Properties

Label 925.2.y.c.193.14
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.14
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.c.532.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.341622 - 0.197235i) q^{2} +(-0.203474 - 0.759377i) q^{3} +(-0.922196 + 1.59729i) q^{4} +(-0.219287 - 0.219287i) q^{6} +(-1.12467 - 4.19733i) q^{7} +1.51650i q^{8} +(2.06282 - 1.19097i) q^{9} +5.77783i q^{11} +(1.40059 + 0.375287i) q^{12} +(-2.98386 - 1.72273i) q^{13} +(-1.21207 - 1.21207i) q^{14} +(-1.54529 - 2.67651i) q^{16} +(-1.69018 - 2.92748i) q^{17} +(0.469804 - 0.813724i) q^{18} +(-1.49704 - 5.58703i) q^{19} +(-2.95852 + 1.70810i) q^{21} +(1.13959 + 1.97383i) q^{22} +4.62117i q^{23} +(1.15160 - 0.308569i) q^{24} -1.35914 q^{26} +(-2.99184 - 2.99184i) q^{27} +(7.74153 + 2.07434i) q^{28} +(-0.167787 - 0.167787i) q^{29} +(1.77197 - 1.77197i) q^{31} +(-3.68246 - 2.12607i) q^{32} +(4.38755 - 1.17564i) q^{33} +(-1.15481 - 0.666727i) q^{34} +4.39324i q^{36} +(-3.71107 - 4.81954i) q^{37} +(-1.61338 - 1.61338i) q^{38} +(-0.701064 + 2.61641i) q^{39} +(-5.73051 - 3.30851i) q^{41} +(-0.673796 + 1.16705i) q^{42} -10.1539i q^{43} +(-9.22887 - 5.32829i) q^{44} +(0.911458 + 1.57869i) q^{46} +(0.860410 - 0.860410i) q^{47} +(-1.71806 + 1.71806i) q^{48} +(-10.2905 + 5.94124i) q^{49} +(-1.87915 + 1.87915i) q^{51} +(5.50341 - 3.17740i) q^{52} +(-2.20800 + 8.24036i) q^{53} +(-1.61217 - 0.431980i) q^{54} +(6.36526 - 1.70557i) q^{56} +(-3.93805 + 2.27364i) q^{57} +(-0.0904134 - 0.0242262i) q^{58} +(-9.82324 - 2.63213i) q^{59} +(-2.37112 - 8.84912i) q^{61} +(0.255848 - 0.954838i) q^{62} +(-7.31891 - 7.31891i) q^{63} +4.50380 q^{64} +(1.26700 - 1.26700i) q^{66} +(4.03094 - 1.08009i) q^{67} +6.23472 q^{68} +(3.50921 - 0.940289i) q^{69} +(-3.66302 + 6.34453i) q^{71} +(1.80611 + 3.12827i) q^{72} +(4.73293 - 4.73293i) q^{73} +(-2.21837 - 0.914507i) q^{74} +(10.3047 + 2.76113i) q^{76} +(24.2515 - 6.49816i) q^{77} +(0.276549 + 1.03210i) q^{78} +(-0.0953001 - 0.355665i) q^{79} +(1.90975 - 3.30778i) q^{81} -2.61022 q^{82} +(-1.89576 + 7.07509i) q^{83} -6.30081i q^{84} +(-2.00271 - 3.46879i) q^{86} +(-0.0932734 + 0.161554i) q^{87} -8.76208 q^{88} +(3.18738 - 11.8955i) q^{89} +(-3.87502 + 14.4618i) q^{91} +(-7.38135 - 4.26162i) q^{92} +(-1.70614 - 0.985042i) q^{93} +(0.124231 - 0.463638i) q^{94} +(-0.865202 + 3.22898i) q^{96} -2.66709 q^{97} +(-2.34365 + 4.05931i) q^{98} +(6.88123 + 11.9186i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 40 q^{4} - 32 q^{14} - 4 q^{16} - 24 q^{19} + 36 q^{21} + 52 q^{24} + 16 q^{26} + 12 q^{29} + 4 q^{31} - 60 q^{34} + 100 q^{39} - 48 q^{41} + 48 q^{44} + 24 q^{46} - 120 q^{49} - 84 q^{51} + 104 q^{54}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.341622 0.197235i 0.241563 0.139466i −0.374332 0.927295i \(-0.622128\pi\)
0.615895 + 0.787828i \(0.288795\pi\)
\(3\) −0.203474 0.759377i −0.117476 0.438427i 0.881984 0.471279i \(-0.156208\pi\)
−0.999460 + 0.0328525i \(0.989541\pi\)
\(4\) −0.922196 + 1.59729i −0.461098 + 0.798646i
\(5\) 0 0
\(6\) −0.219287 0.219287i −0.0895237 0.0895237i
\(7\) −1.12467 4.19733i −0.425086 1.58644i −0.763735 0.645530i \(-0.776637\pi\)
0.338649 0.940913i \(-0.390030\pi\)
\(8\) 1.51650i 0.536164i
\(9\) 2.06282 1.19097i 0.687608 0.396991i
\(10\) 0 0
\(11\) 5.77783i 1.74208i 0.491212 + 0.871040i \(0.336554\pi\)
−0.491212 + 0.871040i \(0.663446\pi\)
\(12\) 1.40059 + 0.375287i 0.404315 + 0.108336i
\(13\) −2.98386 1.72273i −0.827574 0.477800i 0.0254471 0.999676i \(-0.491899\pi\)
−0.853021 + 0.521876i \(0.825232\pi\)
\(14\) −1.21207 1.21207i −0.323941 0.323941i
\(15\) 0 0
\(16\) −1.54529 2.67651i −0.386321 0.669128i
\(17\) −1.69018 2.92748i −0.409929 0.710018i 0.584952 0.811068i \(-0.301113\pi\)
−0.994881 + 0.101049i \(0.967780\pi\)
\(18\) 0.469804 0.813724i 0.110734 0.191797i
\(19\) −1.49704 5.58703i −0.343445 1.28175i −0.894419 0.447230i \(-0.852410\pi\)
0.550974 0.834522i \(-0.314256\pi\)
\(20\) 0 0
\(21\) −2.95852 + 1.70810i −0.645601 + 0.372738i
\(22\) 1.13959 + 1.97383i 0.242962 + 0.420822i
\(23\) 4.62117i 0.963580i 0.876287 + 0.481790i \(0.160013\pi\)
−0.876287 + 0.481790i \(0.839987\pi\)
\(24\) 1.15160 0.308569i 0.235069 0.0629864i
\(25\) 0 0
\(26\) −1.35914 −0.266548
\(27\) −2.99184 2.99184i −0.575779 0.575779i
\(28\) 7.74153 + 2.07434i 1.46301 + 0.392013i
\(29\) −0.167787 0.167787i −0.0311573 0.0311573i 0.691356 0.722514i \(-0.257013\pi\)
−0.722514 + 0.691356i \(0.757013\pi\)
\(30\) 0 0
\(31\) 1.77197 1.77197i 0.318255 0.318255i −0.529842 0.848097i \(-0.677749\pi\)
0.848097 + 0.529842i \(0.177749\pi\)
\(32\) −3.68246 2.12607i −0.650974 0.375840i
\(33\) 4.38755 1.17564i 0.763774 0.204653i
\(34\) −1.15481 0.666727i −0.198048 0.114343i
\(35\) 0 0
\(36\) 4.39324i 0.732207i
\(37\) −3.71107 4.81954i −0.610096 0.792328i
\(38\) −1.61338 1.61338i −0.261725 0.261725i
\(39\) −0.701064 + 2.61641i −0.112260 + 0.418961i
\(40\) 0 0
\(41\) −5.73051 3.30851i −0.894955 0.516703i −0.0193953 0.999812i \(-0.506174\pi\)
−0.875560 + 0.483109i \(0.839507\pi\)
\(42\) −0.673796 + 1.16705i −0.103969 + 0.180079i
\(43\) 10.1539i 1.54845i −0.632908 0.774227i \(-0.718139\pi\)
0.632908 0.774227i \(-0.281861\pi\)
\(44\) −9.22887 5.32829i −1.39130 0.803270i
\(45\) 0 0
\(46\) 0.911458 + 1.57869i 0.134387 + 0.232765i
\(47\) 0.860410 0.860410i 0.125504 0.125504i −0.641565 0.767069i \(-0.721715\pi\)
0.767069 + 0.641565i \(0.221715\pi\)
\(48\) −1.71806 + 1.71806i −0.247980 + 0.247980i
\(49\) −10.2905 + 5.94124i −1.47008 + 0.848749i
\(50\) 0 0
\(51\) −1.87915 + 1.87915i −0.263134 + 0.263134i
\(52\) 5.50341 3.17740i 0.763186 0.440626i
\(53\) −2.20800 + 8.24036i −0.303292 + 1.13190i 0.631114 + 0.775690i \(0.282598\pi\)
−0.934406 + 0.356211i \(0.884069\pi\)
\(54\) −1.61217 0.431980i −0.219389 0.0587851i
\(55\) 0 0
\(56\) 6.36526 1.70557i 0.850593 0.227916i
\(57\) −3.93805 + 2.27364i −0.521608 + 0.301150i
\(58\) −0.0904134 0.0242262i −0.0118719 0.00318106i
\(59\) −9.82324 2.63213i −1.27888 0.342674i −0.445452 0.895306i \(-0.646957\pi\)
−0.833425 + 0.552632i \(0.813624\pi\)
\(60\) 0 0
\(61\) −2.37112 8.84912i −0.303590 1.13301i −0.934152 0.356875i \(-0.883842\pi\)
0.630562 0.776139i \(-0.282825\pi\)
\(62\) 0.255848 0.954838i 0.0324927 0.121265i
\(63\) −7.31891 7.31891i −0.922096 0.922096i
\(64\) 4.50380 0.562974
\(65\) 0 0
\(66\) 1.26700 1.26700i 0.155957 0.155957i
\(67\) 4.03094 1.08009i 0.492458 0.131954i −0.00403954 0.999992i \(-0.501286\pi\)
0.496498 + 0.868038i \(0.334619\pi\)
\(68\) 6.23472 0.756071
\(69\) 3.50921 0.940289i 0.422459 0.113198i
\(70\) 0 0
\(71\) −3.66302 + 6.34453i −0.434720 + 0.752957i −0.997273 0.0738041i \(-0.976486\pi\)
0.562553 + 0.826762i \(0.309819\pi\)
\(72\) 1.80611 + 3.12827i 0.212852 + 0.368671i
\(73\) 4.73293 4.73293i 0.553947 0.553947i −0.373630 0.927578i \(-0.621887\pi\)
0.927578 + 0.373630i \(0.121887\pi\)
\(74\) −2.21837 0.914507i −0.257880 0.106309i
\(75\) 0 0
\(76\) 10.3047 + 2.76113i 1.18203 + 0.316723i
\(77\) 24.2515 6.49816i 2.76371 0.740534i
\(78\) 0.276549 + 1.03210i 0.0313131 + 0.116862i
\(79\) −0.0953001 0.355665i −0.0107221 0.0400154i 0.960358 0.278771i \(-0.0899271\pi\)
−0.971080 + 0.238756i \(0.923260\pi\)
\(80\) 0 0
\(81\) 1.90975 3.30778i 0.212194 0.367531i
\(82\) −2.61022 −0.288251
\(83\) −1.89576 + 7.07509i −0.208087 + 0.776592i 0.780399 + 0.625282i \(0.215016\pi\)
−0.988486 + 0.151310i \(0.951651\pi\)
\(84\) 6.30081i 0.687475i
\(85\) 0 0
\(86\) −2.00271 3.46879i −0.215957 0.374049i
\(87\) −0.0932734 + 0.161554i −0.00999996 + 0.0173204i
\(88\) −8.76208 −0.934041
\(89\) 3.18738 11.8955i 0.337862 1.26092i −0.562872 0.826544i \(-0.690303\pi\)
0.900733 0.434373i \(-0.143030\pi\)
\(90\) 0 0
\(91\) −3.87502 + 14.4618i −0.406212 + 1.51601i
\(92\) −7.38135 4.26162i −0.769559 0.444305i
\(93\) −1.70614 0.985042i −0.176919 0.102144i
\(94\) 0.124231 0.463638i 0.0128135 0.0478206i
\(95\) 0 0
\(96\) −0.865202 + 3.22898i −0.0883043 + 0.329556i
\(97\) −2.66709 −0.270802 −0.135401 0.990791i \(-0.543232\pi\)
−0.135401 + 0.990791i \(0.543232\pi\)
\(98\) −2.34365 + 4.05931i −0.236744 + 0.410053i
\(99\) 6.88123 + 11.9186i 0.691590 + 1.19787i
\(100\) 0 0
\(101\) 1.29625i 0.128981i −0.997918 0.0644906i \(-0.979458\pi\)
0.997918 0.0644906i \(-0.0205423\pi\)
\(102\) −0.271324 + 1.01259i −0.0268651 + 0.100262i
\(103\) 4.70046 0.463151 0.231575 0.972817i \(-0.425612\pi\)
0.231575 + 0.972817i \(0.425612\pi\)
\(104\) 2.61253 4.52503i 0.256179 0.443715i
\(105\) 0 0
\(106\) 0.870991 + 3.25058i 0.0845981 + 0.315724i
\(107\) 2.15296 + 8.03494i 0.208134 + 0.776767i 0.988471 + 0.151408i \(0.0483808\pi\)
−0.780337 + 0.625359i \(0.784953\pi\)
\(108\) 7.53790 2.01977i 0.725334 0.194353i
\(109\) 18.7148 + 5.01461i 1.79255 + 0.480312i 0.992775 0.119988i \(-0.0382857\pi\)
0.799774 + 0.600301i \(0.204952\pi\)
\(110\) 0 0
\(111\) −2.90474 + 3.79875i −0.275706 + 0.360562i
\(112\) −9.49627 + 9.49627i −0.897313 + 0.897313i
\(113\) 5.01412 + 8.68471i 0.471689 + 0.816989i 0.999475 0.0323882i \(-0.0103113\pi\)
−0.527787 + 0.849377i \(0.676978\pi\)
\(114\) −0.896883 + 1.55345i −0.0840008 + 0.145494i
\(115\) 0 0
\(116\) 0.422738 0.113272i 0.0392502 0.0105171i
\(117\) −8.20691 −0.758729
\(118\) −3.87498 + 1.03830i −0.356721 + 0.0955831i
\(119\) −10.3867 + 10.3867i −0.952148 + 0.952148i
\(120\) 0 0
\(121\) −22.3833 −2.03484
\(122\) −2.55539 2.55539i −0.231354 0.231354i
\(123\) −1.34640 + 5.02482i −0.121400 + 0.453072i
\(124\) 1.19625 + 4.46445i 0.107426 + 0.400920i
\(125\) 0 0
\(126\) −3.94385 1.05675i −0.351346 0.0941428i
\(127\) −12.9571 3.47185i −1.14976 0.308077i −0.366890 0.930264i \(-0.619578\pi\)
−0.782868 + 0.622187i \(0.786244\pi\)
\(128\) 8.90352 5.14045i 0.786967 0.454356i
\(129\) −7.71063 + 2.06606i −0.678883 + 0.181906i
\(130\) 0 0
\(131\) 19.1655 + 5.13538i 1.67450 + 0.448680i 0.966318 0.257352i \(-0.0828499\pi\)
0.708180 + 0.706032i \(0.249517\pi\)
\(132\) −2.16834 + 8.09236i −0.188730 + 0.704350i
\(133\) −21.7669 + 12.5671i −1.88743 + 1.08971i
\(134\) 1.16403 1.16403i 0.100557 0.100557i
\(135\) 0 0
\(136\) 4.43953 2.56316i 0.380686 0.219789i
\(137\) −10.9764 + 10.9764i −0.937776 + 0.937776i −0.998174 0.0603986i \(-0.980763\pi\)
0.0603986 + 0.998174i \(0.480763\pi\)
\(138\) 1.01336 1.01336i 0.0862632 0.0862632i
\(139\) 11.7586 + 20.3664i 0.997348 + 1.72746i 0.561703 + 0.827339i \(0.310146\pi\)
0.435645 + 0.900118i \(0.356520\pi\)
\(140\) 0 0
\(141\) −0.828447 0.478304i −0.0697678 0.0402805i
\(142\) 2.88991i 0.242516i
\(143\) 9.95365 17.2402i 0.832366 1.44170i
\(144\) −6.37530 3.68078i −0.531275 0.306732i
\(145\) 0 0
\(146\) 0.683370 2.55037i 0.0565561 0.211070i
\(147\) 6.60550 + 6.60550i 0.544813 + 0.544813i
\(148\) 11.1205 1.48309i 0.914103 0.121909i
\(149\) 16.1158i 1.32026i −0.751151 0.660130i \(-0.770501\pi\)
0.751151 0.660130i \(-0.229499\pi\)
\(150\) 0 0
\(151\) −6.45414 3.72630i −0.525231 0.303242i 0.213841 0.976868i \(-0.431402\pi\)
−0.739072 + 0.673626i \(0.764736\pi\)
\(152\) 8.47273 2.27026i 0.687230 0.184143i
\(153\) −6.97310 4.02592i −0.563741 0.325476i
\(154\) 7.00316 7.00316i 0.564331 0.564331i
\(155\) 0 0
\(156\) −3.53265 3.53265i −0.282838 0.282838i
\(157\) 10.3540 + 2.77435i 0.826342 + 0.221418i 0.647117 0.762391i \(-0.275974\pi\)
0.179225 + 0.983808i \(0.442641\pi\)
\(158\) −0.102706 0.102706i −0.00817088 0.00817088i
\(159\) 6.70681 0.531885
\(160\) 0 0
\(161\) 19.3966 5.19730i 1.52866 0.409604i
\(162\) 1.50668i 0.118376i
\(163\) 0.408894 + 0.708225i 0.0320270 + 0.0554725i 0.881595 0.472007i \(-0.156470\pi\)
−0.849568 + 0.527480i \(0.823137\pi\)
\(164\) 10.5693 6.10220i 0.825325 0.476501i
\(165\) 0 0
\(166\) 0.747823 + 2.79091i 0.0580424 + 0.216617i
\(167\) 6.95452 12.0456i 0.538157 0.932115i −0.460847 0.887480i \(-0.652454\pi\)
0.999003 0.0446351i \(-0.0142125\pi\)
\(168\) −2.59033 4.48659i −0.199849 0.346148i
\(169\) −0.564381 0.977536i −0.0434139 0.0751951i
\(170\) 0 0
\(171\) −9.74213 9.74213i −0.744999 0.744999i
\(172\) 16.2187 + 9.36388i 1.23667 + 0.713989i
\(173\) −11.7392 3.14552i −0.892517 0.239149i −0.216717 0.976234i \(-0.569535\pi\)
−0.675800 + 0.737085i \(0.736202\pi\)
\(174\) 0.0735873i 0.00557864i
\(175\) 0 0
\(176\) 15.4644 8.92839i 1.16568 0.673003i
\(177\) 7.99511i 0.600950i
\(178\) −1.25733 4.69241i −0.0942408 0.351711i
\(179\) 15.2050 + 15.2050i 1.13648 + 1.13648i 0.989077 + 0.147400i \(0.0470905\pi\)
0.147400 + 0.989077i \(0.452910\pi\)
\(180\) 0 0
\(181\) −3.79126 + 6.56665i −0.281802 + 0.488095i −0.971829 0.235689i \(-0.924265\pi\)
0.690027 + 0.723784i \(0.257599\pi\)
\(182\) 1.52858 + 5.70474i 0.113306 + 0.422864i
\(183\) −6.23736 + 3.60114i −0.461079 + 0.266204i
\(184\) −7.00800 −0.516637
\(185\) 0 0
\(186\) −0.777140 −0.0569827
\(187\) 16.9145 9.76558i 1.23691 0.714130i
\(188\) 0.580858 + 2.16779i 0.0423634 + 0.158103i
\(189\) −9.19290 + 15.9226i −0.668685 + 1.15820i
\(190\) 0 0
\(191\) 1.82684 + 1.82684i 0.132186 + 0.132186i 0.770104 0.637918i \(-0.220204\pi\)
−0.637918 + 0.770104i \(0.720204\pi\)
\(192\) −0.916407 3.42008i −0.0661360 0.246823i
\(193\) 0.203625i 0.0146573i −0.999973 0.00732864i \(-0.997667\pi\)
0.999973 0.00732864i \(-0.00233280\pi\)
\(194\) −0.911137 + 0.526045i −0.0654158 + 0.0377679i
\(195\) 0 0
\(196\) 21.9160i 1.56543i
\(197\) 1.43336 + 0.384069i 0.102123 + 0.0273638i 0.309519 0.950893i \(-0.399832\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(198\) 4.70156 + 2.71445i 0.334125 + 0.192907i
\(199\) 8.49963 + 8.49963i 0.602523 + 0.602523i 0.940981 0.338458i \(-0.109905\pi\)
−0.338458 + 0.940981i \(0.609905\pi\)
\(200\) 0 0
\(201\) −1.64039 2.84124i −0.115704 0.200405i
\(202\) −0.255665 0.442826i −0.0179886 0.0311571i
\(203\) −0.515553 + 0.892965i −0.0361848 + 0.0626738i
\(204\) −1.26861 4.73450i −0.0888202 0.331481i
\(205\) 0 0
\(206\) 1.60578 0.927098i 0.111880 0.0645940i
\(207\) 5.50368 + 9.53266i 0.382532 + 0.662565i
\(208\) 10.6485i 0.738338i
\(209\) 32.2809 8.64964i 2.23292 0.598308i
\(210\) 0 0
\(211\) 16.5588 1.13995 0.569976 0.821661i \(-0.306952\pi\)
0.569976 + 0.821661i \(0.306952\pi\)
\(212\) −11.1260 11.1260i −0.764140 0.764140i
\(213\) 5.56322 + 1.49066i 0.381186 + 0.102138i
\(214\) 2.32027 + 2.32027i 0.158610 + 0.158610i
\(215\) 0 0
\(216\) 4.53712 4.53712i 0.308712 0.308712i
\(217\) −9.43042 5.44466i −0.640179 0.369607i
\(218\) 7.38243 1.97812i 0.500001 0.133975i
\(219\) −4.55711 2.63105i −0.307941 0.177790i
\(220\) 0 0
\(221\) 11.6469i 0.783457i
\(222\) −0.243075 + 1.87065i −0.0163141 + 0.125550i
\(223\) 2.31283 + 2.31283i 0.154879 + 0.154879i 0.780293 0.625414i \(-0.215070\pi\)
−0.625414 + 0.780293i \(0.715070\pi\)
\(224\) −4.78226 + 17.8476i −0.319528 + 1.19250i
\(225\) 0 0
\(226\) 3.42586 + 1.97792i 0.227885 + 0.131570i
\(227\) −13.0815 + 22.6578i −0.868249 + 1.50385i −0.00446438 + 0.999990i \(0.501421\pi\)
−0.863785 + 0.503861i \(0.831912\pi\)
\(228\) 8.38695i 0.555440i
\(229\) −17.7450 10.2451i −1.17262 0.677013i −0.218325 0.975876i \(-0.570059\pi\)
−0.954296 + 0.298863i \(0.903393\pi\)
\(230\) 0 0
\(231\) −9.86911 17.0938i −0.649339 1.12469i
\(232\) 0.254450 0.254450i 0.0167054 0.0167054i
\(233\) 16.5941 16.5941i 1.08712 1.08712i 0.0912937 0.995824i \(-0.470900\pi\)
0.995824 0.0912937i \(-0.0291002\pi\)
\(234\) −2.80366 + 1.61869i −0.183281 + 0.105817i
\(235\) 0 0
\(236\) 13.2632 13.2632i 0.863363 0.863363i
\(237\) −0.250693 + 0.144737i −0.0162842 + 0.00940171i
\(238\) −1.49970 + 5.59695i −0.0972110 + 0.362797i
\(239\) 5.57972 + 1.49508i 0.360922 + 0.0967087i 0.434723 0.900564i \(-0.356846\pi\)
−0.0738010 + 0.997273i \(0.523513\pi\)
\(240\) 0 0
\(241\) 7.14060 1.91332i 0.459966 0.123248i −0.0213926 0.999771i \(-0.506810\pi\)
0.481359 + 0.876524i \(0.340143\pi\)
\(242\) −7.64662 + 4.41478i −0.491543 + 0.283793i
\(243\) −15.1612 4.06243i −0.972592 0.260605i
\(244\) 16.3213 + 4.37327i 1.04486 + 0.279970i
\(245\) 0 0
\(246\) 0.531114 + 1.98214i 0.0338626 + 0.126377i
\(247\) −5.15800 + 19.2499i −0.328196 + 1.22484i
\(248\) 2.68719 + 2.68719i 0.170637 + 0.170637i
\(249\) 5.75840 0.364924
\(250\) 0 0
\(251\) 2.35462 2.35462i 0.148622 0.148622i −0.628880 0.777502i \(-0.716486\pi\)
0.777502 + 0.628880i \(0.216486\pi\)
\(252\) 18.4399 4.94095i 1.16160 0.311251i
\(253\) −26.7003 −1.67863
\(254\) −5.11121 + 1.36954i −0.320706 + 0.0859328i
\(255\) 0 0
\(256\) −2.47604 + 4.28862i −0.154752 + 0.268039i
\(257\) −8.55026 14.8095i −0.533351 0.923790i −0.999241 0.0389480i \(-0.987599\pi\)
0.465891 0.884842i \(-0.345734\pi\)
\(258\) −2.22662 + 2.22662i −0.138623 + 0.138623i
\(259\) −16.0555 + 20.9970i −0.997640 + 1.30469i
\(260\) 0 0
\(261\) −0.545946 0.146286i −0.0337932 0.00905486i
\(262\) 7.56023 2.02576i 0.467073 0.125152i
\(263\) −1.24249 4.63704i −0.0766152 0.285932i 0.916980 0.398934i \(-0.130620\pi\)
−0.993595 + 0.113002i \(0.963953\pi\)
\(264\) 1.78286 + 6.65372i 0.109727 + 0.409508i
\(265\) 0 0
\(266\) −4.95737 + 8.58642i −0.303956 + 0.526467i
\(267\) −9.68170 −0.592510
\(268\) −1.99211 + 7.43464i −0.121687 + 0.454143i
\(269\) 16.9456i 1.03319i −0.856229 0.516596i \(-0.827199\pi\)
0.856229 0.516596i \(-0.172801\pi\)
\(270\) 0 0
\(271\) −2.31032 4.00159i −0.140342 0.243079i 0.787284 0.616591i \(-0.211487\pi\)
−0.927625 + 0.373512i \(0.878153\pi\)
\(272\) −5.22363 + 9.04758i −0.316729 + 0.548590i
\(273\) 11.7704 0.712377
\(274\) −1.58484 + 5.91470i −0.0957437 + 0.357320i
\(275\) 0 0
\(276\) −1.73426 + 6.47236i −0.104390 + 0.389590i
\(277\) −4.46888 2.58011i −0.268509 0.155024i 0.359701 0.933068i \(-0.382879\pi\)
−0.628210 + 0.778044i \(0.716212\pi\)
\(278\) 8.03396 + 4.63841i 0.481845 + 0.278193i
\(279\) 1.54489 5.76562i 0.0924904 0.345179i
\(280\) 0 0
\(281\) 1.35544 5.05857i 0.0808588 0.301769i −0.913639 0.406526i \(-0.866740\pi\)
0.994498 + 0.104757i \(0.0334066\pi\)
\(282\) −0.377354 −0.0224711
\(283\) 3.23918 5.61043i 0.192549 0.333506i −0.753545 0.657396i \(-0.771658\pi\)
0.946094 + 0.323891i \(0.104991\pi\)
\(284\) −6.75604 11.7018i −0.400897 0.694375i
\(285\) 0 0
\(286\) 7.85285i 0.464349i
\(287\) −7.44198 + 27.7738i −0.439286 + 1.63944i
\(288\) −10.1284 −0.596820
\(289\) 2.78657 4.82648i 0.163916 0.283911i
\(290\) 0 0
\(291\) 0.542685 + 2.02533i 0.0318128 + 0.118727i
\(292\) 3.19517 + 11.9246i 0.186983 + 0.697832i
\(293\) 2.20988 0.592137i 0.129103 0.0345930i −0.193689 0.981063i \(-0.562045\pi\)
0.322792 + 0.946470i \(0.395379\pi\)
\(294\) 3.55942 + 0.953744i 0.207590 + 0.0556235i
\(295\) 0 0
\(296\) 7.30884 5.62783i 0.424818 0.327111i
\(297\) 17.2863 17.2863i 1.00305 1.00305i
\(298\) −3.17861 5.50552i −0.184132 0.318926i
\(299\) 7.96104 13.7889i 0.460399 0.797434i
\(300\) 0 0
\(301\) −42.6193 + 11.4198i −2.45653 + 0.658226i
\(302\) −2.93983 −0.169168
\(303\) −0.984339 + 0.263753i −0.0565488 + 0.0151522i
\(304\) −12.6404 + 12.6404i −0.724977 + 0.724977i
\(305\) 0 0
\(306\) −3.17622 −0.181572
\(307\) 14.8585 + 14.8585i 0.848019 + 0.848019i 0.989886 0.141867i \(-0.0453105\pi\)
−0.141867 + 0.989886i \(0.545311\pi\)
\(308\) −11.9852 + 44.7292i −0.682918 + 2.54868i
\(309\) −0.956424 3.56942i −0.0544091 0.203057i
\(310\) 0 0
\(311\) −30.1453 8.07740i −1.70938 0.458027i −0.734108 0.679033i \(-0.762400\pi\)
−0.975273 + 0.221005i \(0.929066\pi\)
\(312\) −3.96778 1.06316i −0.224632 0.0601898i
\(313\) 7.85507 4.53513i 0.443995 0.256340i −0.261296 0.965259i \(-0.584150\pi\)
0.705291 + 0.708918i \(0.250817\pi\)
\(314\) 4.08436 1.09440i 0.230494 0.0617607i
\(315\) 0 0
\(316\) 0.655986 + 0.175771i 0.0369021 + 0.00988789i
\(317\) 0.179805 0.671041i 0.0100988 0.0376894i −0.960693 0.277614i \(-0.910456\pi\)
0.970791 + 0.239925i \(0.0771229\pi\)
\(318\) 2.29119 1.32282i 0.128484 0.0741801i
\(319\) 0.969446 0.969446i 0.0542786 0.0542786i
\(320\) 0 0
\(321\) 5.66348 3.26981i 0.316105 0.182503i
\(322\) 5.60120 5.60120i 0.312143 0.312143i
\(323\) −13.8257 + 13.8257i −0.769280 + 0.769280i
\(324\) 3.52232 + 6.10084i 0.195685 + 0.338936i
\(325\) 0 0
\(326\) 0.279374 + 0.161297i 0.0154731 + 0.00893340i
\(327\) 15.2319i 0.842327i
\(328\) 5.01736 8.69032i 0.277037 0.479843i
\(329\) −4.57911 2.64375i −0.252454 0.145755i
\(330\) 0 0
\(331\) 1.69962 6.34308i 0.0934198 0.348647i −0.903355 0.428893i \(-0.858904\pi\)
0.996775 + 0.0802455i \(0.0255704\pi\)
\(332\) −9.55270 9.55270i −0.524273 0.524273i
\(333\) −13.3952 5.52209i −0.734054 0.302609i
\(334\) 5.48671i 0.300219i
\(335\) 0 0
\(336\) 9.14350 + 5.27900i 0.498819 + 0.287993i
\(337\) −3.06404 + 0.821006i −0.166909 + 0.0447230i −0.341306 0.939952i \(-0.610869\pi\)
0.174397 + 0.984675i \(0.444202\pi\)
\(338\) −0.385610 0.222632i −0.0209744 0.0121096i
\(339\) 5.57472 5.57472i 0.302777 0.302777i
\(340\) 0 0
\(341\) 10.2381 + 10.2381i 0.554426 + 0.554426i
\(342\) −5.24962 1.40663i −0.283867 0.0760619i
\(343\) 15.0022 + 15.0022i 0.810043 + 0.810043i
\(344\) 15.3984 0.830225
\(345\) 0 0
\(346\) −4.63078 + 1.24082i −0.248953 + 0.0667066i
\(347\) 19.9801i 1.07259i 0.844032 + 0.536293i \(0.180176\pi\)
−0.844032 + 0.536293i \(0.819824\pi\)
\(348\) −0.172033 0.297970i −0.00922193 0.0159728i
\(349\) −15.1964 + 8.77364i −0.813444 + 0.469642i −0.848150 0.529756i \(-0.822284\pi\)
0.0347066 + 0.999398i \(0.488950\pi\)
\(350\) 0 0
\(351\) 3.77309 + 14.0814i 0.201393 + 0.751608i
\(352\) 12.2841 21.2766i 0.654743 1.13405i
\(353\) −3.62804 6.28395i −0.193101 0.334461i 0.753175 0.657820i \(-0.228521\pi\)
−0.946276 + 0.323359i \(0.895188\pi\)
\(354\) 1.57692 + 2.73130i 0.0838123 + 0.145167i
\(355\) 0 0
\(356\) 16.0611 + 16.0611i 0.851238 + 0.851238i
\(357\) 10.0009 + 5.77400i 0.529302 + 0.305592i
\(358\) 8.19334 + 2.19540i 0.433031 + 0.116030i
\(359\) 0.829565i 0.0437828i −0.999760 0.0218914i \(-0.993031\pi\)
0.999760 0.0218914i \(-0.00696880\pi\)
\(360\) 0 0
\(361\) −12.5193 + 7.22802i −0.658910 + 0.380422i
\(362\) 2.99108i 0.157208i
\(363\) 4.55443 + 16.9974i 0.239045 + 0.892130i
\(364\) −19.5261 19.5261i −1.02345 1.02345i
\(365\) 0 0
\(366\) −1.42055 + 2.46046i −0.0742531 + 0.128610i
\(367\) −7.88403 29.4236i −0.411543 1.53590i −0.791660 0.610961i \(-0.790783\pi\)
0.380117 0.924938i \(-0.375884\pi\)
\(368\) 12.3686 7.14102i 0.644758 0.372251i
\(369\) −15.7614 −0.820505
\(370\) 0 0
\(371\) 37.0708 1.92462
\(372\) 3.14680 1.81680i 0.163154 0.0941969i
\(373\) −8.00235 29.8652i −0.414346 1.54636i −0.786143 0.618045i \(-0.787925\pi\)
0.371797 0.928314i \(-0.378742\pi\)
\(374\) 3.85224 6.67227i 0.199194 0.345015i
\(375\) 0 0
\(376\) 1.30481 + 1.30481i 0.0672906 + 0.0672906i
\(377\) 0.211601 + 0.789707i 0.0108980 + 0.0406720i
\(378\) 7.25266i 0.373037i
\(379\) −1.36807 + 0.789853i −0.0702728 + 0.0405720i −0.534725 0.845026i \(-0.679585\pi\)
0.464452 + 0.885598i \(0.346251\pi\)
\(380\) 0 0
\(381\) 10.5458i 0.540276i
\(382\) 0.984406 + 0.263771i 0.0503666 + 0.0134957i
\(383\) −13.5287 7.81083i −0.691287 0.399115i 0.112807 0.993617i \(-0.464016\pi\)
−0.804094 + 0.594502i \(0.797349\pi\)
\(384\) −5.71518 5.71518i −0.291651 0.291651i
\(385\) 0 0
\(386\) −0.0401622 0.0695629i −0.00204420 0.00354066i
\(387\) −12.0930 20.9457i −0.614722 1.06473i
\(388\) 2.45958 4.26012i 0.124866 0.216275i
\(389\) 4.56576 + 17.0396i 0.231493 + 0.863944i 0.979698 + 0.200477i \(0.0642492\pi\)
−0.748205 + 0.663467i \(0.769084\pi\)
\(390\) 0 0
\(391\) 13.5284 7.81061i 0.684159 0.395000i
\(392\) −9.00990 15.6056i −0.455069 0.788202i
\(393\) 15.5988i 0.786853i
\(394\) 0.565420 0.151504i 0.0284855 0.00763266i
\(395\) 0 0
\(396\) −25.3834 −1.27556
\(397\) −0.529825 0.529825i −0.0265912 0.0265912i 0.693686 0.720277i \(-0.255985\pi\)
−0.720277 + 0.693686i \(0.755985\pi\)
\(398\) 4.58009 + 1.22723i 0.229579 + 0.0615155i
\(399\) 13.9722 + 13.9722i 0.699486 + 0.699486i
\(400\) 0 0
\(401\) −9.51076 + 9.51076i −0.474945 + 0.474945i −0.903511 0.428566i \(-0.859019\pi\)
0.428566 + 0.903511i \(0.359019\pi\)
\(402\) −1.12078 0.647085i −0.0558996 0.0322737i
\(403\) −8.33994 + 2.23468i −0.415442 + 0.111317i
\(404\) 2.07048 + 1.19539i 0.103010 + 0.0594730i
\(405\) 0 0
\(406\) 0.406742i 0.0201862i
\(407\) 27.8465 21.4419i 1.38030 1.06284i
\(408\) −2.84974 2.84974i −0.141083 0.141083i
\(409\) 2.01758 7.52971i 0.0997630 0.372320i −0.897936 0.440127i \(-0.854933\pi\)
0.997698 + 0.0678066i \(0.0216001\pi\)
\(410\) 0 0
\(411\) 10.5686 + 6.10180i 0.521312 + 0.300980i
\(412\) −4.33475 + 7.50801i −0.213558 + 0.369893i
\(413\) 44.1917i 2.17453i
\(414\) 3.76035 + 2.17104i 0.184811 + 0.106701i
\(415\) 0 0
\(416\) 7.32530 + 12.6878i 0.359153 + 0.622071i
\(417\) 13.0732 13.0732i 0.640199 0.640199i
\(418\) 9.32184 9.32184i 0.455946 0.455946i
\(419\) −0.856708 + 0.494620i −0.0418529 + 0.0241638i −0.520780 0.853691i \(-0.674359\pi\)
0.478928 + 0.877854i \(0.341026\pi\)
\(420\) 0 0
\(421\) −1.41804 + 1.41804i −0.0691112 + 0.0691112i −0.740818 0.671706i \(-0.765562\pi\)
0.671706 + 0.740818i \(0.265562\pi\)
\(422\) 5.65684 3.26598i 0.275370 0.158985i
\(423\) 0.750150 2.79960i 0.0364736 0.136121i
\(424\) −12.4965 3.34843i −0.606884 0.162614i
\(425\) 0 0
\(426\) 2.19453 0.588022i 0.106325 0.0284898i
\(427\) −34.4760 + 19.9047i −1.66841 + 0.963257i
\(428\) −14.8196 3.97090i −0.716332 0.191941i
\(429\) −15.1172 4.05063i −0.729863 0.195566i
\(430\) 0 0
\(431\) 3.09674 + 11.5572i 0.149165 + 0.556691i 0.999535 + 0.0305051i \(0.00971159\pi\)
−0.850370 + 0.526186i \(0.823622\pi\)
\(432\) −3.38445 + 12.6309i −0.162834 + 0.607706i
\(433\) −15.8328 15.8328i −0.760878 0.760878i 0.215603 0.976481i \(-0.430828\pi\)
−0.976481 + 0.215603i \(0.930828\pi\)
\(434\) −4.29552 −0.206191
\(435\) 0 0
\(436\) −25.2685 + 25.2685i −1.21014 + 1.21014i
\(437\) 25.8186 6.91807i 1.23507 0.330936i
\(438\) −2.07574 −0.0991828
\(439\) −12.1958 + 3.26786i −0.582075 + 0.155967i −0.537829 0.843054i \(-0.680755\pi\)
−0.0442463 + 0.999021i \(0.514089\pi\)
\(440\) 0 0
\(441\) −14.1517 + 24.5115i −0.673891 + 1.16721i
\(442\) 2.29719 + 3.97884i 0.109266 + 0.189254i
\(443\) 13.4157 13.4157i 0.637399 0.637399i −0.312514 0.949913i \(-0.601171\pi\)
0.949913 + 0.312514i \(0.101171\pi\)
\(444\) −3.38897 8.14291i −0.160833 0.386446i
\(445\) 0 0
\(446\) 1.24629 + 0.333942i 0.0590134 + 0.0158126i
\(447\) −12.2380 + 3.27916i −0.578837 + 0.155099i
\(448\) −5.06529 18.9039i −0.239313 0.893126i
\(449\) −5.77147 21.5394i −0.272373 1.01651i −0.957582 0.288162i \(-0.906956\pi\)
0.685209 0.728347i \(-0.259711\pi\)
\(450\) 0 0
\(451\) 19.1160 33.1099i 0.900138 1.55908i
\(452\) −18.4960 −0.869979
\(453\) −1.51641 + 5.65934i −0.0712474 + 0.265899i
\(454\) 10.3205i 0.484367i
\(455\) 0 0
\(456\) −3.44797 5.97206i −0.161466 0.279667i
\(457\) 12.3379 21.3699i 0.577143 0.999640i −0.418663 0.908142i \(-0.637501\pi\)
0.995805 0.0914984i \(-0.0291657\pi\)
\(458\) −8.08276 −0.377683
\(459\) −3.70180 + 13.8153i −0.172785 + 0.644843i
\(460\) 0 0
\(461\) 0.355974 1.32851i 0.0165793 0.0618750i −0.957141 0.289624i \(-0.906470\pi\)
0.973720 + 0.227749i \(0.0731365\pi\)
\(462\) −6.74300 3.89307i −0.313713 0.181122i
\(463\) 21.9872 + 12.6943i 1.02183 + 0.589954i 0.914634 0.404284i \(-0.132479\pi\)
0.107197 + 0.994238i \(0.465812\pi\)
\(464\) −0.189806 + 0.708364i −0.00881150 + 0.0328850i
\(465\) 0 0
\(466\) 2.39597 8.94187i 0.110991 0.414224i
\(467\) −39.2385 −1.81574 −0.907870 0.419252i \(-0.862292\pi\)
−0.907870 + 0.419252i \(0.862292\pi\)
\(468\) 7.56838 13.1088i 0.349849 0.605956i
\(469\) −9.06697 15.7045i −0.418674 0.725165i
\(470\) 0 0
\(471\) 8.42712i 0.388301i
\(472\) 3.99163 14.8970i 0.183729 0.685688i
\(473\) 58.6674 2.69753
\(474\) −0.0570947 + 0.0988909i −0.00262245 + 0.00454221i
\(475\) 0 0
\(476\) −7.01201 26.1692i −0.321395 1.19946i
\(477\) 5.25933 + 19.6281i 0.240808 + 0.898708i
\(478\) 2.20104 0.589766i 0.100673 0.0269753i
\(479\) −28.2573 7.57152i −1.29111 0.345952i −0.453028 0.891496i \(-0.649656\pi\)
−0.838082 + 0.545545i \(0.816323\pi\)
\(480\) 0 0
\(481\) 2.77052 + 20.7740i 0.126325 + 0.947214i
\(482\) 2.06201 2.06201i 0.0939220 0.0939220i
\(483\) −7.89341 13.6718i −0.359163 0.622088i
\(484\) 20.6418 35.7526i 0.938263 1.62512i
\(485\) 0 0
\(486\) −5.98066 + 1.60251i −0.271288 + 0.0726914i
\(487\) −7.81853 −0.354292 −0.177146 0.984185i \(-0.556686\pi\)
−0.177146 + 0.984185i \(0.556686\pi\)
\(488\) 13.4197 3.59580i 0.607481 0.162774i
\(489\) 0.454610 0.454610i 0.0205582 0.0205582i
\(490\) 0 0
\(491\) −9.60909 −0.433652 −0.216826 0.976210i \(-0.569570\pi\)
−0.216826 + 0.976210i \(0.569570\pi\)
\(492\) −6.78445 6.78445i −0.305867 0.305867i
\(493\) −0.207603 + 0.774785i −0.00934997 + 0.0348946i
\(494\) 2.03468 + 7.59353i 0.0915446 + 0.341649i
\(495\) 0 0
\(496\) −7.48089 2.00450i −0.335902 0.0900047i
\(497\) 30.7498 + 8.23938i 1.37932 + 0.369587i
\(498\) 1.96719 1.13576i 0.0881521 0.0508946i
\(499\) 26.2172 7.02487i 1.17364 0.314476i 0.381240 0.924476i \(-0.375497\pi\)
0.792402 + 0.610000i \(0.208830\pi\)
\(500\) 0 0
\(501\) −10.5622 2.83013i −0.471884 0.126441i
\(502\) 0.339974 1.26880i 0.0151738 0.0566294i
\(503\) 22.3667 12.9134i 0.997282 0.575781i 0.0898393 0.995956i \(-0.471365\pi\)
0.907443 + 0.420175i \(0.138031\pi\)
\(504\) 11.0991 11.0991i 0.494394 0.494394i
\(505\) 0 0
\(506\) −9.12140 + 5.26624i −0.405496 + 0.234113i
\(507\) −0.627482 + 0.627482i −0.0278674 + 0.0278674i
\(508\) 17.4946 17.4946i 0.776196 0.776196i
\(509\) −8.09090 14.0138i −0.358623 0.621153i 0.629108 0.777318i \(-0.283420\pi\)
−0.987731 + 0.156165i \(0.950087\pi\)
\(510\) 0 0
\(511\) −25.1887 14.5427i −1.11428 0.643330i
\(512\) 22.5152i 0.995043i
\(513\) −12.2366 + 21.1944i −0.540258 + 0.935755i
\(514\) −5.84191 3.37283i −0.257676 0.148769i
\(515\) 0 0
\(516\) 3.81062 14.2214i 0.167753 0.626064i
\(517\) 4.97130 + 4.97130i 0.218638 + 0.218638i
\(518\) −1.34356 + 10.3397i −0.0590325 + 0.454302i
\(519\) 9.55454i 0.419398i
\(520\) 0 0
\(521\) 12.3847 + 7.15032i 0.542584 + 0.313261i 0.746126 0.665805i \(-0.231912\pi\)
−0.203541 + 0.979066i \(0.565245\pi\)
\(522\) −0.215360 + 0.0577055i −0.00942604 + 0.00252570i
\(523\) 35.5320 + 20.5144i 1.55371 + 0.897032i 0.997835 + 0.0657628i \(0.0209481\pi\)
0.555870 + 0.831269i \(0.312385\pi\)
\(524\) −25.8771 + 25.8771i −1.13044 + 1.13044i
\(525\) 0 0
\(526\) −1.33905 1.33905i −0.0583853 0.0583853i
\(527\) −8.18235 2.19245i −0.356429 0.0955048i
\(528\) −9.92663 9.92663i −0.432001 0.432001i
\(529\) 1.64482 0.0715140
\(530\) 0 0
\(531\) −23.3984 + 6.26959i −1.01540 + 0.272077i
\(532\) 46.3575i 2.00985i
\(533\) 11.3994 + 19.7443i 0.493761 + 0.855220i
\(534\) −3.30748 + 1.90957i −0.143129 + 0.0826353i
\(535\) 0 0
\(536\) 1.63795 + 6.11293i 0.0707488 + 0.264038i
\(537\) 8.45251 14.6402i 0.364753 0.631770i
\(538\) −3.34227 5.78899i −0.144096 0.249581i
\(539\) −34.3275 59.4569i −1.47859 2.56099i
\(540\) 0 0
\(541\) −3.12762 3.12762i −0.134467 0.134467i 0.636670 0.771137i \(-0.280311\pi\)
−0.771137 + 0.636670i \(0.780311\pi\)
\(542\) −1.57851 0.911352i −0.0678028 0.0391459i
\(543\) 5.75799 + 1.54285i 0.247099 + 0.0662100i
\(544\) 14.3738i 0.616271i
\(545\) 0 0
\(546\) 4.02102 2.32154i 0.172084 0.0993527i
\(547\) 34.0616i 1.45637i −0.685381 0.728185i \(-0.740364\pi\)
0.685381 0.728185i \(-0.259636\pi\)
\(548\) −7.41010 27.6549i −0.316544 1.18136i
\(549\) −15.4303 15.4303i −0.658547 0.658547i
\(550\) 0 0
\(551\) −0.686248 + 1.18862i −0.0292352 + 0.0506368i
\(552\) 1.42595 + 5.32172i 0.0606924 + 0.226507i
\(553\) −1.38566 + 0.800013i −0.0589244 + 0.0340200i
\(554\) −2.03556 −0.0864825
\(555\) 0 0
\(556\) −43.3748 −1.83950
\(557\) −4.09297 + 2.36308i −0.173425 + 0.100127i −0.584200 0.811610i \(-0.698592\pi\)
0.410775 + 0.911737i \(0.365258\pi\)
\(558\) −0.609416 2.27437i −0.0257986 0.0962818i
\(559\) −17.4924 + 30.2978i −0.739852 + 1.28146i
\(560\) 0 0
\(561\) −10.8574 10.8574i −0.458401 0.458401i
\(562\) −0.534682 1.99546i −0.0225542 0.0841734i
\(563\) 38.0878i 1.60521i 0.596512 + 0.802604i \(0.296553\pi\)
−0.596512 + 0.802604i \(0.703447\pi\)
\(564\) 1.52798 0.882181i 0.0643396 0.0371465i
\(565\) 0 0
\(566\) 2.55553i 0.107417i
\(567\) −16.0317 4.29568i −0.673268 0.180401i
\(568\) −9.62149 5.55497i −0.403709 0.233081i
\(569\) 21.1738 + 21.1738i 0.887650 + 0.887650i 0.994297 0.106647i \(-0.0340115\pi\)
−0.106647 + 0.994297i \(0.534011\pi\)
\(570\) 0 0
\(571\) 4.88390 + 8.45916i 0.204385 + 0.354005i 0.949937 0.312443i \(-0.101147\pi\)
−0.745552 + 0.666448i \(0.767814\pi\)
\(572\) 18.3584 + 31.7978i 0.767605 + 1.32953i
\(573\) 1.01555 1.75898i 0.0424250 0.0734823i
\(574\) 2.93564 + 10.9560i 0.122531 + 0.457293i
\(575\) 0 0
\(576\) 9.29054 5.36390i 0.387106 0.223496i
\(577\) −4.42586 7.66581i −0.184251 0.319132i 0.759073 0.651006i \(-0.225653\pi\)
−0.943324 + 0.331874i \(0.892319\pi\)
\(578\) 2.19844i 0.0914432i
\(579\) −0.154629 + 0.0414326i −0.00642614 + 0.00172188i
\(580\) 0 0
\(581\) 31.8286 1.32047
\(582\) 0.584860 + 0.584860i 0.0242432 + 0.0242432i
\(583\) −47.6114 12.7574i −1.97186 0.528359i
\(584\) 7.17749 + 7.17749i 0.297007 + 0.297007i
\(585\) 0 0
\(586\) 0.638154 0.638154i 0.0263619 0.0263619i
\(587\) 5.63963 + 3.25604i 0.232773 + 0.134391i 0.611850 0.790973i \(-0.290425\pi\)
−0.379078 + 0.925365i \(0.623759\pi\)
\(588\) −16.6425 + 4.45934i −0.686324 + 0.183900i
\(589\) −12.5527 7.24733i −0.517227 0.298621i
\(590\) 0 0
\(591\) 1.16661i 0.0479880i
\(592\) −7.16491 + 17.3803i −0.294476 + 0.714325i
\(593\) 16.1646 + 16.1646i 0.663800 + 0.663800i 0.956274 0.292473i \(-0.0944783\pi\)
−0.292473 + 0.956274i \(0.594478\pi\)
\(594\) 2.49591 9.31486i 0.102408 0.382193i
\(595\) 0 0
\(596\) 25.7417 + 14.8620i 1.05442 + 0.608769i
\(597\) 4.72497 8.18388i 0.193380 0.334944i
\(598\) 6.28079i 0.256841i
\(599\) −16.9500 9.78611i −0.692560 0.399850i 0.112010 0.993707i \(-0.464271\pi\)
−0.804570 + 0.593857i \(0.797604\pi\)
\(600\) 0 0
\(601\) 4.89362 + 8.47600i 0.199615 + 0.345743i 0.948404 0.317066i \(-0.102698\pi\)
−0.748789 + 0.662809i \(0.769364\pi\)
\(602\) −12.3073 + 12.3073i −0.501607 + 0.501607i
\(603\) 7.02877 7.02877i 0.286234 0.286234i
\(604\) 11.9040 6.87277i 0.484366 0.279649i
\(605\) 0 0
\(606\) −0.284250 + 0.284250i −0.0115469 + 0.0115469i
\(607\) −24.8156 + 14.3273i −1.00723 + 0.581527i −0.910381 0.413771i \(-0.864211\pi\)
−0.0968538 + 0.995299i \(0.530878\pi\)
\(608\) −6.36563 + 23.7568i −0.258160 + 0.963467i
\(609\) 0.782999 + 0.209804i 0.0317287 + 0.00850168i
\(610\) 0 0
\(611\) −4.04960 + 1.08509i −0.163829 + 0.0438979i
\(612\) 12.8611 7.42538i 0.519880 0.300153i
\(613\) −28.6239 7.66975i −1.15611 0.309778i −0.370698 0.928754i \(-0.620881\pi\)
−0.785410 + 0.618975i \(0.787548\pi\)
\(614\) 8.00660 + 2.14536i 0.323120 + 0.0865798i
\(615\) 0 0
\(616\) 9.85446 + 36.7774i 0.397048 + 1.48180i
\(617\) 0.474109 1.76940i 0.0190869 0.0712333i −0.955726 0.294260i \(-0.904927\pi\)
0.974812 + 0.223026i \(0.0715936\pi\)
\(618\) −1.03075 1.03075i −0.0414629 0.0414629i
\(619\) 11.0737 0.445089 0.222544 0.974923i \(-0.428564\pi\)
0.222544 + 0.974923i \(0.428564\pi\)
\(620\) 0 0
\(621\) 13.8258 13.8258i 0.554809 0.554809i
\(622\) −11.8914 + 3.18630i −0.476803 + 0.127759i
\(623\) −53.5140 −2.14399
\(624\) 8.08619 2.16669i 0.323707 0.0867370i
\(625\) 0 0
\(626\) 1.78897 3.09860i 0.0715018 0.123845i
\(627\) −13.1367 22.7534i −0.524628 0.908683i
\(628\) −13.9799 + 13.9799i −0.557859 + 0.557859i
\(629\) −7.83674 + 19.0100i −0.312471 + 0.757977i
\(630\) 0 0
\(631\) 28.3582 + 7.59857i 1.12892 + 0.302494i 0.774490 0.632587i \(-0.218007\pi\)
0.354434 + 0.935081i \(0.384673\pi\)
\(632\) 0.539366 0.144523i 0.0214548 0.00574881i
\(633\) −3.36929 12.5743i −0.133917 0.499786i
\(634\) −0.0709278 0.264706i −0.00281690 0.0105128i
\(635\) 0 0
\(636\) −6.18500 + 10.7127i −0.245251 + 0.424788i
\(637\) 40.9407 1.62213
\(638\) 0.139975 0.522393i 0.00554165 0.0206817i
\(639\) 17.4502i 0.690320i
\(640\) 0 0
\(641\) −19.4157 33.6290i −0.766874 1.32826i −0.939250 0.343233i \(-0.888478\pi\)
0.172376 0.985031i \(-0.444856\pi\)
\(642\) 1.28984 2.23408i 0.0509061 0.0881720i
\(643\) 13.2557 0.522755 0.261377 0.965237i \(-0.415823\pi\)
0.261377 + 0.965237i \(0.415823\pi\)
\(644\) −9.58585 + 35.7749i −0.377736 + 1.40973i
\(645\) 0 0
\(646\) −1.99624 + 7.45005i −0.0785408 + 0.293118i
\(647\) 3.39006 + 1.95725i 0.133277 + 0.0769476i 0.565156 0.824984i \(-0.308816\pi\)
−0.431879 + 0.901932i \(0.642149\pi\)
\(648\) 5.01625 + 2.89613i 0.197057 + 0.113771i
\(649\) 15.2080 56.7570i 0.596966 2.22791i
\(650\) 0 0
\(651\) −2.21570 + 8.26909i −0.0868400 + 0.324091i
\(652\) −1.50832 −0.0590704
\(653\) 3.88818 6.73452i 0.152156 0.263542i −0.779864 0.625949i \(-0.784712\pi\)
0.932020 + 0.362407i \(0.118045\pi\)
\(654\) −3.00427 5.20355i −0.117476 0.203475i
\(655\) 0 0
\(656\) 20.4504i 0.798453i
\(657\) 4.12641 15.4000i 0.160987 0.600811i
\(658\) −2.08576 −0.0813115
\(659\) −22.8781 + 39.6261i −0.891205 + 1.54361i −0.0527730 + 0.998607i \(0.516806\pi\)
−0.838432 + 0.545006i \(0.816527\pi\)
\(660\) 0 0
\(661\) 4.24598 + 15.8462i 0.165150 + 0.616347i 0.998021 + 0.0628802i \(0.0200286\pi\)
−0.832871 + 0.553466i \(0.813305\pi\)
\(662\) −0.670452 2.50216i −0.0260579 0.0972493i
\(663\) 8.84441 2.36985i 0.343488 0.0920374i
\(664\) −10.7294 2.87493i −0.416380 0.111569i
\(665\) 0 0
\(666\) −5.66525 + 0.755544i −0.219524 + 0.0292768i
\(667\) 0.775373 0.775373i 0.0300226 0.0300226i
\(668\) 12.8269 + 22.2168i 0.496286 + 0.859593i
\(669\) 1.28571 2.22692i 0.0497084 0.0860976i
\(670\) 0 0
\(671\) 51.1287 13.6999i 1.97380 0.528879i
\(672\) 14.5262 0.560359
\(673\) 17.4142 4.66612i 0.671268 0.179866i 0.0929423 0.995671i \(-0.470373\pi\)
0.578326 + 0.815806i \(0.303706\pi\)
\(674\) −0.884810 + 0.884810i −0.0340816 + 0.0340816i
\(675\) 0 0
\(676\) 2.08188 0.0800723
\(677\) −26.3649 26.3649i −1.01329 1.01329i −0.999911 0.0133766i \(-0.995742\pi\)
−0.0133766 0.999911i \(-0.504258\pi\)
\(678\) 0.804914 3.00398i 0.0309125 0.115367i
\(679\) 2.99961 + 11.1947i 0.115114 + 0.429612i
\(680\) 0 0
\(681\) 19.8676 + 5.32350i 0.761327 + 0.203997i
\(682\) 5.51689 + 1.47825i 0.211253 + 0.0566049i
\(683\) −10.0445 + 5.79920i −0.384342 + 0.221900i −0.679706 0.733485i \(-0.737893\pi\)
0.295364 + 0.955385i \(0.404559\pi\)
\(684\) 24.5452 6.57686i 0.938508 0.251472i
\(685\) 0 0
\(686\) 8.08405 + 2.16611i 0.308650 + 0.0827026i
\(687\) −4.16922 + 15.5597i −0.159066 + 0.593641i
\(688\) −27.1770 + 15.6907i −1.03611 + 0.598201i
\(689\) 20.7843 20.7843i 0.791819 0.791819i
\(690\) 0 0
\(691\) 7.30966 4.22023i 0.278073 0.160545i −0.354478 0.935064i \(-0.615341\pi\)
0.632551 + 0.774519i \(0.282008\pi\)
\(692\) 15.8502 15.8502i 0.602534 0.602534i
\(693\) 42.2874 42.2874i 1.60636 1.60636i
\(694\) 3.94077 + 6.82562i 0.149590 + 0.259097i
\(695\) 0 0
\(696\) −0.244997 0.141449i −0.00928659 0.00536162i
\(697\) 22.3679i 0.847246i
\(698\) −3.46094 + 5.99453i −0.130999 + 0.226896i
\(699\) −15.9777 9.22472i −0.604332 0.348911i
\(700\) 0 0
\(701\) 10.1537 37.8942i 0.383501 1.43124i −0.457016 0.889458i \(-0.651082\pi\)
0.840517 0.541786i \(-0.182252\pi\)
\(702\) 4.06631 + 4.06631i 0.153473 + 0.153473i
\(703\) −21.3713 + 27.9489i −0.806034 + 1.05411i
\(704\) 26.0222i 0.980747i
\(705\) 0 0
\(706\) −2.47884 1.43116i −0.0932922 0.0538623i
\(707\) −5.44077 + 1.45785i −0.204621 + 0.0548281i
\(708\) −12.7705 7.37307i −0.479946 0.277097i
\(709\) 1.71394 1.71394i 0.0643685 0.0643685i −0.674190 0.738558i \(-0.735507\pi\)
0.738558 + 0.674190i \(0.235507\pi\)
\(710\) 0 0
\(711\) −0.620175 0.620175i −0.0232584 0.0232584i
\(712\) 18.0395 + 4.83367i 0.676058 + 0.181149i
\(713\) 8.18856 + 8.18856i 0.306664 + 0.306664i
\(714\) 4.55535 0.170480
\(715\) 0 0
\(716\) −38.3089 + 10.2648i −1.43167 + 0.383615i
\(717\) 4.54132i 0.169599i
\(718\) −0.163620 0.283398i −0.00610623 0.0105763i
\(719\) 19.3847 11.1918i 0.722927 0.417382i −0.0929019 0.995675i \(-0.529614\pi\)
0.815829 + 0.578293i \(0.196281\pi\)
\(720\) 0 0
\(721\) −5.28648 19.7294i −0.196879 0.734762i
\(722\) −2.85124 + 4.93849i −0.106112 + 0.183792i
\(723\) −2.90586 5.03310i −0.108070 0.187183i
\(724\) −6.99257 12.1115i −0.259877 0.450120i
\(725\) 0 0
\(726\) 4.90837 + 4.90837i 0.182167 + 0.182167i
\(727\) −35.8755 20.7127i −1.33055 0.768193i −0.345166 0.938542i \(-0.612177\pi\)
−0.985384 + 0.170348i \(0.945511\pi\)
\(728\) −21.9313 5.87647i −0.812827 0.217796i
\(729\) 0.881195i 0.0326369i
\(730\) 0 0
\(731\) −29.7253 + 17.1619i −1.09943 + 0.634757i
\(732\) 13.2838i 0.490985i
\(733\) 12.6786 + 47.3172i 0.468295 + 1.74770i 0.645727 + 0.763568i \(0.276554\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(734\) −8.49673 8.49673i −0.313620 0.313620i
\(735\) 0 0
\(736\) 9.82493 17.0173i 0.362152 0.627265i
\(737\) 6.24056 + 23.2901i 0.229874 + 0.857902i
\(738\) −5.38443 + 3.10870i −0.198204 + 0.114433i
\(739\) 43.1882 1.58870 0.794352 0.607458i \(-0.207811\pi\)
0.794352 + 0.607458i \(0.207811\pi\)
\(740\) 0 0
\(741\) 15.6675 0.575559
\(742\) 12.6642 7.31168i 0.464917 0.268420i
\(743\) −9.07127 33.8544i −0.332793 1.24200i −0.906243 0.422758i \(-0.861062\pi\)
0.573450 0.819240i \(-0.305605\pi\)
\(744\) 1.49382 2.58737i 0.0547660 0.0948574i
\(745\) 0 0
\(746\) −8.62424 8.62424i −0.315756 0.315756i
\(747\) 4.51560 + 16.8525i 0.165217 + 0.616599i
\(748\) 36.0231i 1.31714i
\(749\) 31.3039 18.0733i 1.14382 0.660386i
\(750\) 0 0
\(751\) 34.8532i 1.27181i 0.771767 + 0.635906i \(0.219373\pi\)
−0.771767 + 0.635906i \(0.780627\pi\)
\(752\) −3.63248 0.973319i −0.132463 0.0354933i
\(753\) −2.26714 1.30894i −0.0826193 0.0477003i
\(754\) 0.228046 + 0.228046i 0.00830494 + 0.00830494i
\(755\) 0 0
\(756\) −16.9553 29.3675i −0.616659 1.06808i
\(757\) 22.0224 + 38.1439i 0.800418 + 1.38636i 0.919341 + 0.393461i \(0.128722\pi\)
−0.118924 + 0.992903i \(0.537944\pi\)
\(758\) −0.311574 + 0.539662i −0.0113169 + 0.0196014i
\(759\) 5.43283 + 20.2756i 0.197199 + 0.735957i
\(760\) 0 0
\(761\) −9.18539 + 5.30319i −0.332970 + 0.192240i −0.657159 0.753752i \(-0.728242\pi\)
0.324189 + 0.945992i \(0.394909\pi\)
\(762\) 2.08000 + 3.60267i 0.0753505 + 0.130511i
\(763\) 84.1919i 3.04795i
\(764\) −4.60270 + 1.23329i −0.166520 + 0.0446189i
\(765\) 0 0
\(766\) −6.16229 −0.222652
\(767\) 24.7767 + 24.7767i 0.894636 + 0.894636i
\(768\) 3.76049 + 1.00762i 0.135695 + 0.0363594i
\(769\) 12.9050 + 12.9050i 0.465365 + 0.465365i 0.900409 0.435044i \(-0.143267\pi\)
−0.435044 + 0.900409i \(0.643267\pi\)
\(770\) 0 0
\(771\) −9.50622 + 9.50622i −0.342358 + 0.342358i
\(772\) 0.325249 + 0.187783i 0.0117060 + 0.00675845i
\(773\) −21.4087 + 5.73645i −0.770018 + 0.206326i −0.622379 0.782716i \(-0.713834\pi\)
−0.147638 + 0.989041i \(0.547167\pi\)
\(774\) −8.26247 4.77034i −0.296988 0.171466i
\(775\) 0 0
\(776\) 4.04465i 0.145194i
\(777\) 19.2115 + 7.91982i 0.689209 + 0.284122i
\(778\) 4.92058 + 4.92058i 0.176411 + 0.176411i
\(779\) −9.90595 + 36.9695i −0.354918 + 1.32457i
\(780\) 0 0
\(781\) −36.6576 21.1643i −1.31171 0.757318i
\(782\) 3.08106 5.33655i 0.110178 0.190835i
\(783\) 1.00398i 0.0358795i
\(784\) 31.8036 + 18.3618i 1.13584 + 0.655779i
\(785\) 0 0
\(786\) −3.07663 5.32888i −0.109740 0.190075i
\(787\) −3.33777 + 3.33777i −0.118979 + 0.118979i −0.764089 0.645111i \(-0.776811\pi\)
0.645111 + 0.764089i \(0.276811\pi\)
\(788\) −1.93531 + 1.93531i −0.0689427 + 0.0689427i
\(789\) −3.26844 + 1.88704i −0.116360 + 0.0671803i
\(790\) 0 0
\(791\) 30.8134 30.8134i 1.09560 1.09560i
\(792\) −18.0746 + 10.4354i −0.642254 + 0.370806i
\(793\) −8.16960 + 30.4894i −0.290111 + 1.08271i
\(794\) −0.285500 0.0764995i −0.0101320 0.00271487i
\(795\) 0 0
\(796\) −21.4147 + 5.73806i −0.759024 + 0.203380i
\(797\) 10.6120 6.12687i 0.375898 0.217025i −0.300134 0.953897i \(-0.597031\pi\)
0.676032 + 0.736872i \(0.263698\pi\)
\(798\) 7.52903 + 2.01740i 0.266525 + 0.0714151i
\(799\) −3.97308 1.06458i −0.140558 0.0376623i
\(800\) 0 0
\(801\) −7.59216 28.3343i −0.268256 1.00114i
\(802\) −1.37322 + 5.12494i −0.0484902 + 0.180968i
\(803\) 27.3460 + 27.3460i 0.965021 + 0.965021i
\(804\) 6.05104 0.213404
\(805\) 0 0
\(806\) −2.40835 + 2.40835i −0.0848304 + 0.0848304i
\(807\) −12.8681 + 3.44800i −0.452979 + 0.121375i
\(808\) 1.96576 0.0691551
\(809\) 42.3807 11.3559i 1.49003 0.399252i 0.580281 0.814416i \(-0.302943\pi\)
0.909746 + 0.415164i \(0.136276\pi\)
\(810\) 0 0
\(811\) 18.9420 32.8086i 0.665145 1.15206i −0.314101 0.949390i \(-0.601703\pi\)
0.979246 0.202675i \(-0.0649636\pi\)
\(812\) −0.950883 1.64698i −0.0333695 0.0577976i
\(813\) −2.56862 + 2.56862i −0.0900855 + 0.0900855i
\(814\) 5.28386 12.8173i 0.185199 0.449247i
\(815\) 0 0
\(816\) 7.93340 + 2.12575i 0.277725 + 0.0744161i
\(817\) −56.7301 + 15.2008i −1.98474 + 0.531808i
\(818\) −0.795877 2.97025i −0.0278272 0.103852i
\(819\) 9.23008 + 34.4471i 0.322525 + 1.20368i
\(820\) 0 0
\(821\) 11.3331 19.6295i 0.395527 0.685073i −0.597641 0.801764i \(-0.703895\pi\)
0.993168 + 0.116691i \(0.0372286\pi\)
\(822\) 4.81396 0.167906
\(823\) 10.6862 39.8815i 0.372498 1.39018i −0.484469 0.874809i \(-0.660987\pi\)
0.856966 0.515372i \(-0.172346\pi\)
\(824\) 7.12826i 0.248325i
\(825\) 0 0
\(826\) 8.71616 + 15.0968i 0.303274 + 0.525286i
\(827\) 9.61442 16.6527i 0.334326 0.579070i −0.649029 0.760764i \(-0.724825\pi\)
0.983355 + 0.181694i \(0.0581580\pi\)
\(828\) −20.3019 −0.705540
\(829\) 0.555337 2.07254i 0.0192876 0.0719824i −0.955611 0.294631i \(-0.904803\pi\)
0.974899 + 0.222648i \(0.0714701\pi\)
\(830\) 0 0
\(831\) −1.04997 + 3.91855i −0.0364232 + 0.135933i
\(832\) −13.4387 7.75884i −0.465903 0.268989i
\(833\) 34.7857 + 20.0836i 1.20525 + 0.695854i
\(834\) 1.88760 7.04460i 0.0653621 0.243935i
\(835\) 0 0
\(836\) −15.9533 + 59.5386i −0.551758 + 2.05919i
\(837\) −10.6029 −0.366489
\(838\) −0.195113 + 0.337946i −0.00674008 + 0.0116742i
\(839\) −27.2967 47.2793i −0.942387 1.63226i −0.760901 0.648868i \(-0.775243\pi\)
−0.181486 0.983393i \(-0.558091\pi\)
\(840\) 0 0
\(841\) 28.9437i 0.998058i
\(842\) −0.204746 + 0.764123i −0.00705602 + 0.0263334i
\(843\) −4.11716 −0.141803
\(844\) −15.2704 + 26.4492i −0.525630 + 0.910418i
\(845\) 0 0
\(846\) −0.295912 1.10436i −0.0101737 0.0379687i
\(847\) 25.1739 + 93.9501i 0.864984 + 3.22816i
\(848\) 25.4674 6.82397i 0.874555 0.234336i
\(849\) −4.91952 1.31818i −0.168838 0.0452399i
\(850\) 0 0
\(851\) 22.2719 17.1495i 0.763471 0.587876i
\(852\) −7.51140 + 7.51140i −0.257336 + 0.257336i
\(853\) 8.38257 + 14.5190i 0.287014 + 0.497122i 0.973096 0.230402i \(-0.0740041\pi\)
−0.686082 + 0.727524i \(0.740671\pi\)
\(854\) −7.85183 + 13.5998i −0.268684 + 0.465375i
\(855\) 0 0
\(856\) −12.1850 + 3.26496i −0.416475 + 0.111594i
\(857\) −44.1787 −1.50912 −0.754558 0.656234i \(-0.772148\pi\)
−0.754558 + 0.656234i \(0.772148\pi\)
\(858\) −5.96328 + 1.59785i −0.203583 + 0.0545499i
\(859\) −4.03671 + 4.03671i −0.137731 + 0.137731i −0.772611 0.634880i \(-0.781050\pi\)
0.634880 + 0.772611i \(0.281050\pi\)
\(860\) 0 0
\(861\) 22.6051 0.770379
\(862\) 3.33740 + 3.33740i 0.113672 + 0.113672i
\(863\) 4.35564 16.2555i 0.148268 0.553343i −0.851320 0.524646i \(-0.824198\pi\)
0.999588 0.0286969i \(-0.00913575\pi\)
\(864\) 4.65647 + 17.3782i 0.158416 + 0.591218i
\(865\) 0 0
\(866\) −8.53164 2.28605i −0.289917 0.0776830i
\(867\) −4.23212 1.13399i −0.143730 0.0385124i
\(868\) 17.3934 10.0421i 0.590371 0.340851i
\(869\) 2.05497 0.550628i 0.0697101 0.0186788i
\(870\) 0 0
\(871\) −13.8885 3.72141i −0.470593 0.126095i
\(872\) −7.60466 + 28.3810i −0.257526 + 0.961101i
\(873\) −5.50175 + 3.17643i −0.186206 + 0.107506i
\(874\) 7.45570 7.45570i 0.252193 0.252193i
\(875\) 0 0
\(876\) 8.40510 4.85268i 0.283982 0.163957i
\(877\) 7.16854 7.16854i 0.242064 0.242064i −0.575639 0.817704i \(-0.695247\pi\)
0.817704 + 0.575639i \(0.195247\pi\)
\(878\) −3.52182 + 3.52182i −0.118856 + 0.118856i
\(879\) −0.899310 1.55765i −0.0303330 0.0525383i
\(880\) 0 0
\(881\) −14.4069 8.31783i −0.485381 0.280235i 0.237275 0.971442i \(-0.423746\pi\)
−0.722656 + 0.691208i \(0.757079\pi\)
\(882\) 11.1649i 0.375941i
\(883\) −13.8328 + 23.9592i −0.465512 + 0.806290i −0.999224 0.0393756i \(-0.987463\pi\)
0.533713 + 0.845666i \(0.320796\pi\)
\(884\) −18.6035 10.7408i −0.625705 0.361251i
\(885\) 0 0
\(886\) 1.93704 7.22914i 0.0650762 0.242868i
\(887\) 22.4653 + 22.4653i 0.754310 + 0.754310i 0.975280 0.220971i \(-0.0709225\pi\)
−0.220971 + 0.975280i \(0.570923\pi\)
\(888\) −5.76081 4.40504i −0.193320 0.147824i
\(889\) 58.2900i 1.95499i
\(890\) 0 0
\(891\) 19.1118 + 11.0342i 0.640269 + 0.369659i
\(892\) −5.82716 + 1.56138i −0.195108 + 0.0522789i
\(893\) −6.09521 3.51907i −0.203968 0.117761i
\(894\) −3.53400 + 3.53400i −0.118195 + 0.118195i
\(895\) 0 0
\(896\) −31.5897 31.5897i −1.05534 1.05534i
\(897\) −12.0909 3.23974i −0.403702 0.108172i
\(898\) −6.22000 6.22000i −0.207564 0.207564i
\(899\) −0.594628 −0.0198319
\(900\) 0 0
\(901\) 27.8554 7.46384i 0.927999 0.248656i
\(902\) 15.0814i 0.502156i
\(903\) 17.3439 + 30.0405i 0.577168 + 0.999684i
\(904\) −13.1704 + 7.60392i −0.438040 + 0.252902i
\(905\) 0 0
\(906\) 0.598181 + 2.23244i 0.0198732 + 0.0741680i
\(907\) −24.4127 + 42.2840i −0.810610 + 1.40402i 0.101828 + 0.994802i \(0.467531\pi\)
−0.912438 + 0.409215i \(0.865803\pi\)
\(908\) −24.1274 41.7899i −0.800696 1.38685i
\(909\) −1.54379 2.67393i −0.0512044 0.0886885i
\(910\) 0 0
\(911\) 2.44702 + 2.44702i 0.0810734 + 0.0810734i 0.746481 0.665407i \(-0.231742\pi\)
−0.665407 + 0.746481i \(0.731742\pi\)
\(912\) 12.1708 + 7.02683i 0.403016 + 0.232682i
\(913\) −40.8786 10.9534i −1.35289 0.362504i
\(914\) 9.73388i 0.321968i
\(915\) 0 0
\(916\) 32.7287 18.8959i 1.08139 0.624339i
\(917\) 86.2196i 2.84722i
\(918\) 1.46025 + 5.44973i 0.0481955 + 0.179868i
\(919\) −38.8681 38.8681i −1.28214 1.28214i −0.939448 0.342691i \(-0.888662\pi\)
−0.342691 0.939448i \(-0.611338\pi\)
\(920\) 0 0
\(921\) 8.25987 14.3065i 0.272172 0.471416i
\(922\) −0.140421 0.524059i −0.00462453 0.0172590i
\(923\) 21.8599 12.6208i 0.719526 0.415419i
\(924\) 36.4050 1.19764
\(925\) 0 0
\(926\) 10.0151 0.329115
\(927\) 9.69623 5.59812i 0.318466 0.183866i
\(928\) 0.261143 + 0.974598i 0.00857243 + 0.0319927i
\(929\) 22.8627 39.5994i 0.750102 1.29921i −0.197671 0.980268i \(-0.563338\pi\)
0.947773 0.318946i \(-0.103329\pi\)
\(930\) 0 0
\(931\) 48.5992 + 48.5992i 1.59278 + 1.59278i
\(932\) 11.2026 + 41.8087i 0.366954 + 1.36949i
\(933\) 24.5352i 0.803245i
\(934\) −13.4047 + 7.73921i −0.438616 + 0.253235i
\(935\) 0 0
\(936\) 12.4458i 0.406803i
\(937\) 42.7066 + 11.4432i 1.39516 + 0.373833i 0.876605 0.481210i \(-0.159803\pi\)
0.518557 + 0.855043i \(0.326469\pi\)
\(938\) −6.19495 3.57666i −0.202272 0.116782i
\(939\) −5.04218 5.04218i −0.164545 0.164545i
\(940\) 0 0
\(941\) 14.5236 + 25.1556i 0.473455 + 0.820048i 0.999538 0.0303851i \(-0.00967337\pi\)
−0.526083 + 0.850433i \(0.676340\pi\)
\(942\) −1.66213 2.87889i −0.0541550 0.0937993i
\(943\) 15.2892 26.4816i 0.497884 0.862361i
\(944\) 8.13478 + 30.3594i 0.264765 + 0.988115i
\(945\) 0 0
\(946\) 20.0421 11.5713i 0.651624 0.376215i
\(947\) 8.75476 + 15.1637i 0.284491 + 0.492754i 0.972486 0.232963i \(-0.0748419\pi\)
−0.687994 + 0.725716i \(0.741509\pi\)
\(948\) 0.533906i 0.0173404i
\(949\) −22.2760 + 5.96883i −0.723109 + 0.193756i
\(950\) 0 0
\(951\) −0.546159 −0.0177104
\(952\) −15.7515 15.7515i −0.510507 0.510507i
\(953\) 15.3542 + 4.11414i 0.497371 + 0.133270i 0.498780 0.866729i \(-0.333782\pi\)
−0.00140872 + 0.999999i \(0.500448\pi\)
\(954\) 5.66806 + 5.66806i 0.183510 + 0.183510i
\(955\) 0 0
\(956\) −7.53367 + 7.53367i −0.243656 + 0.243656i
\(957\) −0.933433 0.538918i −0.0301736 0.0174207i
\(958\) −11.1467 + 2.98675i −0.360133 + 0.0964974i
\(959\) 58.4164 + 33.7267i 1.88636 + 1.08909i
\(960\) 0 0
\(961\) 24.7203i 0.797428i
\(962\) 5.04384 + 6.55041i 0.162620 + 0.211194i
\(963\) 14.0106 + 14.0106i 0.451484 + 0.451484i
\(964\) −3.52891 + 13.1701i −0.113659 + 0.424179i
\(965\) 0 0
\(966\) −5.39312 3.11372i −0.173521 0.100182i
\(967\) 9.69545 16.7930i 0.311785 0.540027i −0.666964 0.745090i \(-0.732407\pi\)
0.978749 + 0.205063i \(0.0657399\pi\)
\(968\) 33.9443i 1.09101i
\(969\) 13.3120 + 7.68572i 0.427645 + 0.246901i
\(970\) 0 0
\(971\) 19.8289 + 34.3447i 0.636341 + 1.10217i 0.986229 + 0.165384i \(0.0528862\pi\)
−0.349888 + 0.936791i \(0.613780\pi\)
\(972\) 20.4705 20.4705i 0.656592 0.656592i
\(973\) 72.2601 72.2601i 2.31655 2.31655i
\(974\) −2.67098 + 1.54209i −0.0855838 + 0.0494118i
\(975\) 0 0
\(976\) −20.0207 + 20.0207i −0.640848 + 0.640848i
\(977\) 35.2979 20.3792i 1.12928 0.651989i 0.185525 0.982639i \(-0.440601\pi\)
0.943753 + 0.330650i \(0.107268\pi\)
\(978\) 0.0656395 0.244970i 0.00209892 0.00783328i
\(979\) 68.7300 + 18.4161i 2.19662 + 0.588582i
\(980\) 0 0
\(981\) 44.5775 11.9445i 1.42325 0.381359i
\(982\) −3.28268 + 1.89525i −0.104754 + 0.0604800i
\(983\) −16.3804 4.38912i −0.522454 0.139991i −0.0120523 0.999927i \(-0.503836\pi\)
−0.510401 + 0.859936i \(0.670503\pi\)
\(984\) −7.62014 2.04181i −0.242921 0.0650905i
\(985\) 0 0
\(986\) 0.0818933 + 0.305630i 0.00260802 + 0.00973325i
\(987\) −1.07587 + 4.01520i −0.0342453 + 0.127805i
\(988\) −25.9910 25.9910i −0.826885 0.826885i
\(989\) 46.9228 1.49206
\(990\) 0 0
\(991\) −16.5526 + 16.5526i −0.525811 + 0.525811i −0.919321 0.393509i \(-0.871261\pi\)
0.393509 + 0.919321i \(0.371261\pi\)
\(992\) −10.2925 + 2.75788i −0.326788 + 0.0875627i
\(993\) −5.16262 −0.163831
\(994\) 12.1299 3.25020i 0.384737 0.103090i
\(995\) 0 0
\(996\) −5.31037 + 9.19784i −0.168266 + 0.291445i
\(997\) −5.42200 9.39119i −0.171717 0.297422i 0.767304 0.641284i \(-0.221598\pi\)
−0.939020 + 0.343862i \(0.888265\pi\)
\(998\) 7.57080 7.57080i 0.239650 0.239650i
\(999\) −3.31638 + 25.5222i −0.104926 + 0.807486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.c.193.14 yes 96
5.2 odd 4 925.2.t.c.82.14 yes 96
5.3 odd 4 925.2.t.c.82.11 96
5.4 even 2 inner 925.2.y.c.193.11 yes 96
37.14 odd 12 925.2.t.c.643.14 yes 96
185.14 odd 12 925.2.t.c.643.11 yes 96
185.88 even 12 inner 925.2.y.c.532.11 yes 96
185.162 even 12 inner 925.2.y.c.532.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.c.82.11 96 5.3 odd 4
925.2.t.c.82.14 yes 96 5.2 odd 4
925.2.t.c.643.11 yes 96 185.14 odd 12
925.2.t.c.643.14 yes 96 37.14 odd 12
925.2.y.c.193.11 yes 96 5.4 even 2 inner
925.2.y.c.193.14 yes 96 1.1 even 1 trivial
925.2.y.c.532.11 yes 96 185.88 even 12 inner
925.2.y.c.532.14 yes 96 185.162 even 12 inner