Properties

Label 936.2.dg.e.829.9
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.9
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.e.901.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.662081 - 1.24966i) q^{2} +(-1.12330 + 1.65475i) q^{4} -1.88587 q^{5} +(3.80954 + 2.19944i) q^{7} +(2.81159 + 0.308157i) q^{8} +(1.24860 + 2.35669i) q^{10} +(0.0662772 + 0.114795i) q^{11} +(-3.59512 + 0.274112i) q^{13} +(0.226324 - 6.21684i) q^{14} +(-1.47641 - 3.71755i) q^{16} +(-1.14806 + 1.98850i) q^{17} +(-2.18964 + 3.79257i) q^{19} +(2.11839 - 3.12064i) q^{20} +(0.0995743 - 0.158828i) q^{22} +(-1.97584 - 3.42225i) q^{23} -1.44351 q^{25} +(2.72281 + 4.31119i) q^{26} +(-7.91878 + 3.83323i) q^{28} +(-2.20762 + 1.27457i) q^{29} -1.06736i q^{31} +(-3.66817 + 4.30633i) q^{32} +(3.24505 + 0.118136i) q^{34} +(-7.18429 - 4.14785i) q^{35} +(-5.28540 - 9.15458i) q^{37} +(6.18914 + 0.225315i) q^{38} +(-5.30228 - 0.581142i) q^{40} +(-7.14559 + 4.12551i) q^{41} +(8.32354 + 4.80560i) q^{43} +(-0.264407 - 0.0192770i) q^{44} +(-2.96848 + 4.73493i) q^{46} +10.1114i q^{47} +(6.17508 + 10.6956i) q^{49} +(0.955719 + 1.80389i) q^{50} +(3.58479 - 6.25694i) q^{52} +8.28514i q^{53} +(-0.124990 - 0.216489i) q^{55} +(10.0331 + 7.35786i) q^{56} +(3.05440 + 1.91490i) q^{58} +(-1.65394 + 2.86472i) q^{59} +(6.40470 + 3.69775i) q^{61} +(-1.33383 + 0.706678i) q^{62} +(7.81008 + 1.73282i) q^{64} +(6.77991 - 0.516938i) q^{65} +(0.540655 + 0.936442i) q^{67} +(-2.00086 - 4.13343i) q^{68} +(-0.426816 + 11.7241i) q^{70} +(-6.45016 - 3.72400i) q^{71} +6.14363i q^{73} +(-7.94074 + 12.6660i) q^{74} +(-3.81615 - 7.88349i) q^{76} +0.583091i q^{77} -15.9309 q^{79} +(2.78431 + 7.01081i) q^{80} +(9.88644 + 6.19813i) q^{82} -0.144468 q^{83} +(2.16509 - 3.75004i) q^{85} +(0.494498 - 13.5833i) q^{86} +(0.150969 + 0.343181i) q^{88} +(14.2114 - 8.20498i) q^{89} +(-14.2986 - 6.86301i) q^{91} +(7.88243 + 0.574680i) q^{92} +(12.6359 - 6.69460i) q^{94} +(4.12937 - 7.15228i) q^{95} +(6.11866 + 3.53261i) q^{97} +(9.27740 - 14.7981i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.662081 1.24966i −0.468162 0.883643i
\(3\) 0 0
\(4\) −1.12330 + 1.65475i −0.561648 + 0.827376i
\(5\) −1.88587 −0.843385 −0.421693 0.906739i \(-0.638564\pi\)
−0.421693 + 0.906739i \(0.638564\pi\)
\(6\) 0 0
\(7\) 3.80954 + 2.19944i 1.43987 + 0.831311i 0.997840 0.0656885i \(-0.0209244\pi\)
0.442032 + 0.896999i \(0.354258\pi\)
\(8\) 2.81159 + 0.308157i 0.994047 + 0.108950i
\(9\) 0 0
\(10\) 1.24860 + 2.35669i 0.394841 + 0.745251i
\(11\) 0.0662772 + 0.114795i 0.0199833 + 0.0346121i 0.875844 0.482594i \(-0.160305\pi\)
−0.855861 + 0.517206i \(0.826972\pi\)
\(12\) 0 0
\(13\) −3.59512 + 0.274112i −0.997106 + 0.0760249i
\(14\) 0.226324 6.21684i 0.0604875 1.66152i
\(15\) 0 0
\(16\) −1.47641 3.71755i −0.369103 0.929389i
\(17\) −1.14806 + 1.98850i −0.278446 + 0.482282i −0.970999 0.239085i \(-0.923152\pi\)
0.692553 + 0.721367i \(0.256486\pi\)
\(18\) 0 0
\(19\) −2.18964 + 3.79257i −0.502338 + 0.870075i 0.497658 + 0.867373i \(0.334193\pi\)
−0.999996 + 0.00270169i \(0.999140\pi\)
\(20\) 2.11839 3.12064i 0.473686 0.697797i
\(21\) 0 0
\(22\) 0.0995743 0.158828i 0.0212293 0.0338622i
\(23\) −1.97584 3.42225i −0.411991 0.713589i 0.583117 0.812388i \(-0.301833\pi\)
−0.995107 + 0.0987997i \(0.968500\pi\)
\(24\) 0 0
\(25\) −1.44351 −0.288701
\(26\) 2.72281 + 4.31119i 0.533986 + 0.845493i
\(27\) 0 0
\(28\) −7.91878 + 3.83323i −1.49651 + 0.724412i
\(29\) −2.20762 + 1.27457i −0.409944 + 0.236682i −0.690766 0.723078i \(-0.742726\pi\)
0.280821 + 0.959760i \(0.409393\pi\)
\(30\) 0 0
\(31\) 1.06736i 0.191703i −0.995396 0.0958516i \(-0.969443\pi\)
0.995396 0.0958516i \(-0.0305574\pi\)
\(32\) −3.66817 + 4.30633i −0.648447 + 0.761260i
\(33\) 0 0
\(34\) 3.24505 + 0.118136i 0.556522 + 0.0202601i
\(35\) −7.18429 4.14785i −1.21437 0.701115i
\(36\) 0 0
\(37\) −5.28540 9.15458i −0.868914 1.50500i −0.863108 0.505020i \(-0.831485\pi\)
−0.00580626 0.999983i \(-0.501848\pi\)
\(38\) 6.18914 + 0.225315i 1.00401 + 0.0365509i
\(39\) 0 0
\(40\) −5.30228 0.581142i −0.838365 0.0918867i
\(41\) −7.14559 + 4.12551i −1.11595 + 0.644296i −0.940365 0.340168i \(-0.889516\pi\)
−0.175589 + 0.984464i \(0.556183\pi\)
\(42\) 0 0
\(43\) 8.32354 + 4.80560i 1.26933 + 0.732847i 0.974861 0.222815i \(-0.0715247\pi\)
0.294467 + 0.955662i \(0.404858\pi\)
\(44\) −0.264407 0.0192770i −0.0398608 0.00290611i
\(45\) 0 0
\(46\) −2.96848 + 4.73493i −0.437679 + 0.698128i
\(47\) 10.1114i 1.47491i 0.675399 + 0.737453i \(0.263972\pi\)
−0.675399 + 0.737453i \(0.736028\pi\)
\(48\) 0 0
\(49\) 6.17508 + 10.6956i 0.882155 + 1.52794i
\(50\) 0.955719 + 1.80389i 0.135159 + 0.255109i
\(51\) 0 0
\(52\) 3.58479 6.25694i 0.497121 0.867681i
\(53\) 8.28514i 1.13805i 0.822320 + 0.569026i \(0.192680\pi\)
−0.822320 + 0.569026i \(0.807320\pi\)
\(54\) 0 0
\(55\) −0.124990 0.216489i −0.0168536 0.0291914i
\(56\) 10.0331 + 7.35786i 1.34073 + 0.983236i
\(57\) 0 0
\(58\) 3.05440 + 1.91490i 0.401062 + 0.251439i
\(59\) −1.65394 + 2.86472i −0.215325 + 0.372954i −0.953373 0.301794i \(-0.902415\pi\)
0.738048 + 0.674748i \(0.235748\pi\)
\(60\) 0 0
\(61\) 6.40470 + 3.69775i 0.820038 + 0.473449i 0.850429 0.526089i \(-0.176342\pi\)
−0.0303918 + 0.999538i \(0.509675\pi\)
\(62\) −1.33383 + 0.706678i −0.169397 + 0.0897482i
\(63\) 0 0
\(64\) 7.81008 + 1.73282i 0.976260 + 0.216603i
\(65\) 6.77991 0.516938i 0.840944 0.0641183i
\(66\) 0 0
\(67\) 0.540655 + 0.936442i 0.0660515 + 0.114405i 0.897160 0.441706i \(-0.145627\pi\)
−0.831108 + 0.556110i \(0.812293\pi\)
\(68\) −2.00086 4.13343i −0.242640 0.501252i
\(69\) 0 0
\(70\) −0.426816 + 11.7241i −0.0510143 + 1.40130i
\(71\) −6.45016 3.72400i −0.765493 0.441958i 0.0657714 0.997835i \(-0.479049\pi\)
−0.831265 + 0.555877i \(0.812383\pi\)
\(72\) 0 0
\(73\) 6.14363i 0.719057i 0.933134 + 0.359529i \(0.117062\pi\)
−0.933134 + 0.359529i \(0.882938\pi\)
\(74\) −7.94074 + 12.6660i −0.923092 + 1.47239i
\(75\) 0 0
\(76\) −3.81615 7.88349i −0.437742 0.904298i
\(77\) 0.583091i 0.0664494i
\(78\) 0 0
\(79\) −15.9309 −1.79236 −0.896182 0.443688i \(-0.853670\pi\)
−0.896182 + 0.443688i \(0.853670\pi\)
\(80\) 2.78431 + 7.01081i 0.311296 + 0.783833i
\(81\) 0 0
\(82\) 9.88644 + 6.19813i 1.09177 + 0.684469i
\(83\) −0.144468 −0.0158574 −0.00792871 0.999969i \(-0.502524\pi\)
−0.00792871 + 0.999969i \(0.502524\pi\)
\(84\) 0 0
\(85\) 2.16509 3.75004i 0.234837 0.406749i
\(86\) 0.494498 13.5833i 0.0533231 1.46472i
\(87\) 0 0
\(88\) 0.150969 + 0.343181i 0.0160934 + 0.0365833i
\(89\) 14.2114 8.20498i 1.50641 0.869726i 0.506437 0.862277i \(-0.330962\pi\)
0.999972 0.00744871i \(-0.00237102\pi\)
\(90\) 0 0
\(91\) −14.2986 6.86301i −1.49891 0.719439i
\(92\) 7.88243 + 0.574680i 0.821800 + 0.0599145i
\(93\) 0 0
\(94\) 12.6359 6.69460i 1.30329 0.690495i
\(95\) 4.12937 7.15228i 0.423664 0.733808i
\(96\) 0 0
\(97\) 6.11866 + 3.53261i 0.621256 + 0.358682i 0.777358 0.629059i \(-0.216560\pi\)
−0.156102 + 0.987741i \(0.549893\pi\)
\(98\) 9.27740 14.7981i 0.937159 1.49483i
\(99\) 0 0
\(100\) 1.62149 2.38865i 0.162149 0.238865i
\(101\) −9.34844 + 5.39732i −0.930204 + 0.537054i −0.886876 0.462007i \(-0.847129\pi\)
−0.0433280 + 0.999061i \(0.513796\pi\)
\(102\) 0 0
\(103\) −10.9719 −1.08110 −0.540548 0.841313i \(-0.681783\pi\)
−0.540548 + 0.841313i \(0.681783\pi\)
\(104\) −10.1925 0.337169i −0.999453 0.0330622i
\(105\) 0 0
\(106\) 10.3536 5.48544i 1.00563 0.532793i
\(107\) −3.34576 + 1.93168i −0.323447 + 0.186742i −0.652928 0.757420i \(-0.726460\pi\)
0.329481 + 0.944162i \(0.393126\pi\)
\(108\) 0 0
\(109\) −1.14546 −0.109716 −0.0548578 0.998494i \(-0.517471\pi\)
−0.0548578 + 0.998494i \(0.517471\pi\)
\(110\) −0.187784 + 0.299528i −0.0179045 + 0.0285589i
\(111\) 0 0
\(112\) 2.55209 17.4095i 0.241150 1.64504i
\(113\) −4.88900 + 8.46799i −0.459918 + 0.796601i −0.998956 0.0456800i \(-0.985455\pi\)
0.539038 + 0.842281i \(0.318788\pi\)
\(114\) 0 0
\(115\) 3.72617 + 6.45391i 0.347467 + 0.601830i
\(116\) 0.370713 5.08478i 0.0344199 0.472110i
\(117\) 0 0
\(118\) 4.67497 + 0.170192i 0.430365 + 0.0156674i
\(119\) −8.74717 + 5.05018i −0.801852 + 0.462949i
\(120\) 0 0
\(121\) 5.49121 9.51106i 0.499201 0.864642i
\(122\) 0.380501 10.4519i 0.0344489 0.946271i
\(123\) 0 0
\(124\) 1.76621 + 1.19896i 0.158611 + 0.107670i
\(125\) 12.1516 1.08687
\(126\) 0 0
\(127\) −7.37989 12.7824i −0.654860 1.13425i −0.981929 0.189250i \(-0.939394\pi\)
0.327069 0.945000i \(-0.393939\pi\)
\(128\) −3.00547 10.9072i −0.265649 0.964070i
\(129\) 0 0
\(130\) −5.13485 8.13032i −0.450356 0.713076i
\(131\) 1.23181i 0.107624i −0.998551 0.0538118i \(-0.982863\pi\)
0.998551 0.0538118i \(-0.0171371\pi\)
\(132\) 0 0
\(133\) −16.6831 + 9.63197i −1.44660 + 0.835198i
\(134\) 0.812275 1.29563i 0.0701699 0.111926i
\(135\) 0 0
\(136\) −3.84064 + 5.23706i −0.329332 + 0.449074i
\(137\) 15.7493 + 9.09286i 1.34555 + 0.776856i 0.987616 0.156890i \(-0.0501467\pi\)
0.357938 + 0.933745i \(0.383480\pi\)
\(138\) 0 0
\(139\) 4.13153 + 2.38534i 0.350432 + 0.202322i 0.664875 0.746954i \(-0.268485\pi\)
−0.314444 + 0.949276i \(0.601818\pi\)
\(140\) 14.9338 7.22896i 1.26213 0.610958i
\(141\) 0 0
\(142\) −0.383202 + 10.5261i −0.0321576 + 0.883330i
\(143\) −0.269741 0.394536i −0.0225569 0.0329927i
\(144\) 0 0
\(145\) 4.16327 2.40367i 0.345741 0.199614i
\(146\) 7.67744 4.06758i 0.635390 0.336635i
\(147\) 0 0
\(148\) 21.0856 + 1.53728i 1.73323 + 0.126363i
\(149\) −3.97531 + 6.88544i −0.325670 + 0.564077i −0.981648 0.190703i \(-0.938923\pi\)
0.655978 + 0.754780i \(0.272257\pi\)
\(150\) 0 0
\(151\) 13.5552i 1.10311i −0.834139 0.551554i \(-0.814035\pi\)
0.834139 0.551554i \(-0.185965\pi\)
\(152\) −7.32508 + 9.98839i −0.594142 + 0.810166i
\(153\) 0 0
\(154\) 0.728665 0.386054i 0.0587175 0.0311091i
\(155\) 2.01290i 0.161680i
\(156\) 0 0
\(157\) 0.0648041i 0.00517193i 0.999997 + 0.00258597i \(0.000823140\pi\)
−0.999997 + 0.00258597i \(0.999177\pi\)
\(158\) 10.5475 + 19.9082i 0.839117 + 1.58381i
\(159\) 0 0
\(160\) 6.91768 8.12117i 0.546891 0.642035i
\(161\) 17.3830i 1.36997i
\(162\) 0 0
\(163\) −5.26292 + 9.11565i −0.412224 + 0.713993i −0.995133 0.0985448i \(-0.968581\pi\)
0.582909 + 0.812538i \(0.301915\pi\)
\(164\) 1.19992 16.4583i 0.0936980 1.28518i
\(165\) 0 0
\(166\) 0.0956496 + 0.180536i 0.00742385 + 0.0140123i
\(167\) 12.4804 7.20556i 0.965762 0.557583i 0.0678204 0.997698i \(-0.478396\pi\)
0.897942 + 0.440115i \(0.145062\pi\)
\(168\) 0 0
\(169\) 12.8497 1.97093i 0.988440 0.151610i
\(170\) −6.11974 0.222789i −0.469363 0.0170871i
\(171\) 0 0
\(172\) −17.3019 + 8.37528i −1.31926 + 0.638609i
\(173\) 7.41252 + 4.27962i 0.563564 + 0.325374i 0.754575 0.656214i \(-0.227843\pi\)
−0.191011 + 0.981588i \(0.561177\pi\)
\(174\) 0 0
\(175\) −5.49910 3.17491i −0.415693 0.240000i
\(176\) 0.328906 0.415874i 0.0247922 0.0313477i
\(177\) 0 0
\(178\) −19.6626 12.3271i −1.47377 0.923954i
\(179\) −14.8169 + 8.55453i −1.10747 + 0.639396i −0.938172 0.346170i \(-0.887482\pi\)
−0.169294 + 0.985566i \(0.554149\pi\)
\(180\) 0 0
\(181\) 11.8391i 0.879992i 0.898000 + 0.439996i \(0.145020\pi\)
−0.898000 + 0.439996i \(0.854980\pi\)
\(182\) 0.890449 + 22.4123i 0.0660045 + 1.66131i
\(183\) 0 0
\(184\) −4.50066 10.2308i −0.331793 0.754227i
\(185\) 9.96755 + 17.2643i 0.732829 + 1.26930i
\(186\) 0 0
\(187\) −0.304361 −0.0222571
\(188\) −16.7319 11.3581i −1.22030 0.828378i
\(189\) 0 0
\(190\) −11.6719 0.424914i −0.846768 0.0308265i
\(191\) 3.55694 6.16081i 0.257371 0.445780i −0.708166 0.706046i \(-0.750477\pi\)
0.965537 + 0.260266i \(0.0838103\pi\)
\(192\) 0 0
\(193\) −12.1721 + 7.02758i −0.876169 + 0.505857i −0.869393 0.494120i \(-0.835490\pi\)
−0.00677591 + 0.999977i \(0.502157\pi\)
\(194\) 0.363507 9.98511i 0.0260983 0.716889i
\(195\) 0 0
\(196\) −24.6350 1.79605i −1.75964 0.128289i
\(197\) −11.2731 19.5256i −0.803178 1.39114i −0.917514 0.397702i \(-0.869808\pi\)
0.114337 0.993442i \(-0.463526\pi\)
\(198\) 0 0
\(199\) −6.49779 + 11.2545i −0.460616 + 0.797811i −0.998992 0.0448942i \(-0.985705\pi\)
0.538375 + 0.842705i \(0.319038\pi\)
\(200\) −4.05855 0.444826i −0.286983 0.0314540i
\(201\) 0 0
\(202\) 12.9342 + 8.10889i 0.910050 + 0.570540i
\(203\) −11.2134 −0.787024
\(204\) 0 0
\(205\) 13.4756 7.78016i 0.941179 0.543390i
\(206\) 7.26431 + 13.7112i 0.506129 + 0.955303i
\(207\) 0 0
\(208\) 6.32689 + 12.9603i 0.438691 + 0.898638i
\(209\) −0.580493 −0.0401535
\(210\) 0 0
\(211\) −8.91704 + 5.14826i −0.613875 + 0.354421i −0.774480 0.632598i \(-0.781989\pi\)
0.160606 + 0.987019i \(0.448655\pi\)
\(212\) −13.7099 9.30667i −0.941597 0.639184i
\(213\) 0 0
\(214\) 4.62910 + 2.90214i 0.316439 + 0.198386i
\(215\) −15.6971 9.06271i −1.07053 0.618072i
\(216\) 0 0
\(217\) 2.34759 4.06615i 0.159365 0.276028i
\(218\) 0.758391 + 1.43144i 0.0513647 + 0.0969494i
\(219\) 0 0
\(220\) 0.498636 + 0.0363538i 0.0336180 + 0.00245097i
\(221\) 3.58234 7.46358i 0.240974 0.502055i
\(222\) 0 0
\(223\) 2.03847 1.17691i 0.136506 0.0788117i −0.430192 0.902737i \(-0.641554\pi\)
0.566698 + 0.823926i \(0.308221\pi\)
\(224\) −23.4456 + 8.33724i −1.56652 + 0.557055i
\(225\) 0 0
\(226\) 13.8190 + 0.503080i 0.919227 + 0.0334644i
\(227\) 13.6449 23.6336i 0.905643 1.56862i 0.0855919 0.996330i \(-0.472722\pi\)
0.820051 0.572290i \(-0.193945\pi\)
\(228\) 0 0
\(229\) 14.1611 0.935794 0.467897 0.883783i \(-0.345012\pi\)
0.467897 + 0.883783i \(0.345012\pi\)
\(230\) 5.59816 8.92945i 0.369132 0.588791i
\(231\) 0 0
\(232\) −6.59969 + 2.90327i −0.433291 + 0.190609i
\(233\) −12.3422 −0.808562 −0.404281 0.914635i \(-0.632478\pi\)
−0.404281 + 0.914635i \(0.632478\pi\)
\(234\) 0 0
\(235\) 19.0688i 1.24391i
\(236\) −2.88253 5.95479i −0.187636 0.387624i
\(237\) 0 0
\(238\) 12.1023 + 7.58735i 0.784479 + 0.491815i
\(239\) 17.4020i 1.12564i −0.826578 0.562822i \(-0.809715\pi\)
0.826578 0.562822i \(-0.190285\pi\)
\(240\) 0 0
\(241\) 12.5141 + 7.22501i 0.806103 + 0.465404i 0.845601 0.533816i \(-0.179242\pi\)
−0.0394975 + 0.999220i \(0.512576\pi\)
\(242\) −15.5212 0.565049i −0.997742 0.0363227i
\(243\) 0 0
\(244\) −13.3132 + 6.44452i −0.852293 + 0.412568i
\(245\) −11.6454 20.1704i −0.743996 1.28864i
\(246\) 0 0
\(247\) 6.83242 14.2349i 0.434737 0.905747i
\(248\) 0.328913 3.00097i 0.0208860 0.190562i
\(249\) 0 0
\(250\) −8.04535 15.1854i −0.508832 0.960406i
\(251\) 26.7083 + 15.4201i 1.68581 + 0.973305i 0.957664 + 0.287887i \(0.0929528\pi\)
0.728150 + 0.685418i \(0.240381\pi\)
\(252\) 0 0
\(253\) 0.261906 0.453634i 0.0164659 0.0285197i
\(254\) −11.0875 + 17.6853i −0.695691 + 1.10968i
\(255\) 0 0
\(256\) −11.6404 + 10.9773i −0.727526 + 0.686080i
\(257\) −9.77864 16.9371i −0.609975 1.05651i −0.991244 0.132044i \(-0.957846\pi\)
0.381269 0.924464i \(-0.375487\pi\)
\(258\) 0 0
\(259\) 46.4997i 2.88935i
\(260\) −6.76044 + 11.7997i −0.419265 + 0.731789i
\(261\) 0 0
\(262\) −1.53934 + 0.815558i −0.0951008 + 0.0503853i
\(263\) 15.8081 + 27.3804i 0.974769 + 1.68835i 0.680695 + 0.732567i \(0.261678\pi\)
0.294074 + 0.955783i \(0.404989\pi\)
\(264\) 0 0
\(265\) 15.6247i 0.959816i
\(266\) 23.0822 + 14.4710i 1.41526 + 0.887274i
\(267\) 0 0
\(268\) −2.15689 0.157252i −0.131753 0.00960567i
\(269\) −0.118107 0.0681891i −0.00720111 0.00415756i 0.496395 0.868097i \(-0.334657\pi\)
−0.503596 + 0.863939i \(0.667990\pi\)
\(270\) 0 0
\(271\) 13.1075 7.56763i 0.796226 0.459701i −0.0459241 0.998945i \(-0.514623\pi\)
0.842150 + 0.539244i \(0.181290\pi\)
\(272\) 9.08736 + 1.33214i 0.551002 + 0.0807726i
\(273\) 0 0
\(274\) 0.935660 25.7015i 0.0565253 1.55268i
\(275\) −0.0956715 0.165708i −0.00576921 0.00999256i
\(276\) 0 0
\(277\) −10.7192 6.18871i −0.644051 0.371843i 0.142122 0.989849i \(-0.454607\pi\)
−0.786174 + 0.618006i \(0.787941\pi\)
\(278\) 0.245452 6.74229i 0.0147213 0.404376i
\(279\) 0 0
\(280\) −18.9211 13.8760i −1.13075 0.829247i
\(281\) 1.09096i 0.0650813i −0.999470 0.0325406i \(-0.989640\pi\)
0.999470 0.0325406i \(-0.0103598\pi\)
\(282\) 0 0
\(283\) −4.12015 + 2.37877i −0.244917 + 0.141403i −0.617435 0.786622i \(-0.711828\pi\)
0.372517 + 0.928025i \(0.378495\pi\)
\(284\) 13.4077 6.49026i 0.795603 0.385126i
\(285\) 0 0
\(286\) −0.314445 + 0.598299i −0.0185935 + 0.0353782i
\(287\) −36.2952 −2.14244
\(288\) 0 0
\(289\) 5.86392 + 10.1566i 0.344936 + 0.597447i
\(290\) −5.76019 3.61125i −0.338250 0.212060i
\(291\) 0 0
\(292\) −10.1662 6.90111i −0.594931 0.403857i
\(293\) 0.923728 1.59994i 0.0539647 0.0934697i −0.837781 0.546006i \(-0.816147\pi\)
0.891746 + 0.452537i \(0.149481\pi\)
\(294\) 0 0
\(295\) 3.11912 5.40247i 0.181602 0.314544i
\(296\) −12.0393 27.3676i −0.699772 1.59071i
\(297\) 0 0
\(298\) 11.2364 + 0.409061i 0.650909 + 0.0236963i
\(299\) 8.04144 + 11.7618i 0.465049 + 0.680202i
\(300\) 0 0
\(301\) 21.1393 + 36.6143i 1.21845 + 2.11041i
\(302\) −16.9394 + 8.97466i −0.974753 + 0.516434i
\(303\) 0 0
\(304\) 17.3319 + 2.54072i 0.994052 + 0.145720i
\(305\) −12.0784 6.97347i −0.691608 0.399300i
\(306\) 0 0
\(307\) −14.5220 −0.828815 −0.414408 0.910091i \(-0.636011\pi\)
−0.414408 + 0.910091i \(0.636011\pi\)
\(308\) −0.964871 0.654984i −0.0549786 0.0373212i
\(309\) 0 0
\(310\) 2.51543 1.33270i 0.142867 0.0756923i
\(311\) 15.6062 0.884944 0.442472 0.896782i \(-0.354102\pi\)
0.442472 + 0.896782i \(0.354102\pi\)
\(312\) 0 0
\(313\) −29.5504 −1.67029 −0.835143 0.550032i \(-0.814615\pi\)
−0.835143 + 0.550032i \(0.814615\pi\)
\(314\) 0.0809831 0.0429056i 0.00457014 0.00242130i
\(315\) 0 0
\(316\) 17.8951 26.3616i 1.00668 1.48296i
\(317\) 14.3523 0.806105 0.403052 0.915177i \(-0.367949\pi\)
0.403052 + 0.915177i \(0.367949\pi\)
\(318\) 0 0
\(319\) −0.292629 0.168950i −0.0163841 0.00945936i
\(320\) −14.7288 3.26787i −0.823363 0.182679i
\(321\) 0 0
\(322\) −21.7228 + 11.5089i −1.21056 + 0.641368i
\(323\) −5.02768 8.70819i −0.279747 0.484537i
\(324\) 0 0
\(325\) 5.18957 0.395682i 0.287866 0.0219485i
\(326\) 14.8759 + 0.541557i 0.823902 + 0.0299941i
\(327\) 0 0
\(328\) −21.3618 + 9.39728i −1.17951 + 0.518878i
\(329\) −22.2395 + 38.5200i −1.22610 + 2.12368i
\(330\) 0 0
\(331\) 11.0998 19.2255i 0.610102 1.05673i −0.381120 0.924525i \(-0.624462\pi\)
0.991223 0.132203i \(-0.0422050\pi\)
\(332\) 0.162280 0.239059i 0.00890630 0.0131201i
\(333\) 0 0
\(334\) −17.2675 10.8256i −0.944837 0.592349i
\(335\) −1.01960 1.76600i −0.0557069 0.0964871i
\(336\) 0 0
\(337\) 16.9924 0.925633 0.462817 0.886454i \(-0.346839\pi\)
0.462817 + 0.886454i \(0.346839\pi\)
\(338\) −10.9706 14.7529i −0.596719 0.802450i
\(339\) 0 0
\(340\) 3.77336 + 7.79510i 0.204639 + 0.422748i
\(341\) 0.122528 0.0707415i 0.00663525 0.00383086i
\(342\) 0 0
\(343\) 23.5348i 1.27076i
\(344\) 21.9215 + 16.0763i 1.18193 + 0.866777i
\(345\) 0 0
\(346\) 0.440375 12.0966i 0.0236747 0.650317i
\(347\) 10.8759 + 6.27918i 0.583846 + 0.337084i 0.762660 0.646799i \(-0.223893\pi\)
−0.178814 + 0.983883i \(0.557226\pi\)
\(348\) 0 0
\(349\) −14.8271 25.6812i −0.793674 1.37468i −0.923678 0.383170i \(-0.874832\pi\)
0.130004 0.991513i \(-0.458501\pi\)
\(350\) −0.326700 + 8.97405i −0.0174628 + 0.479683i
\(351\) 0 0
\(352\) −0.737463 0.135678i −0.0393069 0.00723164i
\(353\) 28.0507 16.1951i 1.49299 0.861977i 0.493020 0.870018i \(-0.335893\pi\)
0.999968 + 0.00804129i \(0.00255965\pi\)
\(354\) 0 0
\(355\) 12.1641 + 7.02297i 0.645606 + 0.372741i
\(356\) −2.38645 + 32.7330i −0.126482 + 1.73485i
\(357\) 0 0
\(358\) 20.5002 + 12.8523i 1.08347 + 0.679263i
\(359\) 2.96930i 0.156714i −0.996925 0.0783568i \(-0.975033\pi\)
0.996925 0.0783568i \(-0.0249673\pi\)
\(360\) 0 0
\(361\) −0.0890480 0.154236i −0.00468674 0.00811767i
\(362\) 14.7948 7.83844i 0.777598 0.411979i
\(363\) 0 0
\(364\) 27.4182 15.9515i 1.43710 0.836087i
\(365\) 11.5861i 0.606442i
\(366\) 0 0
\(367\) −2.58053 4.46960i −0.134702 0.233311i 0.790781 0.612099i \(-0.209674\pi\)
−0.925484 + 0.378787i \(0.876341\pi\)
\(368\) −9.80526 + 12.3979i −0.511134 + 0.646287i
\(369\) 0 0
\(370\) 14.9752 23.8864i 0.778522 1.24180i
\(371\) −18.2227 + 31.5626i −0.946074 + 1.63865i
\(372\) 0 0
\(373\) 4.57477 + 2.64124i 0.236873 + 0.136758i 0.613738 0.789509i \(-0.289665\pi\)
−0.376866 + 0.926268i \(0.622998\pi\)
\(374\) 0.201512 + 0.380347i 0.0104199 + 0.0196673i
\(375\) 0 0
\(376\) −3.11591 + 28.4292i −0.160691 + 1.46613i
\(377\) 7.58727 5.18736i 0.390764 0.267163i
\(378\) 0 0
\(379\) 18.1432 + 31.4249i 0.931951 + 1.61419i 0.779982 + 0.625802i \(0.215228\pi\)
0.151970 + 0.988385i \(0.451438\pi\)
\(380\) 7.19674 + 14.8672i 0.369185 + 0.762672i
\(381\) 0 0
\(382\) −10.0539 0.366011i −0.514402 0.0187268i
\(383\) −8.44275 4.87443i −0.431405 0.249072i 0.268540 0.963268i \(-0.413459\pi\)
−0.699945 + 0.714197i \(0.746792\pi\)
\(384\) 0 0
\(385\) 1.09963i 0.0560424i
\(386\) 16.8410 + 10.5582i 0.857186 + 0.537398i
\(387\) 0 0
\(388\) −12.7187 + 6.15670i −0.645692 + 0.312559i
\(389\) 14.8911i 0.755010i 0.926008 + 0.377505i \(0.123218\pi\)
−0.926008 + 0.377505i \(0.876782\pi\)
\(390\) 0 0
\(391\) 9.07352 0.458868
\(392\) 14.0659 + 31.9744i 0.710435 + 1.61495i
\(393\) 0 0
\(394\) −16.9367 + 27.0151i −0.853257 + 1.36100i
\(395\) 30.0435 1.51165
\(396\) 0 0
\(397\) 10.5034 18.1925i 0.527152 0.913055i −0.472347 0.881413i \(-0.656593\pi\)
0.999499 0.0316419i \(-0.0100736\pi\)
\(398\) 18.3664 + 0.668626i 0.920623 + 0.0335152i
\(399\) 0 0
\(400\) 2.13121 + 5.36631i 0.106560 + 0.268316i
\(401\) −13.7620 + 7.94551i −0.687243 + 0.396780i −0.802578 0.596547i \(-0.796539\pi\)
0.115335 + 0.993327i \(0.463206\pi\)
\(402\) 0 0
\(403\) 0.292575 + 3.83728i 0.0145742 + 0.191148i
\(404\) 1.56983 21.5321i 0.0781020 1.07126i
\(405\) 0 0
\(406\) 7.42416 + 14.0129i 0.368455 + 0.695448i
\(407\) 0.700602 1.21348i 0.0347276 0.0601499i
\(408\) 0 0
\(409\) 13.7176 + 7.91987i 0.678292 + 0.391612i 0.799211 0.601050i \(-0.205251\pi\)
−0.120919 + 0.992662i \(0.538584\pi\)
\(410\) −18.6445 11.6888i −0.920787 0.577271i
\(411\) 0 0
\(412\) 12.3247 18.1558i 0.607196 0.894474i
\(413\) −12.6016 + 7.27551i −0.620082 + 0.358004i
\(414\) 0 0
\(415\) 0.272448 0.0133739
\(416\) 12.0071 16.4873i 0.588696 0.808355i
\(417\) 0 0
\(418\) 0.384333 + 0.725418i 0.0187984 + 0.0354813i
\(419\) 19.4162 11.2100i 0.948544 0.547642i 0.0559155 0.998436i \(-0.482192\pi\)
0.892628 + 0.450793i \(0.148859\pi\)
\(420\) 0 0
\(421\) −1.50715 −0.0734541 −0.0367270 0.999325i \(-0.511693\pi\)
−0.0367270 + 0.999325i \(0.511693\pi\)
\(422\) 12.3374 + 7.73470i 0.600574 + 0.376519i
\(423\) 0 0
\(424\) −2.55312 + 23.2944i −0.123991 + 1.13128i
\(425\) 1.65723 2.87041i 0.0803876 0.139235i
\(426\) 0 0
\(427\) 16.2660 + 28.1735i 0.787166 + 1.36341i
\(428\) 0.561836 7.70625i 0.0271573 0.372496i
\(429\) 0 0
\(430\) −0.932558 + 25.6163i −0.0449719 + 1.23533i
\(431\) −20.0881 + 11.5979i −0.967609 + 0.558649i −0.898507 0.438960i \(-0.855347\pi\)
−0.0691026 + 0.997610i \(0.522014\pi\)
\(432\) 0 0
\(433\) −7.02656 + 12.1704i −0.337675 + 0.584870i −0.983995 0.178197i \(-0.942974\pi\)
0.646320 + 0.763066i \(0.276307\pi\)
\(434\) −6.63560 0.241568i −0.318519 0.0115956i
\(435\) 0 0
\(436\) 1.28670 1.89546i 0.0616216 0.0907761i
\(437\) 17.3055 0.827834
\(438\) 0 0
\(439\) 6.40295 + 11.0902i 0.305596 + 0.529308i 0.977394 0.211426i \(-0.0678109\pi\)
−0.671798 + 0.740735i \(0.734478\pi\)
\(440\) −0.284708 0.647194i −0.0135729 0.0308538i
\(441\) 0 0
\(442\) −11.6987 + 0.464795i −0.556452 + 0.0221080i
\(443\) 6.06204i 0.288016i −0.989577 0.144008i \(-0.954001\pi\)
0.989577 0.144008i \(-0.0459992\pi\)
\(444\) 0 0
\(445\) −26.8009 + 15.4735i −1.27048 + 0.733514i
\(446\) −2.82037 1.76818i −0.133548 0.0837257i
\(447\) 0 0
\(448\) 25.9416 + 23.7791i 1.22563 + 1.12346i
\(449\) 6.72376 + 3.88197i 0.317314 + 0.183201i 0.650195 0.759768i \(-0.274687\pi\)
−0.332881 + 0.942969i \(0.608021\pi\)
\(450\) 0 0
\(451\) −0.947179 0.546854i −0.0446009 0.0257503i
\(452\) −8.52063 17.6021i −0.400777 0.827935i
\(453\) 0 0
\(454\) −38.5680 1.40407i −1.81009 0.0658961i
\(455\) 26.9653 + 12.9427i 1.26415 + 0.606764i
\(456\) 0 0
\(457\) −11.5888 + 6.69082i −0.542103 + 0.312983i −0.745931 0.666023i \(-0.767995\pi\)
0.203828 + 0.979007i \(0.434662\pi\)
\(458\) −9.37582 17.6966i −0.438103 0.826907i
\(459\) 0 0
\(460\) −14.8652 1.08377i −0.693094 0.0505310i
\(461\) 17.4992 30.3095i 0.815019 1.41165i −0.0942954 0.995544i \(-0.530060\pi\)
0.909314 0.416110i \(-0.136607\pi\)
\(462\) 0 0
\(463\) 18.2272i 0.847092i 0.905875 + 0.423546i \(0.139215\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(464\) 7.99763 + 6.32515i 0.371281 + 0.293638i
\(465\) 0 0
\(466\) 8.17152 + 15.4235i 0.378538 + 0.714480i
\(467\) 11.4947i 0.531910i −0.963985 0.265955i \(-0.914313\pi\)
0.963985 0.265955i \(-0.0856873\pi\)
\(468\) 0 0
\(469\) 4.75655i 0.219637i
\(470\) −23.8295 + 12.6251i −1.09917 + 0.582353i
\(471\) 0 0
\(472\) −5.53300 + 7.54473i −0.254677 + 0.347275i
\(473\) 1.27401i 0.0585788i
\(474\) 0 0
\(475\) 3.16076 5.47460i 0.145026 0.251192i
\(476\) 1.46886 20.1473i 0.0673253 0.923448i
\(477\) 0 0
\(478\) −21.7466 + 11.5216i −0.994668 + 0.526984i
\(479\) −3.75092 + 2.16560i −0.171384 + 0.0989487i −0.583238 0.812301i \(-0.698215\pi\)
0.411854 + 0.911250i \(0.364881\pi\)
\(480\) 0 0
\(481\) 21.5110 + 31.4630i 0.980817 + 1.43459i
\(482\) 0.743457 20.4219i 0.0338635 0.930192i
\(483\) 0 0
\(484\) 9.57019 + 19.7703i 0.435009 + 0.898652i
\(485\) −11.5390 6.66203i −0.523958 0.302507i
\(486\) 0 0
\(487\) −25.1811 14.5383i −1.14107 0.658795i −0.194372 0.980928i \(-0.562267\pi\)
−0.946694 + 0.322133i \(0.895600\pi\)
\(488\) 16.8679 + 12.3702i 0.763574 + 0.559974i
\(489\) 0 0
\(490\) −17.4959 + 27.9072i −0.790386 + 1.26072i
\(491\) 15.9306 9.19753i 0.718938 0.415079i −0.0954238 0.995437i \(-0.530421\pi\)
0.814362 + 0.580358i \(0.197087\pi\)
\(492\) 0 0
\(493\) 5.85313i 0.263612i
\(494\) −22.3124 + 0.886481i −1.00388 + 0.0398847i
\(495\) 0 0
\(496\) −3.96796 + 1.57586i −0.178167 + 0.0707582i
\(497\) −16.3814 28.3735i −0.734808 1.27273i
\(498\) 0 0
\(499\) 3.03922 0.136054 0.0680270 0.997683i \(-0.478330\pi\)
0.0680270 + 0.997683i \(0.478330\pi\)
\(500\) −13.6498 + 20.1079i −0.610439 + 0.899252i
\(501\) 0 0
\(502\) 1.58673 43.5856i 0.0708193 1.94532i
\(503\) 0.148336 0.256925i 0.00661396 0.0114557i −0.862699 0.505717i \(-0.831228\pi\)
0.869313 + 0.494261i \(0.164561\pi\)
\(504\) 0 0
\(505\) 17.6299 10.1786i 0.784520 0.452943i
\(506\) −0.740291 0.0269502i −0.0329100 0.00119808i
\(507\) 0 0
\(508\) 29.4414 + 2.14647i 1.30625 + 0.0952342i
\(509\) 12.2950 + 21.2955i 0.544965 + 0.943906i 0.998609 + 0.0527236i \(0.0167902\pi\)
−0.453645 + 0.891183i \(0.649876\pi\)
\(510\) 0 0
\(511\) −13.5125 + 23.4044i −0.597760 + 1.03535i
\(512\) 21.4248 + 7.27871i 0.946850 + 0.321677i
\(513\) 0 0
\(514\) −14.6914 + 23.4337i −0.648008 + 1.03362i
\(515\) 20.6916 0.911781
\(516\) 0 0
\(517\) −1.16075 + 0.670158i −0.0510496 + 0.0294735i
\(518\) −58.1088 + 30.7866i −2.55315 + 1.35268i
\(519\) 0 0
\(520\) 19.2216 + 0.635857i 0.842924 + 0.0278842i
\(521\) 27.3639 1.19883 0.599417 0.800437i \(-0.295399\pi\)
0.599417 + 0.800437i \(0.295399\pi\)
\(522\) 0 0
\(523\) −18.8023 + 10.8555i −0.822167 + 0.474678i −0.851163 0.524901i \(-0.824102\pi\)
0.0289964 + 0.999580i \(0.490769\pi\)
\(524\) 2.03834 + 1.38369i 0.0890452 + 0.0604466i
\(525\) 0 0
\(526\) 23.7500 37.8828i 1.03555 1.65177i
\(527\) 2.12244 + 1.22539i 0.0924549 + 0.0533789i
\(528\) 0 0
\(529\) 3.69213 6.39496i 0.160527 0.278042i
\(530\) −19.5255 + 10.3448i −0.848134 + 0.449350i
\(531\) 0 0
\(532\) 2.80150 38.4259i 0.121460 1.66597i
\(533\) 24.5584 16.7904i 1.06374 0.727272i
\(534\) 0 0
\(535\) 6.30966 3.64288i 0.272790 0.157496i
\(536\) 1.23153 + 2.79950i 0.0531940 + 0.120920i
\(537\) 0 0
\(538\) −0.00701669 + 0.192740i −0.000302511 + 0.00830962i
\(539\) −0.818534 + 1.41774i −0.0352568 + 0.0610665i
\(540\) 0 0
\(541\) 33.0198 1.41963 0.709816 0.704387i \(-0.248778\pi\)
0.709816 + 0.704387i \(0.248778\pi\)
\(542\) −18.1352 11.3696i −0.778974 0.488364i
\(543\) 0 0
\(544\) −4.35186 12.2381i −0.186584 0.524704i
\(545\) 2.16019 0.0925325
\(546\) 0 0
\(547\) 29.1932i 1.24821i −0.781340 0.624105i \(-0.785464\pi\)
0.781340 0.624105i \(-0.214536\pi\)
\(548\) −32.7376 + 15.8472i −1.39848 + 0.676960i
\(549\) 0 0
\(550\) −0.143736 + 0.229269i −0.00612893 + 0.00977606i
\(551\) 11.1634i 0.475576i
\(552\) 0 0
\(553\) −60.6894 35.0390i −2.58077 1.49001i
\(554\) −0.636821 + 17.4927i −0.0270559 + 0.743194i
\(555\) 0 0
\(556\) −8.58807 + 4.15721i −0.364215 + 0.176305i
\(557\) 5.03804 + 8.72614i 0.213469 + 0.369739i 0.952798 0.303606i \(-0.0981905\pi\)
−0.739329 + 0.673344i \(0.764857\pi\)
\(558\) 0 0
\(559\) −31.2414 14.9951i −1.32137 0.634225i
\(560\) −4.81290 + 32.8319i −0.203382 + 1.38740i
\(561\) 0 0
\(562\) −1.36333 + 0.722305i −0.0575086 + 0.0304686i
\(563\) −20.2190 11.6734i −0.852128 0.491977i 0.00923997 0.999957i \(-0.497059\pi\)
−0.861368 + 0.507981i \(0.830392\pi\)
\(564\) 0 0
\(565\) 9.22000 15.9695i 0.387888 0.671842i
\(566\) 5.70052 + 3.57384i 0.239611 + 0.150220i
\(567\) 0 0
\(568\) −16.9876 12.4580i −0.712785 0.522727i
\(569\) 21.2506 + 36.8071i 0.890870 + 1.54303i 0.838834 + 0.544388i \(0.183238\pi\)
0.0520365 + 0.998645i \(0.483429\pi\)
\(570\) 0 0
\(571\) 5.43630i 0.227502i 0.993509 + 0.113751i \(0.0362866\pi\)
−0.993509 + 0.113751i \(0.963713\pi\)
\(572\) 0.955858 0.00317407i 0.0399664 0.000132714i
\(573\) 0 0
\(574\) 24.0304 + 45.3567i 1.00301 + 1.89315i
\(575\) 2.85213 + 4.94004i 0.118942 + 0.206014i
\(576\) 0 0
\(577\) 4.39252i 0.182863i −0.995811 0.0914316i \(-0.970856\pi\)
0.995811 0.0914316i \(-0.0291443\pi\)
\(578\) 8.80990 14.0524i 0.366443 0.584502i
\(579\) 0 0
\(580\) −0.699116 + 9.58922i −0.0290292 + 0.398171i
\(581\) −0.550357 0.317749i −0.0228327 0.0131825i
\(582\) 0 0
\(583\) −0.951096 + 0.549116i −0.0393904 + 0.0227420i
\(584\) −1.89320 + 17.2734i −0.0783412 + 0.714777i
\(585\) 0 0
\(586\) −2.61097 0.0950520i −0.107858 0.00392656i
\(587\) −15.7922 27.3529i −0.651813 1.12897i −0.982683 0.185297i \(-0.940675\pi\)
0.330869 0.943677i \(-0.392658\pi\)
\(588\) 0 0
\(589\) 4.04803 + 2.33713i 0.166796 + 0.0962998i
\(590\) −8.81636 0.320959i −0.362964 0.0132137i
\(591\) 0 0
\(592\) −26.2292 + 33.1647i −1.07801 + 1.36306i
\(593\) 8.50710i 0.349345i −0.984627 0.174672i \(-0.944113\pi\)
0.984627 0.174672i \(-0.0558866\pi\)
\(594\) 0 0
\(595\) 16.4960 9.52397i 0.676270 0.390445i
\(596\) −6.92825 14.3125i −0.283792 0.586265i
\(597\) 0 0
\(598\) 9.37414 17.8363i 0.383337 0.729382i
\(599\) −26.3372 −1.07611 −0.538055 0.842910i \(-0.680841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(600\) 0 0
\(601\) 3.29321 + 5.70401i 0.134333 + 0.232672i 0.925342 0.379132i \(-0.123777\pi\)
−0.791009 + 0.611804i \(0.790444\pi\)
\(602\) 31.7594 50.6585i 1.29442 2.06469i
\(603\) 0 0
\(604\) 22.4305 + 15.2265i 0.912685 + 0.619559i
\(605\) −10.3557 + 17.9366i −0.421019 + 0.729226i
\(606\) 0 0
\(607\) −2.47666 + 4.28970i −0.100524 + 0.174113i −0.911901 0.410411i \(-0.865385\pi\)
0.811376 + 0.584524i \(0.198719\pi\)
\(608\) −8.30009 23.3411i −0.336613 0.946607i
\(609\) 0 0
\(610\) −0.717574 + 19.7109i −0.0290537 + 0.798071i
\(611\) −2.77166 36.3518i −0.112130 1.47064i
\(612\) 0 0
\(613\) 6.25855 + 10.8401i 0.252780 + 0.437828i 0.964290 0.264848i \(-0.0853217\pi\)
−0.711510 + 0.702676i \(0.751988\pi\)
\(614\) 9.61476 + 18.1476i 0.388020 + 0.732376i
\(615\) 0 0
\(616\) −0.179683 + 1.63941i −0.00723965 + 0.0660538i
\(617\) −22.7830 13.1538i −0.917210 0.529551i −0.0344658 0.999406i \(-0.510973\pi\)
−0.882744 + 0.469855i \(0.844306\pi\)
\(618\) 0 0
\(619\) 2.56782 0.103209 0.0516047 0.998668i \(-0.483566\pi\)
0.0516047 + 0.998668i \(0.483566\pi\)
\(620\) −3.33084 2.26108i −0.133770 0.0908071i
\(621\) 0 0
\(622\) −10.3325 19.5024i −0.414297 0.781974i
\(623\) 72.1855 2.89205
\(624\) 0 0
\(625\) −15.6988 −0.627950
\(626\) 19.5648 + 36.9279i 0.781965 + 1.47594i
\(627\) 0 0
\(628\) −0.107235 0.0727942i −0.00427913 0.00290481i
\(629\) 24.2718 0.967781
\(630\) 0 0
\(631\) 32.2263 + 18.6058i 1.28291 + 0.740687i 0.977379 0.211496i \(-0.0678337\pi\)
0.305528 + 0.952183i \(0.401167\pi\)
\(632\) −44.7911 4.90920i −1.78169 0.195278i
\(633\) 0 0
\(634\) −9.50238 17.9355i −0.377388 0.712309i
\(635\) 13.9175 + 24.1058i 0.552299 + 0.956610i
\(636\) 0 0
\(637\) −25.1319 36.7591i −0.995763 1.45645i
\(638\) −0.0173850 + 0.477545i −0.000688279 + 0.0189062i
\(639\) 0 0
\(640\) 5.66792 + 20.5695i 0.224044 + 0.813082i
\(641\) −23.2163 + 40.2117i −0.916987 + 1.58827i −0.113021 + 0.993593i \(0.536053\pi\)
−0.803966 + 0.594675i \(0.797281\pi\)
\(642\) 0 0
\(643\) −8.31198 + 14.3968i −0.327792 + 0.567753i −0.982073 0.188498i \(-0.939638\pi\)
0.654281 + 0.756251i \(0.272971\pi\)
\(644\) 28.7645 + 19.5262i 1.13348 + 0.769440i
\(645\) 0 0
\(646\) −7.55354 + 12.0484i −0.297190 + 0.474039i
\(647\) 14.5656 + 25.2283i 0.572632 + 0.991828i 0.996294 + 0.0860076i \(0.0274109\pi\)
−0.423662 + 0.905820i \(0.639256\pi\)
\(648\) 0 0
\(649\) −0.438475 −0.0172117
\(650\) −3.93039 6.22323i −0.154163 0.244095i
\(651\) 0 0
\(652\) −9.17232 18.9484i −0.359216 0.742077i
\(653\) −13.0481 + 7.53330i −0.510610 + 0.294801i −0.733084 0.680138i \(-0.761920\pi\)
0.222475 + 0.974938i \(0.428587\pi\)
\(654\) 0 0
\(655\) 2.32303i 0.0907682i
\(656\) 25.8866 + 20.4732i 1.01070 + 0.799343i
\(657\) 0 0
\(658\) 62.8612 + 2.28846i 2.45059 + 0.0892134i
\(659\) −42.5147 24.5459i −1.65614 0.956171i −0.974473 0.224506i \(-0.927923\pi\)
−0.681664 0.731665i \(-0.738744\pi\)
\(660\) 0 0
\(661\) −3.87600 6.71343i −0.150759 0.261122i 0.780748 0.624846i \(-0.214838\pi\)
−0.931507 + 0.363724i \(0.881505\pi\)
\(662\) −31.3743 1.14218i −1.21940 0.0443920i
\(663\) 0 0
\(664\) −0.406185 0.0445188i −0.0157630 0.00172766i
\(665\) 31.4620 18.1646i 1.22005 0.704393i
\(666\) 0 0
\(667\) 8.72379 + 5.03668i 0.337787 + 0.195021i
\(668\) −2.09576 + 28.7459i −0.0810876 + 1.11221i
\(669\) 0 0
\(670\) −1.53184 + 2.44339i −0.0591803 + 0.0943966i
\(671\) 0.980307i 0.0378443i
\(672\) 0 0
\(673\) −4.40466 7.62909i −0.169787 0.294080i 0.768558 0.639780i \(-0.220975\pi\)
−0.938345 + 0.345700i \(0.887641\pi\)
\(674\) −11.2503 21.2347i −0.433347 0.817929i
\(675\) 0 0
\(676\) −11.1727 + 23.4770i −0.429717 + 0.902963i
\(677\) 33.6470i 1.29316i 0.762846 + 0.646580i \(0.223802\pi\)
−0.762846 + 0.646580i \(0.776198\pi\)
\(678\) 0 0
\(679\) 15.5395 + 26.9153i 0.596353 + 1.03291i
\(680\) 7.24294 9.87640i 0.277754 0.378743i
\(681\) 0 0
\(682\) −0.169526 0.106281i −0.00649149 0.00406972i
\(683\) −1.34924 + 2.33695i −0.0516273 + 0.0894211i −0.890684 0.454623i \(-0.849774\pi\)
0.839057 + 0.544044i \(0.183107\pi\)
\(684\) 0 0
\(685\) −29.7011 17.1479i −1.13482 0.655189i
\(686\) 29.4104 15.5819i 1.12290 0.594921i
\(687\) 0 0
\(688\) 5.57610 38.0382i 0.212587 1.45019i
\(689\) −2.27105 29.7860i −0.0865202 1.13476i
\(690\) 0 0
\(691\) −2.01331 3.48715i −0.0765898 0.132657i 0.825187 0.564860i \(-0.191070\pi\)
−0.901777 + 0.432203i \(0.857737\pi\)
\(692\) −15.4082 + 7.45861i −0.585731 + 0.283534i
\(693\) 0 0
\(694\) 0.646130 17.7484i 0.0245268 0.673721i
\(695\) −7.79151 4.49843i −0.295549 0.170635i
\(696\) 0 0
\(697\) 18.9453i 0.717605i
\(698\) −22.2760 + 35.5318i −0.843161 + 1.34490i
\(699\) 0 0
\(700\) 11.4308 5.53329i 0.432044 0.209139i
\(701\) 26.9620i 1.01834i 0.860666 + 0.509171i \(0.170048\pi\)
−0.860666 + 0.509171i \(0.829952\pi\)
\(702\) 0 0
\(703\) 46.2925 1.74595
\(704\) 0.318710 + 1.01141i 0.0120118 + 0.0381189i
\(705\) 0 0
\(706\) −38.8102 24.3313i −1.46064 0.915722i
\(707\) −47.4844 −1.78583
\(708\) 0 0
\(709\) 1.66790 2.88889i 0.0626393 0.108494i −0.833005 0.553265i \(-0.813382\pi\)
0.895644 + 0.444771i \(0.146715\pi\)
\(710\) 0.722667 19.8508i 0.0271212 0.744988i
\(711\) 0 0
\(712\) 42.4852 18.6897i 1.59220 0.700425i
\(713\) −3.65277 + 2.10893i −0.136797 + 0.0789799i
\(714\) 0 0
\(715\) 0.508695 + 0.744041i 0.0190241 + 0.0278256i
\(716\) 2.48812 34.1276i 0.0929854 1.27541i
\(717\) 0 0
\(718\) −3.71061 + 1.96592i −0.138479 + 0.0733674i
\(719\) −3.27398 + 5.67070i −0.122099 + 0.211481i −0.920595 0.390518i \(-0.872296\pi\)
0.798496 + 0.602000i \(0.205629\pi\)
\(720\) 0 0
\(721\) −41.7981 24.1321i −1.55664 0.898727i
\(722\) −0.133785 + 0.213396i −0.00497896 + 0.00794179i
\(723\) 0 0
\(724\) −19.5908 13.2988i −0.728085 0.494246i
\(725\) 3.18671 1.83985i 0.118351 0.0683303i
\(726\) 0 0
\(727\) 39.4666 1.46374 0.731868 0.681447i \(-0.238649\pi\)
0.731868 + 0.681447i \(0.238649\pi\)
\(728\) −38.0871 23.7022i −1.41160 0.878462i
\(729\) 0 0
\(730\) −14.4786 + 7.67092i −0.535878 + 0.283913i
\(731\) −19.1118 + 11.0342i −0.706877 + 0.408116i
\(732\) 0 0
\(733\) −23.7942 −0.878860 −0.439430 0.898277i \(-0.644820\pi\)
−0.439430 + 0.898277i \(0.644820\pi\)
\(734\) −3.87696 + 6.18402i −0.143101 + 0.228256i
\(735\) 0 0
\(736\) 21.9851 + 4.04479i 0.810380 + 0.149093i
\(737\) −0.0716661 + 0.124129i −0.00263986 + 0.00457236i
\(738\) 0 0
\(739\) −1.53475 2.65827i −0.0564568 0.0977861i 0.836416 0.548096i \(-0.184647\pi\)
−0.892873 + 0.450309i \(0.851314\pi\)
\(740\) −39.7647 2.89910i −1.46178 0.106573i
\(741\) 0 0
\(742\) 51.5074 + 1.87512i 1.89090 + 0.0688379i
\(743\) 32.7810 18.9261i 1.20262 0.694332i 0.241482 0.970405i \(-0.422366\pi\)
0.961137 + 0.276073i \(0.0890331\pi\)
\(744\) 0 0
\(745\) 7.49691 12.9850i 0.274665 0.475734i
\(746\) 0.271785 7.46562i 0.00995076 0.273336i
\(747\) 0 0
\(748\) 0.341887 0.503642i 0.0125006 0.0184150i
\(749\) −16.9944 −0.620963
\(750\) 0 0
\(751\) 2.75896 + 4.77866i 0.100676 + 0.174376i 0.911963 0.410272i \(-0.134566\pi\)
−0.811287 + 0.584647i \(0.801233\pi\)
\(752\) 37.5898 14.9286i 1.37076 0.544392i
\(753\) 0 0
\(754\) −11.5058 6.04705i −0.419017 0.220221i
\(755\) 25.5633i 0.930345i
\(756\) 0 0
\(757\) 18.7724 10.8383i 0.682296 0.393924i −0.118424 0.992963i \(-0.537784\pi\)
0.800720 + 0.599039i \(0.204451\pi\)
\(758\) 27.2581 43.4786i 0.990060 1.57921i
\(759\) 0 0
\(760\) 13.8141 18.8368i 0.501091 0.683282i
\(761\) −16.0378 9.25942i −0.581369 0.335654i 0.180308 0.983610i \(-0.442291\pi\)
−0.761677 + 0.647957i \(0.775624\pi\)
\(762\) 0 0
\(763\) −4.36370 2.51938i −0.157976 0.0912078i
\(764\) 6.19911 + 12.8063i 0.224276 + 0.463315i
\(765\) 0 0
\(766\) −0.501581 + 13.7778i −0.0181229 + 0.497813i
\(767\) 5.16087 10.7524i 0.186348 0.388245i
\(768\) 0 0
\(769\) 1.51439 0.874333i 0.0546103 0.0315293i −0.472446 0.881359i \(-0.656629\pi\)
0.527057 + 0.849830i \(0.323296\pi\)
\(770\) −1.37417 + 0.728046i −0.0495215 + 0.0262370i
\(771\) 0 0
\(772\) 2.04400 28.0359i 0.0735652 1.00904i
\(773\) −3.35588 + 5.81256i −0.120703 + 0.209063i −0.920045 0.391813i \(-0.871848\pi\)
0.799342 + 0.600876i \(0.205181\pi\)
\(774\) 0 0
\(775\) 1.54074i 0.0553449i
\(776\) 16.1146 + 11.8178i 0.578479 + 0.424233i
\(777\) 0 0
\(778\) 18.6088 9.85914i 0.667159 0.353467i
\(779\) 36.1335i 1.29462i
\(780\) 0 0
\(781\) 0.987265i 0.0353271i
\(782\) −6.00741 11.3388i −0.214825 0.405475i
\(783\) 0 0
\(784\) 30.6444 38.7473i 1.09444 1.38383i
\(785\) 0.122212i 0.00436193i
\(786\) 0 0
\(787\) −25.3707 + 43.9434i −0.904369 + 1.56641i −0.0826068 + 0.996582i \(0.526325\pi\)
−0.821762 + 0.569831i \(0.807009\pi\)
\(788\) 44.9732 + 3.27883i 1.60210 + 0.116804i
\(789\) 0 0
\(790\) −19.8912 37.5441i −0.707699 1.33576i
\(791\) −37.2497 + 21.5061i −1.32445 + 0.764670i
\(792\) 0 0
\(793\) −24.0392 11.5383i −0.853658 0.409735i
\(794\) −29.6885 1.08081i −1.05361 0.0383565i
\(795\) 0 0
\(796\) −11.3245 23.3944i −0.401385 0.829192i
\(797\) −8.65924 4.99942i −0.306726 0.177088i 0.338734 0.940882i \(-0.390001\pi\)
−0.645461 + 0.763794i \(0.723335\pi\)
\(798\) 0 0
\(799\) −20.1066 11.6085i −0.711320 0.410681i
\(800\) 5.29503 6.21622i 0.187208 0.219777i
\(801\) 0 0
\(802\) 19.0408 + 11.9373i 0.672353 + 0.421520i
\(803\) −0.705260 + 0.407182i −0.0248881 + 0.0143691i
\(804\) 0 0
\(805\) 32.7819i 1.15541i
\(806\) 4.60158 2.90621i 0.162084 0.102367i
\(807\) 0 0
\(808\) −27.9472 + 12.2943i −0.983179 + 0.432511i
\(809\) −1.54330 2.67308i −0.0542596 0.0939804i 0.837620 0.546254i \(-0.183947\pi\)
−0.891879 + 0.452273i \(0.850613\pi\)
\(810\) 0 0
\(811\) 28.0084 0.983508 0.491754 0.870734i \(-0.336356\pi\)
0.491754 + 0.870734i \(0.336356\pi\)
\(812\) 12.5959 18.5553i 0.442030 0.651165i
\(813\) 0 0
\(814\) −1.98029 0.0720923i −0.0694092 0.00252683i
\(815\) 9.92517 17.1909i 0.347664 0.602171i
\(816\) 0 0
\(817\) −36.4511 + 21.0451i −1.27526 + 0.736273i
\(818\) 0.814958 22.3859i 0.0284943 0.782706i
\(819\) 0 0
\(820\) −2.26289 + 31.0382i −0.0790235 + 1.08390i
\(821\) 11.8321 + 20.4937i 0.412942 + 0.715236i 0.995210 0.0977607i \(-0.0311680\pi\)
−0.582268 + 0.812997i \(0.697835\pi\)
\(822\) 0 0
\(823\) −7.69409 + 13.3266i −0.268199 + 0.464535i −0.968397 0.249414i \(-0.919762\pi\)
0.700198 + 0.713949i \(0.253095\pi\)
\(824\) −30.8486 3.38107i −1.07466 0.117785i
\(825\) 0 0
\(826\) 17.4352 + 10.9307i 0.606647 + 0.380326i
\(827\) −32.9357 −1.14529 −0.572643 0.819805i \(-0.694082\pi\)
−0.572643 + 0.819805i \(0.694082\pi\)
\(828\) 0 0
\(829\) −7.25966 + 4.19137i −0.252138 + 0.145572i −0.620743 0.784014i \(-0.713169\pi\)
0.368605 + 0.929586i \(0.379836\pi\)
\(830\) −0.180382 0.340467i −0.00626117 0.0118178i
\(831\) 0 0
\(832\) −28.5531 4.08886i −0.989902 0.141756i
\(833\) −28.3575 −0.982528
\(834\) 0 0
\(835\) −23.5364 + 13.5887i −0.814509 + 0.470257i
\(836\) 0.652065 0.960571i 0.0225521 0.0332221i
\(837\) 0 0
\(838\) −26.8637 16.8417i −0.927992 0.581788i
\(839\) −24.9098 14.3817i −0.859983 0.496512i 0.00402335 0.999992i \(-0.498719\pi\)
−0.864007 + 0.503480i \(0.832053\pi\)
\(840\) 0 0
\(841\) −11.2509 + 19.4872i −0.387964 + 0.671973i
\(842\) 0.997857 + 1.88343i 0.0343884 + 0.0649072i
\(843\) 0 0
\(844\) 1.49739 20.5385i 0.0515423 0.706965i
\(845\) −24.2329 + 3.71691i −0.833636 + 0.127865i
\(846\) 0 0
\(847\) 41.8381 24.1552i 1.43757 0.829983i
\(848\) 30.8005 12.2323i 1.05769 0.420058i
\(849\) 0 0
\(850\) −4.68426 0.170530i −0.160669 0.00584913i
\(851\) −20.8862 + 36.1759i −0.715969 + 1.24009i
\(852\) 0 0
\(853\) 23.9537 0.820160 0.410080 0.912049i \(-0.365501\pi\)
0.410080 + 0.912049i \(0.365501\pi\)
\(854\) 24.4379 38.9801i 0.836247 1.33387i
\(855\) 0 0
\(856\) −10.0022 + 4.40006i −0.341867 + 0.150391i
\(857\) −35.6876 −1.21907 −0.609533 0.792761i \(-0.708643\pi\)
−0.609533 + 0.792761i \(0.708643\pi\)
\(858\) 0 0
\(859\) 34.6818i 1.18333i 0.806185 + 0.591664i \(0.201529\pi\)
−0.806185 + 0.591664i \(0.798471\pi\)
\(860\) 32.6290 15.7947i 1.11264 0.538594i
\(861\) 0 0
\(862\) 27.7933 + 17.4245i 0.946645 + 0.593482i
\(863\) 23.4077i 0.796807i 0.917210 + 0.398404i \(0.130436\pi\)
−0.917210 + 0.398404i \(0.869564\pi\)
\(864\) 0 0
\(865\) −13.9790 8.07080i −0.475301 0.274415i
\(866\) 19.8609 + 0.723036i 0.674902 + 0.0245698i
\(867\) 0 0
\(868\) 4.09143 + 8.45217i 0.138872 + 0.286885i
\(869\) −1.05585 1.82879i −0.0358174 0.0620375i
\(870\) 0 0
\(871\) −2.20041 3.21842i −0.0745579 0.109052i
\(872\) −3.22058 0.352983i −0.109063 0.0119535i
\(873\) 0 0
\(874\) −11.4576 21.6260i −0.387561 0.731509i
\(875\) 46.2920 + 26.7267i 1.56496 + 0.903528i
\(876\) 0 0
\(877\) −22.9591 + 39.7663i −0.775274 + 1.34281i 0.159367 + 0.987219i \(0.449055\pi\)
−0.934641 + 0.355594i \(0.884279\pi\)
\(878\) 9.61975 15.3442i 0.324651 0.517840i
\(879\) 0 0
\(880\) −0.620273 + 0.784283i −0.0209094 + 0.0264382i
\(881\) −3.74833 6.49229i −0.126284 0.218731i 0.795950 0.605362i \(-0.206972\pi\)
−0.922234 + 0.386632i \(0.873638\pi\)
\(882\) 0 0
\(883\) 50.0570i 1.68455i −0.539046 0.842276i \(-0.681215\pi\)
0.539046 0.842276i \(-0.318785\pi\)
\(884\) 8.32635 + 14.3117i 0.280045 + 0.481354i
\(885\) 0 0
\(886\) −7.57549 + 4.01357i −0.254503 + 0.134838i
\(887\) −11.5973 20.0872i −0.389400 0.674461i 0.602969 0.797765i \(-0.293984\pi\)
−0.992369 + 0.123304i \(0.960651\pi\)
\(888\) 0 0
\(889\) 64.9266i 2.17757i
\(890\) 37.0810 + 23.2472i 1.24296 + 0.779249i
\(891\) 0 0
\(892\) −0.342309 + 4.69518i −0.0114613 + 0.157206i
\(893\) −38.3483 22.1404i −1.28328 0.740901i
\(894\) 0 0
\(895\) 27.9427 16.1327i 0.934021 0.539257i
\(896\) 12.5403 48.1618i 0.418941 1.60897i
\(897\) 0 0
\(898\) 0.399456 10.9726i 0.0133300 0.366160i
\(899\) 1.36042 + 2.35632i 0.0453726 + 0.0785877i
\(900\) 0 0
\(901\) −16.4750 9.51184i −0.548861 0.316885i
\(902\) −0.0562715 + 1.54571i −0.00187364 + 0.0514666i
\(903\) 0 0
\(904\) −16.3553 + 22.3019i −0.543970 + 0.741751i
\(905\) 22.3269i 0.742172i
\(906\) 0 0
\(907\) 19.4736 11.2431i 0.646610 0.373321i −0.140546 0.990074i \(-0.544886\pi\)
0.787156 + 0.616754i \(0.211553\pi\)
\(908\) 23.7806 + 49.1265i 0.789186 + 1.63032i
\(909\) 0 0
\(910\) −1.67927 42.2666i −0.0556672 1.40112i
\(911\) 3.74738 0.124156 0.0620781 0.998071i \(-0.480227\pi\)
0.0620781 + 0.998071i \(0.480227\pi\)
\(912\) 0 0
\(913\) −0.00957493 0.0165843i −0.000316884 0.000548859i
\(914\) 16.0340 + 10.0522i 0.530358 + 0.332498i
\(915\) 0 0
\(916\) −15.9071 + 23.4332i −0.525587 + 0.774253i
\(917\) 2.70929 4.69263i 0.0894687 0.154964i
\(918\) 0 0
\(919\) −6.20682 + 10.7505i −0.204744 + 0.354627i −0.950051 0.312094i \(-0.898970\pi\)
0.745307 + 0.666721i \(0.232303\pi\)
\(920\) 8.48764 + 19.2940i 0.279829 + 0.636104i
\(921\) 0 0
\(922\) −49.4624 1.80068i −1.62896 0.0593021i
\(923\) 24.2099 + 11.6202i 0.796877 + 0.382482i
\(924\) 0 0
\(925\) 7.62950 + 13.2147i 0.250857 + 0.434496i
\(926\) 22.7778 12.0679i 0.748527 0.396577i
\(927\) 0 0
\(928\) 2.60920 14.1821i 0.0856513 0.465550i
\(929\) −35.0237 20.2210i −1.14909 0.663428i −0.200426 0.979709i \(-0.564233\pi\)
−0.948666 + 0.316280i \(0.897566\pi\)
\(930\) 0 0
\(931\) −54.0849 −1.77256
\(932\) 13.8639 20.4232i 0.454127 0.668985i
\(933\) 0 0
\(934\) −14.3644 + 7.61041i −0.470019 + 0.249020i
\(935\) 0.573984 0.0187713
\(936\) 0 0
\(937\) 2.03951 0.0666277 0.0333139 0.999445i \(-0.489394\pi\)
0.0333139 + 0.999445i \(0.489394\pi\)
\(938\) 5.94407 3.14923i 0.194081 0.102826i
\(939\) 0 0
\(940\) 31.5542 + 21.4199i 1.02918 + 0.698642i
\(941\) −35.2677 −1.14969 −0.574847 0.818261i \(-0.694938\pi\)
−0.574847 + 0.818261i \(0.694938\pi\)
\(942\) 0 0
\(943\) 28.2370 + 16.3027i 0.919525 + 0.530888i
\(944\) 13.0916 + 1.91913i 0.426097 + 0.0624624i
\(945\) 0 0
\(946\) 1.59207 0.843495i 0.0517627 0.0274244i
\(947\) −12.6695 21.9442i −0.411702 0.713089i 0.583374 0.812204i \(-0.301732\pi\)
−0.995076 + 0.0991144i \(0.968399\pi\)
\(948\) 0 0
\(949\) −1.68404 22.0871i −0.0546662 0.716976i
\(950\) −8.93406 0.325244i −0.289859 0.0105523i
\(951\) 0 0
\(952\) −26.1497 + 11.5035i −0.847517 + 0.372832i
\(953\) −16.5824 + 28.7215i −0.537155 + 0.930380i 0.461901 + 0.886932i \(0.347168\pi\)
−0.999056 + 0.0434482i \(0.986166\pi\)
\(954\) 0 0
\(955\) −6.70792 + 11.6185i −0.217063 + 0.375965i
\(956\) 28.7961 + 19.5477i 0.931332 + 0.632216i
\(957\) 0 0
\(958\) 5.18968 + 3.25358i 0.167671 + 0.105118i
\(959\) 39.9984 + 69.2793i 1.29162 + 2.23715i
\(960\) 0 0
\(961\) 29.8607 0.963250
\(962\) 25.0760 47.7125i 0.808482 1.53831i
\(963\) 0 0
\(964\) −26.0126 + 12.5919i −0.837811 + 0.405557i
\(965\) 22.9550 13.2531i 0.738948 0.426632i
\(966\) 0 0
\(967\) 24.5985i 0.791035i −0.918459 0.395517i \(-0.870565\pi\)
0.918459 0.395517i \(-0.129435\pi\)
\(968\) 18.3699 25.0491i 0.590432 0.805107i
\(969\) 0 0
\(970\) −0.685526 + 18.8306i −0.0220109 + 0.604614i
\(971\) 16.8251 + 9.71399i 0.539944 + 0.311737i 0.745056 0.667002i \(-0.232423\pi\)
−0.205112 + 0.978738i \(0.565756\pi\)
\(972\) 0 0
\(973\) 10.4928 + 18.1741i 0.336384 + 0.582635i
\(974\) −1.49600 + 41.0934i −0.0479350 + 1.31672i
\(975\) 0 0
\(976\) 4.29064 29.2692i 0.137340 0.936885i
\(977\) 10.4801 6.05071i 0.335290 0.193580i −0.322898 0.946434i \(-0.604657\pi\)
0.658187 + 0.752854i \(0.271324\pi\)
\(978\) 0 0
\(979\) 1.88379 + 1.08761i 0.0602061 + 0.0347600i
\(980\) 46.4582 + 3.38711i 1.48405 + 0.108197i
\(981\) 0 0
\(982\) −22.0411 13.8183i −0.703361 0.440960i
\(983\) 26.8688i 0.856983i 0.903546 + 0.428492i \(0.140955\pi\)
−0.903546 + 0.428492i \(0.859045\pi\)
\(984\) 0 0
\(985\) 21.2596 + 36.8228i 0.677388 + 1.17327i
\(986\) −7.31442 + 3.87525i −0.232938 + 0.123413i
\(987\) 0 0
\(988\) 15.8804 + 27.2960i 0.505224 + 0.868402i
\(989\) 37.9803i 1.20770i
\(990\) 0 0
\(991\) 3.63276 + 6.29212i 0.115398 + 0.199876i 0.917939 0.396722i \(-0.129852\pi\)
−0.802541 + 0.596598i \(0.796519\pi\)
\(992\) 4.59640 + 3.91525i 0.145936 + 0.124309i
\(993\) 0 0
\(994\) −24.6113 + 39.2568i −0.780625 + 1.24515i
\(995\) 12.2540 21.2245i 0.388477 0.672862i
\(996\) 0 0
\(997\) −17.0286 9.83147i −0.539301 0.311366i 0.205494 0.978658i \(-0.434120\pi\)
−0.744796 + 0.667293i \(0.767453\pi\)
\(998\) −2.01221 3.79798i −0.0636954 0.120223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.829.9 48
3.2 odd 2 312.2.bk.b.205.16 yes 48
8.5 even 2 inner 936.2.dg.e.829.17 48
12.11 even 2 1248.2.ca.b.49.15 48
13.4 even 6 inner 936.2.dg.e.901.17 48
24.5 odd 2 312.2.bk.b.205.8 48
24.11 even 2 1248.2.ca.b.49.10 48
39.17 odd 6 312.2.bk.b.277.8 yes 48
104.69 even 6 inner 936.2.dg.e.901.9 48
156.95 even 6 1248.2.ca.b.433.10 48
312.173 odd 6 312.2.bk.b.277.16 yes 48
312.251 even 6 1248.2.ca.b.433.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.8 48 24.5 odd 2
312.2.bk.b.205.16 yes 48 3.2 odd 2
312.2.bk.b.277.8 yes 48 39.17 odd 6
312.2.bk.b.277.16 yes 48 312.173 odd 6
936.2.dg.e.829.9 48 1.1 even 1 trivial
936.2.dg.e.829.17 48 8.5 even 2 inner
936.2.dg.e.901.9 48 104.69 even 6 inner
936.2.dg.e.901.17 48 13.4 even 6 inner
1248.2.ca.b.49.10 48 24.11 even 2
1248.2.ca.b.49.15 48 12.11 even 2
1248.2.ca.b.433.10 48 156.95 even 6
1248.2.ca.b.433.15 48 312.251 even 6