Properties

Label 936.2.be.a.685.6
Level $936$
Weight $2$
Character 936.685
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(685,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,-1,0,0,-2,10,0,-3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 685.6
Character \(\chi\) \(=\) 936.685
Dual form 936.2.be.a.757.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.332845 + 1.37449i) q^{2} +(-1.77843 - 0.914983i) q^{4} +2.24007i q^{5} +(0.471952 + 0.817445i) q^{7} +(1.84957 - 2.13988i) q^{8} +(-3.07895 - 0.745597i) q^{10} +(-4.82849 - 2.78773i) q^{11} +(0.108823 - 3.60391i) q^{13} +(-1.28065 + 0.376609i) q^{14} +(2.32561 + 3.25446i) q^{16} +(-3.03119 - 5.25017i) q^{17} +(-1.43961 + 0.831159i) q^{19} +(2.04963 - 3.98380i) q^{20} +(5.43884 - 5.70881i) q^{22} +(-1.07746 + 1.86621i) q^{23} -0.0179136 q^{25} +(4.91730 + 1.34912i) q^{26} +(-0.0913848 - 1.88560i) q^{28} +(-1.68452 - 0.972558i) q^{29} -1.91161 q^{31} +(-5.24728 + 2.11329i) q^{32} +(8.22520 - 2.41883i) q^{34} +(-1.83113 + 1.05721i) q^{35} +(-4.54154 - 2.62206i) q^{37} +(-0.663250 - 2.25537i) q^{38} +(4.79348 + 4.14317i) q^{40} +(0.332039 - 0.575109i) q^{41} +(-6.97919 + 4.02944i) q^{43} +(6.03640 + 9.37576i) q^{44} +(-2.20645 - 2.10211i) q^{46} +10.5778 q^{47} +(3.05452 - 5.29059i) q^{49} +(0.00596244 - 0.0246219i) q^{50} +(-3.49105 + 6.30972i) q^{52} -10.3882i q^{53} +(6.24471 - 10.8162i) q^{55} +(2.62214 + 0.502004i) q^{56} +(1.89745 - 1.99164i) q^{58} +(0.411368 - 0.237503i) q^{59} +(3.06666 - 1.77054i) q^{61} +(0.636270 - 2.62748i) q^{62} +(-1.15816 - 7.91572i) q^{64} +(8.07301 + 0.243772i) q^{65} +(-3.91067 - 2.25783i) q^{67} +(0.586933 + 12.1105i) q^{68} +(-0.843631 - 2.86876i) q^{70} +(-5.81695 - 10.0753i) q^{71} -1.91680 q^{73} +(5.11561 - 5.36954i) q^{74} +(3.32074 - 0.160939i) q^{76} -5.26270i q^{77} +13.6120 q^{79} +(-7.29022 + 5.20954i) q^{80} +(0.679962 + 0.647806i) q^{82} +11.5623i q^{83} +(11.7607 - 6.79007i) q^{85} +(-3.21542 - 10.9340i) q^{86} +(-14.8961 + 5.17627i) q^{88} +(0.373638 - 0.647161i) q^{89} +(2.99736 - 1.61192i) q^{91} +(3.62373 - 2.33306i) q^{92} +(-3.52077 + 14.5391i) q^{94} +(-1.86185 - 3.22483i) q^{95} +(0.640742 + 1.10980i) q^{97} +(6.25516 + 5.95935i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 3 q^{10} - 8 q^{14} - q^{16} + 11 q^{20} - 2 q^{22} + 14 q^{23} - 12 q^{25} + 3 q^{26} - 4 q^{28} - 8 q^{31} + 21 q^{32} + 14 q^{34} - 12 q^{38} + 54 q^{40}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.332845 + 1.37449i −0.235357 + 0.971909i
\(3\) 0 0
\(4\) −1.77843 0.914983i −0.889214 0.457491i
\(5\) 2.24007i 1.00179i 0.865508 + 0.500895i \(0.166996\pi\)
−0.865508 + 0.500895i \(0.833004\pi\)
\(6\) 0 0
\(7\) 0.471952 + 0.817445i 0.178381 + 0.308965i 0.941326 0.337498i \(-0.109581\pi\)
−0.762945 + 0.646463i \(0.776247\pi\)
\(8\) 1.84957 2.13988i 0.653923 0.756561i
\(9\) 0 0
\(10\) −3.07895 0.745597i −0.973648 0.235778i
\(11\) −4.82849 2.78773i −1.45584 0.840532i −0.457042 0.889445i \(-0.651091\pi\)
−0.998803 + 0.0489128i \(0.984424\pi\)
\(12\) 0 0
\(13\) 0.108823 3.60391i 0.0301821 0.999544i
\(14\) −1.28065 + 0.376609i −0.342269 + 0.100653i
\(15\) 0 0
\(16\) 2.32561 + 3.25446i 0.581403 + 0.813616i
\(17\) −3.03119 5.25017i −0.735170 1.27335i −0.954649 0.297735i \(-0.903769\pi\)
0.219478 0.975617i \(-0.429565\pi\)
\(18\) 0 0
\(19\) −1.43961 + 0.831159i −0.330269 + 0.190681i −0.655961 0.754795i \(-0.727736\pi\)
0.325692 + 0.945476i \(0.394403\pi\)
\(20\) 2.04963 3.98380i 0.458310 0.890806i
\(21\) 0 0
\(22\) 5.43884 5.70881i 1.15956 1.21712i
\(23\) −1.07746 + 1.86621i −0.224665 + 0.389131i −0.956219 0.292652i \(-0.905462\pi\)
0.731554 + 0.681784i \(0.238795\pi\)
\(24\) 0 0
\(25\) −0.0179136 −0.00358271
\(26\) 4.91730 + 1.34912i 0.964363 + 0.264584i
\(27\) 0 0
\(28\) −0.0913848 1.88560i −0.0172701 0.356344i
\(29\) −1.68452 0.972558i −0.312807 0.180599i 0.335375 0.942085i \(-0.391137\pi\)
−0.648182 + 0.761485i \(0.724470\pi\)
\(30\) 0 0
\(31\) −1.91161 −0.343335 −0.171668 0.985155i \(-0.554916\pi\)
−0.171668 + 0.985155i \(0.554916\pi\)
\(32\) −5.24728 + 2.11329i −0.927598 + 0.373581i
\(33\) 0 0
\(34\) 8.22520 2.41883i 1.41061 0.414826i
\(35\) −1.83113 + 1.05721i −0.309518 + 0.178700i
\(36\) 0 0
\(37\) −4.54154 2.62206i −0.746624 0.431064i 0.0778488 0.996965i \(-0.475195\pi\)
−0.824473 + 0.565902i \(0.808528\pi\)
\(38\) −0.663250 2.25537i −0.107593 0.365870i
\(39\) 0 0
\(40\) 4.79348 + 4.14317i 0.757915 + 0.655093i
\(41\) 0.332039 0.575109i 0.0518558 0.0898169i −0.838932 0.544236i \(-0.816820\pi\)
0.890788 + 0.454419i \(0.150153\pi\)
\(42\) 0 0
\(43\) −6.97919 + 4.02944i −1.06432 + 0.614483i −0.926623 0.375992i \(-0.877302\pi\)
−0.137693 + 0.990475i \(0.543969\pi\)
\(44\) 6.03640 + 9.37576i 0.910021 + 1.41345i
\(45\) 0 0
\(46\) −2.20645 2.10211i −0.325324 0.309939i
\(47\) 10.5778 1.54293 0.771466 0.636270i \(-0.219524\pi\)
0.771466 + 0.636270i \(0.219524\pi\)
\(48\) 0 0
\(49\) 3.05452 5.29059i 0.436360 0.755798i
\(50\) 0.00596244 0.0246219i 0.000843216 0.00348207i
\(51\) 0 0
\(52\) −3.49105 + 6.30972i −0.484121 + 0.875001i
\(53\) 10.3882i 1.42693i −0.700691 0.713465i \(-0.747125\pi\)
0.700691 0.713465i \(-0.252875\pi\)
\(54\) 0 0
\(55\) 6.24471 10.8162i 0.842037 1.45845i
\(56\) 2.62214 + 0.502004i 0.350399 + 0.0670831i
\(57\) 0 0
\(58\) 1.89745 1.99164i 0.249148 0.261515i
\(59\) 0.411368 0.237503i 0.0535555 0.0309203i −0.472983 0.881071i \(-0.656823\pi\)
0.526539 + 0.850151i \(0.323490\pi\)
\(60\) 0 0
\(61\) 3.06666 1.77054i 0.392646 0.226694i −0.290660 0.956826i \(-0.593875\pi\)
0.683306 + 0.730132i \(0.260541\pi\)
\(62\) 0.636270 2.62748i 0.0808064 0.333691i
\(63\) 0 0
\(64\) −1.15816 7.91572i −0.144770 0.989465i
\(65\) 8.07301 + 0.243772i 1.00133 + 0.0302362i
\(66\) 0 0
\(67\) −3.91067 2.25783i −0.477764 0.275837i 0.241720 0.970346i \(-0.422288\pi\)
−0.719484 + 0.694509i \(0.755622\pi\)
\(68\) 0.586933 + 12.1105i 0.0711761 + 1.46862i
\(69\) 0 0
\(70\) −0.843631 2.86876i −0.100833 0.342882i
\(71\) −5.81695 10.0753i −0.690345 1.19571i −0.971725 0.236117i \(-0.924125\pi\)
0.281379 0.959597i \(-0.409208\pi\)
\(72\) 0 0
\(73\) −1.91680 −0.224345 −0.112172 0.993689i \(-0.535781\pi\)
−0.112172 + 0.993689i \(0.535781\pi\)
\(74\) 5.11561 5.36954i 0.594678 0.624197i
\(75\) 0 0
\(76\) 3.32074 0.160939i 0.380915 0.0184609i
\(77\) 5.26270i 0.599741i
\(78\) 0 0
\(79\) 13.6120 1.53147 0.765737 0.643154i \(-0.222374\pi\)
0.765737 + 0.643154i \(0.222374\pi\)
\(80\) −7.29022 + 5.20954i −0.815072 + 0.582444i
\(81\) 0 0
\(82\) 0.679962 + 0.647806i 0.0750892 + 0.0715382i
\(83\) 11.5623i 1.26913i 0.772871 + 0.634564i \(0.218820\pi\)
−0.772871 + 0.634564i \(0.781180\pi\)
\(84\) 0 0
\(85\) 11.7607 6.79007i 1.27563 0.736486i
\(86\) −3.21542 10.9340i −0.346727 1.17904i
\(87\) 0 0
\(88\) −14.8961 + 5.17627i −1.58792 + 0.551792i
\(89\) 0.373638 0.647161i 0.0396056 0.0685989i −0.845543 0.533907i \(-0.820723\pi\)
0.885149 + 0.465308i \(0.154057\pi\)
\(90\) 0 0
\(91\) 2.99736 1.61192i 0.314208 0.168975i
\(92\) 3.62373 2.33306i 0.377800 0.243239i
\(93\) 0 0
\(94\) −3.52077 + 14.5391i −0.363140 + 1.49959i
\(95\) −1.86185 3.22483i −0.191022 0.330860i
\(96\) 0 0
\(97\) 0.640742 + 1.10980i 0.0650575 + 0.112683i 0.896719 0.442599i \(-0.145944\pi\)
−0.831662 + 0.555282i \(0.812610\pi\)
\(98\) 6.25516 + 5.95935i 0.631867 + 0.601985i
\(99\) 0 0
\(100\) 0.0318580 + 0.0163906i 0.00318580 + 0.00163906i
\(101\) −8.45583 4.88197i −0.841386 0.485775i 0.0163490 0.999866i \(-0.494796\pi\)
−0.857735 + 0.514092i \(0.828129\pi\)
\(102\) 0 0
\(103\) −15.0755 −1.48544 −0.742719 0.669604i \(-0.766464\pi\)
−0.742719 + 0.669604i \(0.766464\pi\)
\(104\) −7.51065 6.89856i −0.736480 0.676460i
\(105\) 0 0
\(106\) 14.2785 + 3.45767i 1.38685 + 0.335838i
\(107\) −13.6044 7.85448i −1.31518 0.759321i −0.332233 0.943197i \(-0.607802\pi\)
−0.982949 + 0.183876i \(0.941135\pi\)
\(108\) 0 0
\(109\) 9.69920i 0.929015i 0.885569 + 0.464508i \(0.153769\pi\)
−0.885569 + 0.464508i \(0.846231\pi\)
\(110\) 12.7881 + 12.1834i 1.21930 + 1.16164i
\(111\) 0 0
\(112\) −1.56277 + 3.43701i −0.147668 + 0.324767i
\(113\) −3.78116 6.54916i −0.355701 0.616093i 0.631536 0.775346i \(-0.282425\pi\)
−0.987238 + 0.159253i \(0.949091\pi\)
\(114\) 0 0
\(115\) −4.18044 2.41358i −0.389828 0.225067i
\(116\) 2.10592 + 3.27093i 0.195530 + 0.303698i
\(117\) 0 0
\(118\) 0.189523 + 0.644472i 0.0174470 + 0.0593284i
\(119\) 2.86115 4.95566i 0.262281 0.454284i
\(120\) 0 0
\(121\) 10.0429 + 17.3948i 0.912989 + 1.58134i
\(122\) 1.41286 + 4.80441i 0.127914 + 0.434970i
\(123\) 0 0
\(124\) 3.39966 + 1.74909i 0.305299 + 0.157073i
\(125\) 11.1602i 0.998201i
\(126\) 0 0
\(127\) −1.53962 + 2.66670i −0.136619 + 0.236632i −0.926215 0.376996i \(-0.876957\pi\)
0.789596 + 0.613628i \(0.210290\pi\)
\(128\) 11.2655 + 1.04284i 0.995743 + 0.0921746i
\(129\) 0 0
\(130\) −3.02212 + 11.0151i −0.265058 + 0.966089i
\(131\) 11.9145i 1.04098i 0.853869 + 0.520488i \(0.174250\pi\)
−0.853869 + 0.520488i \(0.825750\pi\)
\(132\) 0 0
\(133\) −1.35885 0.784534i −0.117828 0.0680278i
\(134\) 4.40500 4.62366i 0.380534 0.399423i
\(135\) 0 0
\(136\) −16.8411 3.22420i −1.44411 0.276473i
\(137\) 10.2342 + 17.7261i 0.874365 + 1.51444i 0.857437 + 0.514588i \(0.172055\pi\)
0.0169276 + 0.999857i \(0.494612\pi\)
\(138\) 0 0
\(139\) −7.01589 + 4.05062i −0.595080 + 0.343570i −0.767104 0.641523i \(-0.778303\pi\)
0.172024 + 0.985093i \(0.444969\pi\)
\(140\) 4.22387 0.204708i 0.356982 0.0173010i
\(141\) 0 0
\(142\) 15.7845 4.64182i 1.32460 0.389533i
\(143\) −10.5722 + 17.0981i −0.884090 + 1.42981i
\(144\) 0 0
\(145\) 2.17860 3.77344i 0.180923 0.313367i
\(146\) 0.637998 2.63462i 0.0528011 0.218043i
\(147\) 0 0
\(148\) 5.67766 + 8.81857i 0.466701 + 0.724882i
\(149\) −3.13501 + 1.81000i −0.256830 + 0.148281i −0.622888 0.782311i \(-0.714041\pi\)
0.366058 + 0.930592i \(0.380707\pi\)
\(150\) 0 0
\(151\) −16.0939 −1.30970 −0.654850 0.755759i \(-0.727268\pi\)
−0.654850 + 0.755759i \(0.727268\pi\)
\(152\) −0.884084 + 4.61788i −0.0717087 + 0.374559i
\(153\) 0 0
\(154\) 7.23351 + 1.75167i 0.582893 + 0.141153i
\(155\) 4.28214i 0.343950i
\(156\) 0 0
\(157\) 15.4274i 1.23124i −0.788042 0.615621i \(-0.788905\pi\)
0.788042 0.615621i \(-0.211095\pi\)
\(158\) −4.53070 + 18.7096i −0.360443 + 1.48845i
\(159\) 0 0
\(160\) −4.73392 11.7543i −0.374249 0.929258i
\(161\) −2.03403 −0.160304
\(162\) 0 0
\(163\) −4.33867 + 2.50493i −0.339831 + 0.196201i −0.660197 0.751092i \(-0.729527\pi\)
0.320366 + 0.947294i \(0.396194\pi\)
\(164\) −1.11672 + 0.718980i −0.0872014 + 0.0561429i
\(165\) 0 0
\(166\) −15.8922 3.84846i −1.23348 0.298698i
\(167\) 0.532199 0.921796i 0.0411828 0.0713308i −0.844699 0.535241i \(-0.820221\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(168\) 0 0
\(169\) −12.9763 0.784378i −0.998178 0.0603368i
\(170\) 5.41835 + 18.4250i 0.415569 + 1.41314i
\(171\) 0 0
\(172\) 16.0988 0.780226i 1.22753 0.0594916i
\(173\) 18.9047 10.9146i 1.43730 0.829825i 0.439638 0.898175i \(-0.355107\pi\)
0.997661 + 0.0683503i \(0.0217736\pi\)
\(174\) 0 0
\(175\) −0.00845434 0.0146433i −0.000639088 0.00110693i
\(176\) −2.15664 22.1973i −0.162563 1.67319i
\(177\) 0 0
\(178\) 0.765150 + 0.728965i 0.0573504 + 0.0546383i
\(179\) −2.82862 1.63310i −0.211421 0.122064i 0.390551 0.920581i \(-0.372285\pi\)
−0.601972 + 0.798517i \(0.705618\pi\)
\(180\) 0 0
\(181\) 13.1229i 0.975420i −0.873006 0.487710i \(-0.837832\pi\)
0.873006 0.487710i \(-0.162168\pi\)
\(182\) 1.21790 + 4.65635i 0.0902768 + 0.345151i
\(183\) 0 0
\(184\) 2.00063 + 5.75731i 0.147488 + 0.424435i
\(185\) 5.87359 10.1734i 0.431835 0.747960i
\(186\) 0 0
\(187\) 33.8005i 2.47174i
\(188\) −18.8119 9.67852i −1.37200 0.705878i
\(189\) 0 0
\(190\) 5.05219 1.48573i 0.366524 0.107786i
\(191\) −4.02136 6.96520i −0.290975 0.503984i 0.683065 0.730357i \(-0.260646\pi\)
−0.974041 + 0.226373i \(0.927313\pi\)
\(192\) 0 0
\(193\) 0.417932 0.723880i 0.0300834 0.0521060i −0.850592 0.525827i \(-0.823756\pi\)
0.880675 + 0.473721i \(0.157089\pi\)
\(194\) −1.73867 + 0.511300i −0.124829 + 0.0367092i
\(195\) 0 0
\(196\) −10.2730 + 6.61409i −0.733789 + 0.472435i
\(197\) 6.06608 + 3.50225i 0.432190 + 0.249525i 0.700279 0.713869i \(-0.253059\pi\)
−0.268089 + 0.963394i \(0.586392\pi\)
\(198\) 0 0
\(199\) −7.51756 13.0208i −0.532906 0.923019i −0.999262 0.0384223i \(-0.987767\pi\)
0.466356 0.884597i \(-0.345567\pi\)
\(200\) −0.0331324 + 0.0383328i −0.00234282 + 0.00271054i
\(201\) 0 0
\(202\) 9.52469 9.99748i 0.670155 0.703420i
\(203\) 1.83600i 0.128862i
\(204\) 0 0
\(205\) 1.28828 + 0.743791i 0.0899777 + 0.0519486i
\(206\) 5.01782 20.7211i 0.349608 1.44371i
\(207\) 0 0
\(208\) 11.9819 8.02714i 0.830793 0.556582i
\(209\) 9.26819 0.641094
\(210\) 0 0
\(211\) −5.82236 3.36154i −0.400828 0.231418i 0.286013 0.958226i \(-0.407670\pi\)
−0.686841 + 0.726808i \(0.741003\pi\)
\(212\) −9.50503 + 18.4747i −0.652808 + 1.26885i
\(213\) 0 0
\(214\) 15.3240 16.0847i 1.04753 1.09953i
\(215\) −9.02622 15.6339i −0.615583 1.06622i
\(216\) 0 0
\(217\) −0.902189 1.56264i −0.0612446 0.106079i
\(218\) −13.3314 3.22833i −0.902918 0.218650i
\(219\) 0 0
\(220\) −21.0024 + 13.5220i −1.41598 + 0.911650i
\(221\) −19.2510 + 10.3528i −1.29496 + 0.696403i
\(222\) 0 0
\(223\) −10.4340 + 18.0723i −0.698715 + 1.21021i 0.270198 + 0.962805i \(0.412911\pi\)
−0.968912 + 0.247404i \(0.920422\pi\)
\(224\) −4.20397 3.29199i −0.280889 0.219956i
\(225\) 0 0
\(226\) 10.2603 3.01730i 0.682503 0.200707i
\(227\) 16.7688 9.68145i 1.11298 0.642580i 0.173382 0.984855i \(-0.444531\pi\)
0.939600 + 0.342274i \(0.111197\pi\)
\(228\) 0 0
\(229\) 17.6044i 1.16333i 0.813428 + 0.581666i \(0.197599\pi\)
−0.813428 + 0.581666i \(0.802401\pi\)
\(230\) 4.70887 4.94261i 0.310494 0.325906i
\(231\) 0 0
\(232\) −5.19680 + 1.80585i −0.341186 + 0.118560i
\(233\) −15.3281 −1.00417 −0.502087 0.864817i \(-0.667434\pi\)
−0.502087 + 0.864817i \(0.667434\pi\)
\(234\) 0 0
\(235\) 23.6950i 1.54569i
\(236\) −0.948900 + 0.0459881i −0.0617681 + 0.00299357i
\(237\) 0 0
\(238\) 5.85916 + 5.58208i 0.379793 + 0.361832i
\(239\) 14.0854 0.911111 0.455556 0.890207i \(-0.349441\pi\)
0.455556 + 0.890207i \(0.349441\pi\)
\(240\) 0 0
\(241\) −7.24993 12.5572i −0.467009 0.808883i 0.532281 0.846568i \(-0.321335\pi\)
−0.999290 + 0.0376849i \(0.988002\pi\)
\(242\) −27.2516 + 8.01404i −1.75180 + 0.515162i
\(243\) 0 0
\(244\) −7.07386 + 0.342832i −0.452857 + 0.0219476i
\(245\) 11.8513 + 6.84234i 0.757151 + 0.437141i
\(246\) 0 0
\(247\) 2.83876 + 5.27867i 0.180626 + 0.335874i
\(248\) −3.53566 + 4.09061i −0.224515 + 0.259754i
\(249\) 0 0
\(250\) −15.3396 3.71463i −0.970160 0.234934i
\(251\) −24.8381 + 14.3403i −1.56777 + 0.905151i −0.571340 + 0.820714i \(0.693576\pi\)
−0.996429 + 0.0844378i \(0.973091\pi\)
\(252\) 0 0
\(253\) 10.4050 6.00731i 0.654155 0.377677i
\(254\) −3.15289 3.00379i −0.197830 0.188475i
\(255\) 0 0
\(256\) −5.18305 + 15.1372i −0.323940 + 0.946077i
\(257\) −5.81269 + 10.0679i −0.362586 + 0.628017i −0.988386 0.151967i \(-0.951439\pi\)
0.625800 + 0.779984i \(0.284773\pi\)
\(258\) 0 0
\(259\) 4.94994i 0.307574i
\(260\) −14.1342 7.82019i −0.876567 0.484988i
\(261\) 0 0
\(262\) −16.3763 3.96569i −1.01173 0.245001i
\(263\) −8.47469 + 14.6786i −0.522572 + 0.905121i 0.477083 + 0.878858i \(0.341694\pi\)
−0.999655 + 0.0262631i \(0.991639\pi\)
\(264\) 0 0
\(265\) 23.2703 1.42948
\(266\) 1.53062 1.60660i 0.0938483 0.0985068i
\(267\) 0 0
\(268\) 4.88897 + 7.59358i 0.298642 + 0.463852i
\(269\) 6.45180 3.72495i 0.393373 0.227114i −0.290247 0.956952i \(-0.593738\pi\)
0.683621 + 0.729837i \(0.260404\pi\)
\(270\) 0 0
\(271\) 7.61248 13.1852i 0.462425 0.800944i −0.536656 0.843801i \(-0.680313\pi\)
0.999081 + 0.0428569i \(0.0136459\pi\)
\(272\) 10.0371 22.0747i 0.608589 1.33848i
\(273\) 0 0
\(274\) −27.7707 + 8.16669i −1.67769 + 0.493368i
\(275\) 0.0864954 + 0.0499382i 0.00521587 + 0.00301138i
\(276\) 0 0
\(277\) 13.9928 8.07878i 0.840749 0.485407i −0.0167699 0.999859i \(-0.505338\pi\)
0.857519 + 0.514453i \(0.172005\pi\)
\(278\) −3.23233 10.9915i −0.193862 0.659225i
\(279\) 0 0
\(280\) −1.12452 + 5.87378i −0.0672032 + 0.351026i
\(281\) −27.7204 −1.65366 −0.826831 0.562450i \(-0.809859\pi\)
−0.826831 + 0.562450i \(0.809859\pi\)
\(282\) 0 0
\(283\) −3.28760 1.89810i −0.195428 0.112830i 0.399093 0.916910i \(-0.369325\pi\)
−0.594521 + 0.804080i \(0.702658\pi\)
\(284\) 1.12635 + 23.2405i 0.0668363 + 1.37907i
\(285\) 0 0
\(286\) −19.9822 20.2223i −1.18157 1.19577i
\(287\) 0.626827 0.0370004
\(288\) 0 0
\(289\) −9.87617 + 17.1060i −0.580951 + 1.00624i
\(290\) 4.46141 + 4.25043i 0.261983 + 0.249594i
\(291\) 0 0
\(292\) 3.40889 + 1.75384i 0.199490 + 0.102636i
\(293\) 4.14791 2.39480i 0.242324 0.139906i −0.373921 0.927461i \(-0.621987\pi\)
0.616244 + 0.787555i \(0.288653\pi\)
\(294\) 0 0
\(295\) 0.532024 + 0.921493i 0.0309756 + 0.0536514i
\(296\) −14.0108 + 4.86865i −0.814360 + 0.282984i
\(297\) 0 0
\(298\) −1.44435 4.91148i −0.0836687 0.284514i
\(299\) 6.60839 + 4.08614i 0.382173 + 0.236308i
\(300\) 0 0
\(301\) −6.58768 3.80340i −0.379708 0.219224i
\(302\) 5.35677 22.1208i 0.308247 1.27291i
\(303\) 0 0
\(304\) −6.05295 2.75220i −0.347160 0.157849i
\(305\) 3.96613 + 6.86954i 0.227100 + 0.393349i
\(306\) 0 0
\(307\) 8.95981i 0.511363i −0.966761 0.255682i \(-0.917700\pi\)
0.966761 0.255682i \(-0.0822999\pi\)
\(308\) −4.81528 + 9.35934i −0.274376 + 0.533298i
\(309\) 0 0
\(310\) 5.88575 + 1.42529i 0.334288 + 0.0809511i
\(311\) −9.35196 −0.530301 −0.265150 0.964207i \(-0.585422\pi\)
−0.265150 + 0.964207i \(0.585422\pi\)
\(312\) 0 0
\(313\) −11.7834 −0.666039 −0.333019 0.942920i \(-0.608067\pi\)
−0.333019 + 0.942920i \(0.608067\pi\)
\(314\) 21.2048 + 5.13494i 1.19665 + 0.289782i
\(315\) 0 0
\(316\) −24.2080 12.4548i −1.36181 0.700636i
\(317\) 0.828044i 0.0465076i 0.999730 + 0.0232538i \(0.00740258\pi\)
−0.999730 + 0.0232538i \(0.992597\pi\)
\(318\) 0 0
\(319\) 5.42246 + 9.39197i 0.303599 + 0.525850i
\(320\) 17.7318 2.59436i 0.991236 0.145029i
\(321\) 0 0
\(322\) 0.677017 2.79575i 0.0377287 0.155801i
\(323\) 8.72745 + 5.03879i 0.485608 + 0.280366i
\(324\) 0 0
\(325\) −0.00194941 + 0.0645588i −0.000108134 + 0.00358108i
\(326\) −1.99889 6.79720i −0.110708 0.376462i
\(327\) 0 0
\(328\) −0.616532 1.77423i −0.0340423 0.0979655i
\(329\) 4.99222 + 8.64678i 0.275230 + 0.476712i
\(330\) 0 0
\(331\) 12.8419 7.41425i 0.705853 0.407524i −0.103671 0.994612i \(-0.533059\pi\)
0.809524 + 0.587087i \(0.199726\pi\)
\(332\) 10.5793 20.5627i 0.580615 1.12853i
\(333\) 0 0
\(334\) 1.08986 + 1.03832i 0.0596343 + 0.0568142i
\(335\) 5.05769 8.76018i 0.276331 0.478620i
\(336\) 0 0
\(337\) 5.53901 0.301729 0.150865 0.988554i \(-0.451794\pi\)
0.150865 + 0.988554i \(0.451794\pi\)
\(338\) 5.39722 17.5747i 0.293570 0.955938i
\(339\) 0 0
\(340\) −27.1284 + 1.31477i −1.47125 + 0.0713035i
\(341\) 9.23019 + 5.32906i 0.499843 + 0.288585i
\(342\) 0 0
\(343\) 12.3737 0.668116
\(344\) −4.28601 + 22.3873i −0.231086 + 1.20704i
\(345\) 0 0
\(346\) 8.70969 + 29.6172i 0.468236 + 1.59223i
\(347\) 13.9803 8.07154i 0.750503 0.433303i −0.0753728 0.997155i \(-0.524015\pi\)
0.825876 + 0.563852i \(0.190681\pi\)
\(348\) 0 0
\(349\) 20.7087 + 11.9562i 1.10851 + 0.640000i 0.938444 0.345432i \(-0.112268\pi\)
0.170068 + 0.985432i \(0.445601\pi\)
\(350\) 0.0229411 0.00674641i 0.00122625 0.000360611i
\(351\) 0 0
\(352\) 31.2278 + 4.42400i 1.66445 + 0.235800i
\(353\) 2.77899 4.81335i 0.147911 0.256189i −0.782544 0.622595i \(-0.786079\pi\)
0.930455 + 0.366406i \(0.119412\pi\)
\(354\) 0 0
\(355\) 22.5693 13.0304i 1.19785 0.691581i
\(356\) −1.25663 + 0.809056i −0.0666013 + 0.0428799i
\(357\) 0 0
\(358\) 3.18617 3.34433i 0.168395 0.176753i
\(359\) 8.55135 0.451323 0.225661 0.974206i \(-0.427546\pi\)
0.225661 + 0.974206i \(0.427546\pi\)
\(360\) 0 0
\(361\) −8.11835 + 14.0614i −0.427282 + 0.740073i
\(362\) 18.0373 + 4.36791i 0.948019 + 0.229572i
\(363\) 0 0
\(364\) −6.80546 + 0.124146i −0.356703 + 0.00650701i
\(365\) 4.29377i 0.224746i
\(366\) 0 0
\(367\) 1.96700 3.40695i 0.102677 0.177841i −0.810110 0.586278i \(-0.800593\pi\)
0.912787 + 0.408437i \(0.133926\pi\)
\(368\) −8.57925 + 0.833539i −0.447224 + 0.0434512i
\(369\) 0 0
\(370\) 12.0282 + 11.4593i 0.625314 + 0.595742i
\(371\) 8.49179 4.90274i 0.440872 0.254537i
\(372\) 0 0
\(373\) 6.86329 3.96253i 0.355368 0.205172i −0.311679 0.950187i \(-0.600891\pi\)
0.667047 + 0.745016i \(0.267558\pi\)
\(374\) −46.4584 11.2503i −2.40230 0.581741i
\(375\) 0 0
\(376\) 19.5644 22.6352i 1.00896 1.16732i
\(377\) −3.68832 + 5.96502i −0.189958 + 0.307214i
\(378\) 0 0
\(379\) −22.8779 13.2086i −1.17516 0.678479i −0.220271 0.975439i \(-0.570694\pi\)
−0.954890 + 0.296959i \(0.904027\pi\)
\(380\) 0.360514 + 7.43868i 0.0184940 + 0.381596i
\(381\) 0 0
\(382\) 10.9121 3.20897i 0.558310 0.164185i
\(383\) 0.947088 + 1.64041i 0.0483940 + 0.0838208i 0.889208 0.457504i \(-0.151256\pi\)
−0.840814 + 0.541325i \(0.817923\pi\)
\(384\) 0 0
\(385\) 11.7888 0.600814
\(386\) 0.855857 + 0.815382i 0.0435620 + 0.0415019i
\(387\) 0 0
\(388\) −0.124068 2.55996i −0.00629859 0.129962i
\(389\) 25.0808i 1.27165i −0.771835 0.635823i \(-0.780661\pi\)
0.771835 0.635823i \(-0.219339\pi\)
\(390\) 0 0
\(391\) 13.0639 0.660669
\(392\) −5.67165 16.3216i −0.286462 0.824367i
\(393\) 0 0
\(394\) −6.83286 + 7.17203i −0.344235 + 0.361322i
\(395\) 30.4919i 1.53422i
\(396\) 0 0
\(397\) −7.99993 + 4.61876i −0.401505 + 0.231809i −0.687133 0.726532i \(-0.741131\pi\)
0.285628 + 0.958341i \(0.407798\pi\)
\(398\) 20.3991 5.99888i 1.02251 0.300696i
\(399\) 0 0
\(400\) −0.0416600 0.0582990i −0.00208300 0.00291495i
\(401\) 2.21136 3.83018i 0.110430 0.191270i −0.805514 0.592577i \(-0.798111\pi\)
0.915944 + 0.401307i \(0.131444\pi\)
\(402\) 0 0
\(403\) −0.208028 + 6.88927i −0.0103626 + 0.343179i
\(404\) 10.5712 + 16.4192i 0.525935 + 0.816884i
\(405\) 0 0
\(406\) 2.52356 + 0.611105i 0.125242 + 0.0303286i
\(407\) 14.6192 + 25.3212i 0.724646 + 1.25512i
\(408\) 0 0
\(409\) −13.2341 22.9221i −0.654384 1.13343i −0.982048 0.188631i \(-0.939595\pi\)
0.327664 0.944794i \(-0.393738\pi\)
\(410\) −1.45113 + 1.52316i −0.0716662 + 0.0752236i
\(411\) 0 0
\(412\) 26.8108 + 13.7939i 1.32087 + 0.679575i
\(413\) 0.388292 + 0.224180i 0.0191066 + 0.0110312i
\(414\) 0 0
\(415\) −25.9004 −1.27140
\(416\) 7.04509 + 19.1407i 0.345414 + 0.938450i
\(417\) 0 0
\(418\) −3.08487 + 12.7390i −0.150886 + 0.623085i
\(419\) 4.30501 + 2.48550i 0.210314 + 0.121425i 0.601457 0.798905i \(-0.294587\pi\)
−0.391144 + 0.920330i \(0.627920\pi\)
\(420\) 0 0
\(421\) 24.0575i 1.17249i 0.810134 + 0.586244i \(0.199394\pi\)
−0.810134 + 0.586244i \(0.800606\pi\)
\(422\) 6.55834 6.88388i 0.319255 0.335102i
\(423\) 0 0
\(424\) −22.2295 19.2137i −1.07956 0.933102i
\(425\) 0.0542993 + 0.0940492i 0.00263390 + 0.00456205i
\(426\) 0 0
\(427\) 2.89464 + 1.67122i 0.140081 + 0.0808760i
\(428\) 17.0077 + 26.4164i 0.822096 + 1.27688i
\(429\) 0 0
\(430\) 24.4929 7.20276i 1.18115 0.347348i
\(431\) 5.28961 9.16188i 0.254792 0.441312i −0.710047 0.704154i \(-0.751326\pi\)
0.964839 + 0.262842i \(0.0846598\pi\)
\(432\) 0 0
\(433\) 6.11293 + 10.5879i 0.293769 + 0.508822i 0.974698 0.223527i \(-0.0717572\pi\)
−0.680929 + 0.732349i \(0.738424\pi\)
\(434\) 2.44811 0.719930i 0.117513 0.0345578i
\(435\) 0 0
\(436\) 8.87460 17.2493i 0.425016 0.826093i
\(437\) 3.58215i 0.171357i
\(438\) 0 0
\(439\) −6.46417 + 11.1963i −0.308518 + 0.534369i −0.978038 0.208425i \(-0.933166\pi\)
0.669520 + 0.742794i \(0.266500\pi\)
\(440\) −11.5952 33.3682i −0.552780 1.59077i
\(441\) 0 0
\(442\) −7.82215 29.9061i −0.372062 1.42249i
\(443\) 14.0440i 0.667248i 0.942706 + 0.333624i \(0.108272\pi\)
−0.942706 + 0.333624i \(0.891728\pi\)
\(444\) 0 0
\(445\) 1.44969 + 0.836976i 0.0687217 + 0.0396765i
\(446\) −21.3672 20.3567i −1.01177 0.963918i
\(447\) 0 0
\(448\) 5.92407 4.68257i 0.279886 0.221231i
\(449\) 0.857113 + 1.48456i 0.0404497 + 0.0700609i 0.885541 0.464560i \(-0.153788\pi\)
−0.845092 + 0.534621i \(0.820454\pi\)
\(450\) 0 0
\(451\) −3.20650 + 1.85127i −0.150988 + 0.0871730i
\(452\) 0.732151 + 15.1069i 0.0344375 + 0.710569i
\(453\) 0 0
\(454\) 7.72562 + 26.2709i 0.362581 + 1.23295i
\(455\) 3.61080 + 6.71429i 0.169277 + 0.314771i
\(456\) 0 0
\(457\) 14.5822 25.2571i 0.682126 1.18148i −0.292205 0.956356i \(-0.594389\pi\)
0.974331 0.225121i \(-0.0722778\pi\)
\(458\) −24.1970 5.85954i −1.13065 0.273798i
\(459\) 0 0
\(460\) 5.22623 + 8.11740i 0.243674 + 0.378476i
\(461\) 22.4501 12.9616i 1.04561 0.603681i 0.124190 0.992258i \(-0.460367\pi\)
0.921416 + 0.388577i \(0.127033\pi\)
\(462\) 0 0
\(463\) 36.7003 1.70561 0.852803 0.522233i \(-0.174901\pi\)
0.852803 + 0.522233i \(0.174901\pi\)
\(464\) −0.752388 7.74400i −0.0349287 0.359506i
\(465\) 0 0
\(466\) 5.10187 21.0682i 0.236340 0.975967i
\(467\) 27.9836i 1.29492i −0.762097 0.647462i \(-0.775830\pi\)
0.762097 0.647462i \(-0.224170\pi\)
\(468\) 0 0
\(469\) 4.26234i 0.196817i
\(470\) −32.5685 7.88678i −1.50227 0.363790i
\(471\) 0 0
\(472\) 0.252627 1.31956i 0.0116281 0.0607375i
\(473\) 44.9319 2.06597
\(474\) 0 0
\(475\) 0.0257885 0.0148890i 0.00118326 0.000683155i
\(476\) −9.62269 + 6.19537i −0.441055 + 0.283965i
\(477\) 0 0
\(478\) −4.68827 + 19.3603i −0.214437 + 0.885517i
\(479\) −16.2482 + 28.1426i −0.742397 + 1.28587i 0.209004 + 0.977915i \(0.432978\pi\)
−0.951401 + 0.307955i \(0.900355\pi\)
\(480\) 0 0
\(481\) −9.94388 + 16.0819i −0.453402 + 0.733273i
\(482\) 19.6729 5.78531i 0.896074 0.263514i
\(483\) 0 0
\(484\) −1.94462 40.1244i −0.0883918 1.82384i
\(485\) −2.48602 + 1.43531i −0.112885 + 0.0651739i
\(486\) 0 0
\(487\) −5.79695 10.0406i −0.262685 0.454983i 0.704270 0.709933i \(-0.251275\pi\)
−0.966954 + 0.254949i \(0.917941\pi\)
\(488\) 1.88328 9.83703i 0.0852521 0.445302i
\(489\) 0 0
\(490\) −13.3494 + 14.0120i −0.603062 + 0.632997i
\(491\) 36.2077 + 20.9045i 1.63403 + 0.943407i 0.982833 + 0.184498i \(0.0590661\pi\)
0.651197 + 0.758909i \(0.274267\pi\)
\(492\) 0 0
\(493\) 11.7920i 0.531085i
\(494\) −8.20033 + 2.14485i −0.368950 + 0.0965016i
\(495\) 0 0
\(496\) −4.44567 6.22126i −0.199616 0.279343i
\(497\) 5.49065 9.51008i 0.246289 0.426585i
\(498\) 0 0
\(499\) 17.9011i 0.801363i −0.916217 0.400682i \(-0.868773\pi\)
0.916217 0.400682i \(-0.131227\pi\)
\(500\) 10.2114 19.8477i 0.456668 0.887614i
\(501\) 0 0
\(502\) −11.4433 38.9128i −0.510739 1.73676i
\(503\) 7.29456 + 12.6345i 0.325248 + 0.563346i 0.981563 0.191141i \(-0.0612188\pi\)
−0.656314 + 0.754488i \(0.727886\pi\)
\(504\) 0 0
\(505\) 10.9360 18.9416i 0.486644 0.842892i
\(506\) 4.79373 + 16.3010i 0.213107 + 0.724668i
\(507\) 0 0
\(508\) 5.17810 3.33381i 0.229741 0.147914i
\(509\) −1.08621 0.627122i −0.0481453 0.0277967i 0.475734 0.879589i \(-0.342182\pi\)
−0.523879 + 0.851792i \(0.675516\pi\)
\(510\) 0 0
\(511\) −0.904639 1.56688i −0.0400189 0.0693147i
\(512\) −19.0808 12.1624i −0.843259 0.537507i
\(513\) 0 0
\(514\) −11.9034 11.3405i −0.525038 0.500209i
\(515\) 33.7703i 1.48810i
\(516\) 0 0
\(517\) −51.0749 29.4881i −2.24627 1.29688i
\(518\) 6.80363 + 1.64756i 0.298934 + 0.0723898i
\(519\) 0 0
\(520\) 15.4533 16.8244i 0.677670 0.737798i
\(521\) −8.42526 −0.369117 −0.184559 0.982822i \(-0.559086\pi\)
−0.184559 + 0.982822i \(0.559086\pi\)
\(522\) 0 0
\(523\) 20.6677 + 11.9325i 0.903736 + 0.521772i 0.878410 0.477907i \(-0.158604\pi\)
0.0253256 + 0.999679i \(0.491938\pi\)
\(524\) 10.9016 21.1891i 0.476238 0.925651i
\(525\) 0 0
\(526\) −17.3548 16.5341i −0.756704 0.720919i
\(527\) 5.79445 + 10.0363i 0.252410 + 0.437187i
\(528\) 0 0
\(529\) 9.17818 + 15.8971i 0.399051 + 0.691177i
\(530\) −7.74541 + 31.9847i −0.336439 + 1.38933i
\(531\) 0 0
\(532\) 1.69879 + 2.63857i 0.0736518 + 0.114396i
\(533\) −2.03651 1.25922i −0.0882109 0.0545431i
\(534\) 0 0
\(535\) 17.5946 30.4747i 0.760680 1.31754i
\(536\) −12.0645 + 4.19234i −0.521109 + 0.181082i
\(537\) 0 0
\(538\) 2.97244 + 10.1077i 0.128151 + 0.435776i
\(539\) −29.4975 + 17.0304i −1.27055 + 0.733550i
\(540\) 0 0
\(541\) 19.4928i 0.838059i −0.907973 0.419030i \(-0.862370\pi\)
0.907973 0.419030i \(-0.137630\pi\)
\(542\) 15.5891 + 14.8519i 0.669610 + 0.637943i
\(543\) 0 0
\(544\) 27.0006 + 21.1433i 1.15764 + 0.906513i
\(545\) −21.7269 −0.930678
\(546\) 0 0
\(547\) 2.18538i 0.0934399i 0.998908 + 0.0467200i \(0.0148768\pi\)
−0.998908 + 0.0467200i \(0.985123\pi\)
\(548\) −1.98166 40.8887i −0.0846523 1.74668i
\(549\) 0 0
\(550\) −0.0974289 + 0.102265i −0.00415438 + 0.00436060i
\(551\) 3.23340 0.137747
\(552\) 0 0
\(553\) 6.42423 + 11.1271i 0.273186 + 0.473172i
\(554\) 6.44672 + 21.9220i 0.273895 + 0.931375i
\(555\) 0 0
\(556\) 16.1835 0.784328i 0.686333 0.0332629i
\(557\) 29.5902 + 17.0839i 1.25378 + 0.723869i 0.971858 0.235568i \(-0.0756951\pi\)
0.281921 + 0.959438i \(0.409028\pi\)
\(558\) 0 0
\(559\) 13.7622 + 25.5908i 0.582080 + 1.08238i
\(560\) −7.69915 3.50071i −0.325348 0.147932i
\(561\) 0 0
\(562\) 9.22661 38.1014i 0.389201 1.60721i
\(563\) 20.4379 11.7998i 0.861353 0.497302i −0.00311215 0.999995i \(-0.500991\pi\)
0.864465 + 0.502693i \(0.167657\pi\)
\(564\) 0 0
\(565\) 14.6706 8.47006i 0.617195 0.356338i
\(566\) 3.70317 3.88699i 0.155656 0.163382i
\(567\) 0 0
\(568\) −32.3187 6.18736i −1.35606 0.259616i
\(569\) 1.38906 2.40592i 0.0582323 0.100861i −0.835440 0.549582i \(-0.814787\pi\)
0.893672 + 0.448721i \(0.148120\pi\)
\(570\) 0 0
\(571\) 19.2497i 0.805577i −0.915293 0.402788i \(-0.868041\pi\)
0.915293 0.402788i \(-0.131959\pi\)
\(572\) 34.4463 20.7343i 1.44027 0.866946i
\(573\) 0 0
\(574\) −0.208636 + 0.861565i −0.00870831 + 0.0359610i
\(575\) 0.0193011 0.0334304i 0.000804910 0.00139415i
\(576\) 0 0
\(577\) 6.64617 0.276683 0.138342 0.990385i \(-0.455823\pi\)
0.138342 + 0.990385i \(0.455823\pi\)
\(578\) −20.2248 19.2683i −0.841240 0.801457i
\(579\) 0 0
\(580\) −7.32711 + 4.71742i −0.304242 + 0.195880i
\(581\) −9.45154 + 5.45685i −0.392116 + 0.226388i
\(582\) 0 0
\(583\) −28.9595 + 50.1594i −1.19938 + 2.07739i
\(584\) −3.54526 + 4.10172i −0.146704 + 0.169730i
\(585\) 0 0
\(586\) 1.91101 + 6.49835i 0.0789430 + 0.268444i
\(587\) −23.1016 13.3377i −0.953505 0.550507i −0.0593374 0.998238i \(-0.518899\pi\)
−0.894168 + 0.447731i \(0.852232\pi\)
\(588\) 0 0
\(589\) 2.75197 1.58885i 0.113393 0.0654675i
\(590\) −1.44366 + 0.424546i −0.0594346 + 0.0174783i
\(591\) 0 0
\(592\) −2.02847 20.8781i −0.0833696 0.858087i
\(593\) −6.61409 −0.271608 −0.135804 0.990736i \(-0.543362\pi\)
−0.135804 + 0.990736i \(0.543362\pi\)
\(594\) 0 0
\(595\) 11.1010 + 6.40917i 0.455097 + 0.262751i
\(596\) 7.23150 0.350473i 0.296214 0.0143559i
\(597\) 0 0
\(598\) −7.81592 + 7.72310i −0.319617 + 0.315821i
\(599\) −11.9319 −0.487523 −0.243762 0.969835i \(-0.578381\pi\)
−0.243762 + 0.969835i \(0.578381\pi\)
\(600\) 0 0
\(601\) 6.15610 10.6627i 0.251113 0.434940i −0.712720 0.701449i \(-0.752537\pi\)
0.963832 + 0.266509i \(0.0858702\pi\)
\(602\) 7.42040 7.78874i 0.302433 0.317445i
\(603\) 0 0
\(604\) 28.6218 + 14.7256i 1.16460 + 0.599177i
\(605\) −38.9655 + 22.4968i −1.58417 + 0.914623i
\(606\) 0 0
\(607\) 4.35738 + 7.54720i 0.176860 + 0.306331i 0.940804 0.338952i \(-0.110073\pi\)
−0.763943 + 0.645284i \(0.776739\pi\)
\(608\) 5.79756 7.40364i 0.235122 0.300257i
\(609\) 0 0
\(610\) −10.7622 + 3.16490i −0.435749 + 0.128143i
\(611\) 1.15111 38.1215i 0.0465690 1.54223i
\(612\) 0 0
\(613\) 30.7480 + 17.7523i 1.24190 + 0.717010i 0.969480 0.245169i \(-0.0788433\pi\)
0.272418 + 0.962179i \(0.412177\pi\)
\(614\) 12.3151 + 2.98223i 0.496999 + 0.120353i
\(615\) 0 0
\(616\) −11.2615 9.73375i −0.453740 0.392184i
\(617\) −12.0318 20.8396i −0.484380 0.838971i 0.515459 0.856914i \(-0.327622\pi\)
−0.999839 + 0.0179431i \(0.994288\pi\)
\(618\) 0 0
\(619\) 21.6806i 0.871417i −0.900088 0.435708i \(-0.856498\pi\)
0.900088 0.435708i \(-0.143502\pi\)
\(620\) −3.91809 + 7.61548i −0.157354 + 0.305845i
\(621\) 0 0
\(622\) 3.11275 12.8541i 0.124810 0.515404i
\(623\) 0.705358 0.0282596
\(624\) 0 0
\(625\) −25.0892 −1.00357
\(626\) 3.92206 16.1962i 0.156757 0.647329i
\(627\) 0 0
\(628\) −14.1158 + 27.4365i −0.563283 + 1.09484i
\(629\) 31.7918i 1.26762i
\(630\) 0 0
\(631\) −9.48379 16.4264i −0.377544 0.653925i 0.613161 0.789958i \(-0.289898\pi\)
−0.990704 + 0.136033i \(0.956565\pi\)
\(632\) 25.1765 29.1281i 1.00147 1.15865i
\(633\) 0 0
\(634\) −1.13814 0.275611i −0.0452011 0.0109459i
\(635\) −5.97360 3.44886i −0.237055 0.136864i
\(636\) 0 0
\(637\) −18.7344 11.5840i −0.742284 0.458973i
\(638\) −14.7140 + 4.32702i −0.582532 + 0.171309i
\(639\) 0 0
\(640\) −2.33603 + 25.2356i −0.0923395 + 0.997525i
\(641\) 12.4294 + 21.5284i 0.490934 + 0.850322i 0.999946 0.0104375i \(-0.00332243\pi\)
−0.509012 + 0.860759i \(0.669989\pi\)
\(642\) 0 0
\(643\) 3.25429 1.87887i 0.128337 0.0740952i −0.434457 0.900692i \(-0.643060\pi\)
0.562794 + 0.826597i \(0.309726\pi\)
\(644\) 3.61738 + 1.86110i 0.142545 + 0.0733377i
\(645\) 0 0
\(646\) −9.83064 + 10.3186i −0.386781 + 0.405981i
\(647\) 24.0878 41.7213i 0.946989 1.64023i 0.195271 0.980749i \(-0.437441\pi\)
0.751718 0.659484i \(-0.229225\pi\)
\(648\) 0 0
\(649\) −2.64838 −0.103958
\(650\) −0.0880864 0.0241675i −0.00345503 0.000947929i
\(651\) 0 0
\(652\) 10.0080 0.485034i 0.391943 0.0189954i
\(653\) −21.5793 12.4588i −0.844463 0.487551i 0.0143156 0.999898i \(-0.495443\pi\)
−0.858779 + 0.512346i \(0.828776\pi\)
\(654\) 0 0
\(655\) −26.6894 −1.04284
\(656\) 2.64387 0.256872i 0.103226 0.0100291i
\(657\) 0 0
\(658\) −13.5465 + 3.98370i −0.528098 + 0.155301i
\(659\) −1.75765 + 1.01478i −0.0684684 + 0.0395302i −0.533843 0.845583i \(-0.679253\pi\)
0.465375 + 0.885114i \(0.345919\pi\)
\(660\) 0 0
\(661\) −9.61763 5.55274i −0.374082 0.215977i 0.301158 0.953574i \(-0.402627\pi\)
−0.675240 + 0.737598i \(0.735960\pi\)
\(662\) 5.91644 + 20.1188i 0.229949 + 0.781938i
\(663\) 0 0
\(664\) 24.7419 + 21.3853i 0.960172 + 0.829911i
\(665\) 1.75741 3.04393i 0.0681495 0.118038i
\(666\) 0 0
\(667\) 3.62999 2.09578i 0.140554 0.0811488i
\(668\) −1.78991 + 1.15240i −0.0692536 + 0.0445875i
\(669\) 0 0
\(670\) 10.3573 + 9.86751i 0.400138 + 0.381215i
\(671\) −19.7432 −0.762176
\(672\) 0 0
\(673\) −17.0389 + 29.5122i −0.656800 + 1.13761i 0.324639 + 0.945838i \(0.394757\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(674\) −1.84363 + 7.61330i −0.0710141 + 0.293253i
\(675\) 0 0
\(676\) 22.3598 + 13.2681i 0.859990 + 0.510310i
\(677\) 28.8974i 1.11062i 0.831645 + 0.555308i \(0.187400\pi\)
−0.831645 + 0.555308i \(0.812600\pi\)
\(678\) 0 0
\(679\) −0.604799 + 1.04754i −0.0232100 + 0.0402010i
\(680\) 7.22243 37.7253i 0.276968 1.44670i
\(681\) 0 0
\(682\) −10.3969 + 10.9130i −0.398120 + 0.417882i
\(683\) −18.5350 + 10.7012i −0.709221 + 0.409469i −0.810773 0.585361i \(-0.800953\pi\)
0.101551 + 0.994830i \(0.467619\pi\)
\(684\) 0 0
\(685\) −39.7078 + 22.9253i −1.51716 + 0.875930i
\(686\) −4.11852 + 17.0075i −0.157246 + 0.649348i
\(687\) 0 0
\(688\) −29.3445 13.3426i −1.11875 0.508682i
\(689\) −37.4381 1.13048i −1.42628 0.0430678i
\(690\) 0 0
\(691\) 42.9878 + 24.8190i 1.63533 + 0.944159i 0.982411 + 0.186733i \(0.0597900\pi\)
0.652921 + 0.757426i \(0.273543\pi\)
\(692\) −43.6074 + 2.11342i −1.65770 + 0.0803401i
\(693\) 0 0
\(694\) 6.44094 + 21.9023i 0.244495 + 0.831401i
\(695\) −9.07368 15.7161i −0.344184 0.596145i
\(696\) 0 0
\(697\) −4.02589 −0.152491
\(698\) −23.3264 + 24.4843i −0.882918 + 0.926744i
\(699\) 0 0
\(700\) 0.00163703 + 0.0337777i 6.18738e−5 + 0.00127668i
\(701\) 23.3855i 0.883258i 0.897198 + 0.441629i \(0.145599\pi\)
−0.897198 + 0.441629i \(0.854401\pi\)
\(702\) 0 0
\(703\) 8.71738 0.328782
\(704\) −16.4747 + 41.4496i −0.620915 + 1.56219i
\(705\) 0 0
\(706\) 5.69091 + 5.42178i 0.214180 + 0.204051i
\(707\) 9.21623i 0.346612i
\(708\) 0 0
\(709\) −41.1118 + 23.7359i −1.54399 + 0.891421i −0.545405 + 0.838172i \(0.683624\pi\)
−0.998581 + 0.0532487i \(0.983042\pi\)
\(710\) 10.3980 + 35.3583i 0.390230 + 1.32697i
\(711\) 0 0
\(712\) −0.693774 1.99651i −0.0260003 0.0748224i
\(713\) 2.05968 3.56746i 0.0771355 0.133603i
\(714\) 0 0
\(715\) −38.3009 23.6824i −1.43237 0.885672i
\(716\) 3.53624 + 5.49250i 0.132155 + 0.205264i
\(717\) 0 0
\(718\) −2.84628 + 11.7537i −0.106222 + 0.438645i
\(719\) −22.6840 39.2899i −0.845972 1.46527i −0.884774 0.466020i \(-0.845688\pi\)
0.0388023 0.999247i \(-0.487646\pi\)
\(720\) 0 0
\(721\) −7.11493 12.3234i −0.264974 0.458948i
\(722\) −16.6250 15.8388i −0.618720 0.589460i
\(723\) 0 0
\(724\) −12.0073 + 23.3382i −0.446246 + 0.867357i
\(725\) 0.0301757 + 0.0174220i 0.00112070 + 0.000647036i
\(726\) 0 0
\(727\) 27.1042 1.00524 0.502619 0.864508i \(-0.332370\pi\)
0.502619 + 0.864508i \(0.332370\pi\)
\(728\) 2.09453 9.39533i 0.0776284 0.348214i
\(729\) 0 0
\(730\) 5.90173 + 1.42916i 0.218433 + 0.0528956i
\(731\) 42.3104 + 24.4279i 1.56491 + 0.903500i
\(732\) 0 0
\(733\) 21.1225i 0.780179i −0.920777 0.390090i \(-0.872444\pi\)
0.920777 0.390090i \(-0.127556\pi\)
\(734\) 4.02810 + 3.83760i 0.148680 + 0.141649i
\(735\) 0 0
\(736\) 1.70987 12.0695i 0.0630268 0.444888i
\(737\) 12.5884 + 21.8038i 0.463701 + 0.803153i
\(738\) 0 0
\(739\) 25.6746 + 14.8233i 0.944457 + 0.545283i 0.891355 0.453307i \(-0.149756\pi\)
0.0531023 + 0.998589i \(0.483089\pi\)
\(740\) −19.7542 + 12.7184i −0.726179 + 0.467536i
\(741\) 0 0
\(742\) 3.91230 + 13.3037i 0.143625 + 0.488394i
\(743\) −5.52318 + 9.56643i −0.202626 + 0.350958i −0.949374 0.314149i \(-0.898281\pi\)
0.746748 + 0.665107i \(0.231614\pi\)
\(744\) 0 0
\(745\) −4.05452 7.02264i −0.148546 0.257290i
\(746\) 3.16202 + 10.7524i 0.115770 + 0.393674i
\(747\) 0 0
\(748\) 30.9269 60.1118i 1.13080 2.19790i
\(749\) 14.8277i 0.541794i
\(750\) 0 0
\(751\) 18.6034 32.2220i 0.678846 1.17580i −0.296483 0.955038i \(-0.595814\pi\)
0.975329 0.220758i \(-0.0708530\pi\)
\(752\) 24.5999 + 34.4251i 0.897066 + 1.25535i
\(753\) 0 0
\(754\) −6.97120 7.05498i −0.253876 0.256927i
\(755\) 36.0514i 1.31204i
\(756\) 0 0
\(757\) 17.2083 + 9.93522i 0.625446 + 0.361102i 0.778986 0.627041i \(-0.215734\pi\)
−0.153540 + 0.988142i \(0.549067\pi\)
\(758\) 25.7698 27.0490i 0.936003 0.982464i
\(759\) 0 0
\(760\) −10.3444 1.98041i −0.375230 0.0718370i
\(761\) 4.52926 + 7.84491i 0.164186 + 0.284378i 0.936366 0.351026i \(-0.114167\pi\)
−0.772180 + 0.635404i \(0.780834\pi\)
\(762\) 0 0
\(763\) −7.92857 + 4.57756i −0.287033 + 0.165719i
\(764\) 0.778662 + 16.0666i 0.0281710 + 0.581269i
\(765\) 0 0
\(766\) −2.56995 + 0.755759i −0.0928560 + 0.0273067i
\(767\) −0.811174 1.50838i −0.0292898 0.0544644i
\(768\) 0 0
\(769\) −5.28678 + 9.15697i −0.190646 + 0.330209i −0.945465 0.325725i \(-0.894392\pi\)
0.754818 + 0.655934i \(0.227725\pi\)
\(770\) −3.92385 + 16.2036i −0.141406 + 0.583936i
\(771\) 0 0
\(772\) −1.40560 + 0.904968i −0.0505887 + 0.0325705i
\(773\) 22.3264 12.8902i 0.803026 0.463627i −0.0415022 0.999138i \(-0.513214\pi\)
0.844528 + 0.535511i \(0.179881\pi\)
\(774\) 0 0
\(775\) 0.0342437 0.00123007
\(776\) 3.55993 + 0.681542i 0.127794 + 0.0244659i
\(777\) 0 0
\(778\) 34.4732 + 8.34802i 1.23592 + 0.299291i
\(779\) 1.10391i 0.0395517i
\(780\) 0 0
\(781\) 64.8644i 2.32103i
\(782\) −4.34825 + 17.9561i −0.155493 + 0.642110i
\(783\) 0 0
\(784\) 24.3217 2.36303i 0.868631 0.0843940i
\(785\) 34.5585 1.23345
\(786\) 0 0
\(787\) 12.1719 7.02745i 0.433881 0.250502i −0.267117 0.963664i \(-0.586071\pi\)
0.700999 + 0.713162i \(0.252738\pi\)
\(788\) −7.58358 11.7789i −0.270154 0.419604i
\(789\) 0 0
\(790\) −41.9108 10.1491i −1.49112 0.361088i
\(791\) 3.56905 6.18178i 0.126901 0.219799i
\(792\) 0 0
\(793\) −6.04714 11.2447i −0.214740 0.399309i
\(794\) −3.68569 12.5331i −0.130800 0.444784i
\(795\) 0 0
\(796\) 1.45564 + 30.0350i 0.0515936 + 1.06456i
\(797\) −19.1331 + 11.0465i −0.677731 + 0.391288i −0.798999 0.601332i \(-0.794637\pi\)
0.121269 + 0.992620i \(0.461304\pi\)
\(798\) 0 0
\(799\) −32.0633 55.5353i −1.13432 1.96470i
\(800\) 0.0939975 0.0378566i 0.00332331 0.00133843i
\(801\) 0 0
\(802\) 4.52849 + 4.31434i 0.159907 + 0.152345i
\(803\) 9.25526 + 5.34353i 0.326611 + 0.188569i
\(804\) 0 0
\(805\) 4.55637i 0.160591i
\(806\) −9.39997 2.57899i −0.331100 0.0908411i
\(807\) 0 0
\(808\) −26.0865 + 9.06487i −0.917720 + 0.318901i
\(809\) 2.02317 3.50424i 0.0711310 0.123202i −0.828266 0.560335i \(-0.810672\pi\)
0.899397 + 0.437132i \(0.144006\pi\)
\(810\) 0 0
\(811\) 18.7132i 0.657109i −0.944485 0.328555i \(-0.893439\pi\)
0.944485 0.328555i \(-0.106561\pi\)
\(812\) −1.67991 + 3.26520i −0.0589533 + 0.114586i
\(813\) 0 0
\(814\) −39.6695 + 11.6658i −1.39042 + 0.408888i
\(815\) −5.61122 9.71893i −0.196553 0.340439i
\(816\) 0 0
\(817\) 6.69820 11.6016i 0.234340 0.405889i
\(818\) 35.9110 10.5606i 1.25560 0.369241i
\(819\) 0 0
\(820\) −1.61056 2.50154i −0.0562434 0.0873575i
\(821\) 6.46202 + 3.73085i 0.225526 + 0.130208i 0.608506 0.793549i \(-0.291769\pi\)
−0.382980 + 0.923757i \(0.625102\pi\)
\(822\) 0 0
\(823\) −9.81336 16.9972i −0.342072 0.592486i 0.642745 0.766080i \(-0.277795\pi\)
−0.984817 + 0.173594i \(0.944462\pi\)
\(824\) −27.8833 + 32.2598i −0.971361 + 1.12382i
\(825\) 0 0
\(826\) −0.437374 + 0.459085i −0.0152182 + 0.0159736i
\(827\) 19.2616i 0.669792i 0.942255 + 0.334896i \(0.108701\pi\)
−0.942255 + 0.334896i \(0.891299\pi\)
\(828\) 0 0
\(829\) 18.7148 + 10.8050i 0.649993 + 0.375273i 0.788453 0.615094i \(-0.210882\pi\)
−0.138461 + 0.990368i \(0.544215\pi\)
\(830\) 8.62081 35.5997i 0.299233 1.23568i
\(831\) 0 0
\(832\) −28.6536 + 3.31248i −0.993384 + 0.114840i
\(833\) −37.0353 −1.28320
\(834\) 0 0
\(835\) 2.06489 + 1.19216i 0.0714584 + 0.0412565i
\(836\) −16.4828 8.48023i −0.570070 0.293295i
\(837\) 0 0
\(838\) −4.84919 + 5.08989i −0.167512 + 0.175827i
\(839\) 21.0839 + 36.5183i 0.727895 + 1.26075i 0.957771 + 0.287532i \(0.0928347\pi\)
−0.229876 + 0.973220i \(0.573832\pi\)
\(840\) 0 0
\(841\) −12.6083 21.8382i −0.434768 0.753040i
\(842\) −33.0667 8.00741i −1.13955 0.275954i
\(843\) 0 0
\(844\) 7.27889 + 11.3056i 0.250550 + 0.389155i
\(845\) 1.75706 29.0679i 0.0604448 0.999965i
\(846\) 0 0
\(847\) −9.47952 + 16.4190i −0.325720 + 0.564164i
\(848\) 33.8080 24.1590i 1.16097 0.829622i
\(849\) 0 0
\(850\) −0.147343 + 0.0433299i −0.00505381 + 0.00148620i
\(851\) 9.78661 5.65030i 0.335481 0.193690i
\(852\) 0 0
\(853\) 40.2417i 1.37785i 0.724833 + 0.688924i \(0.241917\pi\)
−0.724833 + 0.688924i \(0.758083\pi\)
\(854\) −3.26054 + 3.42238i −0.111573 + 0.117112i
\(855\) 0 0
\(856\) −41.9699 + 14.5842i −1.43450 + 0.498479i
\(857\) −7.37621 −0.251966 −0.125983 0.992032i \(-0.540209\pi\)
−0.125983 + 0.992032i \(0.540209\pi\)
\(858\) 0 0
\(859\) 31.9493i 1.09010i −0.838405 0.545048i \(-0.816511\pi\)
0.838405 0.545048i \(-0.183489\pi\)
\(860\) 1.74776 + 36.0625i 0.0595981 + 1.22972i
\(861\) 0 0
\(862\) 10.8323 + 10.3200i 0.368948 + 0.351500i
\(863\) 16.1143 0.548536 0.274268 0.961653i \(-0.411564\pi\)
0.274268 + 0.961653i \(0.411564\pi\)
\(864\) 0 0
\(865\) 24.4496 + 42.3479i 0.831310 + 1.43987i
\(866\) −16.5876 + 4.87801i −0.563669 + 0.165761i
\(867\) 0 0
\(868\) 0.174692 + 3.60452i 0.00592944 + 0.122346i
\(869\) −65.7256 37.9467i −2.22959 1.28725i
\(870\) 0 0
\(871\) −8.56257 + 13.8480i −0.290132 + 0.469221i
\(872\) 20.7551 + 17.9394i 0.702857 + 0.607504i
\(873\) 0 0
\(874\) 4.92362 + 1.19230i 0.166544 + 0.0403302i
\(875\) −9.12287 + 5.26709i −0.308409 + 0.178060i
\(876\) 0 0
\(877\) −0.181562 + 0.104825i −0.00613091 + 0.00353968i −0.503062 0.864250i \(-0.667793\pi\)
0.496931 + 0.867790i \(0.334460\pi\)
\(878\) −13.2376 12.6115i −0.446746 0.425619i
\(879\) 0 0
\(880\) 49.7236 4.83102i 1.67618 0.162854i
\(881\) 20.1008 34.8157i 0.677214 1.17297i −0.298602 0.954378i \(-0.596520\pi\)
0.975816 0.218592i \(-0.0701464\pi\)
\(882\) 0 0
\(883\) 4.69019i 0.157837i −0.996881 0.0789187i \(-0.974853\pi\)
0.996881 0.0789187i \(-0.0251467\pi\)
\(884\) 43.7091 0.797345i 1.47010 0.0268176i
\(885\) 0 0
\(886\) −19.3032 4.67446i −0.648505 0.157042i
\(887\) 11.6991 20.2635i 0.392819 0.680382i −0.600002 0.799999i \(-0.704833\pi\)
0.992820 + 0.119617i \(0.0381667\pi\)
\(888\) 0 0
\(889\) −2.90651 −0.0974813
\(890\) −1.63293 + 1.71399i −0.0547361 + 0.0574531i
\(891\) 0 0
\(892\) 35.0920 22.5933i 1.17497 0.756479i
\(893\) −15.2279 + 8.79184i −0.509583 + 0.294208i
\(894\) 0 0
\(895\) 3.65827 6.33631i 0.122282 0.211799i
\(896\) 4.46434 + 9.70113i 0.149143 + 0.324092i
\(897\) 0 0
\(898\) −2.32580 + 0.683961i −0.0776129 + 0.0228241i
\(899\) 3.22015 + 1.85915i 0.107398 + 0.0620062i
\(900\) 0 0
\(901\) −54.5398 + 31.4886i −1.81698 + 1.04904i
\(902\) −1.47728 5.02348i −0.0491881 0.167263i
\(903\) 0 0
\(904\) −21.0079 4.02193i −0.698713 0.133767i
\(905\) 29.3963 0.977166
\(906\) 0 0
\(907\) −3.93422 2.27142i −0.130634 0.0754213i 0.433259 0.901269i \(-0.357363\pi\)
−0.563893 + 0.825848i \(0.690697\pi\)
\(908\) −38.6804 + 1.87463i −1.28365 + 0.0622119i
\(909\) 0 0
\(910\) −10.4305 + 2.72818i −0.345769 + 0.0904384i
\(911\) 29.5451 0.978873 0.489436 0.872039i \(-0.337203\pi\)
0.489436 + 0.872039i \(0.337203\pi\)
\(912\) 0 0
\(913\) 32.2326 55.8285i 1.06674 1.84765i
\(914\) 29.8619 + 28.4497i 0.987745 + 0.941033i
\(915\) 0 0
\(916\) 16.1077 31.3082i 0.532214 1.03445i
\(917\) −9.73946 + 5.62308i −0.321625 + 0.185691i
\(918\) 0 0
\(919\) 15.5647 + 26.9588i 0.513431 + 0.889288i 0.999879 + 0.0155787i \(0.00495905\pi\)
−0.486448 + 0.873710i \(0.661708\pi\)
\(920\) −12.8968 + 4.48154i −0.425194 + 0.147752i
\(921\) 0 0
\(922\) 10.3431 + 35.1716i 0.340632 + 1.15831i
\(923\) −36.9433 + 19.8673i −1.21600 + 0.653942i
\(924\) 0 0
\(925\) 0.0813551 + 0.0469704i 0.00267494 + 0.00154438i
\(926\) −12.2155 + 50.4440i −0.401426 + 1.65769i
\(927\) 0 0
\(928\) 10.8945 + 1.54341i 0.357628 + 0.0506648i
\(929\) −11.9251 20.6548i −0.391249 0.677663i 0.601366 0.798974i \(-0.294624\pi\)
−0.992615 + 0.121311i \(0.961290\pi\)
\(930\) 0 0
\(931\) 10.1552i 0.332822i
\(932\) 27.2599 + 14.0249i 0.892926 + 0.459401i
\(933\) 0 0
\(934\) 38.4630 + 9.31419i 1.25855 + 0.304770i
\(935\) −75.7155 −2.47616
\(936\) 0 0
\(937\) −9.97996 −0.326031 −0.163016 0.986623i \(-0.552122\pi\)
−0.163016 + 0.986623i \(0.552122\pi\)
\(938\) 5.85854 + 1.41870i 0.191288 + 0.0463222i
\(939\) 0 0
\(940\) 21.6806 42.1399i 0.707142 1.37445i
\(941\) 12.2242i 0.398498i −0.979949 0.199249i \(-0.936150\pi\)
0.979949 0.199249i \(-0.0638502\pi\)
\(942\) 0 0
\(943\) 0.715515 + 1.23931i 0.0233004 + 0.0403575i
\(944\) 1.72963 + 0.786440i 0.0562946 + 0.0255965i
\(945\) 0 0
\(946\) −14.9554 + 61.7583i −0.486241 + 2.00794i
\(947\) 2.80497 + 1.61945i 0.0911494 + 0.0526251i 0.544882 0.838513i \(-0.316574\pi\)
−0.453732 + 0.891138i \(0.649908\pi\)
\(948\) 0 0
\(949\) −0.208593 + 6.90798i −0.00677120 + 0.224242i
\(950\) 0.0118812 + 0.0404017i 0.000385476 + 0.00131080i
\(951\) 0 0
\(952\) −5.31260 15.2884i −0.172182 0.495499i
\(953\) 3.08301 + 5.33994i 0.0998686 + 0.172977i 0.911630 0.411012i \(-0.134824\pi\)
−0.811762 + 0.583989i \(0.801491\pi\)
\(954\) 0 0
\(955\) 15.6025 9.00813i 0.504886 0.291496i
\(956\) −25.0499 12.8879i −0.810173 0.416826i
\(957\) 0 0
\(958\) −33.2736 31.7000i −1.07502 1.02418i
\(959\) −9.66009 + 16.7318i −0.311941 + 0.540297i
\(960\) 0 0
\(961\) −27.3457 −0.882121
\(962\) −18.7946 19.0205i −0.605964 0.613246i
\(963\) 0 0
\(964\) 1.40381 + 28.9657i 0.0452138 + 0.932922i
\(965\) 1.62154 + 0.936197i 0.0521993 + 0.0301373i
\(966\) 0 0
\(967\) 44.1828 1.42082 0.710411 0.703787i \(-0.248509\pi\)
0.710411 + 0.703787i \(0.248509\pi\)
\(968\) 55.7978 + 10.6824i 1.79341 + 0.343345i
\(969\) 0 0
\(970\) −1.14535 3.89474i −0.0367749 0.125053i
\(971\) −33.2299 + 19.1853i −1.06640 + 0.615686i −0.927195 0.374578i \(-0.877788\pi\)
−0.139204 + 0.990264i \(0.544454\pi\)
\(972\) 0 0
\(973\) −6.62233 3.82340i −0.212302 0.122573i
\(974\) 15.7302 4.62586i 0.504027 0.148222i
\(975\) 0 0
\(976\) 12.8940 + 5.86275i 0.412728 + 0.187662i
\(977\) 9.04005 15.6578i 0.289217 0.500938i −0.684406 0.729101i \(-0.739938\pi\)
0.973623 + 0.228163i \(0.0732718\pi\)
\(978\) 0 0
\(979\) −3.60822 + 2.08321i −0.115319 + 0.0665796i
\(980\) −14.8160 23.0123i −0.473281 0.735102i
\(981\) 0 0
\(982\) −40.7845 + 42.8090i −1.30149 + 1.36609i
\(983\) −18.8329 −0.600677 −0.300339 0.953833i \(-0.597100\pi\)
−0.300339 + 0.953833i \(0.597100\pi\)
\(984\) 0 0
\(985\) −7.84529 + 13.5884i −0.249972 + 0.432964i
\(986\) −16.2080 3.92491i −0.516167 0.124995i
\(987\) 0 0
\(988\) −0.218634 11.9851i −0.00695568 0.381298i
\(989\) 17.3662i 0.552212i
\(990\) 0 0
\(991\) −24.8600 + 43.0588i −0.789704 + 1.36781i 0.136444 + 0.990648i \(0.456433\pi\)
−0.926148 + 0.377160i \(0.876901\pi\)
\(992\) 10.0308 4.03979i 0.318477 0.128264i
\(993\) 0 0
\(994\) 11.2439 + 10.7122i 0.356636 + 0.339771i
\(995\) 29.1675 16.8399i 0.924671 0.533859i
\(996\) 0 0
\(997\) 41.6202 24.0294i 1.31812 0.761020i 0.334698 0.942325i \(-0.391366\pi\)
0.983427 + 0.181306i \(0.0580324\pi\)
\(998\) 24.6048 + 5.95829i 0.778852 + 0.188606i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.be.a.685.6 24
3.2 odd 2 104.2.r.a.61.7 yes 24
8.5 even 2 inner 936.2.be.a.685.3 24
12.11 even 2 416.2.z.a.113.8 24
13.3 even 3 inner 936.2.be.a.757.3 24
24.5 odd 2 104.2.r.a.61.10 yes 24
24.11 even 2 416.2.z.a.113.5 24
39.29 odd 6 104.2.r.a.29.10 yes 24
104.29 even 6 inner 936.2.be.a.757.6 24
156.107 even 6 416.2.z.a.81.5 24
312.29 odd 6 104.2.r.a.29.7 24
312.107 even 6 416.2.z.a.81.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.r.a.29.7 24 312.29 odd 6
104.2.r.a.29.10 yes 24 39.29 odd 6
104.2.r.a.61.7 yes 24 3.2 odd 2
104.2.r.a.61.10 yes 24 24.5 odd 2
416.2.z.a.81.5 24 156.107 even 6
416.2.z.a.81.8 24 312.107 even 6
416.2.z.a.113.5 24 24.11 even 2
416.2.z.a.113.8 24 12.11 even 2
936.2.be.a.685.3 24 8.5 even 2 inner
936.2.be.a.685.6 24 1.1 even 1 trivial
936.2.be.a.757.3 24 13.3 even 3 inner
936.2.be.a.757.6 24 104.29 even 6 inner