796519\pi\)
\(992\) −5.68891 2.02297i −0.180623 0.0642295i
\(993\) 0 0
\(994\) 21.6917 40.9424i 0.688019 1.29862i
\(995\) −12.2540 + 21.2245i −0.388477 + 0.672862i
\(996\) 0 0
\(997\) 17.0286 + 9.83147i 0.539301 + 0.311366i 0.744796 0.667293i \(-0.232547\pi\)
−0.205494 + 0.978658i \(0.565880\pi\)
\(998\) −2.28305 3.64162i −0.0722686 0.115273i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.829.17 48
3.2 odd 2 312.2.bk.b.205.8 48
8.5 even 2 inner 936.2.dg.e.829.9 48
12.11 even 2 1248.2.ca.b.49.10 48
13.4 even 6 inner 936.2.dg.e.901.9 48
24.5 odd 2 312.2.bk.b.205.16 yes 48
24.11 even 2 1248.2.ca.b.49.15 48
39.17 odd 6 312.2.bk.b.277.16 yes 48
104.69 even 6 inner 936.2.dg.e.901.17 48
156.95 even 6 1248.2.ca.b.433.15 48
312.173 odd 6 312.2.bk.b.277.8 yes 48
312.251 even 6 1248.2.ca.b.433.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.8 48 3.2 odd 2
312.2.bk.b.205.16 yes 48 24.5 odd 2
312.2.bk.b.277.8 yes 48 312.173 odd 6
312.2.bk.b.277.16 yes 48 39.17 odd 6
936.2.dg.e.829.9 48 8.5 even 2 inner
936.2.dg.e.829.17 48 1.1 even 1 trivial
936.2.dg.e.901.9 48 13.4 even 6 inner
936.2.dg.e.901.17 48 104.69 even 6 inner
1248.2.ca.b.49.10 48 12.11 even 2
1248.2.ca.b.49.15 48 24.11 even 2
1248.2.ca.b.433.10 48 312.251 even 6
1248.2.ca.b.433.15 48 156.95 even 6