Properties

Label 925.2.y.b.393.9
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.9
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0909942 + 0.0525355i) q^{2} +(-1.93607 - 0.518767i) q^{3} +(-0.994480 - 1.72249i) q^{4} +(-0.148917 - 0.148917i) q^{6} +(-4.36283 - 1.16902i) q^{7} -0.419124i q^{8} +(0.881153 + 0.508734i) q^{9} -2.44344i q^{11} +(1.03181 + 3.85076i) q^{12} +(-4.02259 + 2.32245i) q^{13} +(-0.335578 - 0.335578i) q^{14} +(-1.96694 + 3.40684i) q^{16} +(3.81936 - 6.61533i) q^{17} +(0.0534532 + 0.0925836i) q^{18} +(-1.19934 - 0.321362i) q^{19} +(7.84028 + 4.52659i) q^{21} +(0.128367 - 0.222339i) q^{22} +0.150193i q^{23} +(-0.217428 + 0.811452i) q^{24} -0.488044 q^{26} +(2.80984 + 2.80984i) q^{27} +(2.32513 + 8.67750i) q^{28} +(0.503427 + 0.503427i) q^{29} +(-5.31753 + 5.31753i) q^{31} +(-1.08391 + 0.625793i) q^{32} +(-1.26757 + 4.73065i) q^{33} +(0.695080 - 0.401304i) q^{34} -2.02370i q^{36} +(2.33845 - 5.61531i) q^{37} +(-0.0922501 - 0.0922501i) q^{38} +(8.99281 - 2.40962i) q^{39} +(4.77325 - 2.75584i) q^{41} +(0.475614 + 0.823787i) q^{42} -1.79435i q^{43} +(-4.20880 + 2.42995i) q^{44} +(-0.00789049 + 0.0136667i) q^{46} +(-1.65421 + 1.65421i) q^{47} +(5.57548 - 5.57548i) q^{48} +(11.6055 + 6.70046i) q^{49} +(-10.8263 + 10.8263i) q^{51} +(8.00078 + 4.61925i) q^{52} +(11.3222 - 3.03376i) q^{53} +(0.108063 + 0.403296i) q^{54} +(-0.489964 + 1.82857i) q^{56} +(2.15529 + 1.24436i) q^{57} +(0.0193611 + 0.0722567i) q^{58} +(-0.0783231 - 0.292306i) q^{59} +(-2.65533 - 0.711494i) q^{61} +(-0.763224 + 0.204505i) q^{62} +(-3.24960 - 3.24960i) q^{63} +7.73626 q^{64} +(-0.363869 + 0.363869i) q^{66} +(-3.29741 + 12.3061i) q^{67} -15.1931 q^{68} +(0.0779154 - 0.290784i) q^{69} +(5.25961 + 9.10991i) q^{71} +(0.213223 - 0.369312i) q^{72} +(-6.35187 + 6.35187i) q^{73} +(0.507788 - 0.388109i) q^{74} +(0.639177 + 2.38544i) q^{76} +(-2.85642 + 10.6603i) q^{77} +(0.944884 + 0.253181i) q^{78} +(-4.95543 - 1.32780i) q^{79} +(-5.50858 - 9.54114i) q^{81} +0.579117 q^{82} +(-0.883111 + 0.236629i) q^{83} -18.0064i q^{84} +(0.0942673 - 0.163276i) q^{86} +(-0.713506 - 1.23583i) q^{87} -1.02410 q^{88} +(-7.43872 + 1.99320i) q^{89} +(20.2649 - 5.42996i) q^{91} +(0.258707 - 0.149364i) q^{92} +(13.0536 - 7.53653i) q^{93} +(-0.237428 + 0.0636187i) q^{94} +(2.42315 - 0.649281i) q^{96} -1.75339 q^{97} +(0.704025 + 1.21941i) q^{98} +(1.24306 - 2.15304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0909942 + 0.0525355i 0.0643426 + 0.0371482i 0.531826 0.846854i \(-0.321506\pi\)
−0.467484 + 0.884002i \(0.654839\pi\)
\(3\) −1.93607 0.518767i −1.11779 0.299510i −0.347800 0.937569i \(-0.613071\pi\)
−0.769988 + 0.638059i \(0.779738\pi\)
\(4\) −0.994480 1.72249i −0.497240 0.861245i
\(5\) 0 0
\(6\) −0.148917 0.148917i −0.0607951 0.0607951i
\(7\) −4.36283 1.16902i −1.64900 0.441847i −0.689665 0.724129i \(-0.742242\pi\)
−0.959332 + 0.282282i \(0.908909\pi\)
\(8\) 0.419124i 0.148183i
\(9\) 0.881153 + 0.508734i 0.293718 + 0.169578i
\(10\) 0 0
\(11\) 2.44344i 0.736724i −0.929682 0.368362i \(-0.879919\pi\)
0.929682 0.368362i \(-0.120081\pi\)
\(12\) 1.03181 + 3.85076i 0.297857 + 1.11162i
\(13\) −4.02259 + 2.32245i −1.11567 + 0.644131i −0.940291 0.340371i \(-0.889447\pi\)
−0.175376 + 0.984502i \(0.556114\pi\)
\(14\) −0.335578 0.335578i −0.0896869 0.0896869i
\(15\) 0 0
\(16\) −1.96694 + 3.40684i −0.491735 + 0.851711i
\(17\) 3.81936 6.61533i 0.926331 1.60445i 0.136925 0.990581i \(-0.456278\pi\)
0.789406 0.613871i \(-0.210389\pi\)
\(18\) 0.0534532 + 0.0925836i 0.0125990 + 0.0218222i
\(19\) −1.19934 0.321362i −0.275148 0.0737256i 0.118607 0.992941i \(-0.462157\pi\)
−0.393754 + 0.919216i \(0.628824\pi\)
\(20\) 0 0
\(21\) 7.84028 + 4.52659i 1.71089 + 0.987783i
\(22\) 0.128367 0.222339i 0.0273680 0.0474028i
\(23\) 0.150193i 0.0313175i 0.999877 + 0.0156587i \(0.00498454\pi\)
−0.999877 + 0.0156587i \(0.995015\pi\)
\(24\) −0.217428 + 0.811452i −0.0443823 + 0.165637i
\(25\) 0 0
\(26\) −0.488044 −0.0957132
\(27\) 2.80984 + 2.80984i 0.540754 + 0.540754i
\(28\) 2.32513 + 8.67750i 0.439408 + 1.63989i
\(29\) 0.503427 + 0.503427i 0.0934840 + 0.0934840i 0.752302 0.658818i \(-0.228943\pi\)
−0.658818 + 0.752302i \(0.728943\pi\)
\(30\) 0 0
\(31\) −5.31753 + 5.31753i −0.955057 + 0.955057i −0.999033 0.0439759i \(-0.985998\pi\)
0.0439759 + 0.999033i \(0.485998\pi\)
\(32\) −1.08391 + 0.625793i −0.191609 + 0.110626i
\(33\) −1.26757 + 4.73065i −0.220656 + 0.823501i
\(34\) 0.695080 0.401304i 0.119205 0.0688231i
\(35\) 0 0
\(36\) 2.02370i 0.337284i
\(37\) 2.33845 5.61531i 0.384438 0.923151i
\(38\) −0.0922501 0.0922501i −0.0149649 0.0149649i
\(39\) 8.99281 2.40962i 1.44000 0.385847i
\(40\) 0 0
\(41\) 4.77325 2.75584i 0.745456 0.430389i −0.0785937 0.996907i \(-0.525043\pi\)
0.824050 + 0.566518i \(0.191710\pi\)
\(42\) 0.475614 + 0.823787i 0.0733888 + 0.127113i
\(43\) 1.79435i 0.273636i −0.990596 0.136818i \(-0.956312\pi\)
0.990596 0.136818i \(-0.0436876\pi\)
\(44\) −4.20880 + 2.42995i −0.634500 + 0.366329i
\(45\) 0 0
\(46\) −0.00789049 + 0.0136667i −0.00116339 + 0.00201505i
\(47\) −1.65421 + 1.65421i −0.241291 + 0.241291i −0.817384 0.576093i \(-0.804577\pi\)
0.576093 + 0.817384i \(0.304577\pi\)
\(48\) 5.57548 5.57548i 0.804752 0.804752i
\(49\) 11.6055 + 6.70046i 1.65793 + 0.957209i
\(50\) 0 0
\(51\) −10.8263 + 10.8263i −1.51599 + 1.51599i
\(52\) 8.00078 + 4.61925i 1.10951 + 0.640575i
\(53\) 11.3222 3.03376i 1.55522 0.416720i 0.624073 0.781366i \(-0.285477\pi\)
0.931146 + 0.364647i \(0.118810\pi\)
\(54\) 0.108063 + 0.403296i 0.0147055 + 0.0548816i
\(55\) 0 0
\(56\) −0.489964 + 1.82857i −0.0654742 + 0.244353i
\(57\) 2.15529 + 1.24436i 0.285475 + 0.164819i
\(58\) 0.0193611 + 0.0722567i 0.00254224 + 0.00948777i
\(59\) −0.0783231 0.292306i −0.0101968 0.0380550i 0.960640 0.277796i \(-0.0896040\pi\)
−0.970837 + 0.239741i \(0.922937\pi\)
\(60\) 0 0
\(61\) −2.65533 0.711494i −0.339980 0.0910974i 0.0847894 0.996399i \(-0.472978\pi\)
−0.424770 + 0.905301i \(0.639645\pi\)
\(62\) −0.763224 + 0.204505i −0.0969295 + 0.0259722i
\(63\) −3.24960 3.24960i −0.409412 0.409412i
\(64\) 7.73626 0.967032
\(65\) 0 0
\(66\) −0.363869 + 0.363869i −0.0447892 + 0.0447892i
\(67\) −3.29741 + 12.3061i −0.402843 + 1.50343i 0.405156 + 0.914247i \(0.367217\pi\)
−0.807999 + 0.589183i \(0.799450\pi\)
\(68\) −15.1931 −1.84244
\(69\) 0.0779154 0.290784i 0.00937991 0.0350063i
\(70\) 0 0
\(71\) 5.25961 + 9.10991i 0.624201 + 1.08115i 0.988695 + 0.149941i \(0.0479085\pi\)
−0.364494 + 0.931206i \(0.618758\pi\)
\(72\) 0.213223 0.369312i 0.0251285 0.0435239i
\(73\) −6.35187 + 6.35187i −0.743431 + 0.743431i −0.973237 0.229806i \(-0.926191\pi\)
0.229806 + 0.973237i \(0.426191\pi\)
\(74\) 0.507788 0.388109i 0.0590292 0.0451167i
\(75\) 0 0
\(76\) 0.639177 + 2.38544i 0.0733186 + 0.273629i
\(77\) −2.85642 + 10.6603i −0.325519 + 1.21486i
\(78\) 0.944884 + 0.253181i 0.106987 + 0.0286671i
\(79\) −4.95543 1.32780i −0.557530 0.149390i −0.0309586 0.999521i \(-0.509856\pi\)
−0.526571 + 0.850131i \(0.676523\pi\)
\(80\) 0 0
\(81\) −5.50858 9.54114i −0.612065 1.06013i
\(82\) 0.579117 0.0639528
\(83\) −0.883111 + 0.236629i −0.0969340 + 0.0259734i −0.306960 0.951722i \(-0.599312\pi\)
0.210026 + 0.977696i \(0.432645\pi\)
\(84\) 18.0064i 1.96466i
\(85\) 0 0
\(86\) 0.0942673 0.163276i 0.0101651 0.0176065i
\(87\) −0.713506 1.23583i −0.0764958 0.132495i
\(88\) −1.02410 −0.109170
\(89\) −7.43872 + 1.99320i −0.788503 + 0.211279i −0.630530 0.776165i \(-0.717162\pi\)
−0.157973 + 0.987444i \(0.550496\pi\)
\(90\) 0 0
\(91\) 20.2649 5.42996i 2.12434 0.569215i
\(92\) 0.258707 0.149364i 0.0269720 0.0155723i
\(93\) 13.0536 7.53653i 1.35360 0.781501i
\(94\) −0.237428 + 0.0636187i −0.0244889 + 0.00656177i
\(95\) 0 0
\(96\) 2.42315 0.649281i 0.247312 0.0662670i
\(97\) −1.75339 −0.178030 −0.0890150 0.996030i \(-0.528372\pi\)
−0.0890150 + 0.996030i \(0.528372\pi\)
\(98\) 0.704025 + 1.21941i 0.0711172 + 0.123179i
\(99\) 1.24306 2.15304i 0.124932 0.216389i
\(100\) 0 0
\(101\) 1.85688i 0.184766i −0.995724 0.0923831i \(-0.970552\pi\)
0.995724 0.0923831i \(-0.0294485\pi\)
\(102\) −1.55390 + 0.416367i −0.153859 + 0.0412265i
\(103\) −3.56156 −0.350931 −0.175466 0.984486i \(-0.556143\pi\)
−0.175466 + 0.984486i \(0.556143\pi\)
\(104\) 0.973393 + 1.68597i 0.0954491 + 0.165323i
\(105\) 0 0
\(106\) 1.18963 + 0.318761i 0.115547 + 0.0309608i
\(107\) −11.0067 2.94924i −1.06406 0.285114i −0.316010 0.948756i \(-0.602343\pi\)
−0.748050 + 0.663642i \(0.769010\pi\)
\(108\) 2.04559 7.63425i 0.196837 0.734606i
\(109\) −1.72341 6.43186i −0.165073 0.616061i −0.998031 0.0627245i \(-0.980021\pi\)
0.832958 0.553336i \(-0.186646\pi\)
\(110\) 0 0
\(111\) −7.44042 + 9.65849i −0.706214 + 0.916743i
\(112\) 12.5641 12.5641i 1.18720 1.18720i
\(113\) −4.15153 + 7.19065i −0.390543 + 0.676440i −0.992521 0.122073i \(-0.961046\pi\)
0.601978 + 0.798512i \(0.294379\pi\)
\(114\) 0.130746 + 0.226459i 0.0122455 + 0.0212098i
\(115\) 0 0
\(116\) 0.366500 1.36779i 0.0340286 0.126997i
\(117\) −4.72603 −0.436921
\(118\) 0.00822949 0.0307129i 0.000757586 0.00282735i
\(119\) −24.3967 + 24.3967i −2.23644 + 2.23644i
\(120\) 0 0
\(121\) 5.02962 0.457238
\(122\) −0.204241 0.204241i −0.0184911 0.0184911i
\(123\) −10.6710 + 2.85927i −0.962168 + 0.257812i
\(124\) 14.4476 + 3.87122i 1.29743 + 0.347645i
\(125\) 0 0
\(126\) −0.124975 0.466415i −0.0111337 0.0415515i
\(127\) −1.28331 4.78938i −0.113875 0.424988i 0.885325 0.464973i \(-0.153936\pi\)
−0.999200 + 0.0399843i \(0.987269\pi\)
\(128\) 2.87176 + 1.65801i 0.253831 + 0.146549i
\(129\) −0.930851 + 3.47398i −0.0819569 + 0.305867i
\(130\) 0 0
\(131\) −3.53198 13.1815i −0.308590 1.15168i −0.929810 0.368039i \(-0.880029\pi\)
0.621220 0.783636i \(-0.286637\pi\)
\(132\) 9.40908 2.52116i 0.818955 0.219438i
\(133\) 4.85685 + 2.80410i 0.421142 + 0.243146i
\(134\) −0.946554 + 0.946554i −0.0817698 + 0.0817698i
\(135\) 0 0
\(136\) −2.77264 1.60079i −0.237752 0.137266i
\(137\) 7.46542 7.46542i 0.637814 0.637814i −0.312202 0.950016i \(-0.601067\pi\)
0.950016 + 0.312202i \(0.101067\pi\)
\(138\) 0.0223663 0.0223663i 0.00190395 0.00190395i
\(139\) 3.87366 6.70937i 0.328559 0.569081i −0.653667 0.756782i \(-0.726770\pi\)
0.982226 + 0.187701i \(0.0601036\pi\)
\(140\) 0 0
\(141\) 4.06081 2.34451i 0.341982 0.197443i
\(142\) 1.10527i 0.0927518i
\(143\) 5.67475 + 9.82895i 0.474546 + 0.821938i
\(144\) −3.46635 + 2.00130i −0.288863 + 0.166775i
\(145\) 0 0
\(146\) −0.911683 + 0.244285i −0.0754514 + 0.0202171i
\(147\) −18.9931 18.9931i −1.56652 1.56652i
\(148\) −11.9978 + 1.55636i −0.986217 + 0.127932i
\(149\) 1.69346i 0.138734i −0.997591 0.0693670i \(-0.977902\pi\)
0.997591 0.0693670i \(-0.0220980\pi\)
\(150\) 0 0
\(151\) −9.78475 + 5.64923i −0.796271 + 0.459727i −0.842166 0.539219i \(-0.818720\pi\)
0.0458944 + 0.998946i \(0.485386\pi\)
\(152\) −0.134691 + 0.502673i −0.0109249 + 0.0407722i
\(153\) 6.73088 3.88608i 0.544159 0.314171i
\(154\) −0.819963 + 0.819963i −0.0660745 + 0.0660745i
\(155\) 0 0
\(156\) −13.0937 13.0937i −1.04834 1.04834i
\(157\) 2.43506 + 9.08776i 0.194339 + 0.725282i 0.992437 + 0.122755i \(0.0391729\pi\)
−0.798098 + 0.602527i \(0.794160\pi\)
\(158\) −0.381159 0.381159i −0.0303234 0.0303234i
\(159\) −23.4943 −1.86322
\(160\) 0 0
\(161\) 0.175579 0.655269i 0.0138375 0.0516424i
\(162\) 1.15758i 0.0909485i
\(163\) 7.93075 13.7365i 0.621184 1.07592i −0.368081 0.929794i \(-0.619985\pi\)
0.989266 0.146129i \(-0.0466815\pi\)
\(164\) −9.49380 5.48125i −0.741341 0.428013i
\(165\) 0 0
\(166\) −0.0927894 0.0248628i −0.00720185 0.00192973i
\(167\) −0.265234 0.459399i −0.0205244 0.0355494i 0.855581 0.517669i \(-0.173200\pi\)
−0.876105 + 0.482120i \(0.839867\pi\)
\(168\) 1.89720 3.28605i 0.146372 0.253524i
\(169\) 4.28751 7.42618i 0.329808 0.571245i
\(170\) 0 0
\(171\) −0.893314 0.893314i −0.0683135 0.0683135i
\(172\) −3.09076 + 1.78445i −0.235668 + 0.136063i
\(173\) −0.719913 2.68675i −0.0547340 0.204270i 0.933144 0.359503i \(-0.117054\pi\)
−0.987878 + 0.155233i \(0.950387\pi\)
\(174\) 0.149938i 0.0113667i
\(175\) 0 0
\(176\) 8.32440 + 4.80610i 0.627476 + 0.362273i
\(177\) 0.606555i 0.0455914i
\(178\) −0.781594 0.209427i −0.0585829 0.0156973i
\(179\) 6.41009 + 6.41009i 0.479112 + 0.479112i 0.904848 0.425735i \(-0.139985\pi\)
−0.425735 + 0.904848i \(0.639985\pi\)
\(180\) 0 0
\(181\) 0.557213 + 0.965121i 0.0414173 + 0.0717369i 0.885991 0.463703i \(-0.153479\pi\)
−0.844574 + 0.535439i \(0.820146\pi\)
\(182\) 2.12925 + 0.570532i 0.157831 + 0.0422906i
\(183\) 4.77179 + 2.75500i 0.352741 + 0.203655i
\(184\) 0.0629497 0.00464071
\(185\) 0 0
\(186\) 1.58374 0.116126
\(187\) −16.1641 9.33237i −1.18204 0.682450i
\(188\) 4.49444 + 1.20428i 0.327791 + 0.0878312i
\(189\) −8.97411 15.5436i −0.652771 1.13063i
\(190\) 0 0
\(191\) −12.9182 12.9182i −0.934729 0.934729i 0.0632677 0.997997i \(-0.479848\pi\)
−0.997997 + 0.0632677i \(0.979848\pi\)
\(192\) −14.9779 4.01332i −1.08094 0.289636i
\(193\) 6.70355i 0.482532i 0.970459 + 0.241266i \(0.0775627\pi\)
−0.970459 + 0.241266i \(0.922437\pi\)
\(194\) −0.159549 0.0921154i −0.0114549 0.00661350i
\(195\) 0 0
\(196\) 26.6539i 1.90385i
\(197\) 3.73320 + 13.9325i 0.265980 + 0.992650i 0.961648 + 0.274287i \(0.0884418\pi\)
−0.695668 + 0.718363i \(0.744892\pi\)
\(198\) 0.226222 0.130609i 0.0160769 0.00928201i
\(199\) −6.68443 6.68443i −0.473847 0.473847i 0.429310 0.903157i \(-0.358757\pi\)
−0.903157 + 0.429310i \(0.858757\pi\)
\(200\) 0 0
\(201\) 12.7680 22.1148i 0.900586 1.55986i
\(202\) 0.0975521 0.168965i 0.00686374 0.0118883i
\(203\) −1.60785 2.78488i −0.112849 0.195460i
\(204\) 29.4149 + 7.88169i 2.05945 + 0.551829i
\(205\) 0 0
\(206\) −0.324082 0.187109i −0.0225798 0.0130365i
\(207\) −0.0764084 + 0.132343i −0.00531075 + 0.00919849i
\(208\) 18.2725i 1.26697i
\(209\) −0.785229 + 2.93051i −0.0543154 + 0.202708i
\(210\) 0 0
\(211\) −15.4569 −1.06410 −0.532049 0.846713i \(-0.678578\pi\)
−0.532049 + 0.846713i \(0.678578\pi\)
\(212\) −16.4853 16.4853i −1.13221 1.13221i
\(213\) −5.45702 20.3659i −0.373909 1.39545i
\(214\) −0.846608 0.846608i −0.0578729 0.0578729i
\(215\) 0 0
\(216\) 1.17767 1.17767i 0.0801304 0.0801304i
\(217\) 29.4158 16.9832i 1.99687 1.15290i
\(218\) 0.181081 0.675803i 0.0122643 0.0457711i
\(219\) 15.5928 9.00250i 1.05366 0.608333i
\(220\) 0 0
\(221\) 35.4810i 2.38671i
\(222\) −1.18445 + 0.487980i −0.0794950 + 0.0327511i
\(223\) 7.27052 + 7.27052i 0.486870 + 0.486870i 0.907317 0.420447i \(-0.138127\pi\)
−0.420447 + 0.907317i \(0.638127\pi\)
\(224\) 5.46046 1.46313i 0.364842 0.0977592i
\(225\) 0 0
\(226\) −0.755530 + 0.436205i −0.0502571 + 0.0290159i
\(227\) 3.45410 + 5.98267i 0.229256 + 0.397084i 0.957588 0.288141i \(-0.0930373\pi\)
−0.728332 + 0.685225i \(0.759704\pi\)
\(228\) 4.94995i 0.327819i
\(229\) −20.4243 + 11.7920i −1.34967 + 0.779235i −0.988203 0.153148i \(-0.951059\pi\)
−0.361472 + 0.932383i \(0.617726\pi\)
\(230\) 0 0
\(231\) 11.0604 19.1572i 0.727723 1.26045i
\(232\) 0.210998 0.210998i 0.0138527 0.0138527i
\(233\) 10.7828 10.7828i 0.706402 0.706402i −0.259375 0.965777i \(-0.583516\pi\)
0.965777 + 0.259375i \(0.0835165\pi\)
\(234\) −0.430041 0.248284i −0.0281127 0.0162308i
\(235\) 0 0
\(236\) −0.425603 + 0.425603i −0.0277044 + 0.0277044i
\(237\) 8.90522 + 5.14143i 0.578456 + 0.333972i
\(238\) −3.50165 + 0.938264i −0.226978 + 0.0608186i
\(239\) 4.28082 + 15.9763i 0.276903 + 1.03342i 0.954555 + 0.298035i \(0.0963311\pi\)
−0.677652 + 0.735383i \(0.737002\pi\)
\(240\) 0 0
\(241\) −0.943969 + 3.52294i −0.0608064 + 0.226933i −0.989641 0.143561i \(-0.954145\pi\)
0.928835 + 0.370493i \(0.120811\pi\)
\(242\) 0.457666 + 0.264234i 0.0294199 + 0.0169856i
\(243\) 2.62992 + 9.81501i 0.168710 + 0.629633i
\(244\) 1.41513 + 5.28135i 0.0905946 + 0.338104i
\(245\) 0 0
\(246\) −1.12121 0.300427i −0.0714856 0.0191545i
\(247\) 5.57081 1.49269i 0.354462 0.0949778i
\(248\) 2.22871 + 2.22871i 0.141523 + 0.141523i
\(249\) 1.83251 0.116131
\(250\) 0 0
\(251\) 5.49768 5.49768i 0.347010 0.347010i −0.511984 0.858995i \(-0.671089\pi\)
0.858995 + 0.511984i \(0.171089\pi\)
\(252\) −2.36574 + 8.82908i −0.149028 + 0.556180i
\(253\) 0.366988 0.0230723
\(254\) 0.134839 0.503225i 0.00846053 0.0315751i
\(255\) 0 0
\(256\) −7.56205 13.0979i −0.472628 0.818616i
\(257\) −13.4897 + 23.3649i −0.841467 + 1.45746i 0.0471867 + 0.998886i \(0.484974\pi\)
−0.888654 + 0.458578i \(0.848359\pi\)
\(258\) −0.267210 + 0.267210i −0.0166358 + 0.0166358i
\(259\) −16.7667 + 21.7650i −1.04183 + 1.35241i
\(260\) 0 0
\(261\) 0.187486 + 0.699706i 0.0116051 + 0.0433107i
\(262\) 0.371109 1.38500i 0.0229272 0.0855654i
\(263\) 5.22951 + 1.40124i 0.322465 + 0.0864043i 0.416421 0.909172i \(-0.363284\pi\)
−0.0939553 + 0.995576i \(0.529951\pi\)
\(264\) 1.98273 + 0.531271i 0.122029 + 0.0326975i
\(265\) 0 0
\(266\) 0.294630 + 0.510314i 0.0180649 + 0.0312894i
\(267\) 15.4358 0.944659
\(268\) 24.4764 6.55842i 1.49513 0.400619i
\(269\) 18.2733i 1.11414i 0.830465 + 0.557071i \(0.188075\pi\)
−0.830465 + 0.557071i \(0.811925\pi\)
\(270\) 0 0
\(271\) −8.01505 + 13.8825i −0.486879 + 0.843300i −0.999886 0.0150847i \(-0.995198\pi\)
0.513007 + 0.858385i \(0.328532\pi\)
\(272\) 15.0249 + 26.0239i 0.911019 + 1.57793i
\(273\) −42.0510 −2.54504
\(274\) 1.07151 0.287110i 0.0647323 0.0173450i
\(275\) 0 0
\(276\) −0.578358 + 0.154971i −0.0348131 + 0.00932813i
\(277\) −19.9375 + 11.5109i −1.19793 + 0.691626i −0.960093 0.279679i \(-0.909772\pi\)
−0.237837 + 0.971305i \(0.576439\pi\)
\(278\) 0.704961 0.407009i 0.0422807 0.0244108i
\(279\) −7.39076 + 1.98035i −0.442473 + 0.118560i
\(280\) 0 0
\(281\) 26.6973 7.15352i 1.59263 0.426743i 0.649822 0.760087i \(-0.274844\pi\)
0.942805 + 0.333343i \(0.108177\pi\)
\(282\) 0.492680 0.0293387
\(283\) 2.83629 + 4.91260i 0.168600 + 0.292024i 0.937928 0.346830i \(-0.112742\pi\)
−0.769328 + 0.638854i \(0.779409\pi\)
\(284\) 10.4611 18.1192i 0.620755 1.07518i
\(285\) 0 0
\(286\) 1.19250i 0.0705142i
\(287\) −24.0465 + 6.44324i −1.41942 + 0.380333i
\(288\) −1.27345 −0.0750386
\(289\) −20.6750 35.8102i −1.21618 2.10648i
\(290\) 0 0
\(291\) 3.39468 + 0.909603i 0.199000 + 0.0533218i
\(292\) 17.2579 + 4.62423i 1.00994 + 0.270612i
\(293\) −3.60695 + 13.4613i −0.210720 + 0.786418i 0.776909 + 0.629612i \(0.216786\pi\)
−0.987629 + 0.156806i \(0.949880\pi\)
\(294\) −0.730450 2.72608i −0.0426007 0.158988i
\(295\) 0 0
\(296\) −2.35351 0.980100i −0.136795 0.0569671i
\(297\) 6.86567 6.86567i 0.398386 0.398386i
\(298\) 0.0889671 0.154095i 0.00515372 0.00892651i
\(299\) −0.348816 0.604167i −0.0201725 0.0349399i
\(300\) 0 0
\(301\) −2.09763 + 7.82847i −0.120905 + 0.451225i
\(302\) −1.18714 −0.0683122
\(303\) −0.963287 + 3.59504i −0.0553394 + 0.206529i
\(304\) 3.45386 3.45386i 0.198093 0.198093i
\(305\) 0 0
\(306\) 0.816628 0.0466835
\(307\) −7.33300 7.33300i −0.418516 0.418516i 0.466176 0.884692i \(-0.345631\pi\)
−0.884692 + 0.466176i \(0.845631\pi\)
\(308\) 21.2029 5.68131i 1.20815 0.323723i
\(309\) 6.89542 + 1.84762i 0.392267 + 0.105108i
\(310\) 0 0
\(311\) −0.463544 1.72997i −0.0262852 0.0980975i 0.951537 0.307534i \(-0.0995038\pi\)
−0.977822 + 0.209436i \(0.932837\pi\)
\(312\) −1.00993 3.76911i −0.0571760 0.213384i
\(313\) 23.5224 + 13.5807i 1.32957 + 0.767625i 0.985232 0.171223i \(-0.0547718\pi\)
0.344333 + 0.938848i \(0.388105\pi\)
\(314\) −0.255854 + 0.954861i −0.0144387 + 0.0538859i
\(315\) 0 0
\(316\) 2.64095 + 9.85616i 0.148565 + 0.554452i
\(317\) −6.32825 + 1.69565i −0.355430 + 0.0952372i −0.432116 0.901818i \(-0.642233\pi\)
0.0766857 + 0.997055i \(0.475566\pi\)
\(318\) −2.13784 1.23428i −0.119884 0.0692152i
\(319\) 1.23009 1.23009i 0.0688719 0.0688719i
\(320\) 0 0
\(321\) 19.7798 + 11.4198i 1.10400 + 0.637394i
\(322\) 0.0504015 0.0504015i 0.00280877 0.00280877i
\(323\) −6.70663 + 6.70663i −0.373167 + 0.373167i
\(324\) −10.9563 + 18.9770i −0.608686 + 1.05428i
\(325\) 0 0
\(326\) 1.44330 0.833292i 0.0799373 0.0461518i
\(327\) 13.3466i 0.738066i
\(328\) −1.15504 2.00058i −0.0637763 0.110464i
\(329\) 9.15085 5.28324i 0.504502 0.291275i
\(330\) 0 0
\(331\) 27.9515 7.48959i 1.53635 0.411665i 0.611268 0.791423i \(-0.290660\pi\)
0.925086 + 0.379758i \(0.123993\pi\)
\(332\) 1.28583 + 1.28583i 0.0705689 + 0.0705689i
\(333\) 4.91722 3.75829i 0.269462 0.205953i
\(334\) 0.0557369i 0.00304979i
\(335\) 0 0
\(336\) −30.8428 + 17.8071i −1.68261 + 0.971455i
\(337\) −2.11178 + 7.88127i −0.115036 + 0.429320i −0.999290 0.0376867i \(-0.988001\pi\)
0.884254 + 0.467007i \(0.154668\pi\)
\(338\) 0.780277 0.450493i 0.0424415 0.0245036i
\(339\) 11.7679 11.7679i 0.639145 0.639145i
\(340\) 0 0
\(341\) 12.9931 + 12.9931i 0.703613 + 0.703613i
\(342\) −0.0343557 0.128217i −0.00185774 0.00693319i
\(343\) −20.4434 20.4434i −1.10384 1.10384i
\(344\) −0.752057 −0.0405482
\(345\) 0 0
\(346\) 0.0756421 0.282300i 0.00406654 0.0151765i
\(347\) 24.8690i 1.33504i −0.744592 0.667519i \(-0.767356\pi\)
0.744592 0.667519i \(-0.232644\pi\)
\(348\) −1.41913 + 2.45801i −0.0760736 + 0.131763i
\(349\) 16.0098 + 9.24327i 0.856985 + 0.494781i 0.863002 0.505201i \(-0.168582\pi\)
−0.00601629 + 0.999982i \(0.501915\pi\)
\(350\) 0 0
\(351\) −17.8285 4.77714i −0.951617 0.254985i
\(352\) 1.52909 + 2.64845i 0.0815005 + 0.141163i
\(353\) −9.10206 + 15.7652i −0.484454 + 0.839099i −0.999841 0.0178589i \(-0.994315\pi\)
0.515387 + 0.856958i \(0.327648\pi\)
\(354\) −0.0318657 + 0.0551930i −0.00169364 + 0.00293347i
\(355\) 0 0
\(356\) 10.8309 + 10.8309i 0.574038 + 0.574038i
\(357\) 59.8897 34.5774i 3.16970 1.83003i
\(358\) 0.246524 + 0.920038i 0.0130292 + 0.0486255i
\(359\) 25.4475i 1.34307i 0.740974 + 0.671534i \(0.234364\pi\)
−0.740974 + 0.671534i \(0.765636\pi\)
\(360\) 0 0
\(361\) −15.1193 8.72915i −0.795755 0.459429i
\(362\) 0.117094i 0.00615432i
\(363\) −9.73766 2.60920i −0.511095 0.136947i
\(364\) −29.5061 29.5061i −1.54654 1.54654i
\(365\) 0 0
\(366\) 0.289470 + 0.501377i 0.0151309 + 0.0262074i
\(367\) −10.9437 2.93236i −0.571258 0.153068i −0.0383846 0.999263i \(-0.512221\pi\)
−0.532874 + 0.846195i \(0.678888\pi\)
\(368\) −0.511685 0.295421i −0.0266734 0.0153999i
\(369\) 5.60795 0.291938
\(370\) 0 0
\(371\) −52.9432 −2.74868
\(372\) −25.9632 14.9898i −1.34613 0.777187i
\(373\) −29.5344 7.91372i −1.52923 0.409757i −0.606465 0.795110i \(-0.707413\pi\)
−0.922769 + 0.385354i \(0.874079\pi\)
\(374\) −0.980562 1.69838i −0.0507036 0.0878213i
\(375\) 0 0
\(376\) 0.693320 + 0.693320i 0.0357552 + 0.0357552i
\(377\) −3.19426 0.855900i −0.164513 0.0440811i
\(378\) 1.88584i 0.0969971i
\(379\) 6.07630 + 3.50815i 0.312119 + 0.180202i 0.647874 0.761747i \(-0.275658\pi\)
−0.335756 + 0.941949i \(0.608992\pi\)
\(380\) 0 0
\(381\) 9.93828i 0.509154i
\(382\) −0.496817 1.85415i −0.0254194 0.0948664i
\(383\) 18.2184 10.5184i 0.930919 0.537466i 0.0438170 0.999040i \(-0.486048\pi\)
0.887102 + 0.461573i \(0.152715\pi\)
\(384\) −4.69980 4.69980i −0.239836 0.239836i
\(385\) 0 0
\(386\) −0.352175 + 0.609984i −0.0179252 + 0.0310474i
\(387\) 0.912848 1.58110i 0.0464027 0.0803718i
\(388\) 1.74371 + 3.02020i 0.0885237 + 0.153328i
\(389\) 28.1825 + 7.55149i 1.42891 + 0.382876i 0.888636 0.458612i \(-0.151653\pi\)
0.540275 + 0.841488i \(0.318320\pi\)
\(390\) 0 0
\(391\) 0.993578 + 0.573643i 0.0502474 + 0.0290104i
\(392\) 2.80833 4.86416i 0.141842 0.245677i
\(393\) 27.3526i 1.37975i
\(394\) −0.392252 + 1.46390i −0.0197614 + 0.0737504i
\(395\) 0 0
\(396\) −4.94479 −0.248485
\(397\) 1.11923 + 1.11923i 0.0561727 + 0.0561727i 0.734635 0.678462i \(-0.237353\pi\)
−0.678462 + 0.734635i \(0.737353\pi\)
\(398\) −0.257074 0.959415i −0.0128860 0.0480911i
\(399\) −7.94850 7.94850i −0.397923 0.397923i
\(400\) 0 0
\(401\) 2.72947 2.72947i 0.136303 0.136303i −0.635663 0.771966i \(-0.719273\pi\)
0.771966 + 0.635663i \(0.219273\pi\)
\(402\) 2.32363 1.34155i 0.115892 0.0669104i
\(403\) 9.04059 33.7399i 0.450344 1.68071i
\(404\) −3.19845 + 1.84663i −0.159129 + 0.0918732i
\(405\) 0 0
\(406\) 0.337877i 0.0167686i
\(407\) −13.7206 5.71385i −0.680107 0.283225i
\(408\) 4.53758 + 4.53758i 0.224644 + 0.224644i
\(409\) −15.9537 + 4.27479i −0.788862 + 0.211375i −0.630688 0.776037i \(-0.717227\pi\)
−0.158174 + 0.987411i \(0.550561\pi\)
\(410\) 0 0
\(411\) −18.3264 + 10.5807i −0.903973 + 0.521909i
\(412\) 3.54190 + 6.13476i 0.174497 + 0.302238i
\(413\) 1.36684i 0.0672580i
\(414\) −0.0139054 + 0.00802831i −0.000683415 + 0.000394570i
\(415\) 0 0
\(416\) 2.90674 5.03462i 0.142515 0.246843i
\(417\) −10.9803 + 10.9803i −0.537705 + 0.537705i
\(418\) −0.225407 + 0.225407i −0.0110250 + 0.0110250i
\(419\) −15.1345 8.73792i −0.739370 0.426875i 0.0824704 0.996594i \(-0.473719\pi\)
−0.821840 + 0.569718i \(0.807052\pi\)
\(420\) 0 0
\(421\) −7.21676 + 7.21676i −0.351723 + 0.351723i −0.860750 0.509027i \(-0.830005\pi\)
0.509027 + 0.860750i \(0.330005\pi\)
\(422\) −1.40649 0.812038i −0.0684669 0.0395294i
\(423\) −2.29916 + 0.616059i −0.111789 + 0.0299538i
\(424\) −1.27152 4.74539i −0.0617507 0.230457i
\(425\) 0 0
\(426\) 0.573375 2.13987i 0.0277801 0.103677i
\(427\) 10.7530 + 6.20826i 0.520375 + 0.300439i
\(428\) 5.86592 + 21.8919i 0.283540 + 1.05819i
\(429\) −5.88775 21.9734i −0.284263 1.06088i
\(430\) 0 0
\(431\) 27.7849 + 7.44493i 1.33835 + 0.358610i 0.855822 0.517270i \(-0.173052\pi\)
0.482528 + 0.875880i \(0.339719\pi\)
\(432\) −15.0995 + 4.04589i −0.726474 + 0.194658i
\(433\) 12.0991 + 12.0991i 0.581444 + 0.581444i 0.935300 0.353856i \(-0.115130\pi\)
−0.353856 + 0.935300i \(0.615130\pi\)
\(434\) 3.56889 0.171312
\(435\) 0 0
\(436\) −9.36492 + 9.36492i −0.448498 + 0.448498i
\(437\) 0.0482665 0.180133i 0.00230890 0.00861693i
\(438\) 1.89180 0.0903939
\(439\) −2.60805 + 9.73336i −0.124475 + 0.464548i −0.999820 0.0189505i \(-0.993967\pi\)
0.875345 + 0.483499i \(0.160634\pi\)
\(440\) 0 0
\(441\) 6.81750 + 11.8083i 0.324643 + 0.562298i
\(442\) −1.86402 + 3.22857i −0.0886622 + 0.153567i
\(443\) −27.4924 + 27.4924i −1.30620 + 1.30620i −0.382069 + 0.924134i \(0.624788\pi\)
−0.924134 + 0.382069i \(0.875212\pi\)
\(444\) 24.0360 + 3.21088i 1.14070 + 0.152381i
\(445\) 0 0
\(446\) 0.279614 + 1.04354i 0.0132401 + 0.0494128i
\(447\) −0.878514 + 3.27866i −0.0415523 + 0.155075i
\(448\) −33.7520 9.04383i −1.59463 0.427281i
\(449\) 24.2566 + 6.49953i 1.14474 + 0.306732i 0.780855 0.624713i \(-0.214784\pi\)
0.363883 + 0.931444i \(0.381451\pi\)
\(450\) 0 0
\(451\) −6.73371 11.6631i −0.317078 0.549195i
\(452\) 16.5144 0.776774
\(453\) 21.8745 5.86126i 1.02776 0.275386i
\(454\) 0.725851i 0.0340659i
\(455\) 0 0
\(456\) 0.521540 0.903334i 0.0244234 0.0423025i
\(457\) 0.876059 + 1.51738i 0.0409803 + 0.0709800i 0.885788 0.464090i \(-0.153619\pi\)
−0.844808 + 0.535070i \(0.820285\pi\)
\(458\) −2.47799 −0.115789
\(459\) 29.3198 7.85622i 1.36853 0.366697i
\(460\) 0 0
\(461\) −17.9341 + 4.80544i −0.835276 + 0.223812i −0.651014 0.759066i \(-0.725656\pi\)
−0.184262 + 0.982877i \(0.558990\pi\)
\(462\) 2.01287 1.16213i 0.0936472 0.0540673i
\(463\) −18.1497 + 10.4787i −0.843488 + 0.486988i −0.858448 0.512900i \(-0.828571\pi\)
0.0149605 + 0.999888i \(0.495238\pi\)
\(464\) −2.70531 + 0.724884i −0.125591 + 0.0336519i
\(465\) 0 0
\(466\) 1.54765 0.414691i 0.0716933 0.0192102i
\(467\) −22.0375 −1.01977 −0.509887 0.860241i \(-0.670313\pi\)
−0.509887 + 0.860241i \(0.670313\pi\)
\(468\) 4.69994 + 8.14053i 0.217255 + 0.376296i
\(469\) 28.7721 49.8348i 1.32857 2.30116i
\(470\) 0 0
\(471\) 18.8577i 0.868918i
\(472\) −0.122512 + 0.0328271i −0.00563909 + 0.00151099i
\(473\) −4.38439 −0.201594
\(474\) 0.540216 + 0.935681i 0.0248129 + 0.0429773i
\(475\) 0 0
\(476\) 66.2850 + 17.7610i 3.03817 + 0.814075i
\(477\) 11.5199 + 3.08676i 0.527461 + 0.141333i
\(478\) −0.449791 + 1.67864i −0.0205729 + 0.0767793i
\(479\) 7.10617 + 26.5206i 0.324689 + 1.21176i 0.914624 + 0.404305i \(0.132487\pi\)
−0.589935 + 0.807451i \(0.700847\pi\)
\(480\) 0 0
\(481\) 3.63462 + 28.0190i 0.165724 + 1.27756i
\(482\) −0.270975 + 0.270975i −0.0123426 + 0.0123426i
\(483\) −0.679864 + 1.17756i −0.0309349 + 0.0535808i
\(484\) −5.00185 8.66346i −0.227357 0.393794i
\(485\) 0 0
\(486\) −0.276329 + 1.03127i −0.0125345 + 0.0467795i
\(487\) 35.4750 1.60752 0.803762 0.594951i \(-0.202829\pi\)
0.803762 + 0.594951i \(0.202829\pi\)
\(488\) −0.298204 + 1.11291i −0.0134991 + 0.0503792i
\(489\) −22.4805 + 22.4805i −1.01660 + 1.01660i
\(490\) 0 0
\(491\) 1.48693 0.0671041 0.0335521 0.999437i \(-0.489318\pi\)
0.0335521 + 0.999437i \(0.489318\pi\)
\(492\) 15.5371 + 15.5371i 0.700467 + 0.700467i
\(493\) 5.25310 1.40756i 0.236588 0.0633935i
\(494\) 0.585331 + 0.156839i 0.0263353 + 0.00705652i
\(495\) 0 0
\(496\) −7.65672 28.5753i −0.343797 1.28307i
\(497\) −12.2972 45.8936i −0.551603 2.05861i
\(498\) 0.166748 + 0.0962721i 0.00747217 + 0.00431406i
\(499\) −5.71230 + 21.3186i −0.255718 + 0.954352i 0.711972 + 0.702208i \(0.247802\pi\)
−0.967690 + 0.252144i \(0.918864\pi\)
\(500\) 0 0
\(501\) 0.275190 + 1.02702i 0.0122946 + 0.0458839i
\(502\) 0.789080 0.211433i 0.0352184 0.00943673i
\(503\) −3.42397 1.97683i −0.152667 0.0881424i 0.421720 0.906726i \(-0.361426\pi\)
−0.574388 + 0.818584i \(0.694760\pi\)
\(504\) −1.36199 + 1.36199i −0.0606678 + 0.0606678i
\(505\) 0 0
\(506\) 0.0333938 + 0.0192799i 0.00148453 + 0.000857096i
\(507\) −12.1534 + 12.1534i −0.539749 + 0.539749i
\(508\) −6.97343 + 6.97343i −0.309396 + 0.309396i
\(509\) −8.31123 + 14.3955i −0.368389 + 0.638068i −0.989314 0.145802i \(-0.953424\pi\)
0.620925 + 0.783870i \(0.286757\pi\)
\(510\) 0 0
\(511\) 35.1376 20.2867i 1.55440 0.897432i
\(512\) 8.22116i 0.363327i
\(513\) −2.46698 4.27293i −0.108920 0.188655i
\(514\) −2.45498 + 1.41738i −0.108284 + 0.0625180i
\(515\) 0 0
\(516\) 6.90962 1.85143i 0.304179 0.0815045i
\(517\) 4.04196 + 4.04196i 0.177765 + 0.177765i
\(518\) −2.66910 + 1.09964i −0.117274 + 0.0483154i
\(519\) 5.57520i 0.244724i
\(520\) 0 0
\(521\) −1.01799 + 0.587738i −0.0445990 + 0.0257493i −0.522134 0.852864i \(-0.674864\pi\)
0.477535 + 0.878613i \(0.341530\pi\)
\(522\) −0.0196993 + 0.0735188i −0.000862215 + 0.00321783i
\(523\) 30.2054 17.4391i 1.32079 0.762560i 0.336937 0.941527i \(-0.390609\pi\)
0.983855 + 0.178968i \(0.0572758\pi\)
\(524\) −19.1926 + 19.1926i −0.838431 + 0.838431i
\(525\) 0 0
\(526\) 0.402240 + 0.402240i 0.0175385 + 0.0175385i
\(527\) 14.8676 + 55.4868i 0.647644 + 2.41704i
\(528\) −13.6233 13.6233i −0.592880 0.592880i
\(529\) 22.9774 0.999019
\(530\) 0 0
\(531\) 0.0796912 0.297412i 0.00345830 0.0129066i
\(532\) 11.1545i 0.483609i
\(533\) −12.8006 + 22.1712i −0.554454 + 0.960342i
\(534\) 1.40457 + 0.810931i 0.0607818 + 0.0350924i
\(535\) 0 0
\(536\) 5.15779 + 1.38203i 0.222783 + 0.0596944i
\(537\) −9.08500 15.7357i −0.392047 0.679045i
\(538\) −0.959996 + 1.66276i −0.0413884 + 0.0716868i
\(539\) 16.3722 28.3574i 0.705199 1.22144i
\(540\) 0 0
\(541\) −4.65504 4.65504i −0.200136 0.200136i 0.599922 0.800058i \(-0.295198\pi\)
−0.800058 + 0.599922i \(0.795198\pi\)
\(542\) −1.45865 + 0.842149i −0.0626542 + 0.0361734i
\(543\) −0.578127 2.15760i −0.0248098 0.0925915i
\(544\) 9.56052i 0.409904i
\(545\) 0 0
\(546\) −3.82640 2.20917i −0.163755 0.0945439i
\(547\) 15.3538i 0.656482i −0.944594 0.328241i \(-0.893544\pi\)
0.944594 0.328241i \(-0.106456\pi\)
\(548\) −20.2833 5.43490i −0.866461 0.232167i
\(549\) −1.97779 1.97779i −0.0844100 0.0844100i
\(550\) 0 0
\(551\) −0.441998 0.765562i −0.0188297 0.0326141i
\(552\) −0.121875 0.0326562i −0.00518733 0.00138994i
\(553\) 20.0675 + 11.5860i 0.853357 + 0.492686i
\(554\) −2.41893 −0.102771
\(555\) 0 0
\(556\) −15.4091 −0.653491
\(557\) −14.1931 8.19437i −0.601379 0.347207i 0.168205 0.985752i \(-0.446203\pi\)
−0.769584 + 0.638546i \(0.779536\pi\)
\(558\) −0.776555 0.208077i −0.0328742 0.00880862i
\(559\) 4.16729 + 7.21795i 0.176258 + 0.305287i
\(560\) 0 0
\(561\) 26.4535 + 26.4535i 1.11687 + 1.11687i
\(562\) 2.80511 + 0.751628i 0.118327 + 0.0317055i
\(563\) 34.2468i 1.44333i 0.692242 + 0.721665i \(0.256623\pi\)
−0.692242 + 0.721665i \(0.743377\pi\)
\(564\) −8.07679 4.66313i −0.340094 0.196353i
\(565\) 0 0
\(566\) 0.596025i 0.0250528i
\(567\) 12.8793 + 48.0661i 0.540878 + 2.01858i
\(568\) 3.81818 2.20443i 0.160207 0.0924958i
\(569\) −12.1154 12.1154i −0.507904 0.507904i 0.405979 0.913882i \(-0.366931\pi\)
−0.913882 + 0.405979i \(0.866931\pi\)
\(570\) 0 0
\(571\) −4.07340 + 7.05533i −0.170466 + 0.295257i −0.938583 0.345053i \(-0.887861\pi\)
0.768117 + 0.640310i \(0.221194\pi\)
\(572\) 11.2869 19.5494i 0.471927 0.817401i
\(573\) 18.3090 + 31.7120i 0.764868 + 1.32479i
\(574\) −2.52659 0.676998i −0.105458 0.0282574i
\(575\) 0 0
\(576\) 6.81682 + 3.93570i 0.284034 + 0.163987i
\(577\) −6.24278 + 10.8128i −0.259890 + 0.450143i −0.966212 0.257748i \(-0.917020\pi\)
0.706322 + 0.707891i \(0.250353\pi\)
\(578\) 4.34470i 0.180716i
\(579\) 3.47758 12.9785i 0.144523 0.539369i
\(580\) 0 0
\(581\) 4.12949 0.171320
\(582\) 0.261110 + 0.261110i 0.0108234 + 0.0108234i
\(583\) −7.41281 27.6650i −0.307007 1.14577i
\(584\) 2.66222 + 2.66222i 0.110164 + 0.110164i
\(585\) 0 0
\(586\) −1.03541 + 1.03541i −0.0427723 + 0.0427723i
\(587\) 5.54747 3.20283i 0.228969 0.132195i −0.381128 0.924522i \(-0.624464\pi\)
0.610096 + 0.792327i \(0.291131\pi\)
\(588\) −13.8272 + 51.6037i −0.570223 + 2.12810i
\(589\) 8.08639 4.66868i 0.333194 0.192370i
\(590\) 0 0
\(591\) 28.9109i 1.18924i
\(592\) 14.5309 + 19.0117i 0.597215 + 0.781376i
\(593\) −29.3715 29.3715i −1.20614 1.20614i −0.972267 0.233875i \(-0.924859\pi\)
−0.233875 0.972267i \(-0.575141\pi\)
\(594\) 0.985427 0.264044i 0.0404326 0.0108339i
\(595\) 0 0
\(596\) −2.91698 + 1.68412i −0.119484 + 0.0689841i
\(597\) 9.47384 + 16.4092i 0.387738 + 0.671582i
\(598\) 0.0733009i 0.00299750i
\(599\) 25.2199 14.5607i 1.03046 0.594934i 0.113341 0.993556i \(-0.463845\pi\)
0.917115 + 0.398622i \(0.130511\pi\)
\(600\) 0 0
\(601\) −8.70660 + 15.0803i −0.355150 + 0.615137i −0.987144 0.159836i \(-0.948903\pi\)
0.631994 + 0.774973i \(0.282237\pi\)
\(602\) −0.602145 + 0.602145i −0.0245416 + 0.0245416i
\(603\) −9.16606 + 9.16606i −0.373271 + 0.373271i
\(604\) 19.4615 + 11.2361i 0.791876 + 0.457190i
\(605\) 0 0
\(606\) −0.276521 + 0.276521i −0.0112329 + 0.0112329i
\(607\) 18.9011 + 10.9126i 0.767172 + 0.442927i 0.831865 0.554978i \(-0.187273\pi\)
−0.0646926 + 0.997905i \(0.520607\pi\)
\(608\) 1.50108 0.402213i 0.0608767 0.0163119i
\(609\) 1.66820 + 6.22581i 0.0675989 + 0.252283i
\(610\) 0 0
\(611\) 2.81240 10.4960i 0.113778 0.424624i
\(612\) −13.3875 7.72925i −0.541156 0.312436i
\(613\) −10.6075 39.5877i −0.428432 1.59893i −0.756312 0.654212i \(-0.773001\pi\)
0.327879 0.944720i \(-0.393666\pi\)
\(614\) −0.282017 1.05250i −0.0113813 0.0424756i
\(615\) 0 0
\(616\) 4.46799 + 1.19720i 0.180021 + 0.0482364i
\(617\) 1.76552 0.473071i 0.0710773 0.0190451i −0.223105 0.974794i \(-0.571619\pi\)
0.294182 + 0.955749i \(0.404953\pi\)
\(618\) 0.530377 + 0.530377i 0.0213349 + 0.0213349i
\(619\) 28.5279 1.14663 0.573317 0.819334i \(-0.305657\pi\)
0.573317 + 0.819334i \(0.305657\pi\)
\(620\) 0 0
\(621\) −0.422019 + 0.422019i −0.0169350 + 0.0169350i
\(622\) 0.0487050 0.181770i 0.00195289 0.00728830i
\(623\) 34.7840 1.39359
\(624\) −9.47915 + 35.3767i −0.379470 + 1.41620i
\(625\) 0 0
\(626\) 1.42694 + 2.47152i 0.0570318 + 0.0987820i
\(627\) 3.04051 5.26631i 0.121426 0.210316i
\(628\) 13.2320 13.2320i 0.528013 0.528013i
\(629\) −28.2157 36.9165i −1.12503 1.47196i
\(630\) 0 0
\(631\) 4.80204 + 17.9215i 0.191166 + 0.713442i 0.993226 + 0.116199i \(0.0370709\pi\)
−0.802060 + 0.597244i \(0.796262\pi\)
\(632\) −0.556515 + 2.07694i −0.0221370 + 0.0826163i
\(633\) 29.9256 + 8.01854i 1.18944 + 0.318709i
\(634\) −0.664916 0.178164i −0.0264072 0.00707579i
\(635\) 0 0
\(636\) 23.3646 + 40.4686i 0.926466 + 1.60469i
\(637\) −62.2458 −2.46627
\(638\) 0.176555 0.0473077i 0.00698987 0.00187293i
\(639\) 10.7030i 0.423402i
\(640\) 0 0
\(641\) 5.12828 8.88244i 0.202555 0.350835i −0.746796 0.665053i \(-0.768409\pi\)
0.949351 + 0.314218i \(0.101742\pi\)
\(642\) 1.19990 + 2.07828i 0.0473561 + 0.0820232i
\(643\) 12.2193 0.481883 0.240942 0.970540i \(-0.422544\pi\)
0.240942 + 0.970540i \(0.422544\pi\)
\(644\) −1.30330 + 0.349219i −0.0513573 + 0.0137612i
\(645\) 0 0
\(646\) −0.962601 + 0.257928i −0.0378730 + 0.0101481i
\(647\) −13.2479 + 7.64866i −0.520828 + 0.300700i −0.737273 0.675595i \(-0.763887\pi\)
0.216446 + 0.976295i \(0.430554\pi\)
\(648\) −3.99892 + 2.30878i −0.157093 + 0.0906974i
\(649\) −0.714231 + 0.191378i −0.0280360 + 0.00751223i
\(650\) 0 0
\(651\) −65.7612 + 17.6207i −2.57739 + 0.690608i
\(652\) −31.5479 −1.23551
\(653\) −22.6381 39.2103i −0.885897 1.53442i −0.844682 0.535268i \(-0.820211\pi\)
−0.0412146 0.999150i \(-0.513123\pi\)
\(654\) −0.701169 + 1.21446i −0.0274179 + 0.0474891i
\(655\) 0 0
\(656\) 21.6823i 0.846550i
\(657\) −8.82838 + 2.36556i −0.344428 + 0.0922892i
\(658\) 1.11023 0.0432813
\(659\) −20.6457 35.7594i −0.804243 1.39299i −0.916801 0.399344i \(-0.869238\pi\)
0.112559 0.993645i \(-0.464095\pi\)
\(660\) 0 0
\(661\) −22.9847 6.15874i −0.894003 0.239547i −0.217564 0.976046i \(-0.569811\pi\)
−0.676439 + 0.736499i \(0.736478\pi\)
\(662\) 2.93690 + 0.786939i 0.114146 + 0.0305852i
\(663\) 18.4064 68.6936i 0.714845 2.66784i
\(664\) 0.0991769 + 0.370133i 0.00384881 + 0.0143640i
\(665\) 0 0
\(666\) 0.644883 0.0836541i 0.0249887 0.00324153i
\(667\) −0.0756113 + 0.0756113i −0.00292768 + 0.00292768i
\(668\) −0.527540 + 0.913727i −0.0204111 + 0.0353531i
\(669\) −10.3045 17.8479i −0.398395 0.690040i
\(670\) 0 0
\(671\) −1.73849 + 6.48813i −0.0671137 + 0.250472i
\(672\) −11.3308 −0.437096
\(673\) −5.77687 + 21.5596i −0.222682 + 0.831060i 0.760638 + 0.649176i \(0.224886\pi\)
−0.983320 + 0.181884i \(0.941780\pi\)
\(674\) −0.606207 + 0.606207i −0.0233502 + 0.0233502i
\(675\) 0 0
\(676\) −17.0554 −0.655976
\(677\) 19.1688 + 19.1688i 0.736715 + 0.736715i 0.971941 0.235225i \(-0.0755828\pi\)
−0.235225 + 0.971941i \(0.575583\pi\)
\(678\) 1.68904 0.452578i 0.0648673 0.0173811i
\(679\) 7.64976 + 2.04975i 0.293571 + 0.0786621i
\(680\) 0 0
\(681\) −3.58374 13.3747i −0.137329 0.512520i
\(682\) 0.499696 + 1.86489i 0.0191343 + 0.0714103i
\(683\) −19.2407 11.1086i −0.736224 0.425059i 0.0844709 0.996426i \(-0.473080\pi\)
−0.820695 + 0.571367i \(0.806413\pi\)
\(684\) −0.650342 + 2.42711i −0.0248664 + 0.0928028i
\(685\) 0 0
\(686\) −0.786225 2.93423i −0.0300182 0.112030i
\(687\) 45.6600 12.2346i 1.74204 0.466778i
\(688\) 6.11308 + 3.52939i 0.233059 + 0.134557i
\(689\) −38.4987 + 38.4987i −1.46668 + 1.46668i
\(690\) 0 0
\(691\) −36.9526 21.3346i −1.40574 0.811606i −0.410769 0.911740i \(-0.634740\pi\)
−0.994974 + 0.100134i \(0.968073\pi\)
\(692\) −3.91197 + 3.91197i −0.148711 + 0.148711i
\(693\) −7.94020 + 7.94020i −0.301623 + 0.301623i
\(694\) 1.30651 2.26294i 0.0495943 0.0858999i
\(695\) 0 0
\(696\) −0.517965 + 0.299047i −0.0196334 + 0.0113354i
\(697\) 42.1021i 1.59473i
\(698\) 0.971200 + 1.68217i 0.0367605 + 0.0636710i
\(699\) −26.4699 + 15.2824i −1.00118 + 0.578033i
\(700\) 0 0
\(701\) −12.0518 + 3.22926i −0.455189 + 0.121967i −0.479126 0.877746i \(-0.659046\pi\)
0.0239375 + 0.999713i \(0.492380\pi\)
\(702\) −1.37132 1.37132i −0.0517573 0.0517573i
\(703\) −4.60914 + 5.98318i −0.173837 + 0.225660i
\(704\) 18.9031i 0.712436i
\(705\) 0 0
\(706\) −1.65647 + 0.956364i −0.0623421 + 0.0359932i
\(707\) −2.17072 + 8.10125i −0.0816385 + 0.304679i
\(708\) 1.04478 0.603206i 0.0392654 0.0226699i
\(709\) 36.3631 36.3631i 1.36565 1.36565i 0.499104 0.866542i \(-0.333663\pi\)
0.866542 0.499104i \(-0.166337\pi\)
\(710\) 0 0
\(711\) −3.69099 3.69099i −0.138423 0.138423i
\(712\) 0.835398 + 3.11775i 0.0313079 + 0.116843i
\(713\) −0.798658 0.798658i −0.0299100 0.0299100i
\(714\) 7.26616 0.271929
\(715\) 0 0
\(716\) 4.66661 17.4160i 0.174399 0.650867i
\(717\) 33.1518i 1.23808i
\(718\) −1.33690 + 2.31557i −0.0498926 + 0.0864165i
\(719\) −14.6985 8.48621i −0.548163 0.316482i 0.200218 0.979751i \(-0.435835\pi\)
−0.748381 + 0.663269i \(0.769168\pi\)
\(720\) 0 0
\(721\) 15.5385 + 4.16353i 0.578684 + 0.155058i
\(722\) −0.917181 1.58860i −0.0341340 0.0591218i
\(723\) 3.65517 6.33094i 0.135937 0.235450i
\(724\) 1.10827 1.91959i 0.0411887 0.0713409i
\(725\) 0 0
\(726\) −0.748995 0.748995i −0.0277978 0.0277978i
\(727\) 12.6935 7.32860i 0.470776 0.271803i −0.245788 0.969323i \(-0.579047\pi\)
0.716565 + 0.697521i \(0.245714\pi\)
\(728\) −2.27583 8.49351i −0.0843478 0.314790i
\(729\) 12.6847i 0.469803i
\(730\) 0 0
\(731\) −11.8702 6.85328i −0.439037 0.253478i
\(732\) 10.9592i 0.405062i
\(733\) 18.8454 + 5.04961i 0.696071 + 0.186512i 0.589470 0.807790i \(-0.299337\pi\)
0.106601 + 0.994302i \(0.466003\pi\)
\(734\) −0.841763 0.841763i −0.0310700 0.0310700i
\(735\) 0 0
\(736\) −0.0939899 0.162795i −0.00346451 0.00600072i
\(737\) 30.0692 + 8.05702i 1.10761 + 0.296784i
\(738\) 0.510291 + 0.294616i 0.0187841 + 0.0108450i
\(739\) −0.970989 −0.0357184 −0.0178592 0.999841i \(-0.505685\pi\)
−0.0178592 + 0.999841i \(0.505685\pi\)
\(740\) 0 0
\(741\) −11.5598 −0.424660
\(742\) −4.81753 2.78140i −0.176857 0.102108i
\(743\) 22.0611 + 5.91126i 0.809344 + 0.216863i 0.639683 0.768639i \(-0.279066\pi\)
0.169662 + 0.985502i \(0.445732\pi\)
\(744\) −3.15874 5.47110i −0.115805 0.200580i
\(745\) 0 0
\(746\) −2.27171 2.27171i −0.0831732 0.0831732i
\(747\) −0.898536 0.240762i −0.0328757 0.00880902i
\(748\) 37.1234i 1.35737i
\(749\) 44.5728 + 25.7341i 1.62865 + 0.940304i
\(750\) 0 0
\(751\) 39.2344i 1.43168i 0.698262 + 0.715842i \(0.253957\pi\)
−0.698262 + 0.715842i \(0.746043\pi\)
\(752\) −2.38190 8.88937i −0.0868589 0.324162i
\(753\) −13.4959 + 7.79185i −0.491817 + 0.283951i
\(754\) −0.245694 0.245694i −0.00894765 0.00894765i
\(755\) 0 0
\(756\) −17.8491 + 30.9156i −0.649167 + 1.12439i
\(757\) −17.2169 + 29.8205i −0.625757 + 1.08384i 0.362637 + 0.931931i \(0.381877\pi\)
−0.988394 + 0.151913i \(0.951457\pi\)
\(758\) 0.368605 + 0.638443i 0.0133884 + 0.0231893i
\(759\) −0.710513 0.190381i −0.0257900 0.00691040i
\(760\) 0 0
\(761\) 13.3522 + 7.70889i 0.484016 + 0.279447i 0.722089 0.691800i \(-0.243182\pi\)
−0.238072 + 0.971247i \(0.576516\pi\)
\(762\) −0.522113 + 0.904326i −0.0189142 + 0.0327603i
\(763\) 30.0759i 1.08882i
\(764\) −9.40459 + 35.0984i −0.340246 + 1.26982i
\(765\) 0 0
\(766\) 2.21036 0.0798637
\(767\) 0.993927 + 0.993927i 0.0358886 + 0.0358886i
\(768\) 7.84589 + 29.2812i 0.283114 + 1.05660i
\(769\) −8.34198 8.34198i −0.300819 0.300819i 0.540515 0.841334i \(-0.318229\pi\)
−0.841334 + 0.540515i \(0.818229\pi\)
\(770\) 0 0
\(771\) 38.2380 38.2380i 1.37711 1.37711i
\(772\) 11.5468 6.66655i 0.415578 0.239934i
\(773\) 7.88226 29.4170i 0.283505 1.05806i −0.666420 0.745577i \(-0.732174\pi\)
0.949925 0.312479i \(-0.101159\pi\)
\(774\) 0.166128 0.0959139i 0.00597134 0.00344755i
\(775\) 0 0
\(776\) 0.734890i 0.0263810i
\(777\) 43.7523 33.4404i 1.56960 1.19967i
\(778\) 2.16773 + 2.16773i 0.0777168 + 0.0777168i
\(779\) −6.61037 + 1.77124i −0.236841 + 0.0634614i
\(780\) 0 0
\(781\) 22.2595 12.8515i 0.796507 0.459864i
\(782\) 0.0602732 + 0.104396i 0.00215537 + 0.00373320i
\(783\) 2.82910i 0.101104i
\(784\) −45.6548 + 26.3588i −1.63053 + 0.941387i
\(785\) 0 0
\(786\) −1.43698 + 2.48893i −0.0512554 + 0.0887770i
\(787\) 12.7741 12.7741i 0.455348 0.455348i −0.441777 0.897125i \(-0.645652\pi\)
0.897125 + 0.441777i \(0.145652\pi\)
\(788\) 20.2860 20.2860i 0.722659 0.722659i
\(789\) −9.39775 5.42579i −0.334569 0.193163i
\(790\) 0 0
\(791\) 26.5184 26.5184i 0.942886 0.942886i
\(792\) −0.902392 0.520996i −0.0320651 0.0185128i
\(793\) 12.3337 3.30481i 0.437983 0.117357i
\(794\) 0.0430442 + 0.160643i 0.00152758 + 0.00570101i
\(795\) 0 0
\(796\) −4.86633 + 18.1614i −0.172483 + 0.643714i
\(797\) −11.4897 6.63356i −0.406985 0.234973i 0.282509 0.959265i \(-0.408833\pi\)
−0.689493 + 0.724292i \(0.742167\pi\)
\(798\) −0.305689 1.14085i −0.0108213 0.0403855i
\(799\) 4.62512 + 17.2612i 0.163625 + 0.610656i
\(800\) 0 0
\(801\) −7.56865 2.02801i −0.267425 0.0716564i
\(802\) 0.391760 0.104972i 0.0138335 0.00370668i
\(803\) 15.5204 + 15.5204i 0.547703 + 0.547703i
\(804\) −50.7901 −1.79123
\(805\) 0 0
\(806\) 2.59519 2.59519i 0.0914116 0.0914116i
\(807\) 9.47957 35.3782i 0.333697 1.24537i
\(808\) −0.778263 −0.0273792
\(809\) 7.16080 26.7245i 0.251760 0.939582i −0.718104 0.695936i \(-0.754990\pi\)
0.969864 0.243646i \(-0.0783435\pi\)
\(810\) 0 0
\(811\) 1.13841 + 1.97178i 0.0399749 + 0.0692385i 0.885321 0.464981i \(-0.153939\pi\)
−0.845346 + 0.534220i \(0.820606\pi\)
\(812\) −3.19795 + 5.53902i −0.112226 + 0.194381i
\(813\) 22.7194 22.7194i 0.796805 0.796805i
\(814\) −0.948319 1.24075i −0.0332386 0.0434882i
\(815\) 0 0
\(816\) −15.5889 58.1784i −0.545719 2.03665i
\(817\) −0.576638 + 2.15204i −0.0201740 + 0.0752904i
\(818\) −1.67628 0.449157i −0.0586096 0.0157044i
\(819\) 20.6189 + 5.52481i 0.720481 + 0.193052i
\(820\) 0 0
\(821\) −13.8253 23.9461i −0.482507 0.835726i 0.517292 0.855809i \(-0.326940\pi\)
−0.999798 + 0.0200830i \(0.993607\pi\)
\(822\) −2.22346 −0.0775520
\(823\) −3.44580 + 0.923299i −0.120113 + 0.0321842i −0.318375 0.947965i \(-0.603137\pi\)
0.198262 + 0.980149i \(0.436470\pi\)
\(824\) 1.49274i 0.0520020i
\(825\) 0 0
\(826\) −0.0718078 + 0.124375i −0.00249851 + 0.00432755i
\(827\) −17.2563 29.8888i −0.600060 1.03934i −0.992811 0.119690i \(-0.961810\pi\)
0.392751 0.919645i \(-0.371523\pi\)
\(828\) 0.303947 0.0105629
\(829\) 12.0971 3.24141i 0.420150 0.112579i −0.0425488 0.999094i \(-0.513548\pi\)
0.462699 + 0.886516i \(0.346881\pi\)
\(830\) 0 0
\(831\) 44.5719 11.9430i 1.54618 0.414298i
\(832\) −31.1198 + 17.9670i −1.07889 + 0.622895i
\(833\) 88.6515 51.1830i 3.07159 1.77338i
\(834\) −1.57599 + 0.422286i −0.0545722 + 0.0146226i
\(835\) 0 0
\(836\) 5.82868 1.56179i 0.201589 0.0540156i
\(837\) −29.8828 −1.03290
\(838\) −0.918102 1.59020i −0.0317153 0.0549326i
\(839\) −15.9229 + 27.5792i −0.549719 + 0.952141i 0.448575 + 0.893745i \(0.351932\pi\)
−0.998294 + 0.0583957i \(0.981401\pi\)
\(840\) 0 0
\(841\) 28.4931i 0.982521i
\(842\) −1.03582 + 0.277547i −0.0356967 + 0.00956490i
\(843\) −55.3987 −1.90803
\(844\) 15.3716 + 26.6244i 0.529112 + 0.916450i
\(845\) 0 0
\(846\) −0.241576 0.0647300i −0.00830554 0.00222546i
\(847\) −21.9434 5.87971i −0.753983 0.202029i
\(848\) −11.9345 + 44.5401i −0.409831 + 1.52951i
\(849\) −2.94275 10.9825i −0.100995 0.376918i
\(850\) 0 0
\(851\) 0.843382 + 0.351219i 0.0289108 + 0.0120396i
\(852\) −29.6531 + 29.6531i −1.01590 + 1.01590i
\(853\) −8.54847 + 14.8064i −0.292694 + 0.506961i −0.974446 0.224623i \(-0.927885\pi\)
0.681752 + 0.731583i \(0.261218\pi\)
\(854\) 0.652308 + 1.12983i 0.0223215 + 0.0386620i
\(855\) 0 0
\(856\) −1.23610 + 4.61318i −0.0422490 + 0.157675i
\(857\) 13.4046 0.457892 0.228946 0.973439i \(-0.426472\pi\)
0.228946 + 0.973439i \(0.426472\pi\)
\(858\) 0.618632 2.30877i 0.0211197 0.0788199i
\(859\) −7.23511 + 7.23511i −0.246859 + 0.246859i −0.819680 0.572821i \(-0.805849\pi\)
0.572821 + 0.819680i \(0.305849\pi\)
\(860\) 0 0
\(861\) 49.8981 1.70052
\(862\) 2.13714 + 2.13714i 0.0727912 + 0.0727912i
\(863\) 2.40453 0.644292i 0.0818512 0.0219320i −0.217661 0.976024i \(-0.569843\pi\)
0.299512 + 0.954092i \(0.403176\pi\)
\(864\) −4.80398 1.28722i −0.163435 0.0437922i
\(865\) 0 0
\(866\) 0.465314 + 1.73658i 0.0158120 + 0.0590113i
\(867\) 21.4511 + 80.0565i 0.728516 + 2.71886i
\(868\) −58.5068 33.7789i −1.98585 1.14653i
\(869\) −3.24441 + 12.1083i −0.110059 + 0.410746i
\(870\) 0 0
\(871\) −15.3161 57.1606i −0.518967 1.93681i
\(872\) −2.69575 + 0.722324i −0.0912896 + 0.0244610i
\(873\) −1.54501 0.892010i −0.0522906 0.0301900i
\(874\) 0.0138554 0.0138554i 0.000468664 0.000468664i
\(875\) 0 0
\(876\) −31.0134 17.9056i −1.04785 0.604975i
\(877\) −11.4866 + 11.4866i −0.387875 + 0.387875i −0.873929 0.486054i \(-0.838436\pi\)
0.486054 + 0.873929i \(0.338436\pi\)
\(878\) −0.748664 + 0.748664i −0.0252662 + 0.0252662i
\(879\) 13.9666 24.1908i 0.471081 0.815935i
\(880\) 0 0
\(881\) −46.0684 + 26.5976i −1.55208 + 0.896096i −0.554112 + 0.832442i \(0.686942\pi\)
−0.997972 + 0.0636536i \(0.979725\pi\)
\(882\) 1.43264i 0.0482396i
\(883\) −13.3117 23.0566i −0.447975 0.775916i 0.550279 0.834981i \(-0.314521\pi\)
−0.998254 + 0.0590650i \(0.981188\pi\)
\(884\) 61.1157 35.2852i 2.05554 1.18677i
\(885\) 0 0
\(886\) −3.94598 + 1.05732i −0.132568 + 0.0355214i
\(887\) −21.7089 21.7089i −0.728912 0.728912i 0.241491 0.970403i \(-0.422364\pi\)
−0.970403 + 0.241491i \(0.922364\pi\)
\(888\) 4.04811 + 3.11846i 0.135846 + 0.104649i
\(889\) 22.3955i 0.751120i
\(890\) 0 0
\(891\) −23.3132 + 13.4599i −0.781021 + 0.450923i
\(892\) 5.29301 19.7538i 0.177223 0.661405i
\(893\) 2.51556 1.45236i 0.0841801 0.0486014i
\(894\) −0.252186 + 0.252186i −0.00843435 + 0.00843435i
\(895\) 0 0
\(896\) −10.5908 10.5908i −0.353813 0.353813i
\(897\) 0.361908 + 1.35066i 0.0120838 + 0.0450972i
\(898\) 1.86575 + 1.86575i 0.0622609 + 0.0622609i
\(899\) −5.35397 −0.178565
\(900\) 0 0
\(901\) 23.1741 86.4869i 0.772041 2.88130i
\(902\) 1.41504i 0.0471156i
\(903\) 8.12230 14.0682i 0.270293 0.468162i
\(904\) 3.01378 + 1.74001i 0.100237 + 0.0578717i
\(905\) 0 0
\(906\) 2.29838 + 0.615849i 0.0763586 + 0.0204602i
\(907\) −5.33028 9.23231i −0.176989 0.306554i 0.763859 0.645383i \(-0.223302\pi\)
−0.940848 + 0.338830i \(0.889969\pi\)
\(908\) 6.87006 11.8993i 0.227991 0.394892i
\(909\) 0.944656 1.63619i 0.0313323 0.0542691i
\(910\) 0 0
\(911\) 10.7665 + 10.7665i 0.356708 + 0.356708i 0.862598 0.505890i \(-0.168836\pi\)
−0.505890 + 0.862598i \(0.668836\pi\)
\(912\) −8.47866 + 4.89515i −0.280756 + 0.162095i
\(913\) 0.578188 + 2.15783i 0.0191352 + 0.0714136i
\(914\) 0.184097i 0.00608938i
\(915\) 0 0
\(916\) 40.6231 + 23.4538i 1.34222 + 0.774934i
\(917\) 61.6378i 2.03546i
\(918\) 3.08066 + 0.825461i 0.101677 + 0.0272443i
\(919\) −13.7345 13.7345i −0.453059 0.453059i 0.443310 0.896368i \(-0.353804\pi\)
−0.896368 + 0.443310i \(0.853804\pi\)
\(920\) 0 0
\(921\) 10.3930 + 18.0013i 0.342463 + 0.593162i
\(922\) −1.88436 0.504913i −0.0620581 0.0166284i
\(923\) −42.3145 24.4303i −1.39280 0.804133i
\(924\) −43.9975 −1.44741
\(925\) 0 0
\(926\) −2.20202 −0.0723629
\(927\) −3.13828 1.81189i −0.103075 0.0595102i
\(928\) −0.860707 0.230626i −0.0282541 0.00757066i
\(929\) −2.36184 4.09083i −0.0774895 0.134216i 0.824677 0.565604i \(-0.191357\pi\)
−0.902166 + 0.431389i \(0.858024\pi\)
\(930\) 0 0
\(931\) −11.7657 11.7657i −0.385606 0.385606i
\(932\) −29.2964 7.84996i −0.959637 0.257134i
\(933\) 3.58980i 0.117525i
\(934\) −2.00529 1.15775i −0.0656149 0.0378828i
\(935\) 0 0
\(936\) 1.98079i 0.0647442i
\(937\) −10.1474 37.8706i −0.331501 1.23718i −0.907613 0.419808i \(-0.862097\pi\)
0.576112 0.817371i \(-0.304569\pi\)
\(938\) 5.23619 3.02312i 0.170968 0.0987083i
\(939\) −38.4957 38.4957i −1.25626 1.25626i
\(940\) 0 0
\(941\) 3.93030 6.80748i 0.128124 0.221917i −0.794826 0.606838i \(-0.792438\pi\)
0.922950 + 0.384920i \(0.125771\pi\)
\(942\) 0.990700 1.71594i 0.0322788 0.0559085i
\(943\) 0.413908 + 0.716910i 0.0134787 + 0.0233458i
\(944\) 1.14990 + 0.308114i 0.0374260 + 0.0100283i
\(945\) 0 0
\(946\) −0.398954 0.230336i −0.0129711 0.00748888i
\(947\) 20.1394 34.8825i 0.654444 1.13353i −0.327589 0.944820i \(-0.606236\pi\)
0.982033 0.188710i \(-0.0604306\pi\)
\(948\) 20.4522i 0.664257i
\(949\) 10.7991 40.3029i 0.350555 1.30829i
\(950\) 0 0
\(951\) 13.1316 0.425820
\(952\) 10.2252 + 10.2252i 0.331402 + 0.331402i
\(953\) 7.91365 + 29.5341i 0.256348 + 0.956705i 0.967335 + 0.253500i \(0.0815817\pi\)
−0.710987 + 0.703205i \(0.751752\pi\)
\(954\) 0.886083 + 0.886083i 0.0286880 + 0.0286880i
\(955\) 0 0
\(956\) 23.2617 23.2617i 0.752338 0.752338i
\(957\) −3.01967 + 1.74341i −0.0976120 + 0.0563563i
\(958\) −0.746652 + 2.78654i −0.0241232 + 0.0900292i
\(959\) −41.2976 + 23.8432i −1.33357 + 0.769937i
\(960\) 0 0
\(961\) 25.5523i 0.824267i
\(962\) −1.14126 + 2.74051i −0.0367958 + 0.0883577i
\(963\) −8.19822 8.19822i −0.264184 0.264184i
\(964\) 7.00699 1.87752i 0.225680 0.0604707i
\(965\) 0 0
\(966\) −0.123727 + 0.0714340i −0.00398086 + 0.00229835i
\(967\) 10.0949 + 17.4848i 0.324629 + 0.562273i 0.981437 0.191784i \(-0.0614274\pi\)
−0.656809 + 0.754057i \(0.728094\pi\)
\(968\) 2.10803i 0.0677548i
\(969\) 16.4637 9.50530i 0.528889 0.305354i
\(970\) 0 0
\(971\) −13.3211 + 23.0728i −0.427494 + 0.740441i −0.996650 0.0817885i \(-0.973937\pi\)
0.569156 + 0.822230i \(0.307270\pi\)
\(972\) 14.2908 14.2908i 0.458379 0.458379i
\(973\) −24.7435 + 24.7435i −0.793240 + 0.793240i
\(974\) 3.22802 + 1.86370i 0.103432 + 0.0597167i
\(975\) 0 0
\(976\) 7.64683 7.64683i 0.244769 0.244769i
\(977\) 5.30924 + 3.06529i 0.169858 + 0.0980674i 0.582519 0.812817i \(-0.302067\pi\)
−0.412661 + 0.910885i \(0.635401\pi\)
\(978\) −3.22662 + 0.864569i −0.103176 + 0.0276459i
\(979\) 4.87026 + 18.1760i 0.155654 + 0.580909i
\(980\) 0 0
\(981\) 1.75352 6.54421i 0.0559855 0.208941i
\(982\) 0.135302 + 0.0781165i 0.00431765 + 0.00249280i
\(983\) −5.47856 20.4463i −0.174739 0.652134i −0.996596 0.0824406i \(-0.973729\pi\)
0.821857 0.569694i \(-0.192938\pi\)
\(984\) 1.19839 + 4.47246i 0.0382033 + 0.142577i
\(985\) 0 0
\(986\) 0.551949 + 0.147894i 0.0175776 + 0.00470991i
\(987\) −20.4574 + 5.48155i −0.651166 + 0.174480i
\(988\) −8.11121 8.11121i −0.258052 0.258052i
\(989\) 0.269500 0.00856960
\(990\) 0 0
\(991\) −24.8692 + 24.8692i −0.789997 + 0.789997i −0.981493 0.191497i \(-0.938666\pi\)
0.191497 + 0.981493i \(0.438666\pi\)
\(992\) 2.43603 9.09137i 0.0773439 0.288651i
\(993\) −58.0013 −1.84062
\(994\) 1.29207 4.82209i 0.0409821 0.152947i
\(995\) 0 0
\(996\) −1.82240 3.15649i −0.0577449 0.100017i
\(997\) 8.91895 15.4481i 0.282466 0.489245i −0.689526 0.724261i \(-0.742181\pi\)
0.971992 + 0.235016i \(0.0755143\pi\)
\(998\) −1.63977 + 1.63977i −0.0519060 + 0.0519060i
\(999\) 22.3488 9.20745i 0.707084 0.291311i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.9 68
5.2 odd 4 925.2.t.b.282.9 68
5.3 odd 4 185.2.p.a.97.9 68
5.4 even 2 185.2.u.a.23.9 yes 68
37.29 odd 12 925.2.t.b.843.9 68
185.29 odd 12 185.2.p.a.103.9 yes 68
185.103 even 12 185.2.u.a.177.9 yes 68
185.177 even 12 inner 925.2.y.b.732.9 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.9 68 5.3 odd 4
185.2.p.a.103.9 yes 68 185.29 odd 12
185.2.u.a.23.9 yes 68 5.4 even 2
185.2.u.a.177.9 yes 68 185.103 even 12
925.2.t.b.282.9 68 5.2 odd 4
925.2.t.b.843.9 68 37.29 odd 12
925.2.y.b.393.9 68 1.1 even 1 trivial
925.2.y.b.732.9 68 185.177 even 12 inner