Properties

Label 1248.2.ca.b.49.15
Level $1248$
Weight $2$
Character 1248.49
Analytic conductor $9.965$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(49,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.15
Character \(\chi\) \(=\) 1248.49
Dual form 1248.2.ca.b.433.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +1.88587 q^{5} +(-3.80954 - 2.19944i) q^{7} +(0.500000 - 0.866025i) q^{9} +(0.0662772 + 0.114795i) q^{11} +(-3.59512 + 0.274112i) q^{13} +(1.63321 - 0.942933i) q^{15} +(1.14806 - 1.98850i) q^{17} +(2.18964 - 3.79257i) q^{19} -4.39888 q^{21} +(-1.97584 - 3.42225i) q^{23} -1.44351 q^{25} -1.00000i q^{27} +(2.20762 - 1.27457i) q^{29} +1.06736i q^{31} +(0.114795 + 0.0662772i) q^{33} +(-7.18429 - 4.14785i) q^{35} +(-5.28540 - 9.15458i) q^{37} +(-2.97641 + 2.03495i) q^{39} +(7.14559 - 4.12551i) q^{41} +(-8.32354 - 4.80560i) q^{43} +(0.942933 - 1.63321i) q^{45} +10.1114i q^{47} +(6.17508 + 10.6956i) q^{49} -2.29612i q^{51} -8.28514i q^{53} +(0.124990 + 0.216489i) q^{55} -4.37928i q^{57} +(-1.65394 + 2.86472i) q^{59} +(6.40470 + 3.69775i) q^{61} +(-3.80954 + 2.19944i) q^{63} +(-6.77991 + 0.516938i) q^{65} +(-0.540655 - 0.936442i) q^{67} +(-3.42225 - 1.97584i) q^{69} +(-6.45016 - 3.72400i) q^{71} +6.14363i q^{73} +(-1.25011 + 0.721753i) q^{75} -0.583091i q^{77} +15.9309 q^{79} +(-0.500000 - 0.866025i) q^{81} -0.144468 q^{83} +(2.16509 - 3.75004i) q^{85} +(1.27457 - 2.20762i) q^{87} +(-14.2114 + 8.20498i) q^{89} +(14.2986 + 6.86301i) q^{91} +(0.533679 + 0.924359i) q^{93} +(4.12937 - 7.15228i) q^{95} +(6.11866 + 3.53261i) q^{97} +0.132554 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 24 q^{9} + 12 q^{17} - 20 q^{23} + 48 q^{25} + 12 q^{33} - 28 q^{39} - 12 q^{41} + 16 q^{49} + 68 q^{55} + 12 q^{63} + 12 q^{65} + 12 q^{71} + 192 q^{79} - 24 q^{81} - 48 q^{89} + 20 q^{95}+ \cdots + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) 1.88587 0.843385 0.421693 0.906739i \(-0.361436\pi\)
0.421693 + 0.906739i \(0.361436\pi\)
\(6\) 0 0
\(7\) −3.80954 2.19944i −1.43987 0.831311i −0.442032 0.896999i \(-0.645742\pi\)
−0.997840 + 0.0656885i \(0.979076\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 0.0662772 + 0.114795i 0.0199833 + 0.0346121i 0.875844 0.482594i \(-0.160305\pi\)
−0.855861 + 0.517206i \(0.826972\pi\)
\(12\) 0 0
\(13\) −3.59512 + 0.274112i −0.997106 + 0.0760249i
\(14\) 0 0
\(15\) 1.63321 0.942933i 0.421693 0.243464i
\(16\) 0 0
\(17\) 1.14806 1.98850i 0.278446 0.482282i −0.692553 0.721367i \(-0.743514\pi\)
0.970999 + 0.239085i \(0.0768475\pi\)
\(18\) 0 0
\(19\) 2.18964 3.79257i 0.502338 0.870075i −0.497658 0.867373i \(-0.665807\pi\)
0.999996 0.00270169i \(-0.000859974\pi\)
\(20\) 0 0
\(21\) −4.39888 −0.959915
\(22\) 0 0
\(23\) −1.97584 3.42225i −0.411991 0.713589i 0.583117 0.812388i \(-0.301833\pi\)
−0.995107 + 0.0987997i \(0.968500\pi\)
\(24\) 0 0
\(25\) −1.44351 −0.288701
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.20762 1.27457i 0.409944 0.236682i −0.280821 0.959760i \(-0.590607\pi\)
0.690766 + 0.723078i \(0.257274\pi\)
\(30\) 0 0
\(31\) 1.06736i 0.191703i 0.995396 + 0.0958516i \(0.0305574\pi\)
−0.995396 + 0.0958516i \(0.969443\pi\)
\(32\) 0 0
\(33\) 0.114795 + 0.0662772i 0.0199833 + 0.0115374i
\(34\) 0 0
\(35\) −7.18429 4.14785i −1.21437 0.701115i
\(36\) 0 0
\(37\) −5.28540 9.15458i −0.868914 1.50500i −0.863108 0.505020i \(-0.831485\pi\)
−0.00580626 0.999983i \(-0.501848\pi\)
\(38\) 0 0
\(39\) −2.97641 + 2.03495i −0.476606 + 0.325852i
\(40\) 0 0
\(41\) 7.14559 4.12551i 1.11595 0.644296i 0.175589 0.984464i \(-0.443817\pi\)
0.940365 + 0.340168i \(0.110484\pi\)
\(42\) 0 0
\(43\) −8.32354 4.80560i −1.26933 0.732847i −0.294467 0.955662i \(-0.595142\pi\)
−0.974861 + 0.222815i \(0.928475\pi\)
\(44\) 0 0
\(45\) 0.942933 1.63321i 0.140564 0.243464i
\(46\) 0 0
\(47\) 10.1114i 1.47491i 0.675399 + 0.737453i \(0.263972\pi\)
−0.675399 + 0.737453i \(0.736028\pi\)
\(48\) 0 0
\(49\) 6.17508 + 10.6956i 0.882155 + 1.52794i
\(50\) 0 0
\(51\) 2.29612i 0.321521i
\(52\) 0 0
\(53\) 8.28514i 1.13805i −0.822320 0.569026i \(-0.807320\pi\)
0.822320 0.569026i \(-0.192680\pi\)
\(54\) 0 0
\(55\) 0.124990 + 0.216489i 0.0168536 + 0.0291914i
\(56\) 0 0
\(57\) 4.37928i 0.580050i
\(58\) 0 0
\(59\) −1.65394 + 2.86472i −0.215325 + 0.372954i −0.953373 0.301794i \(-0.902415\pi\)
0.738048 + 0.674748i \(0.235748\pi\)
\(60\) 0 0
\(61\) 6.40470 + 3.69775i 0.820038 + 0.473449i 0.850429 0.526089i \(-0.176342\pi\)
−0.0303918 + 0.999538i \(0.509675\pi\)
\(62\) 0 0
\(63\) −3.80954 + 2.19944i −0.479957 + 0.277104i
\(64\) 0 0
\(65\) −6.77991 + 0.516938i −0.840944 + 0.0641183i
\(66\) 0 0
\(67\) −0.540655 0.936442i −0.0660515 0.114405i 0.831108 0.556110i \(-0.187707\pi\)
−0.897160 + 0.441706i \(0.854373\pi\)
\(68\) 0 0
\(69\) −3.42225 1.97584i −0.411991 0.237863i
\(70\) 0 0
\(71\) −6.45016 3.72400i −0.765493 0.441958i 0.0657714 0.997835i \(-0.479049\pi\)
−0.831265 + 0.555877i \(0.812383\pi\)
\(72\) 0 0
\(73\) 6.14363i 0.719057i 0.933134 + 0.359529i \(0.117062\pi\)
−0.933134 + 0.359529i \(0.882938\pi\)
\(74\) 0 0
\(75\) −1.25011 + 0.721753i −0.144351 + 0.0833409i
\(76\) 0 0
\(77\) 0.583091i 0.0664494i
\(78\) 0 0
\(79\) 15.9309 1.79236 0.896182 0.443688i \(-0.146330\pi\)
0.896182 + 0.443688i \(0.146330\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −0.144468 −0.0158574 −0.00792871 0.999969i \(-0.502524\pi\)
−0.00792871 + 0.999969i \(0.502524\pi\)
\(84\) 0 0
\(85\) 2.16509 3.75004i 0.234837 0.406749i
\(86\) 0 0
\(87\) 1.27457 2.20762i 0.136648 0.236682i
\(88\) 0 0
\(89\) −14.2114 + 8.20498i −1.50641 + 0.869726i −0.506437 + 0.862277i \(0.669038\pi\)
−0.999972 + 0.00744871i \(0.997629\pi\)
\(90\) 0 0
\(91\) 14.2986 + 6.86301i 1.49891 + 0.719439i
\(92\) 0 0
\(93\) 0.533679 + 0.924359i 0.0553399 + 0.0958516i
\(94\) 0 0
\(95\) 4.12937 7.15228i 0.423664 0.733808i
\(96\) 0 0
\(97\) 6.11866 + 3.53261i 0.621256 + 0.358682i 0.777358 0.629059i \(-0.216560\pi\)
−0.156102 + 0.987741i \(0.549893\pi\)
\(98\) 0 0
\(99\) 0.132554 0.0133222
\(100\) 0 0
\(101\) 9.34844 5.39732i 0.930204 0.537054i 0.0433280 0.999061i \(-0.486204\pi\)
0.886876 + 0.462007i \(0.152871\pi\)
\(102\) 0 0
\(103\) 10.9719 1.08110 0.540548 0.841313i \(-0.318217\pi\)
0.540548 + 0.841313i \(0.318217\pi\)
\(104\) 0 0
\(105\) −8.29571 −0.809578
\(106\) 0 0
\(107\) −3.34576 + 1.93168i −0.323447 + 0.186742i −0.652928 0.757420i \(-0.726460\pi\)
0.329481 + 0.944162i \(0.393126\pi\)
\(108\) 0 0
\(109\) −1.14546 −0.109716 −0.0548578 0.998494i \(-0.517471\pi\)
−0.0548578 + 0.998494i \(0.517471\pi\)
\(110\) 0 0
\(111\) −9.15458 5.28540i −0.868914 0.501668i
\(112\) 0 0
\(113\) 4.88900 8.46799i 0.459918 0.796601i −0.539038 0.842281i \(-0.681212\pi\)
0.998956 + 0.0456800i \(0.0145454\pi\)
\(114\) 0 0
\(115\) −3.72617 6.45391i −0.347467 0.601830i
\(116\) 0 0
\(117\) −1.56017 + 3.25052i −0.144238 + 0.300511i
\(118\) 0 0
\(119\) −8.74717 + 5.05018i −0.801852 + 0.462949i
\(120\) 0 0
\(121\) 5.49121 9.51106i 0.499201 0.864642i
\(122\) 0 0
\(123\) 4.12551 7.14559i 0.371984 0.644296i
\(124\) 0 0
\(125\) −12.1516 −1.08687
\(126\) 0 0
\(127\) 7.37989 + 12.7824i 0.654860 + 1.13425i 0.981929 + 0.189250i \(0.0606056\pi\)
−0.327069 + 0.945000i \(0.606061\pi\)
\(128\) 0 0
\(129\) −9.61119 −0.846218
\(130\) 0 0
\(131\) 1.23181i 0.107624i −0.998551 0.0538118i \(-0.982863\pi\)
0.998551 0.0538118i \(-0.0171371\pi\)
\(132\) 0 0
\(133\) −16.6831 + 9.63197i −1.44660 + 0.835198i
\(134\) 0 0
\(135\) 1.88587i 0.162310i
\(136\) 0 0
\(137\) −15.7493 9.09286i −1.34555 0.776856i −0.357938 0.933745i \(-0.616520\pi\)
−0.987616 + 0.156890i \(0.949853\pi\)
\(138\) 0 0
\(139\) −4.13153 2.38534i −0.350432 0.202322i 0.314444 0.949276i \(-0.398182\pi\)
−0.664875 + 0.746954i \(0.731515\pi\)
\(140\) 0 0
\(141\) 5.05572 + 8.75677i 0.425768 + 0.737453i
\(142\) 0 0
\(143\) −0.269741 0.394536i −0.0225569 0.0329927i
\(144\) 0 0
\(145\) 4.16327 2.40367i 0.345741 0.199614i
\(146\) 0 0
\(147\) 10.6956 + 6.17508i 0.882155 + 0.509312i
\(148\) 0 0
\(149\) 3.97531 6.88544i 0.325670 0.564077i −0.655978 0.754780i \(-0.727743\pi\)
0.981648 + 0.190703i \(0.0610768\pi\)
\(150\) 0 0
\(151\) 13.5552i 1.10311i 0.834139 + 0.551554i \(0.185965\pi\)
−0.834139 + 0.551554i \(0.814035\pi\)
\(152\) 0 0
\(153\) −1.14806 1.98850i −0.0928152 0.160761i
\(154\) 0 0
\(155\) 2.01290i 0.161680i
\(156\) 0 0
\(157\) 0.0648041i 0.00517193i 0.999997 + 0.00258597i \(0.000823140\pi\)
−0.999997 + 0.00258597i \(0.999177\pi\)
\(158\) 0 0
\(159\) −4.14257 7.17514i −0.328527 0.569026i
\(160\) 0 0
\(161\) 17.3830i 1.36997i
\(162\) 0 0
\(163\) 5.26292 9.11565i 0.412224 0.713993i −0.582909 0.812538i \(-0.698085\pi\)
0.995133 + 0.0985448i \(0.0314188\pi\)
\(164\) 0 0
\(165\) 0.216489 + 0.124990i 0.0168536 + 0.00973045i
\(166\) 0 0
\(167\) 12.4804 7.20556i 0.965762 0.557583i 0.0678204 0.997698i \(-0.478396\pi\)
0.897942 + 0.440115i \(0.145062\pi\)
\(168\) 0 0
\(169\) 12.8497 1.97093i 0.988440 0.151610i
\(170\) 0 0
\(171\) −2.18964 3.79257i −0.167446 0.290025i
\(172\) 0 0
\(173\) −7.41252 4.27962i −0.563564 0.325374i 0.191011 0.981588i \(-0.438823\pi\)
−0.754575 + 0.656214i \(0.772157\pi\)
\(174\) 0 0
\(175\) 5.49910 + 3.17491i 0.415693 + 0.240000i
\(176\) 0 0
\(177\) 3.30789i 0.248636i
\(178\) 0 0
\(179\) −14.8169 + 8.55453i −1.10747 + 0.639396i −0.938172 0.346170i \(-0.887482\pi\)
−0.169294 + 0.985566i \(0.554149\pi\)
\(180\) 0 0
\(181\) 11.8391i 0.879992i 0.898000 + 0.439996i \(0.145020\pi\)
−0.898000 + 0.439996i \(0.854980\pi\)
\(182\) 0 0
\(183\) 7.39551 0.546692
\(184\) 0 0
\(185\) −9.96755 17.2643i −0.732829 1.26930i
\(186\) 0 0
\(187\) 0.304361 0.0222571
\(188\) 0 0
\(189\) −2.19944 + 3.80954i −0.159986 + 0.277104i
\(190\) 0 0
\(191\) 3.55694 6.16081i 0.257371 0.445780i −0.708166 0.706046i \(-0.750477\pi\)
0.965537 + 0.260266i \(0.0838103\pi\)
\(192\) 0 0
\(193\) −12.1721 + 7.02758i −0.876169 + 0.505857i −0.869393 0.494120i \(-0.835490\pi\)
−0.00677591 + 0.999977i \(0.502157\pi\)
\(194\) 0 0
\(195\) −5.61311 + 3.83764i −0.401963 + 0.274819i
\(196\) 0 0
\(197\) 11.2731 + 19.5256i 0.803178 + 1.39114i 0.917514 + 0.397702i \(0.130192\pi\)
−0.114337 + 0.993442i \(0.536474\pi\)
\(198\) 0 0
\(199\) 6.49779 11.2545i 0.460616 0.797811i −0.538375 0.842705i \(-0.680962\pi\)
0.998992 + 0.0448942i \(0.0142951\pi\)
\(200\) 0 0
\(201\) −0.936442 0.540655i −0.0660515 0.0381348i
\(202\) 0 0
\(203\) −11.2134 −0.787024
\(204\) 0 0
\(205\) 13.4756 7.78016i 0.941179 0.543390i
\(206\) 0 0
\(207\) −3.95167 −0.274660
\(208\) 0 0
\(209\) 0.580493 0.0401535
\(210\) 0 0
\(211\) 8.91704 5.14826i 0.613875 0.354421i −0.160606 0.987019i \(-0.551345\pi\)
0.774480 + 0.632598i \(0.218011\pi\)
\(212\) 0 0
\(213\) −7.44800 −0.510329
\(214\) 0 0
\(215\) −15.6971 9.06271i −1.07053 0.618072i
\(216\) 0 0
\(217\) 2.34759 4.06615i 0.159365 0.276028i
\(218\) 0 0
\(219\) 3.07181 + 5.32054i 0.207574 + 0.359529i
\(220\) 0 0
\(221\) −3.58234 + 7.46358i −0.240974 + 0.502055i
\(222\) 0 0
\(223\) −2.03847 + 1.17691i −0.136506 + 0.0788117i −0.566698 0.823926i \(-0.691779\pi\)
0.430192 + 0.902737i \(0.358446\pi\)
\(224\) 0 0
\(225\) −0.721753 + 1.25011i −0.0481169 + 0.0833409i
\(226\) 0 0
\(227\) 13.6449 23.6336i 0.905643 1.56862i 0.0855919 0.996330i \(-0.472722\pi\)
0.820051 0.572290i \(-0.193945\pi\)
\(228\) 0 0
\(229\) 14.1611 0.935794 0.467897 0.883783i \(-0.345012\pi\)
0.467897 + 0.883783i \(0.345012\pi\)
\(230\) 0 0
\(231\) −0.291545 0.504972i −0.0191823 0.0332247i
\(232\) 0 0
\(233\) 12.3422 0.808562 0.404281 0.914635i \(-0.367522\pi\)
0.404281 + 0.914635i \(0.367522\pi\)
\(234\) 0 0
\(235\) 19.0688i 1.24391i
\(236\) 0 0
\(237\) 13.7965 7.96544i 0.896182 0.517411i
\(238\) 0 0
\(239\) 17.4020i 1.12564i −0.826578 0.562822i \(-0.809715\pi\)
0.826578 0.562822i \(-0.190285\pi\)
\(240\) 0 0
\(241\) 12.5141 + 7.22501i 0.806103 + 0.465404i 0.845601 0.533816i \(-0.179242\pi\)
−0.0394975 + 0.999220i \(0.512576\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) 11.6454 + 20.1704i 0.743996 + 1.28864i
\(246\) 0 0
\(247\) −6.83242 + 14.2349i −0.434737 + 0.905747i
\(248\) 0 0
\(249\) −0.125113 + 0.0722340i −0.00792871 + 0.00457765i
\(250\) 0 0
\(251\) 26.7083 + 15.4201i 1.68581 + 0.973305i 0.957664 + 0.287887i \(0.0929528\pi\)
0.728150 + 0.685418i \(0.240381\pi\)
\(252\) 0 0
\(253\) 0.261906 0.453634i 0.0164659 0.0285197i
\(254\) 0 0
\(255\) 4.33018i 0.271166i
\(256\) 0 0
\(257\) 9.77864 + 16.9371i 0.609975 + 1.05651i 0.991244 + 0.132044i \(0.0421539\pi\)
−0.381269 + 0.924464i \(0.624513\pi\)
\(258\) 0 0
\(259\) 46.4997i 2.88935i
\(260\) 0 0
\(261\) 2.54914i 0.157788i
\(262\) 0 0
\(263\) 15.8081 + 27.3804i 0.974769 + 1.68835i 0.680695 + 0.732567i \(0.261678\pi\)
0.294074 + 0.955783i \(0.404989\pi\)
\(264\) 0 0
\(265\) 15.6247i 0.959816i
\(266\) 0 0
\(267\) −8.20498 + 14.2114i −0.502136 + 0.869726i
\(268\) 0 0
\(269\) 0.118107 + 0.0681891i 0.00720111 + 0.00415756i 0.503596 0.863939i \(-0.332010\pi\)
−0.496395 + 0.868097i \(0.665343\pi\)
\(270\) 0 0
\(271\) −13.1075 + 7.56763i −0.796226 + 0.459701i −0.842150 0.539244i \(-0.818710\pi\)
0.0459241 + 0.998945i \(0.485377\pi\)
\(272\) 0 0
\(273\) 15.8145 1.20579i 0.957137 0.0729774i
\(274\) 0 0
\(275\) −0.0956715 0.165708i −0.00576921 0.00999256i
\(276\) 0 0
\(277\) −10.7192 6.18871i −0.644051 0.371843i 0.142122 0.989849i \(-0.454607\pi\)
−0.786174 + 0.618006i \(0.787941\pi\)
\(278\) 0 0
\(279\) 0.924359 + 0.533679i 0.0553399 + 0.0319505i
\(280\) 0 0
\(281\) 1.09096i 0.0650813i 0.999470 + 0.0325406i \(0.0103598\pi\)
−0.999470 + 0.0325406i \(0.989640\pi\)
\(282\) 0 0
\(283\) 4.12015 2.37877i 0.244917 0.141403i −0.372517 0.928025i \(-0.621505\pi\)
0.617435 + 0.786622i \(0.288172\pi\)
\(284\) 0 0
\(285\) 8.25874i 0.489205i
\(286\) 0 0
\(287\) −36.2952 −2.14244
\(288\) 0 0
\(289\) 5.86392 + 10.1566i 0.344936 + 0.597447i
\(290\) 0 0
\(291\) 7.06522 0.414170
\(292\) 0 0
\(293\) −0.923728 + 1.59994i −0.0539647 + 0.0934697i −0.891746 0.452537i \(-0.850519\pi\)
0.837781 + 0.546006i \(0.183853\pi\)
\(294\) 0 0
\(295\) −3.11912 + 5.40247i −0.181602 + 0.314544i
\(296\) 0 0
\(297\) 0.114795 0.0662772i 0.00666111 0.00384579i
\(298\) 0 0
\(299\) 8.04144 + 11.7618i 0.465049 + 0.680202i
\(300\) 0 0
\(301\) 21.1393 + 36.6143i 1.21845 + 2.11041i
\(302\) 0 0
\(303\) 5.39732 9.34844i 0.310068 0.537054i
\(304\) 0 0
\(305\) 12.0784 + 6.97347i 0.691608 + 0.399300i
\(306\) 0 0
\(307\) 14.5220 0.828815 0.414408 0.910091i \(-0.363989\pi\)
0.414408 + 0.910091i \(0.363989\pi\)
\(308\) 0 0
\(309\) 9.50197 5.48597i 0.540548 0.312086i
\(310\) 0 0
\(311\) 15.6062 0.884944 0.442472 0.896782i \(-0.354102\pi\)
0.442472 + 0.896782i \(0.354102\pi\)
\(312\) 0 0
\(313\) −29.5504 −1.67029 −0.835143 0.550032i \(-0.814615\pi\)
−0.835143 + 0.550032i \(0.814615\pi\)
\(314\) 0 0
\(315\) −7.18429 + 4.14785i −0.404789 + 0.233705i
\(316\) 0 0
\(317\) −14.3523 −0.806105 −0.403052 0.915177i \(-0.632051\pi\)
−0.403052 + 0.915177i \(0.632051\pi\)
\(318\) 0 0
\(319\) 0.292629 + 0.168950i 0.0163841 + 0.00945936i
\(320\) 0 0
\(321\) −1.93168 + 3.34576i −0.107816 + 0.186742i
\(322\) 0 0
\(323\) −5.02768 8.70819i −0.279747 0.484537i
\(324\) 0 0
\(325\) 5.18957 0.395682i 0.287866 0.0219485i
\(326\) 0 0
\(327\) −0.992001 + 0.572732i −0.0548578 + 0.0316722i
\(328\) 0 0
\(329\) 22.2395 38.5200i 1.22610 2.12368i
\(330\) 0 0
\(331\) −11.0998 + 19.2255i −0.610102 + 1.05673i 0.381120 + 0.924525i \(0.375538\pi\)
−0.991223 + 0.132203i \(0.957795\pi\)
\(332\) 0 0
\(333\) −10.5708 −0.579276
\(334\) 0 0
\(335\) −1.01960 1.76600i −0.0557069 0.0964871i
\(336\) 0 0
\(337\) 16.9924 0.925633 0.462817 0.886454i \(-0.346839\pi\)
0.462817 + 0.886454i \(0.346839\pi\)
\(338\) 0 0
\(339\) 9.77799i 0.531068i
\(340\) 0 0
\(341\) −0.122528 + 0.0707415i −0.00663525 + 0.00383086i
\(342\) 0 0
\(343\) 23.5348i 1.27076i
\(344\) 0 0
\(345\) −6.45391 3.72617i −0.347467 0.200610i
\(346\) 0 0
\(347\) 10.8759 + 6.27918i 0.583846 + 0.337084i 0.762660 0.646799i \(-0.223893\pi\)
−0.178814 + 0.983883i \(0.557226\pi\)
\(348\) 0 0
\(349\) −14.8271 25.6812i −0.793674 1.37468i −0.923678 0.383170i \(-0.874832\pi\)
0.130004 0.991513i \(-0.458501\pi\)
\(350\) 0 0
\(351\) 0.274112 + 3.59512i 0.0146310 + 0.191893i
\(352\) 0 0
\(353\) −28.0507 + 16.1951i −1.49299 + 0.861977i −0.999968 0.00804129i \(-0.997440\pi\)
−0.493020 + 0.870018i \(0.664107\pi\)
\(354\) 0 0
\(355\) −12.1641 7.02297i −0.645606 0.372741i
\(356\) 0 0
\(357\) −5.05018 + 8.74717i −0.267284 + 0.462949i
\(358\) 0 0
\(359\) 2.96930i 0.156714i −0.996925 0.0783568i \(-0.975033\pi\)
0.996925 0.0783568i \(-0.0249673\pi\)
\(360\) 0 0
\(361\) −0.0890480 0.154236i −0.00468674 0.00811767i
\(362\) 0 0
\(363\) 10.9824i 0.576428i
\(364\) 0 0
\(365\) 11.5861i 0.606442i
\(366\) 0 0
\(367\) 2.58053 + 4.46960i 0.134702 + 0.233311i 0.925484 0.378787i \(-0.123659\pi\)
−0.790781 + 0.612099i \(0.790326\pi\)
\(368\) 0 0
\(369\) 8.25101i 0.429531i
\(370\) 0 0
\(371\) −18.2227 + 31.5626i −0.946074 + 1.63865i
\(372\) 0 0
\(373\) 4.57477 + 2.64124i 0.236873 + 0.136758i 0.613738 0.789509i \(-0.289665\pi\)
−0.376866 + 0.926268i \(0.622998\pi\)
\(374\) 0 0
\(375\) −10.5236 + 6.07580i −0.543436 + 0.313753i
\(376\) 0 0
\(377\) −7.58727 + 5.18736i −0.390764 + 0.267163i
\(378\) 0 0
\(379\) −18.1432 31.4249i −0.931951 1.61419i −0.779982 0.625802i \(-0.784772\pi\)
−0.151970 0.988385i \(-0.548562\pi\)
\(380\) 0 0
\(381\) 12.7824 + 7.37989i 0.654860 + 0.378083i
\(382\) 0 0
\(383\) −8.44275 4.87443i −0.431405 0.249072i 0.268540 0.963268i \(-0.413459\pi\)
−0.699945 + 0.714197i \(0.746792\pi\)
\(384\) 0 0
\(385\) 1.09963i 0.0560424i
\(386\) 0 0
\(387\) −8.32354 + 4.80560i −0.423109 + 0.244282i
\(388\) 0 0
\(389\) 14.8911i 0.755010i −0.926008 0.377505i \(-0.876782\pi\)
0.926008 0.377505i \(-0.123218\pi\)
\(390\) 0 0
\(391\) −9.07352 −0.458868
\(392\) 0 0
\(393\) −0.615904 1.06678i −0.0310683 0.0538118i
\(394\) 0 0
\(395\) 30.0435 1.51165
\(396\) 0 0
\(397\) 10.5034 18.1925i 0.527152 0.913055i −0.472347 0.881413i \(-0.656593\pi\)
0.999499 0.0316419i \(-0.0100736\pi\)
\(398\) 0 0
\(399\) −9.63197 + 16.6831i −0.482202 + 0.835198i
\(400\) 0 0
\(401\) 13.7620 7.94551i 0.687243 0.396780i −0.115335 0.993327i \(-0.536794\pi\)
0.802578 + 0.596547i \(0.203461\pi\)
\(402\) 0 0
\(403\) −0.292575 3.83728i −0.0145742 0.191148i
\(404\) 0 0
\(405\) −0.942933 1.63321i −0.0468547 0.0811548i
\(406\) 0 0
\(407\) 0.700602 1.21348i 0.0347276 0.0601499i
\(408\) 0 0
\(409\) 13.7176 + 7.91987i 0.678292 + 0.391612i 0.799211 0.601050i \(-0.205251\pi\)
−0.120919 + 0.992662i \(0.538584\pi\)
\(410\) 0 0
\(411\) −18.1857 −0.897036
\(412\) 0 0
\(413\) 12.6016 7.27551i 0.620082 0.358004i
\(414\) 0 0
\(415\) −0.272448 −0.0133739
\(416\) 0 0
\(417\) −4.77068 −0.233621
\(418\) 0 0
\(419\) 19.4162 11.2100i 0.948544 0.547642i 0.0559155 0.998436i \(-0.482192\pi\)
0.892628 + 0.450793i \(0.148859\pi\)
\(420\) 0 0
\(421\) −1.50715 −0.0734541 −0.0367270 0.999325i \(-0.511693\pi\)
−0.0367270 + 0.999325i \(0.511693\pi\)
\(422\) 0 0
\(423\) 8.75677 + 5.05572i 0.425768 + 0.245818i
\(424\) 0 0
\(425\) −1.65723 + 2.87041i −0.0803876 + 0.139235i
\(426\) 0 0
\(427\) −16.2660 28.1735i −0.787166 1.36341i
\(428\) 0 0
\(429\) −0.430870 0.206807i −0.0208026 0.00998475i
\(430\) 0 0
\(431\) −20.0881 + 11.5979i −0.967609 + 0.558649i −0.898507 0.438960i \(-0.855347\pi\)
−0.0691026 + 0.997610i \(0.522014\pi\)
\(432\) 0 0
\(433\) −7.02656 + 12.1704i −0.337675 + 0.584870i −0.983995 0.178197i \(-0.942974\pi\)
0.646320 + 0.763066i \(0.276307\pi\)
\(434\) 0 0
\(435\) 2.40367 4.16327i 0.115247 0.199614i
\(436\) 0 0
\(437\) −17.3055 −0.827834
\(438\) 0 0
\(439\) −6.40295 11.0902i −0.305596 0.529308i 0.671798 0.740735i \(-0.265522\pi\)
−0.977394 + 0.211426i \(0.932189\pi\)
\(440\) 0 0
\(441\) 12.3502 0.588103
\(442\) 0 0
\(443\) 6.06204i 0.288016i −0.989577 0.144008i \(-0.954001\pi\)
0.989577 0.144008i \(-0.0459992\pi\)
\(444\) 0 0
\(445\) −26.8009 + 15.4735i −1.27048 + 0.733514i
\(446\) 0 0
\(447\) 7.95062i 0.376051i
\(448\) 0 0
\(449\) −6.72376 3.88197i −0.317314 0.183201i 0.332881 0.942969i \(-0.391979\pi\)
−0.650195 + 0.759768i \(0.725313\pi\)
\(450\) 0 0
\(451\) 0.947179 + 0.546854i 0.0446009 + 0.0257503i
\(452\) 0 0
\(453\) 6.77761 + 11.7392i 0.318440 + 0.551554i
\(454\) 0 0
\(455\) 26.9653 + 12.9427i 1.26415 + 0.606764i
\(456\) 0 0
\(457\) −11.5888 + 6.69082i −0.542103 + 0.312983i −0.745931 0.666023i \(-0.767995\pi\)
0.203828 + 0.979007i \(0.434662\pi\)
\(458\) 0 0
\(459\) −1.98850 1.14806i −0.0928152 0.0535869i
\(460\) 0 0
\(461\) −17.4992 + 30.3095i −0.815019 + 1.41165i 0.0942954 + 0.995544i \(0.469940\pi\)
−0.909314 + 0.416110i \(0.863393\pi\)
\(462\) 0 0
\(463\) 18.2272i 0.847092i −0.905875 0.423546i \(-0.860785\pi\)
0.905875 0.423546i \(-0.139215\pi\)
\(464\) 0 0
\(465\) 1.00645 + 1.74322i 0.0466729 + 0.0808398i
\(466\) 0 0
\(467\) 11.4947i 0.531910i −0.963985 0.265955i \(-0.914313\pi\)
0.963985 0.265955i \(-0.0856873\pi\)
\(468\) 0 0
\(469\) 4.75655i 0.219637i
\(470\) 0 0
\(471\) 0.0324021 + 0.0561220i 0.00149301 + 0.00258597i
\(472\) 0 0
\(473\) 1.27401i 0.0585788i
\(474\) 0 0
\(475\) −3.16076 + 5.47460i −0.145026 + 0.251192i
\(476\) 0 0
\(477\) −7.17514 4.14257i −0.328527 0.189675i
\(478\) 0 0
\(479\) −3.75092 + 2.16560i −0.171384 + 0.0989487i −0.583238 0.812301i \(-0.698215\pi\)
0.411854 + 0.911250i \(0.364881\pi\)
\(480\) 0 0
\(481\) 21.5110 + 31.4630i 0.980817 + 1.43459i
\(482\) 0 0
\(483\) 8.69148 + 15.0541i 0.395476 + 0.684984i
\(484\) 0 0
\(485\) 11.5390 + 6.66203i 0.523958 + 0.302507i
\(486\) 0 0
\(487\) 25.1811 + 14.5383i 1.14107 + 0.658795i 0.946694 0.322133i \(-0.104400\pi\)
0.194372 + 0.980928i \(0.437733\pi\)
\(488\) 0 0
\(489\) 10.5258i 0.475995i
\(490\) 0 0
\(491\) 15.9306 9.19753i 0.718938 0.415079i −0.0954238 0.995437i \(-0.530421\pi\)
0.814362 + 0.580358i \(0.197087\pi\)
\(492\) 0 0
\(493\) 5.85313i 0.263612i
\(494\) 0 0
\(495\) 0.249980 0.0112358
\(496\) 0 0
\(497\) 16.3814 + 28.3735i 0.734808 + 1.27273i
\(498\) 0 0
\(499\) −3.03922 −0.136054 −0.0680270 0.997683i \(-0.521670\pi\)
−0.0680270 + 0.997683i \(0.521670\pi\)
\(500\) 0 0
\(501\) 7.20556 12.4804i 0.321921 0.557583i
\(502\) 0 0
\(503\) 0.148336 0.256925i 0.00661396 0.0114557i −0.862699 0.505717i \(-0.831228\pi\)
0.869313 + 0.494261i \(0.164561\pi\)
\(504\) 0 0
\(505\) 17.6299 10.1786i 0.784520 0.452943i
\(506\) 0 0
\(507\) 10.1427 8.13174i 0.450454 0.361143i
\(508\) 0 0
\(509\) −12.2950 21.2955i −0.544965 0.943906i −0.998609 0.0527236i \(-0.983210\pi\)
0.453645 0.891183i \(-0.350124\pi\)
\(510\) 0 0
\(511\) 13.5125 23.4044i 0.597760 1.03535i
\(512\) 0 0
\(513\) −3.79257 2.18964i −0.167446 0.0966750i
\(514\) 0 0
\(515\) 20.6916 0.911781
\(516\) 0 0
\(517\) −1.16075 + 0.670158i −0.0510496 + 0.0294735i
\(518\) 0 0
\(519\) −8.55924 −0.375709
\(520\) 0 0
\(521\) −27.3639 −1.19883 −0.599417 0.800437i \(-0.704601\pi\)
−0.599417 + 0.800437i \(0.704601\pi\)
\(522\) 0 0
\(523\) 18.8023 10.8555i 0.822167 0.474678i −0.0289964 0.999580i \(-0.509231\pi\)
0.851163 + 0.524901i \(0.175898\pi\)
\(524\) 0 0
\(525\) 6.34982 0.277129
\(526\) 0 0
\(527\) 2.12244 + 1.22539i 0.0924549 + 0.0533789i
\(528\) 0 0
\(529\) 3.69213 6.39496i 0.160527 0.278042i
\(530\) 0 0
\(531\) 1.65394 + 2.86472i 0.0717751 + 0.124318i
\(532\) 0 0
\(533\) −24.5584 + 16.7904i −1.06374 + 0.727272i
\(534\) 0 0
\(535\) −6.30966 + 3.64288i −0.272790 + 0.157496i
\(536\) 0 0
\(537\) −8.55453 + 14.8169i −0.369155 + 0.639396i
\(538\) 0 0
\(539\) −0.818534 + 1.41774i −0.0352568 + 0.0610665i
\(540\) 0 0
\(541\) 33.0198 1.41963 0.709816 0.704387i \(-0.248778\pi\)
0.709816 + 0.704387i \(0.248778\pi\)
\(542\) 0 0
\(543\) 5.91954 + 10.2529i 0.254032 + 0.439996i
\(544\) 0 0
\(545\) −2.16019 −0.0925325
\(546\) 0 0
\(547\) 29.1932i 1.24821i 0.781340 + 0.624105i \(0.214536\pi\)
−0.781340 + 0.624105i \(0.785464\pi\)
\(548\) 0 0
\(549\) 6.40470 3.69775i 0.273346 0.157816i
\(550\) 0 0
\(551\) 11.1634i 0.475576i
\(552\) 0 0
\(553\) −60.6894 35.0390i −2.58077 1.49001i
\(554\) 0 0
\(555\) −17.2643 9.96755i −0.732829 0.423099i
\(556\) 0 0
\(557\) −5.03804 8.72614i −0.213469 0.369739i 0.739329 0.673344i \(-0.235143\pi\)
−0.952798 + 0.303606i \(0.901809\pi\)
\(558\) 0 0
\(559\) 31.2414 + 14.9951i 1.32137 + 0.634225i
\(560\) 0 0
\(561\) 0.263584 0.152180i 0.0111285 0.00642506i
\(562\) 0 0
\(563\) −20.2190 11.6734i −0.852128 0.491977i 0.00923997 0.999957i \(-0.497059\pi\)
−0.861368 + 0.507981i \(0.830392\pi\)
\(564\) 0 0
\(565\) 9.22000 15.9695i 0.387888 0.671842i
\(566\) 0 0
\(567\) 4.39888i 0.184736i
\(568\) 0 0
\(569\) −21.2506 36.8071i −0.890870 1.54303i −0.838834 0.544388i \(-0.816762\pi\)
−0.0520365 0.998645i \(-0.516571\pi\)
\(570\) 0 0
\(571\) 5.43630i 0.227502i −0.993509 0.113751i \(-0.963713\pi\)
0.993509 0.113751i \(-0.0362866\pi\)
\(572\) 0 0
\(573\) 7.11389i 0.297187i
\(574\) 0 0
\(575\) 2.85213 + 4.94004i 0.118942 + 0.206014i
\(576\) 0 0
\(577\) 4.39252i 0.182863i −0.995811 0.0914316i \(-0.970856\pi\)
0.995811 0.0914316i \(-0.0291443\pi\)
\(578\) 0 0
\(579\) −7.02758 + 12.1721i −0.292056 + 0.505857i
\(580\) 0 0
\(581\) 0.550357 + 0.317749i 0.0228327 + 0.0131825i
\(582\) 0 0
\(583\) 0.951096 0.549116i 0.0393904 0.0227420i
\(584\) 0 0
\(585\) −2.94227 + 6.13004i −0.121648 + 0.253446i
\(586\) 0 0
\(587\) −15.7922 27.3529i −0.651813 1.12897i −0.982683 0.185297i \(-0.940675\pi\)
0.330869 0.943677i \(-0.392658\pi\)
\(588\) 0 0
\(589\) 4.04803 + 2.33713i 0.166796 + 0.0962998i
\(590\) 0 0
\(591\) 19.5256 + 11.2731i 0.803178 + 0.463715i
\(592\) 0 0
\(593\) 8.50710i 0.349345i 0.984627 + 0.174672i \(0.0558866\pi\)
−0.984627 + 0.174672i \(0.944113\pi\)
\(594\) 0 0
\(595\) −16.4960 + 9.52397i −0.676270 + 0.390445i
\(596\) 0 0
\(597\) 12.9956i 0.531874i
\(598\) 0 0
\(599\) −26.3372 −1.07611 −0.538055 0.842910i \(-0.680841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(600\) 0 0
\(601\) 3.29321 + 5.70401i 0.134333 + 0.232672i 0.925342 0.379132i \(-0.123777\pi\)
−0.791009 + 0.611804i \(0.790444\pi\)
\(602\) 0 0
\(603\) −1.08131 −0.0440343
\(604\) 0 0
\(605\) 10.3557 17.9366i 0.421019 0.729226i
\(606\) 0 0
\(607\) 2.47666 4.28970i 0.100524 0.174113i −0.811376 0.584524i \(-0.801281\pi\)
0.911901 + 0.410411i \(0.134615\pi\)
\(608\) 0 0
\(609\) −9.71106 + 5.60668i −0.393512 + 0.227194i
\(610\) 0 0
\(611\) −2.77166 36.3518i −0.112130 1.47064i
\(612\) 0 0
\(613\) 6.25855 + 10.8401i 0.252780 + 0.437828i 0.964290 0.264848i \(-0.0853217\pi\)
−0.711510 + 0.702676i \(0.751988\pi\)
\(614\) 0 0
\(615\) 7.78016 13.4756i 0.313726 0.543390i
\(616\) 0 0
\(617\) 22.7830 + 13.1538i 0.917210 + 0.529551i 0.882744 0.469855i \(-0.155694\pi\)
0.0344658 + 0.999406i \(0.489027\pi\)
\(618\) 0 0
\(619\) −2.56782 −0.103209 −0.0516047 0.998668i \(-0.516434\pi\)
−0.0516047 + 0.998668i \(0.516434\pi\)
\(620\) 0 0
\(621\) −3.42225 + 1.97584i −0.137330 + 0.0792876i
\(622\) 0 0
\(623\) 72.1855 2.89205
\(624\) 0 0
\(625\) −15.6988 −0.627950
\(626\) 0 0
\(627\) 0.502721 0.290246i 0.0200768 0.0115913i
\(628\) 0 0
\(629\) −24.2718 −0.967781
\(630\) 0 0
\(631\) −32.2263 18.6058i −1.28291 0.740687i −0.305528 0.952183i \(-0.598833\pi\)
−0.977379 + 0.211496i \(0.932166\pi\)
\(632\) 0 0
\(633\) 5.14826 8.91704i 0.204625 0.354421i
\(634\) 0 0
\(635\) 13.9175 + 24.1058i 0.552299 + 0.956610i
\(636\) 0 0
\(637\) −25.1319 36.7591i −0.995763 1.45645i
\(638\) 0 0
\(639\) −6.45016 + 3.72400i −0.255164 + 0.147319i
\(640\) 0 0
\(641\) 23.2163 40.2117i 0.916987 1.58827i 0.113021 0.993593i \(-0.463947\pi\)
0.803966 0.594675i \(-0.202719\pi\)
\(642\) 0 0
\(643\) 8.31198 14.3968i 0.327792 0.567753i −0.654281 0.756251i \(-0.727029\pi\)
0.982073 + 0.188498i \(0.0603620\pi\)
\(644\) 0 0
\(645\) −18.1254 −0.713688
\(646\) 0 0
\(647\) 14.5656 + 25.2283i 0.572632 + 0.991828i 0.996294 + 0.0860076i \(0.0274109\pi\)
−0.423662 + 0.905820i \(0.639256\pi\)
\(648\) 0 0
\(649\) −0.438475 −0.0172117
\(650\) 0 0
\(651\) 4.69518i 0.184019i
\(652\) 0 0
\(653\) 13.0481 7.53330i 0.510610 0.294801i −0.222475 0.974938i \(-0.571413\pi\)
0.733084 + 0.680138i \(0.238080\pi\)
\(654\) 0 0
\(655\) 2.32303i 0.0907682i
\(656\) 0 0
\(657\) 5.32054 + 3.07181i 0.207574 + 0.119843i
\(658\) 0 0
\(659\) −42.5147 24.5459i −1.65614 0.956171i −0.974473 0.224506i \(-0.927923\pi\)
−0.681664 0.731665i \(-0.738744\pi\)
\(660\) 0 0
\(661\) −3.87600 6.71343i −0.150759 0.261122i 0.780748 0.624846i \(-0.214838\pi\)
−0.931507 + 0.363724i \(0.881505\pi\)
\(662\) 0 0
\(663\) 0.629393 + 8.25482i 0.0244436 + 0.320591i
\(664\) 0 0
\(665\) −31.4620 + 18.1646i −1.22005 + 0.704393i
\(666\) 0 0
\(667\) −8.72379 5.03668i −0.337787 0.195021i
\(668\) 0 0
\(669\) −1.17691 + 2.03847i −0.0455019 + 0.0788117i
\(670\) 0 0
\(671\) 0.980307i 0.0378443i
\(672\) 0 0
\(673\) −4.40466 7.62909i −0.169787 0.294080i 0.768558 0.639780i \(-0.220975\pi\)
−0.938345 + 0.345700i \(0.887641\pi\)
\(674\) 0 0
\(675\) 1.44351i 0.0555606i
\(676\) 0 0
\(677\) 33.6470i 1.29316i −0.762846 0.646580i \(-0.776198\pi\)
0.762846 0.646580i \(-0.223802\pi\)
\(678\) 0 0
\(679\) −15.5395 26.9153i −0.596353 1.03291i
\(680\) 0 0
\(681\) 27.2898i 1.04575i
\(682\) 0 0
\(683\) −1.34924 + 2.33695i −0.0516273 + 0.0894211i −0.890684 0.454623i \(-0.849774\pi\)
0.839057 + 0.544044i \(0.183107\pi\)
\(684\) 0 0
\(685\) −29.7011 17.1479i −1.13482 0.655189i
\(686\) 0 0
\(687\) 12.2639 7.08056i 0.467897 0.270140i
\(688\) 0 0
\(689\) 2.27105 + 29.7860i 0.0865202 + 1.13476i
\(690\) 0 0
\(691\) 2.01331 + 3.48715i 0.0765898 + 0.132657i 0.901777 0.432203i \(-0.142263\pi\)
−0.825187 + 0.564860i \(0.808930\pi\)
\(692\) 0 0
\(693\) −0.504972 0.291545i −0.0191823 0.0110749i
\(694\) 0 0
\(695\) −7.79151 4.49843i −0.295549 0.170635i
\(696\) 0 0
\(697\) 18.9453i 0.717605i
\(698\) 0 0
\(699\) 10.6886 6.17108i 0.404281 0.233412i
\(700\) 0 0
\(701\) 26.9620i 1.01834i −0.860666 0.509171i \(-0.829952\pi\)
0.860666 0.509171i \(-0.170048\pi\)
\(702\) 0 0
\(703\) −46.2925 −1.74595
\(704\) 0 0
\(705\) 9.53442 + 16.5141i 0.359087 + 0.621957i
\(706\) 0 0
\(707\) −47.4844 −1.78583
\(708\) 0 0
\(709\) 1.66790 2.88889i 0.0626393 0.108494i −0.833005 0.553265i \(-0.813382\pi\)
0.895644 + 0.444771i \(0.146715\pi\)
\(710\) 0 0
\(711\) 7.96544 13.7965i 0.298727 0.517411i
\(712\) 0 0
\(713\) 3.65277 2.10893i 0.136797 0.0789799i
\(714\) 0 0
\(715\) −0.508695 0.744041i −0.0190241 0.0278256i
\(716\) 0 0
\(717\) −8.70102 15.0706i −0.324946 0.562822i
\(718\) 0 0
\(719\) −3.27398 + 5.67070i −0.122099 + 0.211481i −0.920595 0.390518i \(-0.872296\pi\)
0.798496 + 0.602000i \(0.205629\pi\)
\(720\) 0 0
\(721\) −41.7981 24.1321i −1.55664 0.898727i
\(722\) 0 0
\(723\) 14.4500 0.537402
\(724\) 0 0
\(725\) −3.18671 + 1.83985i −0.118351 + 0.0683303i
\(726\) 0 0
\(727\) −39.4666 −1.46374 −0.731868 0.681447i \(-0.761351\pi\)
−0.731868 + 0.681447i \(0.761351\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −19.1118 + 11.0342i −0.706877 + 0.408116i
\(732\) 0 0
\(733\) −23.7942 −0.878860 −0.439430 0.898277i \(-0.644820\pi\)
−0.439430 + 0.898277i \(0.644820\pi\)
\(734\) 0 0
\(735\) 20.1704 + 11.6454i 0.743996 + 0.429547i
\(736\) 0 0
\(737\) 0.0716661 0.124129i 0.00263986 0.00457236i
\(738\) 0 0
\(739\) 1.53475 + 2.65827i 0.0564568 + 0.0977861i 0.892873 0.450309i \(-0.148686\pi\)
−0.836416 + 0.548096i \(0.815353\pi\)
\(740\) 0 0
\(741\) 1.20041 + 15.7440i 0.0440982 + 0.578371i
\(742\) 0 0
\(743\) 32.7810 18.9261i 1.20262 0.694332i 0.241482 0.970405i \(-0.422366\pi\)
0.961137 + 0.276073i \(0.0890331\pi\)
\(744\) 0 0
\(745\) 7.49691 12.9850i 0.274665 0.475734i
\(746\) 0 0
\(747\) −0.0722340 + 0.125113i −0.00264290 + 0.00457765i
\(748\) 0 0
\(749\) 16.9944 0.620963
\(750\) 0 0
\(751\) −2.75896 4.77866i −0.100676 0.174376i 0.811287 0.584647i \(-0.198767\pi\)
−0.911963 + 0.410272i \(0.865434\pi\)
\(752\) 0 0
\(753\) 30.8401 1.12388
\(754\) 0 0
\(755\) 25.5633i 0.930345i
\(756\) 0 0
\(757\) 18.7724 10.8383i 0.682296 0.393924i −0.118424 0.992963i \(-0.537784\pi\)
0.800720 + 0.599039i \(0.204451\pi\)
\(758\) 0 0
\(759\) 0.523812i 0.0190132i
\(760\) 0 0
\(761\) 16.0378 + 9.25942i 0.581369 + 0.335654i 0.761677 0.647957i \(-0.224376\pi\)
−0.180308 + 0.983610i \(0.557709\pi\)
\(762\) 0 0
\(763\) 4.36370 + 2.51938i 0.157976 + 0.0912078i
\(764\) 0 0
\(765\) −2.16509 3.75004i −0.0782789 0.135583i
\(766\) 0 0
\(767\) 5.16087 10.7524i 0.186348 0.388245i
\(768\) 0 0
\(769\) 1.51439 0.874333i 0.0546103 0.0315293i −0.472446 0.881359i \(-0.656629\pi\)
0.527057 + 0.849830i \(0.323296\pi\)
\(770\) 0 0
\(771\) 16.9371 + 9.77864i 0.609975 + 0.352169i
\(772\) 0 0
\(773\) 3.35588 5.81256i 0.120703 0.209063i −0.799342 0.600876i \(-0.794819\pi\)
0.920045 + 0.391813i \(0.128152\pi\)
\(774\) 0 0
\(775\) 1.54074i 0.0553449i
\(776\) 0 0
\(777\) 23.2498 + 40.2699i 0.834083 + 1.44467i
\(778\) 0 0
\(779\) 36.1335i 1.29462i
\(780\) 0 0
\(781\) 0.987265i 0.0353271i
\(782\) 0 0
\(783\) −1.27457 2.20762i −0.0455494 0.0788939i
\(784\) 0 0
\(785\) 0.122212i 0.00436193i
\(786\) 0 0
\(787\) 25.3707 43.9434i 0.904369 1.56641i 0.0826068 0.996582i \(-0.473675\pi\)
0.821762 0.569831i \(-0.192991\pi\)
\(788\) 0 0
\(789\) 27.3804 + 15.8081i 0.974769 + 0.562783i
\(790\) 0 0
\(791\) −37.2497 + 21.5061i −1.32445 + 0.764670i
\(792\) 0 0
\(793\) −24.0392 11.5383i −0.853658 0.409735i
\(794\) 0 0
\(795\) −7.81234 13.5314i −0.277075 0.479908i
\(796\) 0 0
\(797\) 8.65924 + 4.99942i 0.306726 + 0.177088i 0.645461 0.763794i \(-0.276665\pi\)
−0.338734 + 0.940882i \(0.609999\pi\)
\(798\) 0 0
\(799\) 20.1066 + 11.6085i 0.711320 + 0.410681i
\(800\) 0 0
\(801\) 16.4100i 0.579817i
\(802\) 0 0
\(803\) −0.705260 + 0.407182i −0.0248881 + 0.0143691i
\(804\) 0 0
\(805\) 32.7819i 1.15541i
\(806\) 0 0
\(807\) 0.136378 0.00480074
\(808\) 0 0
\(809\) 1.54330 + 2.67308i 0.0542596 + 0.0939804i 0.891879 0.452273i \(-0.149387\pi\)
−0.837620 + 0.546254i \(0.816053\pi\)
\(810\) 0 0
\(811\) −28.0084 −0.983508 −0.491754 0.870734i \(-0.663644\pi\)
−0.491754 + 0.870734i \(0.663644\pi\)
\(812\) 0 0
\(813\) −7.56763 + 13.1075i −0.265409 + 0.459701i
\(814\) 0 0
\(815\) 9.92517 17.1909i 0.347664 0.602171i
\(816\) 0 0
\(817\) −36.4511 + 21.0451i −1.27526 + 0.736273i
\(818\) 0 0
\(819\) 13.0929 8.95149i 0.457502 0.312790i
\(820\) 0 0
\(821\) −11.8321 20.4937i −0.412942 0.715236i 0.582268 0.812997i \(-0.302165\pi\)
−0.995210 + 0.0977607i \(0.968832\pi\)
\(822\) 0 0
\(823\) 7.69409 13.3266i 0.268199 0.464535i −0.700198 0.713949i \(-0.746905\pi\)
0.968397 + 0.249414i \(0.0802381\pi\)
\(824\) 0 0
\(825\) −0.165708 0.0956715i −0.00576921 0.00333085i
\(826\) 0 0
\(827\) −32.9357 −1.14529 −0.572643 0.819805i \(-0.694082\pi\)
−0.572643 + 0.819805i \(0.694082\pi\)
\(828\) 0 0
\(829\) −7.25966 + 4.19137i −0.252138 + 0.145572i −0.620743 0.784014i \(-0.713169\pi\)
0.368605 + 0.929586i \(0.379836\pi\)
\(830\) 0 0
\(831\) −12.3774 −0.429368
\(832\) 0 0
\(833\) 28.3575 0.982528
\(834\) 0 0
\(835\) 23.5364 13.5887i 0.814509 0.470257i
\(836\) 0 0
\(837\) 1.06736 0.0368933
\(838\) 0 0
\(839\) −24.9098 14.3817i −0.859983 0.496512i 0.00402335 0.999992i \(-0.498719\pi\)
−0.864007 + 0.503480i \(0.832053\pi\)
\(840\) 0 0
\(841\) −11.2509 + 19.4872i −0.387964 + 0.671973i
\(842\) 0 0
\(843\) 0.545480 + 0.944800i 0.0187873 + 0.0325406i
\(844\) 0 0
\(845\) 24.2329 3.71691i 0.833636 0.127865i
\(846\) 0 0
\(847\) −41.8381 + 24.1552i −1.43757 + 0.829983i
\(848\) 0 0
\(849\) 2.37877 4.12015i 0.0816391 0.141403i
\(850\) 0 0
\(851\) −20.8862 + 36.1759i −0.715969 + 1.24009i
\(852\) 0 0
\(853\) 23.9537 0.820160 0.410080 0.912049i \(-0.365501\pi\)
0.410080 + 0.912049i \(0.365501\pi\)
\(854\) 0 0
\(855\) −4.12937 7.15228i −0.141221 0.244603i
\(856\) 0 0
\(857\) 35.6876 1.21907 0.609533 0.792761i \(-0.291357\pi\)
0.609533 + 0.792761i \(0.291357\pi\)
\(858\) 0 0
\(859\) 34.6818i 1.18333i −0.806185 0.591664i \(-0.798471\pi\)
0.806185 0.591664i \(-0.201529\pi\)
\(860\) 0 0
\(861\) −31.4326 + 18.1476i −1.07122 + 0.618469i
\(862\) 0 0
\(863\) 23.4077i 0.796807i 0.917210 + 0.398404i \(0.130436\pi\)
−0.917210 + 0.398404i \(0.869564\pi\)
\(864\) 0 0
\(865\) −13.9790 8.07080i −0.475301 0.274415i
\(866\) 0 0
\(867\) 10.1566 + 5.86392i 0.344936 + 0.199149i
\(868\) 0 0
\(869\) 1.05585 + 1.82879i 0.0358174 + 0.0620375i
\(870\) 0 0
\(871\) 2.20041 + 3.21842i 0.0745579 + 0.109052i
\(872\) 0 0
\(873\) 6.11866 3.53261i 0.207085 0.119561i
\(874\) 0 0
\(875\) 46.2920 + 26.7267i 1.56496 + 0.903528i
\(876\) 0 0
\(877\) −22.9591 + 39.7663i −0.775274 + 1.34281i 0.159367 + 0.987219i \(0.449055\pi\)
−0.934641 + 0.355594i \(0.884279\pi\)
\(878\) 0 0
\(879\) 1.84746i 0.0623131i
\(880\) 0 0
\(881\) 3.74833 + 6.49229i 0.126284 + 0.218731i 0.922234 0.386632i \(-0.126362\pi\)
−0.795950 + 0.605362i \(0.793028\pi\)
\(882\) 0 0
\(883\) 50.0570i 1.68455i 0.539046 + 0.842276i \(0.318785\pi\)
−0.539046 + 0.842276i \(0.681215\pi\)
\(884\) 0 0
\(885\) 6.23824i 0.209696i
\(886\) 0 0
\(887\) −11.5973 20.0872i −0.389400 0.674461i 0.602969 0.797765i \(-0.293984\pi\)
−0.992369 + 0.123304i \(0.960651\pi\)
\(888\) 0 0
\(889\) 64.9266i 2.17757i
\(890\) 0 0
\(891\) 0.0662772 0.114795i 0.00222037 0.00384579i
\(892\) 0 0
\(893\) 38.3483 + 22.1404i 1.28328 + 0.740901i
\(894\) 0 0
\(895\) −27.9427 + 16.1327i −0.934021 + 0.539257i
\(896\) 0 0
\(897\) 12.8450 + 6.16529i 0.428882 + 0.205853i
\(898\) 0 0
\(899\) 1.36042 + 2.35632i 0.0453726 + 0.0785877i
\(900\) 0 0
\(901\) −16.4750 9.51184i −0.548861 0.316885i
\(902\) 0 0
\(903\) 36.6143 + 21.1393i 1.21845 + 0.703470i
\(904\) 0 0
\(905\) 22.3269i 0.742172i
\(906\) 0 0
\(907\) −19.4736 + 11.2431i −0.646610 + 0.373321i −0.787156 0.616754i \(-0.788447\pi\)
0.140546 + 0.990074i \(0.455114\pi\)
\(908\) 0 0
\(909\) 10.7946i 0.358036i
\(910\) 0 0
\(911\) 3.74738 0.124156 0.0620781 0.998071i \(-0.480227\pi\)
0.0620781 + 0.998071i \(0.480227\pi\)
\(912\) 0 0
\(913\) −0.00957493 0.0165843i −0.000316884 0.000548859i
\(914\) 0 0
\(915\) 13.9469 0.461072
\(916\) 0 0
\(917\) −2.70929 + 4.69263i −0.0894687 + 0.154964i
\(918\) 0 0
\(919\) 6.20682 10.7505i 0.204744 0.354627i −0.745307 0.666721i \(-0.767697\pi\)
0.950051 + 0.312094i \(0.101030\pi\)
\(920\) 0 0
\(921\) 12.5764 7.26101i 0.414408 0.239258i
\(922\) 0 0
\(923\) 24.2099 + 11.6202i 0.796877 + 0.382482i
\(924\) 0 0
\(925\) 7.62950 + 13.2147i 0.250857 + 0.434496i
\(926\) 0 0
\(927\) 5.48597 9.50197i 0.180183 0.312086i
\(928\) 0 0
\(929\) 35.0237 + 20.2210i 1.14909 + 0.663428i 0.948666 0.316280i \(-0.102434\pi\)
0.200426 + 0.979709i \(0.435767\pi\)
\(930\) 0 0
\(931\) 54.0849 1.77256
\(932\) 0 0
\(933\) 13.5153 7.80308i 0.442472 0.255461i
\(934\) 0 0
\(935\) 0.573984 0.0187713
\(936\) 0 0
\(937\) 2.03951 0.0666277 0.0333139 0.999445i \(-0.489394\pi\)
0.0333139 + 0.999445i \(0.489394\pi\)
\(938\) 0 0
\(939\) −25.5914 + 14.7752i −0.835143 + 0.482170i
\(940\) 0 0
\(941\) 35.2677 1.14969 0.574847 0.818261i \(-0.305062\pi\)
0.574847 + 0.818261i \(0.305062\pi\)
\(942\) 0 0
\(943\) −28.2370 16.3027i −0.919525 0.530888i
\(944\) 0 0
\(945\) −4.14785 + 7.18429i −0.134930 + 0.233705i
\(946\) 0 0
\(947\) −12.6695 21.9442i −0.411702 0.713089i 0.583374 0.812204i \(-0.301732\pi\)
−0.995076 + 0.0991144i \(0.968399\pi\)
\(948\) 0 0
\(949\) −1.68404 22.0871i −0.0546662 0.716976i
\(950\) 0 0
\(951\) −12.4294 + 7.17614i −0.403052 + 0.232702i
\(952\) 0 0
\(953\) 16.5824 28.7215i 0.537155 0.930380i −0.461901 0.886932i \(-0.652832\pi\)
0.999056 0.0434482i \(-0.0138343\pi\)
\(954\) 0 0
\(955\) 6.70792 11.6185i 0.217063 0.375965i
\(956\) 0 0
\(957\) 0.337899 0.0109227
\(958\) 0 0
\(959\) 39.9984 + 69.2793i 1.29162 + 2.23715i
\(960\) 0 0
\(961\) 29.8607 0.963250
\(962\) 0 0
\(963\) 3.86335i 0.124495i
\(964\) 0 0
\(965\) −22.9550 + 13.2531i −0.738948 + 0.426632i
\(966\) 0 0
\(967\) 24.5985i 0.791035i 0.918459 + 0.395517i \(0.129435\pi\)
−0.918459 + 0.395517i \(0.870565\pi\)
\(968\) 0 0
\(969\) −8.70819 5.02768i −0.279747 0.161512i
\(970\) 0 0
\(971\) 16.8251 + 9.71399i 0.539944 + 0.311737i 0.745056 0.667002i \(-0.232423\pi\)
−0.205112 + 0.978738i \(0.565756\pi\)
\(972\) 0 0
\(973\) 10.4928 + 18.1741i 0.336384 + 0.582635i
\(974\) 0 0
\(975\) 4.29646 2.93746i 0.137597 0.0940739i
\(976\) 0 0
\(977\) −10.4801 + 6.05071i −0.335290 + 0.193580i −0.658187 0.752854i \(-0.728676\pi\)
0.322898 + 0.946434i \(0.395343\pi\)
\(978\) 0 0
\(979\) −1.88379 1.08761i −0.0602061 0.0347600i
\(980\) 0 0
\(981\) −0.572732 + 0.992001i −0.0182859 + 0.0316722i
\(982\) 0 0
\(983\) 26.8688i 0.856983i 0.903546 + 0.428492i \(0.140955\pi\)
−0.903546 + 0.428492i \(0.859045\pi\)
\(984\) 0 0
\(985\) 21.2596 + 36.8228i 0.677388 + 1.17327i
\(986\) 0 0
\(987\) 44.4790i 1.41578i
\(988\) 0 0
\(989\) 37.9803i 1.20770i
\(990\) 0 0
\(991\) −3.63276 6.29212i −0.115398 0.199876i 0.802541 0.596598i \(-0.203481\pi\)
−0.917939 + 0.396722i \(0.870148\pi\)
\(992\) 0 0
\(993\) 22.1997i 0.704485i
\(994\) 0 0
\(995\) 12.2540 21.2245i 0.388477 0.672862i
\(996\) 0 0
\(997\) −17.0286 9.83147i −0.539301 0.311366i 0.205494 0.978658i \(-0.434120\pi\)
−0.744796 + 0.667293i \(0.767453\pi\)
\(998\) 0 0
\(999\) −9.15458 + 5.28540i −0.289638 + 0.167223i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.b.49.15 48
4.3 odd 2 312.2.bk.b.205.16 yes 48
8.3 odd 2 312.2.bk.b.205.8 48
8.5 even 2 inner 1248.2.ca.b.49.10 48
12.11 even 2 936.2.dg.e.829.9 48
13.4 even 6 inner 1248.2.ca.b.433.10 48
24.11 even 2 936.2.dg.e.829.17 48
52.43 odd 6 312.2.bk.b.277.8 yes 48
104.43 odd 6 312.2.bk.b.277.16 yes 48
104.69 even 6 inner 1248.2.ca.b.433.15 48
156.95 even 6 936.2.dg.e.901.17 48
312.251 even 6 936.2.dg.e.901.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.8 48 8.3 odd 2
312.2.bk.b.205.16 yes 48 4.3 odd 2
312.2.bk.b.277.8 yes 48 52.43 odd 6
312.2.bk.b.277.16 yes 48 104.43 odd 6
936.2.dg.e.829.9 48 12.11 even 2
936.2.dg.e.829.17 48 24.11 even 2
936.2.dg.e.901.9 48 312.251 even 6
936.2.dg.e.901.17 48 156.95 even 6
1248.2.ca.b.49.10 48 8.5 even 2 inner
1248.2.ca.b.49.15 48 1.1 even 1 trivial
1248.2.ca.b.433.10 48 13.4 even 6 inner
1248.2.ca.b.433.15 48 104.69 even 6 inner