Properties

Label 936.2.be.a.685.3
Level $936$
Weight $2$
Character 936.685
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(685,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,-1,0,0,-2,10,0,-3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 685.3
Character \(\chi\) \(=\) 936.685
Dual form 936.2.be.a.757.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02392 + 0.975496i) q^{2} +(0.0968157 - 1.99766i) q^{4} -2.24007i q^{5} +(0.471952 + 0.817445i) q^{7} +(1.84957 + 2.13988i) q^{8} +(2.18518 + 2.29365i) q^{10} +(4.82849 + 2.78773i) q^{11} +(-0.108823 + 3.60391i) q^{13} +(-1.28065 - 0.376609i) q^{14} +(-3.98125 - 0.386809i) q^{16} +(-3.03119 - 5.25017i) q^{17} +(1.43961 - 0.831159i) q^{19} +(-4.47489 - 0.216874i) q^{20} +(-7.66340 + 1.85577i) q^{22} +(-1.07746 + 1.86621i) q^{23} -0.0179136 q^{25} +(-3.40417 - 3.79626i) q^{26} +(1.67867 - 0.863656i) q^{28} +(1.68452 + 0.972558i) q^{29} -1.91161 q^{31} +(4.45381 - 3.48764i) q^{32} +(8.22520 + 2.41883i) q^{34} +(1.83113 - 1.05721i) q^{35} +(4.54154 + 2.62206i) q^{37} +(-0.663250 + 2.25537i) q^{38} +(4.79348 - 4.14317i) q^{40} +(0.332039 - 0.575109i) q^{41} +(6.97919 - 4.02944i) q^{43} +(6.03640 - 9.37576i) q^{44} +(-0.717252 - 2.96190i) q^{46} +10.5778 q^{47} +(3.05452 - 5.29059i) q^{49} +(0.0183420 - 0.0174746i) q^{50} +(7.18883 + 0.566307i) q^{52} +10.3882i q^{53} +(6.24471 - 10.8162i) q^{55} +(-0.876323 + 2.52184i) q^{56} +(-2.67354 + 0.647422i) q^{58} +(-0.411368 + 0.237503i) q^{59} +(-3.06666 + 1.77054i) q^{61} +(1.95733 - 1.86477i) q^{62} +(-1.15816 + 7.91572i) q^{64} +(8.07301 + 0.243772i) q^{65} +(3.91067 + 2.25783i) q^{67} +(-10.7815 + 5.54696i) q^{68} +(-0.843631 + 2.86876i) q^{70} +(-5.81695 - 10.0753i) q^{71} -1.91680 q^{73} +(-7.20797 + 1.74548i) q^{74} +(-1.52099 - 2.95631i) q^{76} +5.26270i q^{77} +13.6120 q^{79} +(-0.866479 + 8.91829i) q^{80} +(0.221035 + 0.912767i) q^{82} -11.5623i q^{83} +(-11.7607 + 6.79007i) q^{85} +(-3.21542 + 10.9340i) q^{86} +(2.96524 + 15.4885i) q^{88} +(0.373638 - 0.647161i) q^{89} +(-2.99736 + 1.61192i) q^{91} +(3.62373 + 2.33306i) q^{92} +(-10.8308 + 10.3186i) q^{94} +(-1.86185 - 3.22483i) q^{95} +(0.640742 + 1.10980i) q^{97} +(2.03337 + 8.39680i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 3 q^{10} - 8 q^{14} - q^{16} + 11 q^{20} - 2 q^{22} + 14 q^{23} - 12 q^{25} + 3 q^{26} - 4 q^{28} - 8 q^{31} + 21 q^{32} + 14 q^{34} - 12 q^{38} + 54 q^{40}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02392 + 0.975496i −0.724019 + 0.689780i
\(3\) 0 0
\(4\) 0.0968157 1.99766i 0.0484079 0.998828i
\(5\) 2.24007i 1.00179i −0.865508 0.500895i \(-0.833004\pi\)
0.865508 0.500895i \(-0.166996\pi\)
\(6\) 0 0
\(7\) 0.471952 + 0.817445i 0.178381 + 0.308965i 0.941326 0.337498i \(-0.109581\pi\)
−0.762945 + 0.646463i \(0.776247\pi\)
\(8\) 1.84957 + 2.13988i 0.653923 + 0.756561i
\(9\) 0 0
\(10\) 2.18518 + 2.29365i 0.691014 + 0.725315i
\(11\) 4.82849 + 2.78773i 1.45584 + 0.840532i 0.998803 0.0489128i \(-0.0155756\pi\)
0.457042 + 0.889445i \(0.348909\pi\)
\(12\) 0 0
\(13\) −0.108823 + 3.60391i −0.0301821 + 0.999544i
\(14\) −1.28065 0.376609i −0.342269 0.100653i
\(15\) 0 0
\(16\) −3.98125 0.386809i −0.995313 0.0967022i
\(17\) −3.03119 5.25017i −0.735170 1.27335i −0.954649 0.297735i \(-0.903769\pi\)
0.219478 0.975617i \(-0.429565\pi\)
\(18\) 0 0
\(19\) 1.43961 0.831159i 0.330269 0.190681i −0.325692 0.945476i \(-0.605597\pi\)
0.655961 + 0.754795i \(0.272264\pi\)
\(20\) −4.47489 0.216874i −1.00062 0.0484945i
\(21\) 0 0
\(22\) −7.66340 + 1.85577i −1.63384 + 0.395651i
\(23\) −1.07746 + 1.86621i −0.224665 + 0.389131i −0.956219 0.292652i \(-0.905462\pi\)
0.731554 + 0.681784i \(0.238795\pi\)
\(24\) 0 0
\(25\) −0.0179136 −0.00358271
\(26\) −3.40417 3.79626i −0.667613 0.744508i
\(27\) 0 0
\(28\) 1.67867 0.863656i 0.317238 0.163216i
\(29\) 1.68452 + 0.972558i 0.312807 + 0.180599i 0.648182 0.761485i \(-0.275530\pi\)
−0.335375 + 0.942085i \(0.608863\pi\)
\(30\) 0 0
\(31\) −1.91161 −0.343335 −0.171668 0.985155i \(-0.554916\pi\)
−0.171668 + 0.985155i \(0.554916\pi\)
\(32\) 4.45381 3.48764i 0.787329 0.616533i
\(33\) 0 0
\(34\) 8.22520 + 2.41883i 1.41061 + 0.414826i
\(35\) 1.83113 1.05721i 0.309518 0.178700i
\(36\) 0 0
\(37\) 4.54154 + 2.62206i 0.746624 + 0.431064i 0.824473 0.565902i \(-0.191472\pi\)
−0.0778488 + 0.996965i \(0.524805\pi\)
\(38\) −0.663250 + 2.25537i −0.107593 + 0.365870i
\(39\) 0 0
\(40\) 4.79348 4.14317i 0.757915 0.655093i
\(41\) 0.332039 0.575109i 0.0518558 0.0898169i −0.838932 0.544236i \(-0.816820\pi\)
0.890788 + 0.454419i \(0.150153\pi\)
\(42\) 0 0
\(43\) 6.97919 4.02944i 1.06432 0.614483i 0.137693 0.990475i \(-0.456031\pi\)
0.926623 + 0.375992i \(0.122698\pi\)
\(44\) 6.03640 9.37576i 0.910021 1.41345i
\(45\) 0 0
\(46\) −0.717252 2.96190i −0.105753 0.436708i
\(47\) 10.5778 1.54293 0.771466 0.636270i \(-0.219524\pi\)
0.771466 + 0.636270i \(0.219524\pi\)
\(48\) 0 0
\(49\) 3.05452 5.29059i 0.436360 0.755798i
\(50\) 0.0183420 0.0174746i 0.00259395 0.00247128i
\(51\) 0 0
\(52\) 7.18883 + 0.566307i 0.996912 + 0.0785326i
\(53\) 10.3882i 1.42693i 0.700691 + 0.713465i \(0.252875\pi\)
−0.700691 + 0.713465i \(0.747125\pi\)
\(54\) 0 0
\(55\) 6.24471 10.8162i 0.842037 1.45845i
\(56\) −0.876323 + 2.52184i −0.117104 + 0.336996i
\(57\) 0 0
\(58\) −2.67354 + 0.647422i −0.351052 + 0.0850107i
\(59\) −0.411368 + 0.237503i −0.0535555 + 0.0309203i −0.526539 0.850151i \(-0.676510\pi\)
0.472983 + 0.881071i \(0.343177\pi\)
\(60\) 0 0
\(61\) −3.06666 + 1.77054i −0.392646 + 0.226694i −0.683306 0.730132i \(-0.739459\pi\)
0.290660 + 0.956826i \(0.406125\pi\)
\(62\) 1.95733 1.86477i 0.248581 0.236826i
\(63\) 0 0
\(64\) −1.15816 + 7.91572i −0.144770 + 0.989465i
\(65\) 8.07301 + 0.243772i 1.00133 + 0.0302362i
\(66\) 0 0
\(67\) 3.91067 + 2.25783i 0.477764 + 0.275837i 0.719484 0.694509i \(-0.244378\pi\)
−0.241720 + 0.970346i \(0.577712\pi\)
\(68\) −10.7815 + 5.54696i −1.30745 + 0.672668i
\(69\) 0 0
\(70\) −0.843631 + 2.86876i −0.100833 + 0.342882i
\(71\) −5.81695 10.0753i −0.690345 1.19571i −0.971725 0.236117i \(-0.924125\pi\)
0.281379 0.959597i \(-0.409208\pi\)
\(72\) 0 0
\(73\) −1.91680 −0.224345 −0.112172 0.993689i \(-0.535781\pi\)
−0.112172 + 0.993689i \(0.535781\pi\)
\(74\) −7.20797 + 1.74548i −0.837909 + 0.202908i
\(75\) 0 0
\(76\) −1.52099 2.95631i −0.174470 0.339112i
\(77\) 5.26270i 0.599741i
\(78\) 0 0
\(79\) 13.6120 1.53147 0.765737 0.643154i \(-0.222374\pi\)
0.765737 + 0.643154i \(0.222374\pi\)
\(80\) −0.866479 + 8.91829i −0.0968753 + 0.997095i
\(81\) 0 0
\(82\) 0.221035 + 0.912767i 0.0244093 + 0.100798i
\(83\) 11.5623i 1.26913i −0.772871 0.634564i \(-0.781180\pi\)
0.772871 0.634564i \(-0.218820\pi\)
\(84\) 0 0
\(85\) −11.7607 + 6.79007i −1.27563 + 0.736486i
\(86\) −3.21542 + 10.9340i −0.346727 + 1.17904i
\(87\) 0 0
\(88\) 2.96524 + 15.4885i 0.316096 + 1.65108i
\(89\) 0.373638 0.647161i 0.0396056 0.0685989i −0.845543 0.533907i \(-0.820723\pi\)
0.885149 + 0.465308i \(0.154057\pi\)
\(90\) 0 0
\(91\) −2.99736 + 1.61192i −0.314208 + 0.168975i
\(92\) 3.62373 + 2.33306i 0.377800 + 0.243239i
\(93\) 0 0
\(94\) −10.8308 + 10.3186i −1.11711 + 1.06428i
\(95\) −1.86185 3.22483i −0.191022 0.330860i
\(96\) 0 0
\(97\) 0.640742 + 1.10980i 0.0650575 + 0.112683i 0.896719 0.442599i \(-0.145944\pi\)
−0.831662 + 0.555282i \(0.812610\pi\)
\(98\) 2.03337 + 8.39680i 0.205401 + 0.848205i
\(99\) 0 0
\(100\) −0.00173431 + 0.0357851i −0.000173431 + 0.00357851i
\(101\) 8.45583 + 4.88197i 0.841386 + 0.485775i 0.857735 0.514092i \(-0.171871\pi\)
−0.0163490 + 0.999866i \(0.505204\pi\)
\(102\) 0 0
\(103\) −15.0755 −1.48544 −0.742719 0.669604i \(-0.766464\pi\)
−0.742719 + 0.669604i \(0.766464\pi\)
\(104\) −7.91320 + 6.43282i −0.775953 + 0.630790i
\(105\) 0 0
\(106\) −10.1337 10.6367i −0.984267 1.03312i
\(107\) 13.6044 + 7.85448i 1.31518 + 0.759321i 0.982949 0.183876i \(-0.0588646\pi\)
0.332233 + 0.943197i \(0.392198\pi\)
\(108\) 0 0
\(109\) 9.69920i 0.929015i −0.885569 0.464508i \(-0.846231\pi\)
0.885569 0.464508i \(-0.153769\pi\)
\(110\) 4.15704 + 17.1665i 0.396359 + 1.63677i
\(111\) 0 0
\(112\) −1.56277 3.43701i −0.147668 0.324767i
\(113\) −3.78116 6.54916i −0.355701 0.616093i 0.631536 0.775346i \(-0.282425\pi\)
−0.987238 + 0.159253i \(0.949091\pi\)
\(114\) 0 0
\(115\) 4.18044 + 2.41358i 0.389828 + 0.225067i
\(116\) 2.10592 3.27093i 0.195530 0.303698i
\(117\) 0 0
\(118\) 0.189523 0.644472i 0.0174470 0.0593284i
\(119\) 2.86115 4.95566i 0.262281 0.454284i
\(120\) 0 0
\(121\) 10.0429 + 17.3948i 0.912989 + 1.58134i
\(122\) 1.41286 4.80441i 0.127914 0.434970i
\(123\) 0 0
\(124\) −0.185074 + 3.81874i −0.0166201 + 0.342933i
\(125\) 11.1602i 0.998201i
\(126\) 0 0
\(127\) −1.53962 + 2.66670i −0.136619 + 0.236632i −0.926215 0.376996i \(-0.876957\pi\)
0.789596 + 0.613628i \(0.210290\pi\)
\(128\) −6.53589 9.23483i −0.577697 0.816251i
\(129\) 0 0
\(130\) −8.50390 + 7.62558i −0.745841 + 0.668808i
\(131\) 11.9145i 1.04098i −0.853869 0.520488i \(-0.825750\pi\)
0.853869 0.520488i \(-0.174250\pi\)
\(132\) 0 0
\(133\) 1.35885 + 0.784534i 0.117828 + 0.0680278i
\(134\) −6.20671 + 1.50301i −0.536178 + 0.129841i
\(135\) 0 0
\(136\) 5.62832 16.1969i 0.482624 1.38888i
\(137\) 10.2342 + 17.7261i 0.874365 + 1.51444i 0.857437 + 0.514588i \(0.172055\pi\)
0.0169276 + 0.999857i \(0.494612\pi\)
\(138\) 0 0
\(139\) 7.01589 4.05062i 0.595080 0.343570i −0.172024 0.985093i \(-0.555031\pi\)
0.767104 + 0.641523i \(0.221697\pi\)
\(140\) −1.93465 3.76033i −0.163508 0.317806i
\(141\) 0 0
\(142\) 15.7845 + 4.64182i 1.32460 + 0.389533i
\(143\) −10.5722 + 17.0981i −0.884090 + 1.42981i
\(144\) 0 0
\(145\) 2.17860 3.77344i 0.180923 0.313367i
\(146\) 1.96265 1.86983i 0.162430 0.154748i
\(147\) 0 0
\(148\) 5.67766 8.81857i 0.466701 0.724882i
\(149\) 3.13501 1.81000i 0.256830 0.148281i −0.366058 0.930592i \(-0.619293\pi\)
0.622888 + 0.782311i \(0.285959\pi\)
\(150\) 0 0
\(151\) −16.0939 −1.30970 −0.654850 0.755759i \(-0.727268\pi\)
−0.654850 + 0.755759i \(0.727268\pi\)
\(152\) 4.44124 + 1.54330i 0.360232 + 0.125178i
\(153\) 0 0
\(154\) −5.13374 5.38857i −0.413689 0.434224i
\(155\) 4.28214i 0.343950i
\(156\) 0 0
\(157\) 15.4274i 1.23124i 0.788042 + 0.615621i \(0.211095\pi\)
−0.788042 + 0.615621i \(0.788905\pi\)
\(158\) −13.9376 + 13.2785i −1.10882 + 1.05638i
\(159\) 0 0
\(160\) −7.81255 9.97684i −0.617636 0.788738i
\(161\) −2.03403 −0.160304
\(162\) 0 0
\(163\) 4.33867 2.50493i 0.339831 0.196201i −0.320366 0.947294i \(-0.603806\pi\)
0.660197 + 0.751092i \(0.270473\pi\)
\(164\) −1.11672 0.718980i −0.0872014 0.0561429i
\(165\) 0 0
\(166\) 11.2790 + 11.8388i 0.875418 + 0.918873i
\(167\) 0.532199 0.921796i 0.0411828 0.0713308i −0.844699 0.535241i \(-0.820221\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(168\) 0 0
\(169\) −12.9763 0.784378i −0.998178 0.0603368i
\(170\) 5.41835 18.4250i 0.415569 1.41314i
\(171\) 0 0
\(172\) −7.37373 14.3321i −0.562241 1.09281i
\(173\) −18.9047 + 10.9146i −1.43730 + 0.829825i −0.997661 0.0683503i \(-0.978226\pi\)
−0.439638 + 0.898175i \(0.644893\pi\)
\(174\) 0 0
\(175\) −0.00845434 0.0146433i −0.000639088 0.00110693i
\(176\) −18.1451 12.9664i −1.36774 0.977377i
\(177\) 0 0
\(178\) 0.248728 + 1.02712i 0.0186429 + 0.0769861i
\(179\) 2.82862 + 1.63310i 0.211421 + 0.122064i 0.601972 0.798517i \(-0.294382\pi\)
−0.390551 + 0.920581i \(0.627715\pi\)
\(180\) 0 0
\(181\) 13.1229i 0.975420i 0.873006 + 0.487710i \(0.162168\pi\)
−0.873006 + 0.487710i \(0.837832\pi\)
\(182\) 1.49663 4.57438i 0.110938 0.339075i
\(183\) 0 0
\(184\) −5.98629 + 1.14606i −0.441315 + 0.0844890i
\(185\) 5.87359 10.1734i 0.431835 0.747960i
\(186\) 0 0
\(187\) 33.8005i 2.47174i
\(188\) 1.02410 21.1308i 0.0746901 1.54112i
\(189\) 0 0
\(190\) 5.05219 + 1.48573i 0.366524 + 0.107786i
\(191\) −4.02136 6.96520i −0.290975 0.503984i 0.683065 0.730357i \(-0.260646\pi\)
−0.974041 + 0.226373i \(0.927313\pi\)
\(192\) 0 0
\(193\) 0.417932 0.723880i 0.0300834 0.0521060i −0.850592 0.525827i \(-0.823756\pi\)
0.880675 + 0.473721i \(0.157089\pi\)
\(194\) −1.73867 0.511300i −0.124829 0.0367092i
\(195\) 0 0
\(196\) −10.2730 6.61409i −0.733789 0.472435i
\(197\) −6.06608 3.50225i −0.432190 0.249525i 0.268089 0.963394i \(-0.413608\pi\)
−0.700279 + 0.713869i \(0.746941\pi\)
\(198\) 0 0
\(199\) −7.51756 13.0208i −0.532906 0.923019i −0.999262 0.0384223i \(-0.987767\pi\)
0.466356 0.884597i \(-0.345567\pi\)
\(200\) −0.0331324 0.0383328i −0.00234282 0.00271054i
\(201\) 0 0
\(202\) −13.4204 + 3.24988i −0.944257 + 0.228661i
\(203\) 1.83600i 0.128862i
\(204\) 0 0
\(205\) −1.28828 0.743791i −0.0899777 0.0519486i
\(206\) 15.4361 14.7061i 1.07549 1.02462i
\(207\) 0 0
\(208\) 1.82728 14.3060i 0.126699 0.991941i
\(209\) 9.26819 0.641094
\(210\) 0 0
\(211\) 5.82236 + 3.36154i 0.400828 + 0.231418i 0.686841 0.726808i \(-0.258997\pi\)
−0.286013 + 0.958226i \(0.592330\pi\)
\(212\) 20.7521 + 1.00574i 1.42526 + 0.0690746i
\(213\) 0 0
\(214\) −21.5918 + 5.22865i −1.47598 + 0.357423i
\(215\) −9.02622 15.6339i −0.615583 1.06622i
\(216\) 0 0
\(217\) −0.902189 1.56264i −0.0612446 0.106079i
\(218\) 9.46153 + 9.93119i 0.640816 + 0.672625i
\(219\) 0 0
\(220\) −21.0024 13.5220i −1.41598 0.911650i
\(221\) 19.2510 10.3528i 1.29496 0.696403i
\(222\) 0 0
\(223\) −10.4340 + 18.0723i −0.698715 + 1.21021i 0.270198 + 0.962805i \(0.412911\pi\)
−0.968912 + 0.247404i \(0.920422\pi\)
\(224\) 4.95293 + 1.99475i 0.330932 + 0.133280i
\(225\) 0 0
\(226\) 10.2603 + 3.01730i 0.682503 + 0.200707i
\(227\) −16.7688 + 9.68145i −1.11298 + 0.642580i −0.939600 0.342274i \(-0.888803\pi\)
−0.173382 + 0.984855i \(0.555469\pi\)
\(228\) 0 0
\(229\) 17.6044i 1.16333i −0.813428 0.581666i \(-0.802401\pi\)
0.813428 0.581666i \(-0.197599\pi\)
\(230\) −6.63486 + 1.60669i −0.437490 + 0.105942i
\(231\) 0 0
\(232\) 1.03449 + 5.40348i 0.0679174 + 0.354756i
\(233\) −15.3281 −1.00417 −0.502087 0.864817i \(-0.667434\pi\)
−0.502087 + 0.864817i \(0.667434\pi\)
\(234\) 0 0
\(235\) 23.6950i 1.54569i
\(236\) 0.434623 + 0.844765i 0.0282915 + 0.0549895i
\(237\) 0 0
\(238\) 1.90464 + 7.86522i 0.123459 + 0.509827i
\(239\) 14.0854 0.911111 0.455556 0.890207i \(-0.349441\pi\)
0.455556 + 0.890207i \(0.349441\pi\)
\(240\) 0 0
\(241\) −7.24993 12.5572i −0.467009 0.808883i 0.532281 0.846568i \(-0.321335\pi\)
−0.999290 + 0.0376849i \(0.988002\pi\)
\(242\) −27.2516 8.01404i −1.75180 0.515162i
\(243\) 0 0
\(244\) 3.24003 + 6.29756i 0.207421 + 0.403160i
\(245\) −11.8513 6.84234i −0.757151 0.437141i
\(246\) 0 0
\(247\) 2.83876 + 5.27867i 0.180626 + 0.335874i
\(248\) −3.53566 4.09061i −0.224515 0.259754i
\(249\) 0 0
\(250\) 10.8868 + 11.4272i 0.688539 + 0.722717i
\(251\) 24.8381 14.3403i 1.56777 0.905151i 0.571340 0.820714i \(-0.306424\pi\)
0.996429 0.0844378i \(-0.0269094\pi\)
\(252\) 0 0
\(253\) −10.4050 + 6.00731i −0.654155 + 0.377677i
\(254\) −1.02491 4.23238i −0.0643087 0.265563i
\(255\) 0 0
\(256\) 15.7008 + 3.07997i 0.981297 + 0.192498i
\(257\) −5.81269 + 10.0679i −0.362586 + 0.628017i −0.988386 0.151967i \(-0.951439\pi\)
0.625800 + 0.779984i \(0.284773\pi\)
\(258\) 0 0
\(259\) 4.94994i 0.307574i
\(260\) 1.26857 16.1035i 0.0786731 0.998696i
\(261\) 0 0
\(262\) 11.6226 + 12.1995i 0.718044 + 0.753687i
\(263\) −8.47469 + 14.6786i −0.522572 + 0.905121i 0.477083 + 0.878858i \(0.341694\pi\)
−0.999655 + 0.0262631i \(0.991639\pi\)
\(264\) 0 0
\(265\) 23.2703 1.42948
\(266\) −2.15666 + 0.522257i −0.132234 + 0.0320216i
\(267\) 0 0
\(268\) 4.88897 7.59358i 0.298642 0.463852i
\(269\) −6.45180 + 3.72495i −0.393373 + 0.227114i −0.683621 0.729837i \(-0.739596\pi\)
0.290247 + 0.956952i \(0.406262\pi\)
\(270\) 0 0
\(271\) 7.61248 13.1852i 0.462425 0.800944i −0.536656 0.843801i \(-0.680313\pi\)
0.999081 + 0.0428569i \(0.0136459\pi\)
\(272\) 10.0371 + 22.0747i 0.608589 + 1.33848i
\(273\) 0 0
\(274\) −27.7707 8.16669i −1.67769 0.493368i
\(275\) −0.0864954 0.0499382i −0.00521587 0.00301138i
\(276\) 0 0
\(277\) −13.9928 + 8.07878i −0.840749 + 0.485407i −0.857519 0.514453i \(-0.827995\pi\)
0.0167699 + 0.999859i \(0.494662\pi\)
\(278\) −3.23233 + 10.9915i −0.193862 + 0.659225i
\(279\) 0 0
\(280\) 5.64911 + 1.96303i 0.337599 + 0.117313i
\(281\) −27.7204 −1.65366 −0.826831 0.562450i \(-0.809859\pi\)
−0.826831 + 0.562450i \(0.809859\pi\)
\(282\) 0 0
\(283\) 3.28760 + 1.89810i 0.195428 + 0.112830i 0.594521 0.804080i \(-0.297342\pi\)
−0.399093 + 0.916910i \(0.630675\pi\)
\(284\) −20.6901 + 10.6448i −1.22773 + 0.631654i
\(285\) 0 0
\(286\) −5.85405 27.8201i −0.346157 1.64504i
\(287\) 0.626827 0.0370004
\(288\) 0 0
\(289\) −9.87617 + 17.1060i −0.580951 + 1.00624i
\(290\) 1.45027 + 5.98891i 0.0851629 + 0.351681i
\(291\) 0 0
\(292\) −0.185577 + 3.82911i −0.0108600 + 0.224082i
\(293\) −4.14791 + 2.39480i −0.242324 + 0.139906i −0.616244 0.787555i \(-0.711347\pi\)
0.373921 + 0.927461i \(0.378013\pi\)
\(294\) 0 0
\(295\) 0.532024 + 0.921493i 0.0309756 + 0.0536514i
\(296\) 2.78902 + 14.5680i 0.162108 + 0.846749i
\(297\) 0 0
\(298\) −1.44435 + 4.91148i −0.0836687 + 0.284514i
\(299\) −6.60839 4.08614i −0.382173 0.236308i
\(300\) 0 0
\(301\) 6.58768 + 3.80340i 0.379708 + 0.219224i
\(302\) 16.4788 15.6995i 0.948249 0.903405i
\(303\) 0 0
\(304\) −6.05295 + 2.75220i −0.347160 + 0.157849i
\(305\) 3.96613 + 6.86954i 0.227100 + 0.393349i
\(306\) 0 0
\(307\) 8.95981i 0.511363i 0.966761 + 0.255682i \(0.0822999\pi\)
−0.966761 + 0.255682i \(0.917700\pi\)
\(308\) 10.5131 + 0.509512i 0.599037 + 0.0290322i
\(309\) 0 0
\(310\) −4.17721 4.38456i −0.237250 0.249026i
\(311\) −9.35196 −0.530301 −0.265150 0.964207i \(-0.585422\pi\)
−0.265150 + 0.964207i \(0.585422\pi\)
\(312\) 0 0
\(313\) −11.7834 −0.666039 −0.333019 0.942920i \(-0.608067\pi\)
−0.333019 + 0.942920i \(0.608067\pi\)
\(314\) −15.0494 15.7964i −0.849286 0.891443i
\(315\) 0 0
\(316\) 1.31786 27.1922i 0.0741354 1.52968i
\(317\) 0.828044i 0.0465076i −0.999730 0.0232538i \(-0.992597\pi\)
0.999730 0.0232538i \(-0.00740258\pi\)
\(318\) 0 0
\(319\) 5.42246 + 9.39197i 0.303599 + 0.525850i
\(320\) 17.7318 + 2.59436i 0.991236 + 0.145029i
\(321\) 0 0
\(322\) 2.08268 1.98419i 0.116063 0.110574i
\(323\) −8.72745 5.03879i −0.485608 0.280366i
\(324\) 0 0
\(325\) 0.00194941 0.0645588i 0.000108134 0.00358108i
\(326\) −1.99889 + 6.79720i −0.110708 + 0.376462i
\(327\) 0 0
\(328\) 1.84479 0.353182i 0.101862 0.0195012i
\(329\) 4.99222 + 8.64678i 0.275230 + 0.476712i
\(330\) 0 0
\(331\) −12.8419 + 7.41425i −0.705853 + 0.407524i −0.809524 0.587087i \(-0.800274\pi\)
0.103671 + 0.994612i \(0.466941\pi\)
\(332\) −23.0975 1.11941i −1.26764 0.0614357i
\(333\) 0 0
\(334\) 0.354280 + 1.46300i 0.0193853 + 0.0800519i
\(335\) 5.05769 8.76018i 0.276331 0.478620i
\(336\) 0 0
\(337\) 5.53901 0.301729 0.150865 0.988554i \(-0.451794\pi\)
0.150865 + 0.988554i \(0.451794\pi\)
\(338\) 14.0518 11.8552i 0.764319 0.644838i
\(339\) 0 0
\(340\) 12.4256 + 24.1513i 0.673872 + 1.30979i
\(341\) −9.23019 5.32906i −0.499843 0.288585i
\(342\) 0 0
\(343\) 12.3737 0.668116
\(344\) 21.5310 + 7.48188i 1.16087 + 0.403396i
\(345\) 0 0
\(346\) 8.70969 29.6172i 0.468236 1.59223i
\(347\) −13.9803 + 8.07154i −0.750503 + 0.433303i −0.825876 0.563852i \(-0.809319\pi\)
0.0753728 + 0.997155i \(0.475985\pi\)
\(348\) 0 0
\(349\) −20.7087 11.9562i −1.10851 0.640000i −0.170068 0.985432i \(-0.554399\pi\)
−0.938444 + 0.345432i \(0.887732\pi\)
\(350\) 0.0229411 + 0.00674641i 0.00122625 + 0.000360611i
\(351\) 0 0
\(352\) 31.2278 4.42400i 1.66445 0.235800i
\(353\) 2.77899 4.81335i 0.147911 0.256189i −0.782544 0.622595i \(-0.786079\pi\)
0.930455 + 0.366406i \(0.119412\pi\)
\(354\) 0 0
\(355\) −22.5693 + 13.0304i −1.19785 + 0.691581i
\(356\) −1.25663 0.809056i −0.0666013 0.0428799i
\(357\) 0 0
\(358\) −4.48936 + 1.08714i −0.237270 + 0.0574572i
\(359\) 8.55135 0.451323 0.225661 0.974206i \(-0.427546\pi\)
0.225661 + 0.974206i \(0.427546\pi\)
\(360\) 0 0
\(361\) −8.11835 + 14.0614i −0.427282 + 0.740073i
\(362\) −12.8014 13.4368i −0.672825 0.706223i
\(363\) 0 0
\(364\) 2.92986 + 6.14374i 0.153566 + 0.322020i
\(365\) 4.29377i 0.224746i
\(366\) 0 0
\(367\) 1.96700 3.40695i 0.102677 0.177841i −0.810110 0.586278i \(-0.800593\pi\)
0.912787 + 0.408437i \(0.133926\pi\)
\(368\) 5.01149 7.01308i 0.261242 0.365582i
\(369\) 0 0
\(370\) 3.90999 + 16.1463i 0.203271 + 0.839409i
\(371\) −8.49179 + 4.90274i −0.440872 + 0.254537i
\(372\) 0 0
\(373\) −6.86329 + 3.96253i −0.355368 + 0.205172i −0.667047 0.745016i \(-0.732442\pi\)
0.311679 + 0.950187i \(0.399109\pi\)
\(374\) 32.9723 + 34.6090i 1.70495 + 1.78959i
\(375\) 0 0
\(376\) 19.5644 + 22.6352i 1.00896 + 1.16732i
\(377\) −3.68832 + 5.96502i −0.189958 + 0.307214i
\(378\) 0 0
\(379\) 22.8779 + 13.2086i 1.17516 + 0.678479i 0.954890 0.296959i \(-0.0959726\pi\)
0.220271 + 0.975439i \(0.429306\pi\)
\(380\) −6.62235 + 3.40713i −0.339719 + 0.174782i
\(381\) 0 0
\(382\) 10.9121 + 3.20897i 0.558310 + 0.164185i
\(383\) 0.947088 + 1.64041i 0.0483940 + 0.0838208i 0.889208 0.457504i \(-0.151256\pi\)
−0.840814 + 0.541325i \(0.817923\pi\)
\(384\) 0 0
\(385\) 11.7888 0.600814
\(386\) 0.278214 + 1.14888i 0.0141607 + 0.0584767i
\(387\) 0 0
\(388\) 2.27903 1.17254i 0.115700 0.0595265i
\(389\) 25.0808i 1.27165i 0.771835 + 0.635823i \(0.219339\pi\)
−0.771835 + 0.635823i \(0.780661\pi\)
\(390\) 0 0
\(391\) 13.0639 0.660669
\(392\) 16.9708 3.24902i 0.857154 0.164100i
\(393\) 0 0
\(394\) 9.62760 2.33141i 0.485031 0.117455i
\(395\) 30.4919i 1.53422i
\(396\) 0 0
\(397\) 7.99993 4.61876i 0.401505 0.231809i −0.285628 0.958341i \(-0.592202\pi\)
0.687133 + 0.726532i \(0.258869\pi\)
\(398\) 20.3991 + 5.99888i 1.02251 + 0.300696i
\(399\) 0 0
\(400\) 0.0713184 + 0.00692912i 0.00356592 + 0.000346456i
\(401\) 2.21136 3.83018i 0.110430 0.191270i −0.805514 0.592577i \(-0.798111\pi\)
0.915944 + 0.401307i \(0.131444\pi\)
\(402\) 0 0
\(403\) 0.208028 6.88927i 0.0103626 0.343179i
\(404\) 10.5712 16.4192i 0.525935 0.816884i
\(405\) 0 0
\(406\) −1.79101 1.87992i −0.0888865 0.0932987i
\(407\) 14.6192 + 25.3212i 0.724646 + 1.25512i
\(408\) 0 0
\(409\) −13.2341 22.9221i −0.654384 1.13343i −0.982048 0.188631i \(-0.939595\pi\)
0.327664 0.944794i \(-0.393738\pi\)
\(410\) 2.04466 0.495135i 0.100979 0.0244530i
\(411\) 0 0
\(412\) −1.45955 + 30.1157i −0.0719068 + 1.48370i
\(413\) −0.388292 0.224180i −0.0191066 0.0110312i
\(414\) 0 0
\(415\) −25.9004 −1.27140
\(416\) 12.0844 + 16.4307i 0.592489 + 0.805579i
\(417\) 0 0
\(418\) −9.48986 + 9.04108i −0.464164 + 0.442214i
\(419\) −4.30501 2.48550i −0.210314 0.121425i 0.391144 0.920330i \(-0.372080\pi\)
−0.601457 + 0.798905i \(0.705413\pi\)
\(420\) 0 0
\(421\) 24.0575i 1.17249i −0.810134 0.586244i \(-0.800606\pi\)
0.810134 0.586244i \(-0.199394\pi\)
\(422\) −9.24078 + 2.23774i −0.449834 + 0.108932i
\(423\) 0 0
\(424\) −22.2295 + 19.2137i −1.07956 + 0.933102i
\(425\) 0.0542993 + 0.0940492i 0.00263390 + 0.00456205i
\(426\) 0 0
\(427\) −2.89464 1.67122i −0.140081 0.0808760i
\(428\) 17.0077 26.4164i 0.822096 1.27688i
\(429\) 0 0
\(430\) 24.4929 + 7.20276i 1.18115 + 0.347348i
\(431\) 5.28961 9.16188i 0.254792 0.441312i −0.710047 0.704154i \(-0.751326\pi\)
0.964839 + 0.262842i \(0.0846598\pi\)
\(432\) 0 0
\(433\) 6.11293 + 10.5879i 0.293769 + 0.508822i 0.974698 0.223527i \(-0.0717572\pi\)
−0.680929 + 0.732349i \(0.738424\pi\)
\(434\) 2.44811 + 0.719930i 0.117513 + 0.0345578i
\(435\) 0 0
\(436\) −19.3757 0.939036i −0.927926 0.0449717i
\(437\) 3.58215i 0.171357i
\(438\) 0 0
\(439\) −6.46417 + 11.1963i −0.308518 + 0.534369i −0.978038 0.208425i \(-0.933166\pi\)
0.669520 + 0.742794i \(0.266500\pi\)
\(440\) 34.6953 6.64235i 1.65403 0.316662i
\(441\) 0 0
\(442\) −9.61234 + 29.3796i −0.457212 + 1.39745i
\(443\) 14.0440i 0.667248i −0.942706 0.333624i \(-0.891728\pi\)
0.942706 0.333624i \(-0.108272\pi\)
\(444\) 0 0
\(445\) −1.44969 0.836976i −0.0687217 0.0396765i
\(446\) −6.94584 28.6829i −0.328895 1.35817i
\(447\) 0 0
\(448\) −7.01726 + 2.78911i −0.331535 + 0.131773i
\(449\) 0.857113 + 1.48456i 0.0404497 + 0.0700609i 0.885541 0.464560i \(-0.153788\pi\)
−0.845092 + 0.534621i \(0.820454\pi\)
\(450\) 0 0
\(451\) 3.20650 1.85127i 0.150988 0.0871730i
\(452\) −13.4490 + 6.91939i −0.632589 + 0.325461i
\(453\) 0 0
\(454\) 7.72562 26.2709i 0.362581 1.23295i
\(455\) 3.61080 + 6.71429i 0.169277 + 0.314771i
\(456\) 0 0
\(457\) 14.5822 25.2571i 0.682126 1.18148i −0.292205 0.956356i \(-0.594389\pi\)
0.974331 0.225121i \(-0.0722778\pi\)
\(458\) 17.1730 + 18.0255i 0.802443 + 0.842275i
\(459\) 0 0
\(460\) 5.22623 8.11740i 0.243674 0.378476i
\(461\) −22.4501 + 12.9616i −1.04561 + 0.603681i −0.921416 0.388577i \(-0.872967\pi\)
−0.124190 + 0.992258i \(0.539633\pi\)
\(462\) 0 0
\(463\) 36.7003 1.70561 0.852803 0.522233i \(-0.174901\pi\)
0.852803 + 0.522233i \(0.174901\pi\)
\(464\) −6.33030 4.52359i −0.293877 0.210002i
\(465\) 0 0
\(466\) 15.6947 14.9525i 0.727042 0.692659i
\(467\) 27.9836i 1.29492i 0.762097 + 0.647462i \(0.224170\pi\)
−0.762097 + 0.647462i \(0.775830\pi\)
\(468\) 0 0
\(469\) 4.26234i 0.196817i
\(470\) 23.1144 + 24.2618i 1.06619 + 1.11911i
\(471\) 0 0
\(472\) −1.26908 0.440997i −0.0584143 0.0202986i
\(473\) 44.9319 2.06597
\(474\) 0 0
\(475\) −0.0257885 + 0.0148890i −0.00118326 + 0.000683155i
\(476\) −9.62269 6.19537i −0.441055 0.283965i
\(477\) 0 0
\(478\) −14.4223 + 13.7403i −0.659662 + 0.628466i
\(479\) −16.2482 + 28.1426i −0.742397 + 1.28587i 0.209004 + 0.977915i \(0.432978\pi\)
−0.951401 + 0.307955i \(0.900355\pi\)
\(480\) 0 0
\(481\) −9.94388 + 16.0819i −0.453402 + 0.733273i
\(482\) 19.6729 + 5.78531i 0.896074 + 0.263514i
\(483\) 0 0
\(484\) 35.7211 18.3781i 1.62369 0.835370i
\(485\) 2.48602 1.43531i 0.112885 0.0651739i
\(486\) 0 0
\(487\) −5.79695 10.0406i −0.262685 0.454983i 0.704270 0.709933i \(-0.251275\pi\)
−0.966954 + 0.254949i \(0.917941\pi\)
\(488\) −9.46076 3.28755i −0.428268 0.148820i
\(489\) 0 0
\(490\) 18.8094 4.55488i 0.849723 0.205769i
\(491\) −36.2077 20.9045i −1.63403 0.943407i −0.982833 0.184498i \(-0.940934\pi\)
−0.651197 0.758909i \(-0.725733\pi\)
\(492\) 0 0
\(493\) 11.7920i 0.531085i
\(494\) −8.05597 2.63573i −0.362455 0.118587i
\(495\) 0 0
\(496\) 7.61061 + 0.739428i 0.341726 + 0.0332013i
\(497\) 5.49065 9.51008i 0.246289 0.426585i
\(498\) 0 0
\(499\) 17.9011i 0.801363i 0.916217 + 0.400682i \(0.131227\pi\)
−0.916217 + 0.400682i \(0.868773\pi\)
\(500\) −22.2943 1.08049i −0.997030 0.0483208i
\(501\) 0 0
\(502\) −11.4433 + 38.9128i −0.510739 + 1.73676i
\(503\) 7.29456 + 12.6345i 0.325248 + 0.563346i 0.981563 0.191141i \(-0.0612188\pi\)
−0.656314 + 0.754488i \(0.727886\pi\)
\(504\) 0 0
\(505\) 10.9360 18.9416i 0.486644 0.842892i
\(506\) 4.79373 16.3010i 0.213107 0.724668i
\(507\) 0 0
\(508\) 5.17810 + 3.33381i 0.229741 + 0.147914i
\(509\) 1.08621 + 0.627122i 0.0481453 + 0.0277967i 0.523879 0.851792i \(-0.324484\pi\)
−0.475734 + 0.879589i \(0.657818\pi\)
\(510\) 0 0
\(511\) −0.904639 1.56688i −0.0400189 0.0693147i
\(512\) −19.0808 + 12.1624i −0.843259 + 0.537507i
\(513\) 0 0
\(514\) −3.86945 15.9789i −0.170674 0.704801i
\(515\) 33.7703i 1.48810i
\(516\) 0 0
\(517\) 51.0749 + 29.4881i 2.24627 + 1.29688i
\(518\) −4.82865 5.06833i −0.212159 0.222690i
\(519\) 0 0
\(520\) 14.4100 + 17.7261i 0.631919 + 0.777342i
\(521\) −8.42526 −0.369117 −0.184559 0.982822i \(-0.559086\pi\)
−0.184559 + 0.982822i \(0.559086\pi\)
\(522\) 0 0
\(523\) −20.6677 11.9325i −0.903736 0.521772i −0.0253256 0.999679i \(-0.508062\pi\)
−0.878410 + 0.477907i \(0.841396\pi\)
\(524\) −23.8011 1.15351i −1.03976 0.0503914i
\(525\) 0 0
\(526\) −5.64152 23.2967i −0.245982 1.01578i
\(527\) 5.79445 + 10.0363i 0.252410 + 0.437187i
\(528\) 0 0
\(529\) 9.17818 + 15.8971i 0.399051 + 0.691177i
\(530\) −23.8269 + 22.7001i −1.03497 + 0.986029i
\(531\) 0 0
\(532\) 1.69879 2.63857i 0.0736518 0.114396i
\(533\) 2.03651 + 1.25922i 0.0882109 + 0.0545431i
\(534\) 0 0
\(535\) 17.5946 30.4747i 0.760680 1.31754i
\(536\) 2.40160 + 12.5444i 0.103733 + 0.541834i
\(537\) 0 0
\(538\) 2.97244 10.1077i 0.128151 0.435776i
\(539\) 29.4975 17.0304i 1.27055 0.733550i
\(540\) 0 0
\(541\) 19.4928i 0.838059i 0.907973 + 0.419030i \(0.137630\pi\)
−0.907973 + 0.419030i \(0.862370\pi\)
\(542\) 5.06756 + 20.9265i 0.217670 + 0.898871i
\(543\) 0 0
\(544\) −31.8110 12.8116i −1.36388 0.549291i
\(545\) −21.7269 −0.930678
\(546\) 0 0
\(547\) 2.18538i 0.0934399i −0.998908 0.0467200i \(-0.985123\pi\)
0.998908 0.0467200i \(-0.0148768\pi\)
\(548\) 36.4015 18.7282i 1.55500 0.800029i
\(549\) 0 0
\(550\) 0.137279 0.0332434i 0.00585358 0.00141750i
\(551\) 3.23340 0.137747
\(552\) 0 0
\(553\) 6.42423 + 11.1271i 0.273186 + 0.473172i
\(554\) 6.44672 21.9220i 0.273895 0.931375i
\(555\) 0 0
\(556\) −7.41250 14.4075i −0.314360 0.611014i
\(557\) −29.5902 17.0839i −1.25378 0.723869i −0.281921 0.959438i \(-0.590972\pi\)
−0.971858 + 0.235568i \(0.924305\pi\)
\(558\) 0 0
\(559\) 13.7622 + 25.5908i 0.582080 + 1.08238i
\(560\) −7.69915 + 3.50071i −0.325348 + 0.147932i
\(561\) 0 0
\(562\) 28.3834 27.0412i 1.19728 1.14066i
\(563\) −20.4379 + 11.7998i −0.861353 + 0.497302i −0.864465 0.502693i \(-0.832343\pi\)
0.00311215 + 0.999995i \(0.499009\pi\)
\(564\) 0 0
\(565\) −14.6706 + 8.47006i −0.617195 + 0.356338i
\(566\) −5.21782 + 1.26355i −0.219321 + 0.0531108i
\(567\) 0 0
\(568\) 10.8009 31.0825i 0.453198 1.30419i
\(569\) 1.38906 2.40592i 0.0582323 0.100861i −0.835440 0.549582i \(-0.814787\pi\)
0.893672 + 0.448721i \(0.148120\pi\)
\(570\) 0 0
\(571\) 19.2497i 0.805577i 0.915293 + 0.402788i \(0.131959\pi\)
−0.915293 + 0.402788i \(0.868041\pi\)
\(572\) 33.1325 + 22.7749i 1.38534 + 0.952268i
\(573\) 0 0
\(574\) −0.641819 + 0.611467i −0.0267890 + 0.0255221i
\(575\) 0.0193011 0.0334304i 0.000804910 0.00139415i
\(576\) 0 0
\(577\) 6.64617 0.276683 0.138342 0.990385i \(-0.455823\pi\)
0.138342 + 0.990385i \(0.455823\pi\)
\(578\) −6.57447 27.1493i −0.273462 1.12926i
\(579\) 0 0
\(580\) −7.32711 4.71742i −0.304242 0.195880i
\(581\) 9.45154 5.45685i 0.392116 0.226388i
\(582\) 0 0
\(583\) −28.9595 + 50.1594i −1.19938 + 2.07739i
\(584\) −3.54526 4.10172i −0.146704 0.169730i
\(585\) 0 0
\(586\) 1.91101 6.49835i 0.0789430 0.268444i
\(587\) 23.1016 + 13.3377i 0.953505 + 0.550507i 0.894168 0.447731i \(-0.147768\pi\)
0.0593374 + 0.998238i \(0.481101\pi\)
\(588\) 0 0
\(589\) −2.75197 + 1.58885i −0.113393 + 0.0654675i
\(590\) −1.44366 0.424546i −0.0594346 0.0174783i
\(591\) 0 0
\(592\) −17.0668 12.1958i −0.701440 0.501244i
\(593\) −6.61409 −0.271608 −0.135804 0.990736i \(-0.543362\pi\)
−0.135804 + 0.990736i \(0.543362\pi\)
\(594\) 0 0
\(595\) −11.1010 6.40917i −0.455097 0.262751i
\(596\) −3.31223 6.43790i −0.135674 0.263707i
\(597\) 0 0
\(598\) 10.7525 2.26259i 0.439701 0.0925241i
\(599\) −11.9319 −0.487523 −0.243762 0.969835i \(-0.578381\pi\)
−0.243762 + 0.969835i \(0.578381\pi\)
\(600\) 0 0
\(601\) 6.15610 10.6627i 0.251113 0.434940i −0.712720 0.701449i \(-0.752537\pi\)
0.963832 + 0.266509i \(0.0858702\pi\)
\(602\) −10.4555 + 2.53189i −0.426132 + 0.103192i
\(603\) 0 0
\(604\) −1.55814 + 32.1500i −0.0633998 + 1.30817i
\(605\) 38.9655 22.4968i 1.58417 0.914623i
\(606\) 0 0
\(607\) 4.35738 + 7.54720i 0.176860 + 0.306331i 0.940804 0.338952i \(-0.110073\pi\)
−0.763943 + 0.645284i \(0.776739\pi\)
\(608\) 3.51296 8.72265i 0.142469 0.353750i
\(609\) 0 0
\(610\) −10.7622 3.16490i −0.435749 0.128143i
\(611\) −1.15111 + 38.1215i −0.0465690 + 1.54223i
\(612\) 0 0
\(613\) −30.7480 17.7523i −1.24190 0.717010i −0.272418 0.962179i \(-0.587823\pi\)
−0.969480 + 0.245169i \(0.921157\pi\)
\(614\) −8.74025 9.17411i −0.352728 0.370237i
\(615\) 0 0
\(616\) −11.2615 + 9.73375i −0.453740 + 0.392184i
\(617\) −12.0318 20.8396i −0.484380 0.838971i 0.515459 0.856914i \(-0.327622\pi\)
−0.999839 + 0.0179431i \(0.994288\pi\)
\(618\) 0 0
\(619\) 21.6806i 0.871417i 0.900088 + 0.435708i \(0.143502\pi\)
−0.900088 + 0.435708i \(0.856498\pi\)
\(620\) 8.55424 + 0.414579i 0.343547 + 0.0166499i
\(621\) 0 0
\(622\) 9.57564 9.12280i 0.383948 0.365791i
\(623\) 0.705358 0.0282596
\(624\) 0 0
\(625\) −25.0892 −1.00357
\(626\) 12.0653 11.4947i 0.482225 0.459420i
\(627\) 0 0
\(628\) 30.8187 + 1.49362i 1.22980 + 0.0596018i
\(629\) 31.7918i 1.26762i
\(630\) 0 0
\(631\) −9.48379 16.4264i −0.377544 0.653925i 0.613161 0.789958i \(-0.289898\pi\)
−0.990704 + 0.136033i \(0.956565\pi\)
\(632\) 25.1765 + 29.1281i 1.00147 + 1.15865i
\(633\) 0 0
\(634\) 0.807754 + 0.847849i 0.0320800 + 0.0336724i
\(635\) 5.97360 + 3.44886i 0.237055 + 0.136864i
\(636\) 0 0
\(637\) 18.7344 + 11.5840i 0.742284 + 0.458973i
\(638\) −14.7140 4.32702i −0.582532 0.171309i
\(639\) 0 0
\(640\) −20.6867 + 14.6409i −0.817712 + 0.578731i
\(641\) 12.4294 + 21.5284i 0.490934 + 0.850322i 0.999946 0.0104375i \(-0.00332243\pi\)
−0.509012 + 0.860759i \(0.669989\pi\)
\(642\) 0 0
\(643\) −3.25429 + 1.87887i −0.128337 + 0.0740952i −0.562794 0.826597i \(-0.690274\pi\)
0.434457 + 0.900692i \(0.356940\pi\)
\(644\) −0.196926 + 4.06329i −0.00775998 + 0.160116i
\(645\) 0 0
\(646\) 13.8515 3.35428i 0.544980 0.131972i
\(647\) 24.0878 41.7213i 0.946989 1.64023i 0.195271 0.980749i \(-0.437441\pi\)
0.751718 0.659484i \(-0.229225\pi\)
\(648\) 0 0
\(649\) −2.64838 −0.103958
\(650\) 0.0609808 + 0.0680046i 0.00239186 + 0.00266736i
\(651\) 0 0
\(652\) −4.58394 8.90969i −0.179521 0.348930i
\(653\) 21.5793 + 12.4588i 0.844463 + 0.487551i 0.858779 0.512346i \(-0.171224\pi\)
−0.0143156 + 0.999898i \(0.504557\pi\)
\(654\) 0 0
\(655\) −26.6894 −1.04284
\(656\) −1.54439 + 2.16122i −0.0602983 + 0.0843814i
\(657\) 0 0
\(658\) −13.5465 3.98370i −0.528098 0.155301i
\(659\) 1.75765 1.01478i 0.0684684 0.0395302i −0.465375 0.885114i \(-0.654081\pi\)
0.533843 + 0.845583i \(0.320747\pi\)
\(660\) 0 0
\(661\) 9.61763 + 5.55274i 0.374082 + 0.215977i 0.675240 0.737598i \(-0.264040\pi\)
−0.301158 + 0.953574i \(0.597373\pi\)
\(662\) 5.91644 20.1188i 0.229949 0.781938i
\(663\) 0 0
\(664\) 24.7419 21.3853i 0.960172 0.829911i
\(665\) 1.75741 3.04393i 0.0681495 0.118038i
\(666\) 0 0
\(667\) −3.62999 + 2.09578i −0.140554 + 0.0811488i
\(668\) −1.78991 1.15240i −0.0692536 0.0445875i
\(669\) 0 0
\(670\) 3.36686 + 13.9035i 0.130073 + 0.537137i
\(671\) −19.7432 −0.762176
\(672\) 0 0
\(673\) −17.0389 + 29.5122i −0.656800 + 1.13761i 0.324639 + 0.945838i \(0.394757\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(674\) −5.67149 + 5.40328i −0.218458 + 0.208127i
\(675\) 0 0
\(676\) −2.82323 + 25.8463i −0.108586 + 0.994087i
\(677\) 28.8974i 1.11062i −0.831645 0.555308i \(-0.812600\pi\)
0.831645 0.555308i \(-0.187400\pi\)
\(678\) 0 0
\(679\) −0.604799 + 1.04754i −0.0232100 + 0.0402010i
\(680\) −36.2823 12.6078i −1.39136 0.483488i
\(681\) 0 0
\(682\) 14.6494 3.54750i 0.560956 0.135841i
\(683\) 18.5350 10.7012i 0.709221 0.409469i −0.101551 0.994830i \(-0.532381\pi\)
0.810773 + 0.585361i \(0.199047\pi\)
\(684\) 0 0
\(685\) 39.7078 22.9253i 1.51716 0.875930i
\(686\) −12.6696 + 12.0705i −0.483729 + 0.460853i
\(687\) 0 0
\(688\) −29.3445 + 13.3426i −1.11875 + 0.508682i
\(689\) −37.4381 1.13048i −1.42628 0.0430678i
\(690\) 0 0
\(691\) −42.9878 24.8190i −1.63533 0.944159i −0.982411 0.186733i \(-0.940210\pi\)
−0.652921 0.757426i \(-0.726457\pi\)
\(692\) 19.9734 + 38.8218i 0.759276 + 1.47578i
\(693\) 0 0
\(694\) 6.44094 21.9023i 0.244495 0.831401i
\(695\) −9.07368 15.7161i −0.344184 0.596145i
\(696\) 0 0
\(697\) −4.02589 −0.152491
\(698\) 32.8672 7.95912i 1.24404 0.301257i
\(699\) 0 0
\(700\) −0.0300709 + 0.0154712i −0.00113657 + 0.000584755i
\(701\) 23.3855i 0.883258i −0.897198 0.441629i \(-0.854401\pi\)
0.897198 0.441629i \(-0.145599\pi\)
\(702\) 0 0
\(703\) 8.71738 0.328782
\(704\) −27.6591 + 34.9924i −1.04244 + 1.31882i
\(705\) 0 0
\(706\) 1.84995 + 7.63936i 0.0696236 + 0.287511i
\(707\) 9.21623i 0.346612i
\(708\) 0 0
\(709\) 41.1118 23.7359i 1.54399 0.891421i 0.545405 0.838172i \(-0.316376\pi\)
0.998581 0.0532487i \(-0.0169576\pi\)
\(710\) 10.3980 35.3583i 0.390230 1.32697i
\(711\) 0 0
\(712\) 2.07592 0.397430i 0.0777983 0.0148943i
\(713\) 2.05968 3.56746i 0.0771355 0.133603i
\(714\) 0 0
\(715\) 38.3009 + 23.6824i 1.43237 + 0.885672i
\(716\) 3.53624 5.49250i 0.132155 0.205264i
\(717\) 0 0
\(718\) −8.75588 + 8.34180i −0.326766 + 0.311313i
\(719\) −22.6840 39.2899i −0.845972 1.46527i −0.884774 0.466020i \(-0.845688\pi\)
0.0388023 0.999247i \(-0.487646\pi\)
\(720\) 0 0
\(721\) −7.11493 12.3234i −0.264974 0.458948i
\(722\) −5.40431 22.3171i −0.201128 0.830558i
\(723\) 0 0
\(724\) 26.2151 + 1.27051i 0.974276 + 0.0472180i
\(725\) −0.0301757 0.0174220i −0.00112070 0.000647036i
\(726\) 0 0
\(727\) 27.1042 1.00524 0.502619 0.864508i \(-0.332370\pi\)
0.502619 + 0.864508i \(0.332370\pi\)
\(728\) −8.99313 3.43262i −0.333308 0.127222i
\(729\) 0 0
\(730\) −4.18855 4.39647i −0.155025 0.162721i
\(731\) −42.3104 24.4279i −1.56491 0.903500i
\(732\) 0 0
\(733\) 21.1225i 0.780179i 0.920777 + 0.390090i \(0.127556\pi\)
−0.920777 + 0.390090i \(0.872444\pi\)
\(734\) 1.30941 + 5.40723i 0.0483314 + 0.199585i
\(735\) 0 0
\(736\) 1.70987 + 12.0695i 0.0630268 + 0.444888i
\(737\) 12.5884 + 21.8038i 0.463701 + 0.803153i
\(738\) 0 0
\(739\) −25.6746 14.8233i −0.944457 0.545283i −0.0531023 0.998589i \(-0.516911\pi\)
−0.891355 + 0.453307i \(0.850244\pi\)
\(740\) −19.7542 12.7184i −0.726179 0.467536i
\(741\) 0 0
\(742\) 3.91230 13.3037i 0.143625 0.488394i
\(743\) −5.52318 + 9.56643i −0.202626 + 0.350958i −0.949374 0.314149i \(-0.898281\pi\)
0.746748 + 0.665107i \(0.231614\pi\)
\(744\) 0 0
\(745\) −4.05452 7.02264i −0.148546 0.257290i
\(746\) 3.16202 10.7524i 0.115770 0.393674i
\(747\) 0 0
\(748\) −67.5218 3.27242i −2.46884 0.119652i
\(749\) 14.8277i 0.541794i
\(750\) 0 0
\(751\) 18.6034 32.2220i 0.678846 1.17580i −0.296483 0.955038i \(-0.595814\pi\)
0.975329 0.220758i \(-0.0708530\pi\)
\(752\) −42.1130 4.09159i −1.53570 0.149205i
\(753\) 0 0
\(754\) −2.04231 9.70563i −0.0743765 0.353458i
\(755\) 36.0514i 1.31204i
\(756\) 0 0
\(757\) −17.2083 9.93522i −0.625446 0.361102i 0.153540 0.988142i \(-0.450933\pi\)
−0.778986 + 0.627041i \(0.784266\pi\)
\(758\) −36.3100 + 8.79283i −1.31884 + 0.319370i
\(759\) 0 0
\(760\) 3.45710 9.94869i 0.125402 0.360877i
\(761\) 4.52926 + 7.84491i 0.164186 + 0.284378i 0.936366 0.351026i \(-0.114167\pi\)
−0.772180 + 0.635404i \(0.780834\pi\)
\(762\) 0 0
\(763\) 7.92857 4.57756i 0.287033 0.165719i
\(764\) −14.3034 + 7.35895i −0.517479 + 0.266237i
\(765\) 0 0
\(766\) −2.56995 0.755759i −0.0928560 0.0273067i
\(767\) −0.811174 1.50838i −0.0292898 0.0544644i
\(768\) 0 0
\(769\) −5.28678 + 9.15697i −0.190646 + 0.330209i −0.945465 0.325725i \(-0.894392\pi\)
0.754818 + 0.655934i \(0.227725\pi\)
\(770\) −12.0708 + 11.4999i −0.435001 + 0.414429i
\(771\) 0 0
\(772\) −1.40560 0.904968i −0.0505887 0.0325705i
\(773\) −22.3264 + 12.8902i −0.803026 + 0.463627i −0.844528 0.535511i \(-0.820119\pi\)
0.0415022 + 0.999138i \(0.486786\pi\)
\(774\) 0 0
\(775\) 0.0342437 0.00123007
\(776\) −1.18973 + 3.42376i −0.0427089 + 0.122906i
\(777\) 0 0
\(778\) −24.4662 25.6807i −0.877156 0.920697i
\(779\) 1.10391i 0.0395517i
\(780\) 0 0
\(781\) 64.8644i 2.32103i
\(782\) −13.3763 + 12.7438i −0.478337 + 0.455716i
\(783\) 0 0
\(784\) −14.2073 + 19.8817i −0.507403 + 0.710059i
\(785\) 34.5585 1.23345
\(786\) 0 0
\(787\) −12.1719 + 7.02745i −0.433881 + 0.250502i −0.700999 0.713162i \(-0.747262\pi\)
0.267117 + 0.963664i \(0.413929\pi\)
\(788\) −7.58358 + 11.7789i −0.270154 + 0.419604i
\(789\) 0 0
\(790\) 29.7447 + 31.2212i 1.05827 + 1.11080i
\(791\) 3.56905 6.18178i 0.126901 0.219799i
\(792\) 0 0
\(793\) −6.04714 11.2447i −0.214740 0.399309i
\(794\) −3.68569 + 12.5331i −0.130800 + 0.444784i
\(795\) 0 0
\(796\) −26.7389 + 13.7569i −0.947734 + 0.487599i
\(797\) 19.1331 11.0465i 0.677731 0.391288i −0.121269 0.992620i \(-0.538696\pi\)
0.798999 + 0.601332i \(0.205363\pi\)
\(798\) 0 0
\(799\) −32.0633 55.5353i −1.13432 1.96470i
\(800\) −0.0797835 + 0.0624759i −0.00282077 + 0.00220886i
\(801\) 0 0
\(802\) 1.47208 + 6.07896i 0.0519809 + 0.214656i
\(803\) −9.25526 5.34353i −0.326611 0.188569i
\(804\) 0 0
\(805\) 4.55637i 0.160591i
\(806\) 6.50745 + 7.25698i 0.229215 + 0.255616i
\(807\) 0 0
\(808\) 5.19284 + 27.1240i 0.182683 + 0.954219i
\(809\) 2.02317 3.50424i 0.0711310 0.123202i −0.828266 0.560335i \(-0.810672\pi\)
0.899397 + 0.437132i \(0.144006\pi\)
\(810\) 0 0
\(811\) 18.7132i 0.657109i 0.944485 + 0.328555i \(0.106561\pi\)
−0.944485 + 0.328555i \(0.893439\pi\)
\(812\) 3.66770 + 0.177754i 0.128711 + 0.00623794i
\(813\) 0 0
\(814\) −39.6695 11.6658i −1.39042 0.408888i
\(815\) −5.61122 9.71893i −0.196553 0.340439i
\(816\) 0 0
\(817\) 6.69820 11.6016i 0.234340 0.405889i
\(818\) 35.9110 + 10.5606i 1.25560 + 0.369241i
\(819\) 0 0
\(820\) −1.61056 + 2.50154i −0.0562434 + 0.0873575i
\(821\) −6.46202 3.73085i −0.225526 0.130208i 0.382980 0.923757i \(-0.374898\pi\)
−0.608506 + 0.793549i \(0.708231\pi\)
\(822\) 0 0
\(823\) −9.81336 16.9972i −0.342072 0.592486i 0.642745 0.766080i \(-0.277795\pi\)
−0.984817 + 0.173594i \(0.944462\pi\)
\(824\) −27.8833 32.2598i −0.971361 1.12382i
\(825\) 0 0
\(826\) 0.616266 0.149235i 0.0214426 0.00519254i
\(827\) 19.2616i 0.669792i −0.942255 0.334896i \(-0.891299\pi\)
0.942255 0.334896i \(-0.108701\pi\)
\(828\) 0 0
\(829\) −18.7148 10.8050i −0.649993 0.375273i 0.138461 0.990368i \(-0.455785\pi\)
−0.788453 + 0.615094i \(0.789118\pi\)
\(830\) 26.5198 25.2657i 0.920517 0.876985i
\(831\) 0 0
\(832\) −28.4015 5.03531i −0.984645 0.174568i
\(833\) −37.0353 −1.28320
\(834\) 0 0
\(835\) −2.06489 1.19216i −0.0714584 0.0412565i
\(836\) 0.897306 18.5146i 0.0310340 0.640342i
\(837\) 0 0
\(838\) 6.83257 1.65457i 0.236027 0.0571563i
\(839\) 21.0839 + 36.5183i 0.727895 + 1.26075i 0.957771 + 0.287532i \(0.0928347\pi\)
−0.229876 + 0.973220i \(0.573832\pi\)
\(840\) 0 0
\(841\) −12.6083 21.8382i −0.434768 0.753040i
\(842\) 23.4680 + 24.6329i 0.808759 + 0.848905i
\(843\) 0 0
\(844\) 7.27889 11.3056i 0.250550 0.389155i
\(845\) −1.75706 + 29.0679i −0.0604448 + 0.999965i
\(846\) 0 0
\(847\) −9.47952 + 16.4190i −0.325720 + 0.564164i
\(848\) 4.01825 41.3581i 0.137987 1.42024i
\(849\) 0 0
\(850\) −0.147343 0.0433299i −0.00505381 0.00148620i
\(851\) −9.78661 + 5.65030i −0.335481 + 0.193690i
\(852\) 0 0
\(853\) 40.2417i 1.37785i −0.724833 0.688924i \(-0.758083\pi\)
0.724833 0.688924i \(-0.241917\pi\)
\(854\) 4.59414 1.11252i 0.157208 0.0380695i
\(855\) 0 0
\(856\) 8.35462 + 43.6391i 0.285555 + 1.49155i
\(857\) −7.37621 −0.251966 −0.125983 0.992032i \(-0.540209\pi\)
−0.125983 + 0.992032i \(0.540209\pi\)
\(858\) 0 0
\(859\) 31.9493i 1.09010i 0.838405 + 0.545048i \(0.183489\pi\)
−0.838405 + 0.545048i \(0.816511\pi\)
\(860\) −32.1050 + 16.5177i −1.09477 + 0.563248i
\(861\) 0 0
\(862\) 3.52124 + 14.5410i 0.119934 + 0.495269i
\(863\) 16.1143 0.548536 0.274268 0.961653i \(-0.411564\pi\)
0.274268 + 0.961653i \(0.411564\pi\)
\(864\) 0 0
\(865\) 24.4496 + 42.3479i 0.831310 + 1.43987i
\(866\) −16.5876 4.87801i −0.563669 0.165761i
\(867\) 0 0
\(868\) −3.20896 + 1.65097i −0.108919 + 0.0560377i
\(869\) 65.7256 + 37.9467i 2.22959 + 1.28725i
\(870\) 0 0
\(871\) −8.56257 + 13.8480i −0.290132 + 0.469221i
\(872\) 20.7551 17.9394i 0.702857 0.607504i
\(873\) 0 0
\(874\) −3.49437 3.66783i −0.118199 0.124066i
\(875\) 9.12287 5.26709i 0.308409 0.178060i
\(876\) 0 0
\(877\) 0.181562 0.104825i 0.00613091 0.00353968i −0.496931 0.867790i \(-0.665540\pi\)
0.503062 + 0.864250i \(0.332207\pi\)
\(878\) −4.30314 17.7698i −0.145224 0.599703i
\(879\) 0 0
\(880\) −29.0456 + 40.6464i −0.979126 + 1.37019i
\(881\) 20.1008 34.8157i 0.677214 1.17297i −0.298602 0.954378i \(-0.596520\pi\)
0.975816 0.218592i \(-0.0701464\pi\)
\(882\) 0 0
\(883\) 4.69019i 0.157837i 0.996881 + 0.0789187i \(0.0251467\pi\)
−0.996881 + 0.0789187i \(0.974853\pi\)
\(884\) −18.8175 39.4591i −0.632900 1.32715i
\(885\) 0 0
\(886\) 13.6998 + 14.3799i 0.460254 + 0.483101i
\(887\) 11.6991 20.2635i 0.392819 0.680382i −0.600002 0.799999i \(-0.704833\pi\)
0.992820 + 0.119617i \(0.0381667\pi\)
\(888\) 0 0
\(889\) −2.90651 −0.0974813
\(890\) 2.30083 0.557167i 0.0771239 0.0186763i
\(891\) 0 0
\(892\) 35.0920 + 22.5933i 1.17497 + 0.756479i
\(893\) 15.2279 8.79184i 0.509583 0.294208i
\(894\) 0 0
\(895\) 3.65827 6.33631i 0.122282 0.211799i
\(896\) 4.46434 9.70113i 0.149143 0.324092i
\(897\) 0 0
\(898\) −2.32580 0.683961i −0.0776129 0.0228241i
\(899\) −3.22015 1.85915i −0.107398 0.0620062i
\(900\) 0 0
\(901\) 54.5398 31.4886i 1.81698 1.04904i
\(902\) −1.47728 + 5.02348i −0.0491881 + 0.167263i
\(903\) 0 0
\(904\) 7.02087 20.2044i 0.233511 0.671987i
\(905\) 29.3963 0.977166
\(906\) 0 0
\(907\) 3.93422 + 2.27142i 0.130634 + 0.0754213i 0.563893 0.825848i \(-0.309303\pi\)
−0.433259 + 0.901269i \(0.642637\pi\)
\(908\) 17.7167 + 34.4355i 0.587950 + 1.14278i
\(909\) 0 0
\(910\) −10.2469 3.35256i −0.339682 0.111136i
\(911\) 29.5451 0.978873 0.489436 0.872039i \(-0.337203\pi\)
0.489436 + 0.872039i \(0.337203\pi\)
\(912\) 0 0
\(913\) 32.2326 55.8285i 1.06674 1.84765i
\(914\) 9.70722 + 40.0860i 0.321086 + 1.32593i
\(915\) 0 0
\(916\) −35.1675 1.70438i −1.16197 0.0563144i
\(917\) 9.73946 5.62308i 0.321625 0.185691i
\(918\) 0 0
\(919\) 15.5647 + 26.9588i 0.513431 + 0.889288i 0.999879 + 0.0155787i \(0.00495905\pi\)
−0.486448 + 0.873710i \(0.661708\pi\)
\(920\) 2.56726 + 13.4097i 0.0846402 + 0.442105i
\(921\) 0 0
\(922\) 10.3431 35.1716i 0.340632 1.15831i
\(923\) 36.9433 19.8673i 1.21600 0.653942i
\(924\) 0 0
\(925\) −0.0813551 0.0469704i −0.00267494 0.00154438i
\(926\) −37.5781 + 35.8009i −1.23489 + 1.17649i
\(927\) 0 0
\(928\) 10.8945 1.54341i 0.357628 0.0506648i
\(929\) −11.9251 20.6548i −0.391249 0.677663i 0.601366 0.798974i \(-0.294624\pi\)
−0.992615 + 0.121311i \(0.961290\pi\)
\(930\) 0 0
\(931\) 10.1552i 0.332822i
\(932\) −1.48400 + 30.6202i −0.0486100 + 1.00300i
\(933\) 0 0
\(934\) −27.2978 28.6529i −0.893213 0.937550i
\(935\) −75.7155 −2.47616
\(936\) 0 0
\(937\) −9.97996 −0.326031 −0.163016 0.986623i \(-0.552122\pi\)
−0.163016 + 0.986623i \(0.552122\pi\)
\(938\) −4.15790 4.36429i −0.135760 0.142499i
\(939\) 0 0
\(940\) −47.3345 2.29405i −1.54388 0.0748238i
\(941\) 12.2242i 0.398498i 0.979949 + 0.199249i \(0.0638502\pi\)
−0.979949 + 0.199249i \(0.936150\pi\)
\(942\) 0 0
\(943\) 0.715515 + 1.23931i 0.0233004 + 0.0403575i
\(944\) 1.72963 0.786440i 0.0562946 0.0255965i
\(945\) 0 0
\(946\) −46.0066 + 43.8309i −1.49580 + 1.42507i
\(947\) −2.80497 1.61945i −0.0911494 0.0526251i 0.453732 0.891138i \(-0.350092\pi\)
−0.544882 + 0.838513i \(0.683426\pi\)
\(948\) 0 0
\(949\) 0.208593 6.90798i 0.00677120 0.224242i
\(950\) 0.0118812 0.0404017i 0.000385476 0.00131080i
\(951\) 0 0
\(952\) 15.8964 3.04334i 0.515205 0.0986351i
\(953\) 3.08301 + 5.33994i 0.0998686 + 0.172977i 0.911630 0.411012i \(-0.134824\pi\)
−0.811762 + 0.583989i \(0.801491\pi\)
\(954\) 0 0
\(955\) −15.6025 + 9.00813i −0.504886 + 0.291496i
\(956\) 1.36369 28.1379i 0.0441050 0.910043i
\(957\) 0 0
\(958\) −10.8162 44.6658i −0.349457 1.44309i
\(959\) −9.66009 + 16.7318i −0.311941 + 0.540297i
\(960\) 0 0
\(961\) −27.3457 −0.882121
\(962\) −5.50615 26.1668i −0.177525 0.843652i
\(963\) 0 0
\(964\) −25.7869 + 13.2671i −0.830541 + 0.427305i
\(965\) −1.62154 0.936197i −0.0521993 0.0301373i
\(966\) 0 0
\(967\) 44.1828 1.42082 0.710411 0.703787i \(-0.248509\pi\)
0.710411 + 0.703787i \(0.248509\pi\)
\(968\) −18.6477 + 53.6635i −0.599359 + 1.72481i
\(969\) 0 0
\(970\) −1.14535 + 3.89474i −0.0367749 + 0.125053i
\(971\) 33.2299 19.1853i 1.06640 0.615686i 0.139204 0.990264i \(-0.455546\pi\)
0.927195 + 0.374578i \(0.122212\pi\)
\(972\) 0 0
\(973\) 6.62233 + 3.82340i 0.212302 + 0.122573i
\(974\) 15.7302 + 4.62586i 0.504027 + 0.148222i
\(975\) 0 0
\(976\) 12.8940 5.86275i 0.412728 0.187662i
\(977\) 9.04005 15.6578i 0.289217 0.500938i −0.684406 0.729101i \(-0.739938\pi\)
0.973623 + 0.228163i \(0.0732718\pi\)
\(978\) 0 0
\(979\) 3.60822 2.08321i 0.115319 0.0665796i
\(980\) −14.8160 + 23.0123i −0.473281 + 0.735102i
\(981\) 0 0
\(982\) 57.4660 13.9159i 1.83381 0.444075i
\(983\) −18.8329 −0.600677 −0.300339 0.953833i \(-0.597100\pi\)
−0.300339 + 0.953833i \(0.597100\pi\)
\(984\) 0 0
\(985\) −7.84529 + 13.5884i −0.249972 + 0.432964i
\(986\) 11.5031 + 12.0741i 0.366332 + 0.384516i
\(987\) 0 0
\(988\) 10.8198 5.15980i 0.344224 0.164155i
\(989\) 17.3662i 0.552212i
\(990\) 0 0
\(991\) −24.8600 + 43.0588i −0.789704 + 1.36781i 0.136444 + 0.990648i \(0.456433\pi\)
−0.926148 + 0.377160i \(0.876901\pi\)
\(992\) −8.51395 + 6.66700i −0.270318 + 0.211677i
\(993\) 0 0
\(994\) 3.65507 + 15.0936i 0.115932 + 0.478741i
\(995\) −29.1675 + 16.8399i −0.924671 + 0.533859i
\(996\) 0 0
\(997\) −41.6202 + 24.0294i −1.31812 + 0.761020i −0.983427 0.181306i \(-0.941968\pi\)
−0.334698 + 0.942325i \(0.608634\pi\)
\(998\) −17.4624 18.3293i −0.552764 0.580202i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.be.a.685.3 24
3.2 odd 2 104.2.r.a.61.10 yes 24
8.5 even 2 inner 936.2.be.a.685.6 24
12.11 even 2 416.2.z.a.113.5 24
13.3 even 3 inner 936.2.be.a.757.6 24
24.5 odd 2 104.2.r.a.61.7 yes 24
24.11 even 2 416.2.z.a.113.8 24
39.29 odd 6 104.2.r.a.29.7 24
104.29 even 6 inner 936.2.be.a.757.3 24
156.107 even 6 416.2.z.a.81.8 24
312.29 odd 6 104.2.r.a.29.10 yes 24
312.107 even 6 416.2.z.a.81.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.r.a.29.7 24 39.29 odd 6
104.2.r.a.29.10 yes 24 312.29 odd 6
104.2.r.a.61.7 yes 24 24.5 odd 2
104.2.r.a.61.10 yes 24 3.2 odd 2
416.2.z.a.81.5 24 312.107 even 6
416.2.z.a.81.8 24 156.107 even 6
416.2.z.a.113.5 24 12.11 even 2
416.2.z.a.113.8 24 24.11 even 2
936.2.be.a.685.3 24 1.1 even 1 trivial
936.2.be.a.685.6 24 8.5 even 2 inner
936.2.be.a.757.3 24 104.29 even 6 inner
936.2.be.a.757.6 24 13.3 even 3 inner