Properties

Label 925.2.y.b.393.13
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.13
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14153 + 0.659061i) q^{2} +(1.18821 + 0.318379i) q^{3} +(-0.131277 - 0.227378i) q^{4} +(1.14654 + 1.14654i) q^{6} +(-4.13076 - 1.10683i) q^{7} -2.98232i q^{8} +(-1.28760 - 0.743399i) q^{9} -4.89589i q^{11} +(-0.0835914 - 0.311968i) q^{12} +(-2.57679 + 1.48771i) q^{13} +(-3.98591 - 3.98591i) q^{14} +(1.70298 - 2.94965i) q^{16} +(-2.10881 + 3.65256i) q^{17} +(-0.979891 - 1.69722i) q^{18} +(4.90693 + 1.31481i) q^{19} +(-4.55581 - 2.63030i) q^{21} +(3.22669 - 5.58880i) q^{22} -6.57051i q^{23} +(0.949509 - 3.54362i) q^{24} -3.92197 q^{26} +(-3.90274 - 3.90274i) q^{27} +(0.290603 + 1.08454i) q^{28} +(-0.417950 - 0.417950i) q^{29} +(3.03803 - 3.03803i) q^{31} +(-1.27754 + 0.737586i) q^{32} +(1.55875 - 5.81734i) q^{33} +(-4.81453 + 2.77967i) q^{34} +0.390363i q^{36} +(-0.219784 + 6.07879i) q^{37} +(4.73486 + 4.73486i) q^{38} +(-3.53541 + 0.947311i) q^{39} +(-0.897477 + 0.518158i) q^{41} +(-3.46706 - 6.00512i) q^{42} +3.17618i q^{43} +(-1.11322 + 0.642716i) q^{44} +(4.33037 - 7.50041i) q^{46} +(4.44958 - 4.44958i) q^{47} +(2.96260 - 2.96260i) q^{48} +(9.77595 + 5.64415i) q^{49} +(-3.66860 + 3.66860i) q^{51} +(0.676543 + 0.390602i) q^{52} +(6.40827 - 1.71709i) q^{53} +(-1.88294 - 7.02724i) q^{54} +(-3.30094 + 12.3193i) q^{56} +(5.41184 + 3.12453i) q^{57} +(-0.201647 - 0.752555i) q^{58} +(1.57132 + 5.86425i) q^{59} +(1.68182 + 0.450642i) q^{61} +(5.47024 - 1.46575i) q^{62} +(4.49597 + 4.49597i) q^{63} -8.75638 q^{64} +(5.61334 - 5.61334i) q^{66} +(3.09017 - 11.5327i) q^{67} +1.10735 q^{68} +(2.09191 - 7.80712i) q^{69} +(-1.78413 - 3.09021i) q^{71} +(-2.21705 + 3.84005i) q^{72} +(-2.50291 + 2.50291i) q^{73} +(-4.25718 + 6.79426i) q^{74} +(-0.345207 - 1.28833i) q^{76} +(-5.41895 + 20.2238i) q^{77} +(-4.66011 - 1.24867i) q^{78} +(-3.97409 - 1.06485i) q^{79} +(-1.16452 - 2.01701i) q^{81} -1.36599 q^{82} +(-2.57020 + 0.688684i) q^{83} +1.38119i q^{84} +(-2.09329 + 3.62569i) q^{86} +(-0.363544 - 0.629677i) q^{87} -14.6011 q^{88} +(-11.4703 + 3.07346i) q^{89} +(12.2907 - 3.29330i) q^{91} +(-1.49399 + 0.862553i) q^{92} +(4.57706 - 2.64257i) q^{93} +(8.01187 - 2.14677i) q^{94} +(-1.75281 + 0.469664i) q^{96} +10.2570 q^{97} +(7.43968 + 12.8859i) q^{98} +(-3.63960 + 6.30397i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14153 + 0.659061i 0.807182 + 0.466027i 0.845976 0.533221i \(-0.179018\pi\)
−0.0387944 + 0.999247i \(0.512352\pi\)
\(3\) 1.18821 + 0.318379i 0.686012 + 0.183816i 0.584957 0.811064i \(-0.301111\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(4\) −0.131277 0.227378i −0.0656383 0.113689i
\(5\) 0 0
\(6\) 1.14654 + 1.14654i 0.468073 + 0.468073i
\(7\) −4.13076 1.10683i −1.56128 0.418344i −0.628213 0.778041i \(-0.716213\pi\)
−0.933069 + 0.359697i \(0.882880\pi\)
\(8\) 2.98232i 1.05441i
\(9\) −1.28760 0.743399i −0.429201 0.247800i
\(10\) 0 0
\(11\) 4.89589i 1.47617i −0.674709 0.738084i \(-0.735731\pi\)
0.674709 0.738084i \(-0.264269\pi\)
\(12\) −0.0835914 0.311968i −0.0241308 0.0900573i
\(13\) −2.57679 + 1.48771i −0.714672 + 0.412616i −0.812789 0.582559i \(-0.802052\pi\)
0.0981164 + 0.995175i \(0.468718\pi\)
\(14\) −3.98591 3.98591i −1.06528 1.06528i
\(15\) 0 0
\(16\) 1.70298 2.94965i 0.425745 0.737412i
\(17\) −2.10881 + 3.65256i −0.511461 + 0.885877i 0.488450 + 0.872592i \(0.337562\pi\)
−0.999912 + 0.0132853i \(0.995771\pi\)
\(18\) −0.979891 1.69722i −0.230962 0.400039i
\(19\) 4.90693 + 1.31481i 1.12573 + 0.301638i 0.773199 0.634164i \(-0.218655\pi\)
0.352528 + 0.935801i \(0.385322\pi\)
\(20\) 0 0
\(21\) −4.55581 2.63030i −0.994160 0.573978i
\(22\) 3.22669 5.58880i 0.687933 1.19154i
\(23\) 6.57051i 1.37005i −0.728522 0.685023i \(-0.759792\pi\)
0.728522 0.685023i \(-0.240208\pi\)
\(24\) 0.949509 3.54362i 0.193818 0.723338i
\(25\) 0 0
\(26\) −3.92197 −0.769161
\(27\) −3.90274 3.90274i −0.751083 0.751083i
\(28\) 0.290603 + 1.08454i 0.0549188 + 0.204960i
\(29\) −0.417950 0.417950i −0.0776113 0.0776113i 0.667236 0.744847i \(-0.267477\pi\)
−0.744847 + 0.667236i \(0.767477\pi\)
\(30\) 0 0
\(31\) 3.03803 3.03803i 0.545646 0.545646i −0.379532 0.925179i \(-0.623915\pi\)
0.925179 + 0.379532i \(0.123915\pi\)
\(32\) −1.27754 + 0.737586i −0.225839 + 0.130388i
\(33\) 1.55875 5.81734i 0.271344 1.01267i
\(34\) −4.81453 + 2.77967i −0.825685 + 0.476709i
\(35\) 0 0
\(36\) 0.390363i 0.0650605i
\(37\) −0.219784 + 6.07879i −0.0361323 + 0.999347i
\(38\) 4.73486 + 4.73486i 0.768095 + 0.768095i
\(39\) −3.53541 + 0.947311i −0.566119 + 0.151691i
\(40\) 0 0
\(41\) −0.897477 + 0.518158i −0.140162 + 0.0809228i −0.568441 0.822724i \(-0.692453\pi\)
0.428279 + 0.903647i \(0.359120\pi\)
\(42\) −3.46706 6.00512i −0.534978 0.926610i
\(43\) 3.17618i 0.484362i 0.970231 + 0.242181i \(0.0778628\pi\)
−0.970231 + 0.242181i \(0.922137\pi\)
\(44\) −1.11322 + 0.642716i −0.167824 + 0.0968931i
\(45\) 0 0
\(46\) 4.33037 7.50041i 0.638478 1.10588i
\(47\) 4.44958 4.44958i 0.649038 0.649038i −0.303722 0.952761i \(-0.598230\pi\)
0.952761 + 0.303722i \(0.0982295\pi\)
\(48\) 2.96260 2.96260i 0.427615 0.427615i
\(49\) 9.77595 + 5.64415i 1.39656 + 0.806307i
\(50\) 0 0
\(51\) −3.66860 + 3.66860i −0.513707 + 0.513707i
\(52\) 0.676543 + 0.390602i 0.0938197 + 0.0541668i
\(53\) 6.40827 1.71709i 0.880243 0.235861i 0.209731 0.977759i \(-0.432741\pi\)
0.670512 + 0.741899i \(0.266074\pi\)
\(54\) −1.88294 7.02724i −0.256236 0.956286i
\(55\) 0 0
\(56\) −3.30094 + 12.3193i −0.441106 + 1.64623i
\(57\) 5.41184 + 3.12453i 0.716816 + 0.413854i
\(58\) −0.201647 0.752555i −0.0264775 0.0988154i
\(59\) 1.57132 + 5.86425i 0.204568 + 0.763460i 0.989581 + 0.143979i \(0.0459899\pi\)
−0.785012 + 0.619480i \(0.787343\pi\)
\(60\) 0 0
\(61\) 1.68182 + 0.450642i 0.215335 + 0.0576988i 0.364874 0.931057i \(-0.381112\pi\)
−0.149539 + 0.988756i \(0.547779\pi\)
\(62\) 5.47024 1.46575i 0.694722 0.186150i
\(63\) 4.49597 + 4.49597i 0.566439 + 0.566439i
\(64\) −8.75638 −1.09455
\(65\) 0 0
\(66\) 5.61334 5.61334i 0.690954 0.690954i
\(67\) 3.09017 11.5327i 0.377524 1.40894i −0.472097 0.881547i \(-0.656503\pi\)
0.849621 0.527394i \(-0.176831\pi\)
\(68\) 1.10735 0.134286
\(69\) 2.09191 7.80712i 0.251837 0.939867i
\(70\) 0 0
\(71\) −1.78413 3.09021i −0.211738 0.366741i 0.740521 0.672034i \(-0.234579\pi\)
−0.952258 + 0.305293i \(0.901246\pi\)
\(72\) −2.21705 + 3.84005i −0.261282 + 0.452554i
\(73\) −2.50291 + 2.50291i −0.292943 + 0.292943i −0.838242 0.545298i \(-0.816416\pi\)
0.545298 + 0.838242i \(0.316416\pi\)
\(74\) −4.25718 + 6.79426i −0.494888 + 0.789816i
\(75\) 0 0
\(76\) −0.345207 1.28833i −0.0395979 0.147781i
\(77\) −5.41895 + 20.2238i −0.617546 + 2.30471i
\(78\) −4.66011 1.24867i −0.527653 0.141384i
\(79\) −3.97409 1.06485i −0.447120 0.119805i 0.0282316 0.999601i \(-0.491012\pi\)
−0.475351 + 0.879796i \(0.657679\pi\)
\(80\) 0 0
\(81\) −1.16452 2.01701i −0.129391 0.224112i
\(82\) −1.36599 −0.150849
\(83\) −2.57020 + 0.688684i −0.282117 + 0.0755929i −0.397103 0.917774i \(-0.629984\pi\)
0.114986 + 0.993367i \(0.463318\pi\)
\(84\) 1.38119i 0.150700i
\(85\) 0 0
\(86\) −2.09329 + 3.62569i −0.225726 + 0.390968i
\(87\) −0.363544 0.629677i −0.0389760 0.0675085i
\(88\) −14.6011 −1.55649
\(89\) −11.4703 + 3.07346i −1.21585 + 0.325786i −0.809055 0.587734i \(-0.800020\pi\)
−0.406795 + 0.913519i \(0.633354\pi\)
\(90\) 0 0
\(91\) 12.2907 3.29330i 1.28842 0.345231i
\(92\) −1.49399 + 0.862553i −0.155759 + 0.0899274i
\(93\) 4.57706 2.64257i 0.474619 0.274021i
\(94\) 8.01187 2.14677i 0.826361 0.221423i
\(95\) 0 0
\(96\) −1.75281 + 0.469664i −0.178895 + 0.0479349i
\(97\) 10.2570 1.04144 0.520719 0.853728i \(-0.325664\pi\)
0.520719 + 0.853728i \(0.325664\pi\)
\(98\) 7.43968 + 12.8859i 0.751521 + 1.30167i
\(99\) −3.63960 + 6.30397i −0.365794 + 0.633573i
\(100\) 0 0
\(101\) 19.0134i 1.89190i −0.324311 0.945951i \(-0.605132\pi\)
0.324311 0.945951i \(-0.394868\pi\)
\(102\) −6.60565 + 1.76998i −0.654056 + 0.175254i
\(103\) 18.1801 1.79133 0.895667 0.444724i \(-0.146698\pi\)
0.895667 + 0.444724i \(0.146698\pi\)
\(104\) 4.43683 + 7.68481i 0.435067 + 0.753558i
\(105\) 0 0
\(106\) 8.44688 + 2.26334i 0.820434 + 0.219835i
\(107\) −6.32701 1.69532i −0.611656 0.163893i −0.0603240 0.998179i \(-0.519213\pi\)
−0.551332 + 0.834286i \(0.685880\pi\)
\(108\) −0.375058 + 1.39974i −0.0360900 + 0.134690i
\(109\) −1.79221 6.68861i −0.171662 0.640652i −0.997096 0.0761534i \(-0.975736\pi\)
0.825434 0.564499i \(-0.190931\pi\)
\(110\) 0 0
\(111\) −2.19651 + 7.15289i −0.208483 + 0.678922i
\(112\) −10.2994 + 10.2994i −0.973200 + 0.973200i
\(113\) −0.777094 + 1.34597i −0.0731029 + 0.126618i −0.900260 0.435353i \(-0.856623\pi\)
0.827157 + 0.561971i \(0.189957\pi\)
\(114\) 4.11851 + 7.13347i 0.385734 + 0.668111i
\(115\) 0 0
\(116\) −0.0401654 + 0.149899i −0.00372926 + 0.0139178i
\(117\) 4.42384 0.408984
\(118\) −2.07119 + 7.72979i −0.190669 + 0.711585i
\(119\) 12.7538 12.7538i 1.16914 1.16914i
\(120\) 0 0
\(121\) −12.9698 −1.17907
\(122\) 1.62284 + 1.62284i 0.146925 + 0.146925i
\(123\) −1.23136 + 0.329942i −0.111028 + 0.0297498i
\(124\) −1.08960 0.291958i −0.0978492 0.0262186i
\(125\) 0 0
\(126\) 2.16915 + 8.09539i 0.193244 + 0.721195i
\(127\) −4.21459 15.7291i −0.373984 1.39573i −0.854823 0.518920i \(-0.826334\pi\)
0.480839 0.876809i \(-0.340332\pi\)
\(128\) −7.44057 4.29582i −0.657660 0.379700i
\(129\) −1.01123 + 3.77396i −0.0890337 + 0.332278i
\(130\) 0 0
\(131\) 3.68624 + 13.7572i 0.322068 + 1.20197i 0.917227 + 0.398366i \(0.130423\pi\)
−0.595158 + 0.803608i \(0.702911\pi\)
\(132\) −1.52736 + 0.409255i −0.132940 + 0.0356211i
\(133\) −18.8141 10.8623i −1.63139 0.941883i
\(134\) 11.1283 11.1283i 0.961335 0.961335i
\(135\) 0 0
\(136\) 10.8931 + 6.28915i 0.934078 + 0.539290i
\(137\) 7.34260 7.34260i 0.627321 0.627321i −0.320072 0.947393i \(-0.603707\pi\)
0.947393 + 0.320072i \(0.103707\pi\)
\(138\) 7.53335 7.53335i 0.641281 0.641281i
\(139\) 4.37561 7.57878i 0.371135 0.642824i −0.618606 0.785702i \(-0.712302\pi\)
0.989740 + 0.142877i \(0.0456355\pi\)
\(140\) 0 0
\(141\) 6.70368 3.87037i 0.564552 0.325944i
\(142\) 4.70341i 0.394702i
\(143\) 7.28366 + 12.6157i 0.609091 + 1.05498i
\(144\) −4.38553 + 2.53199i −0.365461 + 0.210999i
\(145\) 0 0
\(146\) −4.50671 + 1.20757i −0.372978 + 0.0999392i
\(147\) 9.81888 + 9.81888i 0.809848 + 0.809848i
\(148\) 1.41103 0.748029i 0.115986 0.0614876i
\(149\) 16.7086i 1.36883i −0.729095 0.684413i \(-0.760059\pi\)
0.729095 0.684413i \(-0.239941\pi\)
\(150\) 0 0
\(151\) −3.85044 + 2.22305i −0.313344 + 0.180909i −0.648422 0.761281i \(-0.724571\pi\)
0.335078 + 0.942190i \(0.391237\pi\)
\(152\) 3.92118 14.6340i 0.318050 1.18698i
\(153\) 5.43062 3.13537i 0.439040 0.253480i
\(154\) −19.5146 + 19.5146i −1.57253 + 1.57253i
\(155\) 0 0
\(156\) 0.679514 + 0.679514i 0.0544047 + 0.0544047i
\(157\) −2.50499 9.34877i −0.199920 0.746113i −0.990938 0.134320i \(-0.957115\pi\)
0.791018 0.611793i \(-0.209552\pi\)
\(158\) −3.83473 3.83473i −0.305075 0.305075i
\(159\) 8.16104 0.647213
\(160\) 0 0
\(161\) −7.27247 + 27.1412i −0.573151 + 2.13903i
\(162\) 3.06996i 0.241199i
\(163\) −8.18322 + 14.1737i −0.640959 + 1.11017i 0.344260 + 0.938874i \(0.388130\pi\)
−0.985219 + 0.171299i \(0.945203\pi\)
\(164\) 0.235635 + 0.136044i 0.0184000 + 0.0106233i
\(165\) 0 0
\(166\) −3.38784 0.907770i −0.262948 0.0704566i
\(167\) 4.92891 + 8.53712i 0.381411 + 0.660623i 0.991264 0.131892i \(-0.0421051\pi\)
−0.609854 + 0.792514i \(0.708772\pi\)
\(168\) −7.84440 + 13.5869i −0.605209 + 1.04825i
\(169\) −2.07344 + 3.59131i −0.159496 + 0.276255i
\(170\) 0 0
\(171\) −5.34076 5.34076i −0.408418 0.408418i
\(172\) 0.722191 0.416957i 0.0550666 0.0317927i
\(173\) −1.95280 7.28794i −0.148468 0.554092i −0.999576 0.0291012i \(-0.990735\pi\)
0.851108 0.524991i \(-0.175931\pi\)
\(174\) 0.958392i 0.0726555i
\(175\) 0 0
\(176\) −14.4412 8.33761i −1.08854 0.628471i
\(177\) 7.46822i 0.561346i
\(178\) −15.1193 4.05119i −1.13324 0.303650i
\(179\) 15.1099 + 15.1099i 1.12937 + 1.12937i 0.990280 + 0.139089i \(0.0444174\pi\)
0.139089 + 0.990280i \(0.455583\pi\)
\(180\) 0 0
\(181\) −0.167025 0.289295i −0.0124148 0.0215032i 0.859751 0.510713i \(-0.170619\pi\)
−0.872166 + 0.489210i \(0.837285\pi\)
\(182\) 16.2007 + 4.34097i 1.20088 + 0.321774i
\(183\) 1.85487 + 1.07091i 0.137116 + 0.0791641i
\(184\) −19.5954 −1.44459
\(185\) 0 0
\(186\) 6.96645 0.510805
\(187\) 17.8826 + 10.3245i 1.30770 + 0.755003i
\(188\) −1.59586 0.427610i −0.116390 0.0311866i
\(189\) 11.8016 + 20.4410i 0.858442 + 1.48686i
\(190\) 0 0
\(191\) −2.98486 2.98486i −0.215977 0.215977i 0.590824 0.806801i \(-0.298803\pi\)
−0.806801 + 0.590824i \(0.798803\pi\)
\(192\) −10.4044 2.78785i −0.750872 0.201196i
\(193\) 7.99715i 0.575648i −0.957683 0.287824i \(-0.907068\pi\)
0.957683 0.287824i \(-0.0929318\pi\)
\(194\) 11.7086 + 6.75997i 0.840629 + 0.485338i
\(195\) 0 0
\(196\) 2.96378i 0.211698i
\(197\) 1.27223 + 4.74803i 0.0906426 + 0.338283i 0.996323 0.0856786i \(-0.0273058\pi\)
−0.905680 + 0.423962i \(0.860639\pi\)
\(198\) −8.30941 + 4.79744i −0.590524 + 0.340939i
\(199\) 7.98996 + 7.98996i 0.566393 + 0.566393i 0.931116 0.364723i \(-0.118836\pi\)
−0.364723 + 0.931116i \(0.618836\pi\)
\(200\) 0 0
\(201\) 7.34353 12.7194i 0.517973 0.897155i
\(202\) 12.5310 21.7043i 0.881676 1.52711i
\(203\) 1.26385 + 2.18905i 0.0887049 + 0.153641i
\(204\) 1.31576 + 0.352557i 0.0921216 + 0.0246839i
\(205\) 0 0
\(206\) 20.7530 + 11.9818i 1.44593 + 0.834810i
\(207\) −4.88451 + 8.46021i −0.339497 + 0.588025i
\(208\) 10.1342i 0.702677i
\(209\) 6.43716 24.0238i 0.445268 1.66176i
\(210\) 0 0
\(211\) −16.1514 −1.11191 −0.555955 0.831213i \(-0.687647\pi\)
−0.555955 + 0.831213i \(0.687647\pi\)
\(212\) −1.23168 1.23168i −0.0845923 0.0845923i
\(213\) −1.13606 4.23984i −0.0778417 0.290509i
\(214\) −6.10514 6.10514i −0.417339 0.417339i
\(215\) 0 0
\(216\) −11.6392 + 11.6392i −0.791950 + 0.791950i
\(217\) −15.9120 + 9.18679i −1.08018 + 0.623640i
\(218\) 2.36235 8.81640i 0.159998 0.597122i
\(219\) −3.77085 + 2.17710i −0.254811 + 0.147115i
\(220\) 0 0
\(221\) 12.5492i 0.844149i
\(222\) −7.22157 + 6.71759i −0.484680 + 0.450855i
\(223\) 2.37166 + 2.37166i 0.158818 + 0.158818i 0.782043 0.623225i \(-0.214178\pi\)
−0.623225 + 0.782043i \(0.714178\pi\)
\(224\) 6.09359 1.63277i 0.407145 0.109094i
\(225\) 0 0
\(226\) −1.77415 + 1.02431i −0.118015 + 0.0681358i
\(227\) 2.15053 + 3.72482i 0.142735 + 0.247225i 0.928526 0.371268i \(-0.121077\pi\)
−0.785790 + 0.618493i \(0.787744\pi\)
\(228\) 1.64071i 0.108659i
\(229\) −6.37880 + 3.68280i −0.421523 + 0.243366i −0.695729 0.718305i \(-0.744918\pi\)
0.274206 + 0.961671i \(0.411585\pi\)
\(230\) 0 0
\(231\) −12.8777 + 22.3048i −0.847288 + 1.46755i
\(232\) −1.24646 + 1.24646i −0.0818341 + 0.0818341i
\(233\) −2.31125 + 2.31125i −0.151415 + 0.151415i −0.778750 0.627335i \(-0.784146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(234\) 5.04994 + 2.91558i 0.330125 + 0.190598i
\(235\) 0 0
\(236\) 1.12712 1.12712i 0.0733693 0.0733693i
\(237\) −4.38301 2.53053i −0.284707 0.164376i
\(238\) 22.9643 6.15327i 1.48856 0.398857i
\(239\) −4.53201 16.9137i −0.293151 1.09406i −0.942675 0.333713i \(-0.891698\pi\)
0.649523 0.760342i \(-0.274968\pi\)
\(240\) 0 0
\(241\) −5.49887 + 20.5221i −0.354213 + 1.32194i 0.527258 + 0.849705i \(0.323220\pi\)
−0.881472 + 0.472237i \(0.843447\pi\)
\(242\) −14.8054 8.54788i −0.951724 0.549478i
\(243\) 3.54399 + 13.2264i 0.227347 + 0.848471i
\(244\) −0.118317 0.441567i −0.00757450 0.0282684i
\(245\) 0 0
\(246\) −1.62308 0.434904i −0.103484 0.0277284i
\(247\) −14.6002 + 3.91210i −0.928986 + 0.248921i
\(248\) −9.06039 9.06039i −0.575335 0.575335i
\(249\) −3.27320 −0.207431
\(250\) 0 0
\(251\) 17.7562 17.7562i 1.12076 1.12076i 0.129136 0.991627i \(-0.458780\pi\)
0.991627 0.129136i \(-0.0412203\pi\)
\(252\) 0.432068 1.61250i 0.0272177 0.101578i
\(253\) −32.1685 −2.02242
\(254\) 5.55535 20.7328i 0.348573 1.30089i
\(255\) 0 0
\(256\) 3.09396 + 5.35890i 0.193373 + 0.334931i
\(257\) 2.64029 4.57311i 0.164696 0.285263i −0.771851 0.635803i \(-0.780669\pi\)
0.936547 + 0.350541i \(0.114002\pi\)
\(258\) −3.64161 + 3.64161i −0.226717 + 0.226717i
\(259\) 7.63609 24.8668i 0.474484 1.54515i
\(260\) 0 0
\(261\) 0.227451 + 0.848857i 0.0140788 + 0.0525429i
\(262\) −4.85891 + 18.1337i −0.300185 + 1.12030i
\(263\) −16.7100 4.47743i −1.03038 0.276090i −0.296261 0.955107i \(-0.595740\pi\)
−0.734123 + 0.679017i \(0.762406\pi\)
\(264\) −17.3492 4.64870i −1.06777 0.286108i
\(265\) 0 0
\(266\) −14.3179 24.7993i −0.877885 1.52054i
\(267\) −14.6076 −0.893972
\(268\) −3.02794 + 0.811334i −0.184961 + 0.0495601i
\(269\) 0.173030i 0.0105498i −0.999986 0.00527492i \(-0.998321\pi\)
0.999986 0.00527492i \(-0.00167907\pi\)
\(270\) 0 0
\(271\) −9.17400 + 15.8898i −0.557281 + 0.965239i 0.440441 + 0.897781i \(0.354822\pi\)
−0.997722 + 0.0674574i \(0.978511\pi\)
\(272\) 7.18252 + 12.4405i 0.435504 + 0.754315i
\(273\) 15.6525 0.947331
\(274\) 13.2210 3.54256i 0.798710 0.214014i
\(275\) 0 0
\(276\) −2.04978 + 0.549238i −0.123383 + 0.0330602i
\(277\) 1.59242 0.919384i 0.0956793 0.0552405i −0.451397 0.892323i \(-0.649074\pi\)
0.547076 + 0.837083i \(0.315741\pi\)
\(278\) 9.98977 5.76759i 0.599146 0.345917i
\(279\) −6.17025 + 1.65331i −0.369403 + 0.0989813i
\(280\) 0 0
\(281\) 3.28246 0.879533i 0.195815 0.0524686i −0.159578 0.987185i \(-0.551013\pi\)
0.355394 + 0.934717i \(0.384347\pi\)
\(282\) 10.2032 0.607595
\(283\) −6.28759 10.8904i −0.373758 0.647369i 0.616382 0.787447i \(-0.288598\pi\)
−0.990140 + 0.140079i \(0.955264\pi\)
\(284\) −0.468430 + 0.811344i −0.0277962 + 0.0481444i
\(285\) 0 0
\(286\) 19.2015i 1.13541i
\(287\) 4.28078 1.14703i 0.252686 0.0677071i
\(288\) 2.19328 0.129240
\(289\) −0.394151 0.682690i −0.0231854 0.0401582i
\(290\) 0 0
\(291\) 12.1874 + 3.26561i 0.714438 + 0.191433i
\(292\) 0.897679 + 0.240532i 0.0525327 + 0.0140761i
\(293\) 2.72847 10.1828i 0.159399 0.594885i −0.839290 0.543685i \(-0.817029\pi\)
0.998688 0.0512000i \(-0.0163046\pi\)
\(294\) 4.73728 + 17.6798i 0.276284 + 1.03110i
\(295\) 0 0
\(296\) 18.1289 + 0.655467i 1.05372 + 0.0380982i
\(297\) −19.1074 + 19.1074i −1.10872 + 1.10872i
\(298\) 11.0120 19.0734i 0.637909 1.10489i
\(299\) 9.77500 + 16.9308i 0.565303 + 0.979133i
\(300\) 0 0
\(301\) 3.51550 13.1200i 0.202630 0.756226i
\(302\) −5.86051 −0.337234
\(303\) 6.05346 22.5918i 0.347762 1.29787i
\(304\) 12.2346 12.2346i 0.701704 0.701704i
\(305\) 0 0
\(306\) 8.26561 0.472513
\(307\) −7.96428 7.96428i −0.454546 0.454546i 0.442314 0.896860i \(-0.354158\pi\)
−0.896860 + 0.442314i \(0.854158\pi\)
\(308\) 5.30982 1.42276i 0.302555 0.0810693i
\(309\) 21.6017 + 5.78816i 1.22888 + 0.329277i
\(310\) 0 0
\(311\) 0.179038 + 0.668180i 0.0101523 + 0.0378890i 0.970816 0.239825i \(-0.0770900\pi\)
−0.960664 + 0.277714i \(0.910423\pi\)
\(312\) 2.82519 + 10.5437i 0.159945 + 0.596922i
\(313\) 20.1350 + 11.6249i 1.13810 + 0.657081i 0.945959 0.324287i \(-0.105124\pi\)
0.192139 + 0.981368i \(0.438458\pi\)
\(314\) 3.30189 12.3228i 0.186336 0.695417i
\(315\) 0 0
\(316\) 0.279581 + 1.04341i 0.0157276 + 0.0586963i
\(317\) 31.3969 8.41276i 1.76342 0.472508i 0.776017 0.630713i \(-0.217237\pi\)
0.987406 + 0.158205i \(0.0505706\pi\)
\(318\) 9.31605 + 5.37862i 0.522418 + 0.301618i
\(319\) −2.04624 + 2.04624i −0.114567 + 0.114567i
\(320\) 0 0
\(321\) −6.97805 4.02878i −0.389477 0.224865i
\(322\) −26.1894 + 26.1894i −1.45948 + 1.45948i
\(323\) −15.1502 + 15.1502i −0.842979 + 0.842979i
\(324\) −0.305748 + 0.529572i −0.0169860 + 0.0294207i
\(325\) 0 0
\(326\) −18.6827 + 10.7865i −1.03474 + 0.597408i
\(327\) 8.51805i 0.471049i
\(328\) 1.54532 + 2.67656i 0.0853258 + 0.147789i
\(329\) −23.3051 + 13.4552i −1.28485 + 0.741810i
\(330\) 0 0
\(331\) 20.5568 5.50817i 1.12990 0.302757i 0.355018 0.934859i \(-0.384475\pi\)
0.774885 + 0.632103i \(0.217808\pi\)
\(332\) 0.493999 + 0.493999i 0.0271117 + 0.0271117i
\(333\) 4.80196 7.66369i 0.263146 0.419968i
\(334\) 12.9938i 0.710990i
\(335\) 0 0
\(336\) −15.5169 + 8.95869i −0.846517 + 0.488737i
\(337\) 0.488128 1.82172i 0.0265900 0.0992352i −0.951356 0.308095i \(-0.900309\pi\)
0.977946 + 0.208860i \(0.0669752\pi\)
\(338\) −4.73379 + 2.73305i −0.257484 + 0.148659i
\(339\) −1.35188 + 1.35188i −0.0734239 + 0.0734239i
\(340\) 0 0
\(341\) −14.8739 14.8739i −0.805466 0.805466i
\(342\) −2.57674 9.61651i −0.139334 0.520001i
\(343\) −12.9675 12.9675i −0.700179 0.700179i
\(344\) 9.47238 0.510716
\(345\) 0 0
\(346\) 2.57403 9.60640i 0.138381 0.516443i
\(347\) 6.76364i 0.363091i 0.983383 + 0.181546i \(0.0581100\pi\)
−0.983383 + 0.181546i \(0.941890\pi\)
\(348\) −0.0954497 + 0.165324i −0.00511664 + 0.00886228i
\(349\) −12.1596 7.02035i −0.650888 0.375790i 0.137908 0.990445i \(-0.455962\pi\)
−0.788796 + 0.614655i \(0.789295\pi\)
\(350\) 0 0
\(351\) 15.8627 + 4.25039i 0.846688 + 0.226869i
\(352\) 3.61114 + 6.25468i 0.192475 + 0.333376i
\(353\) −7.21056 + 12.4891i −0.383779 + 0.664725i −0.991599 0.129350i \(-0.958711\pi\)
0.607820 + 0.794075i \(0.292044\pi\)
\(354\) −4.92201 + 8.52517i −0.261602 + 0.453108i
\(355\) 0 0
\(356\) 2.20462 + 2.20462i 0.116844 + 0.116844i
\(357\) 19.2147 11.0936i 1.01695 0.587135i
\(358\) 7.29003 + 27.2068i 0.385290 + 1.43792i
\(359\) 2.87625i 0.151803i 0.997115 + 0.0759013i \(0.0241834\pi\)
−0.997115 + 0.0759013i \(0.975817\pi\)
\(360\) 0 0
\(361\) 5.89475 + 3.40334i 0.310250 + 0.179123i
\(362\) 0.440318i 0.0231426i
\(363\) −15.4108 4.12931i −0.808856 0.216732i
\(364\) −2.36231 2.36231i −0.123819 0.123819i
\(365\) 0 0
\(366\) 1.41159 + 2.44495i 0.0737852 + 0.127800i
\(367\) 25.2940 + 6.77750i 1.32033 + 0.353783i 0.849103 0.528227i \(-0.177143\pi\)
0.471231 + 0.882010i \(0.343810\pi\)
\(368\) −19.3807 11.1894i −1.01029 0.583290i
\(369\) 1.54079 0.0802105
\(370\) 0 0
\(371\) −28.3716 −1.47298
\(372\) −1.20172 0.693814i −0.0623063 0.0359726i
\(373\) 33.2235 + 8.90222i 1.72025 + 0.460939i 0.977900 0.209074i \(-0.0670448\pi\)
0.742349 + 0.670013i \(0.233712\pi\)
\(374\) 13.6090 + 23.5714i 0.703703 + 1.21885i
\(375\) 0 0
\(376\) −13.2701 13.2701i −0.684352 0.684352i
\(377\) 1.69875 + 0.455180i 0.0874903 + 0.0234430i
\(378\) 31.1120i 1.60023i
\(379\) 1.99724 + 1.15311i 0.102591 + 0.0592312i 0.550418 0.834889i \(-0.314468\pi\)
−0.447826 + 0.894121i \(0.647802\pi\)
\(380\) 0 0
\(381\) 20.0312i 1.02623i
\(382\) −1.44009 5.37450i −0.0736816 0.274983i
\(383\) −0.121710 + 0.0702694i −0.00621910 + 0.00359060i −0.503106 0.864225i \(-0.667810\pi\)
0.496887 + 0.867815i \(0.334476\pi\)
\(384\) −7.47325 7.47325i −0.381367 0.381367i
\(385\) 0 0
\(386\) 5.27061 9.12897i 0.268267 0.464652i
\(387\) 2.36116 4.08966i 0.120025 0.207889i
\(388\) −1.34650 2.33220i −0.0683581 0.118400i
\(389\) −5.08702 1.36306i −0.257922 0.0691101i 0.127541 0.991833i \(-0.459292\pi\)
−0.385463 + 0.922723i \(0.625958\pi\)
\(390\) 0 0
\(391\) 23.9992 + 13.8559i 1.21369 + 0.700725i
\(392\) 16.8327 29.1550i 0.850178 1.47255i
\(393\) 17.5201i 0.883770i
\(394\) −1.67696 + 6.25848i −0.0844838 + 0.315298i
\(395\) 0 0
\(396\) 1.91118 0.0960402
\(397\) −3.01599 3.01599i −0.151368 0.151368i 0.627361 0.778729i \(-0.284135\pi\)
−0.778729 + 0.627361i \(0.784135\pi\)
\(398\) 3.85489 + 14.3866i 0.193228 + 0.721137i
\(399\) −18.8967 18.8967i −0.946019 0.946019i
\(400\) 0 0
\(401\) −6.97260 + 6.97260i −0.348195 + 0.348195i −0.859437 0.511242i \(-0.829186\pi\)
0.511242 + 0.859437i \(0.329186\pi\)
\(402\) 16.7657 9.67967i 0.836196 0.482778i
\(403\) −3.30865 + 12.3481i −0.164816 + 0.615101i
\(404\) −4.32321 + 2.49601i −0.215088 + 0.124181i
\(405\) 0 0
\(406\) 3.33182i 0.165355i
\(407\) 29.7611 + 1.07604i 1.47520 + 0.0533373i
\(408\) 10.9410 + 10.9410i 0.541658 + 0.541658i
\(409\) −8.95729 + 2.40010i −0.442910 + 0.118677i −0.473380 0.880858i \(-0.656966\pi\)
0.0304703 + 0.999536i \(0.490300\pi\)
\(410\) 0 0
\(411\) 11.0623 6.38680i 0.545661 0.315038i
\(412\) −2.38662 4.13374i −0.117580 0.203655i
\(413\) 25.9630i 1.27756i
\(414\) −11.1516 + 6.43838i −0.548071 + 0.316429i
\(415\) 0 0
\(416\) 2.19463 3.80120i 0.107600 0.186369i
\(417\) 7.61206 7.61206i 0.372764 0.372764i
\(418\) 23.1814 23.1814i 1.13384 1.13384i
\(419\) −29.2106 16.8648i −1.42703 0.823898i −0.430147 0.902759i \(-0.641538\pi\)
−0.996886 + 0.0788607i \(0.974872\pi\)
\(420\) 0 0
\(421\) 6.17988 6.17988i 0.301189 0.301189i −0.540290 0.841479i \(-0.681685\pi\)
0.841479 + 0.540290i \(0.181685\pi\)
\(422\) −18.4373 10.6448i −0.897513 0.518179i
\(423\) −9.03711 + 2.42149i −0.439400 + 0.117737i
\(424\) −5.12092 19.1115i −0.248694 0.928138i
\(425\) 0 0
\(426\) 1.49747 5.58863i 0.0725526 0.270770i
\(427\) −6.44841 3.72299i −0.312060 0.180168i
\(428\) 0.445111 + 1.66118i 0.0215153 + 0.0802960i
\(429\) 4.63794 + 17.3090i 0.223922 + 0.835687i
\(430\) 0 0
\(431\) 3.98861 + 1.06874i 0.192124 + 0.0514796i 0.353598 0.935397i \(-0.384958\pi\)
−0.161474 + 0.986877i \(0.551625\pi\)
\(432\) −18.1580 + 4.86542i −0.873628 + 0.234088i
\(433\) 2.42155 + 2.42155i 0.116372 + 0.116372i 0.762895 0.646523i \(-0.223777\pi\)
−0.646523 + 0.762895i \(0.723777\pi\)
\(434\) −24.2186 −1.16253
\(435\) 0 0
\(436\) −1.28556 + 1.28556i −0.0615674 + 0.0615674i
\(437\) 8.63895 32.2410i 0.413257 1.54230i
\(438\) −5.73937 −0.274238
\(439\) −2.19354 + 8.18640i −0.104692 + 0.390716i −0.998310 0.0581125i \(-0.981492\pi\)
0.893618 + 0.448828i \(0.148158\pi\)
\(440\) 0 0
\(441\) −8.39170 14.5349i −0.399605 0.692136i
\(442\) 8.27068 14.3252i 0.393396 0.681382i
\(443\) 21.9112 21.9112i 1.04103 1.04103i 0.0419105 0.999121i \(-0.486656\pi\)
0.999121 0.0419105i \(-0.0133444\pi\)
\(444\) 1.91476 0.439569i 0.0908704 0.0208610i
\(445\) 0 0
\(446\) 1.14425 + 4.27038i 0.0541816 + 0.202209i
\(447\) 5.31969 19.8533i 0.251613 0.939031i
\(448\) 36.1705 + 9.69186i 1.70890 + 0.457898i
\(449\) 24.7248 + 6.62498i 1.16683 + 0.312652i 0.789692 0.613503i \(-0.210240\pi\)
0.377142 + 0.926155i \(0.376907\pi\)
\(450\) 0 0
\(451\) 2.53685 + 4.39395i 0.119456 + 0.206903i
\(452\) 0.408057 0.0191934
\(453\) −5.28289 + 1.41555i −0.248212 + 0.0665082i
\(454\) 5.66931i 0.266074i
\(455\) 0 0
\(456\) 9.31835 16.1399i 0.436372 0.755818i
\(457\) −13.3314 23.0907i −0.623617 1.08014i −0.988807 0.149203i \(-0.952329\pi\)
0.365190 0.930933i \(-0.381004\pi\)
\(458\) −9.70877 −0.453661
\(459\) 22.4852 6.02488i 1.04952 0.281217i
\(460\) 0 0
\(461\) 28.6141 7.66712i 1.33269 0.357094i 0.478973 0.877829i \(-0.341009\pi\)
0.853718 + 0.520736i \(0.174342\pi\)
\(462\) −29.4004 + 16.9743i −1.36783 + 0.789718i
\(463\) −16.3053 + 9.41385i −0.757770 + 0.437499i −0.828495 0.559997i \(-0.810802\pi\)
0.0707245 + 0.997496i \(0.477469\pi\)
\(464\) −1.94456 + 0.521044i −0.0902741 + 0.0241889i
\(465\) 0 0
\(466\) −4.16161 + 1.11510i −0.192783 + 0.0516560i
\(467\) −22.1604 −1.02546 −0.512731 0.858549i \(-0.671366\pi\)
−0.512731 + 0.858549i \(0.671366\pi\)
\(468\) −0.580747 1.00588i −0.0268450 0.0464970i
\(469\) −25.5295 + 44.2185i −1.17884 + 2.04182i
\(470\) 0 0
\(471\) 11.9058i 0.548591i
\(472\) 17.4891 4.68618i 0.805000 0.215699i
\(473\) 15.5502 0.715000
\(474\) −3.33555 5.77735i −0.153207 0.265362i
\(475\) 0 0
\(476\) −4.57420 1.22565i −0.209658 0.0561777i
\(477\) −9.52780 2.55297i −0.436248 0.116892i
\(478\) 5.97374 22.2943i 0.273233 1.01972i
\(479\) 1.61172 + 6.01501i 0.0736412 + 0.274833i 0.992922 0.118770i \(-0.0378952\pi\)
−0.919281 + 0.393603i \(0.871228\pi\)
\(480\) 0 0
\(481\) −8.47713 15.9907i −0.386524 0.729114i
\(482\) −19.8024 + 19.8024i −0.901975 + 0.901975i
\(483\) −17.2824 + 29.9340i −0.786376 + 1.36204i
\(484\) 1.70263 + 2.94904i 0.0773921 + 0.134047i
\(485\) 0 0
\(486\) −4.67141 + 17.4340i −0.211900 + 0.790820i
\(487\) −13.1383 −0.595352 −0.297676 0.954667i \(-0.596212\pi\)
−0.297676 + 0.954667i \(0.596212\pi\)
\(488\) 1.34396 5.01572i 0.0608382 0.227051i
\(489\) −14.2360 + 14.2360i −0.643774 + 0.643774i
\(490\) 0 0
\(491\) −1.90585 −0.0860099 −0.0430050 0.999075i \(-0.513693\pi\)
−0.0430050 + 0.999075i \(0.513693\pi\)
\(492\) 0.236670 + 0.236670i 0.0106699 + 0.0106699i
\(493\) 2.40796 0.645212i 0.108449 0.0290589i
\(494\) −19.2448 5.15663i −0.865865 0.232008i
\(495\) 0 0
\(496\) −3.78742 14.1348i −0.170060 0.634672i
\(497\) 3.94948 + 14.7397i 0.177159 + 0.661165i
\(498\) −3.73645 2.15724i −0.167434 0.0966682i
\(499\) −5.11290 + 19.0816i −0.228885 + 0.854210i 0.751926 + 0.659248i \(0.229125\pi\)
−0.980811 + 0.194962i \(0.937542\pi\)
\(500\) 0 0
\(501\) 3.13853 + 11.7131i 0.140219 + 0.523304i
\(502\) 31.9717 8.56678i 1.42696 0.382354i
\(503\) −11.0969 6.40682i −0.494788 0.285666i 0.231770 0.972770i \(-0.425548\pi\)
−0.726559 + 0.687104i \(0.758882\pi\)
\(504\) 13.4084 13.4084i 0.597259 0.597259i
\(505\) 0 0
\(506\) −36.7212 21.2010i −1.63246 0.942500i
\(507\) −3.60708 + 3.60708i −0.160196 + 0.160196i
\(508\) −3.02316 + 3.02316i −0.134131 + 0.134131i
\(509\) 16.2560 28.1562i 0.720534 1.24800i −0.240252 0.970711i \(-0.577230\pi\)
0.960786 0.277291i \(-0.0894366\pi\)
\(510\) 0 0
\(511\) 13.1092 7.56862i 0.579919 0.334816i
\(512\) 25.3397i 1.11987i
\(513\) −14.0191 24.2818i −0.618960 1.07207i
\(514\) 6.02792 3.48022i 0.265880 0.153506i
\(515\) 0 0
\(516\) 0.990864 0.265501i 0.0436203 0.0116880i
\(517\) −21.7847 21.7847i −0.958089 0.958089i
\(518\) 25.1055 23.3535i 1.10307 1.02609i
\(519\) 9.28132i 0.407405i
\(520\) 0 0
\(521\) 24.6860 14.2524i 1.08151 0.624411i 0.150208 0.988654i \(-0.452006\pi\)
0.931304 + 0.364244i \(0.118672\pi\)
\(522\) −0.299808 + 1.11890i −0.0131222 + 0.0489728i
\(523\) 23.1609 13.3720i 1.01276 0.584716i 0.100760 0.994911i \(-0.467873\pi\)
0.911998 + 0.410195i \(0.134539\pi\)
\(524\) 2.64417 2.64417i 0.115511 0.115511i
\(525\) 0 0
\(526\) −16.1240 16.1240i −0.703041 0.703041i
\(527\) 4.68998 + 17.5032i 0.204299 + 0.762453i
\(528\) −14.5046 14.5046i −0.631231 0.631231i
\(529\) −20.1715 −0.877024
\(530\) 0 0
\(531\) 2.33623 8.71894i 0.101384 0.378370i
\(532\) 5.70387i 0.247294i
\(533\) 1.54174 2.67037i 0.0667801 0.115666i
\(534\) −16.6750 9.62732i −0.721598 0.416615i
\(535\) 0 0
\(536\) −34.3942 9.21589i −1.48560 0.398066i
\(537\) 13.1430 + 22.7644i 0.567164 + 0.982357i
\(538\) 0.114037 0.197519i 0.00491650 0.00851563i
\(539\) 27.6331 47.8620i 1.19024 2.06156i
\(540\) 0 0
\(541\) 17.2856 + 17.2856i 0.743165 + 0.743165i 0.973186 0.230021i \(-0.0738794\pi\)
−0.230021 + 0.973186i \(0.573879\pi\)
\(542\) −20.9448 + 12.0925i −0.899654 + 0.519416i
\(543\) −0.106354 0.396920i −0.00456410 0.0170335i
\(544\) 6.22171i 0.266754i
\(545\) 0 0
\(546\) 17.8677 + 10.3159i 0.764669 + 0.441482i
\(547\) 13.5842i 0.580818i 0.956903 + 0.290409i \(0.0937913\pi\)
−0.956903 + 0.290409i \(0.906209\pi\)
\(548\) −2.63345 0.705632i −0.112496 0.0301431i
\(549\) −1.83051 1.83051i −0.0781243 0.0781243i
\(550\) 0 0
\(551\) −1.50133 2.60037i −0.0639586 0.110780i
\(552\) −23.2834 6.23876i −0.991006 0.265539i
\(553\) 15.2374 + 8.79732i 0.647960 + 0.374100i
\(554\) 2.42372 0.102974
\(555\) 0 0
\(556\) −2.29766 −0.0974425
\(557\) −35.3898 20.4323i −1.49951 0.865744i −0.499513 0.866307i \(-0.666488\pi\)
−1.00000 0.000562636i \(0.999821\pi\)
\(558\) −8.13315 2.17927i −0.344303 0.0922558i
\(559\) −4.72522 8.18433i −0.199856 0.346160i
\(560\) 0 0
\(561\) 17.9611 + 17.9611i 0.758318 + 0.758318i
\(562\) 4.32669 + 1.15933i 0.182510 + 0.0489035i
\(563\) 27.8829i 1.17512i 0.809180 + 0.587561i \(0.199912\pi\)
−0.809180 + 0.587561i \(0.800088\pi\)
\(564\) −1.76007 1.01618i −0.0741124 0.0427888i
\(565\) 0 0
\(566\) 16.5756i 0.696726i
\(567\) 2.57786 + 9.62072i 0.108260 + 0.404032i
\(568\) −9.21600 + 5.32086i −0.386695 + 0.223258i
\(569\) 10.7860 + 10.7860i 0.452173 + 0.452173i 0.896075 0.443902i \(-0.146406\pi\)
−0.443902 + 0.896075i \(0.646406\pi\)
\(570\) 0 0
\(571\) 16.7650 29.0378i 0.701594 1.21520i −0.266313 0.963887i \(-0.585805\pi\)
0.967907 0.251310i \(-0.0808612\pi\)
\(572\) 1.91235 3.31228i 0.0799593 0.138494i
\(573\) −2.59631 4.49695i −0.108463 0.187863i
\(574\) 5.64259 + 1.51193i 0.235517 + 0.0631067i
\(575\) 0 0
\(576\) 11.2747 + 6.50948i 0.469781 + 0.271228i
\(577\) −8.95508 + 15.5106i −0.372805 + 0.645717i −0.989996 0.141097i \(-0.954937\pi\)
0.617191 + 0.786813i \(0.288271\pi\)
\(578\) 1.03908i 0.0432200i
\(579\) 2.54613 9.50228i 0.105813 0.394901i
\(580\) 0 0
\(581\) 11.3792 0.472087
\(582\) 11.7600 + 11.7600i 0.487469 + 0.487469i
\(583\) −8.40669 31.3742i −0.348170 1.29939i
\(584\) 7.46448 + 7.46448i 0.308883 + 0.308883i
\(585\) 0 0
\(586\) 9.82570 9.82570i 0.405896 0.405896i
\(587\) 32.4251 18.7207i 1.33833 0.772684i 0.351769 0.936087i \(-0.385580\pi\)
0.986560 + 0.163402i \(0.0522469\pi\)
\(588\) 0.943605 3.52158i 0.0389136 0.145228i
\(589\) 18.9018 10.9130i 0.778836 0.449661i
\(590\) 0 0
\(591\) 6.04669i 0.248728i
\(592\) 17.5560 + 11.0003i 0.721547 + 0.452111i
\(593\) −8.22207 8.22207i −0.337640 0.337640i 0.517839 0.855478i \(-0.326737\pi\)
−0.855478 + 0.517839i \(0.826737\pi\)
\(594\) −34.4046 + 9.21869i −1.41164 + 0.378247i
\(595\) 0 0
\(596\) −3.79917 + 2.19345i −0.155620 + 0.0898473i
\(597\) 6.94990 + 12.0376i 0.284440 + 0.492665i
\(598\) 25.7693i 1.05378i
\(599\) 15.7152 9.07320i 0.642107 0.370721i −0.143318 0.989677i \(-0.545777\pi\)
0.785426 + 0.618956i \(0.212444\pi\)
\(600\) 0 0
\(601\) −21.7617 + 37.6924i −0.887679 + 1.53751i −0.0450671 + 0.998984i \(0.514350\pi\)
−0.842612 + 0.538521i \(0.818983\pi\)
\(602\) 12.6599 12.6599i 0.515981 0.515981i
\(603\) −12.5523 + 12.5523i −0.511169 + 0.511169i
\(604\) 1.01094 + 0.583669i 0.0411347 + 0.0237492i
\(605\) 0 0
\(606\) 21.7996 21.7996i 0.885548 0.885548i
\(607\) −12.4039 7.16138i −0.503458 0.290671i 0.226683 0.973969i \(-0.427212\pi\)
−0.730140 + 0.683297i \(0.760545\pi\)
\(608\) −7.23856 + 1.93957i −0.293563 + 0.0786598i
\(609\) 0.804767 + 3.00343i 0.0326108 + 0.121705i
\(610\) 0 0
\(611\) −4.84594 + 18.0853i −0.196046 + 0.731653i
\(612\) −1.42583 0.823201i −0.0576356 0.0332759i
\(613\) −0.0869843 0.324630i −0.00351326 0.0131117i 0.964147 0.265369i \(-0.0854938\pi\)
−0.967660 + 0.252257i \(0.918827\pi\)
\(614\) −3.84250 14.3404i −0.155071 0.578731i
\(615\) 0 0
\(616\) 60.3138 + 16.1610i 2.43011 + 0.651147i
\(617\) 25.9211 6.94555i 1.04355 0.279617i 0.303964 0.952684i \(-0.401690\pi\)
0.739582 + 0.673066i \(0.235023\pi\)
\(618\) 20.8442 + 20.8442i 0.838476 + 0.838476i
\(619\) −45.2493 −1.81872 −0.909361 0.416008i \(-0.863429\pi\)
−0.909361 + 0.416008i \(0.863429\pi\)
\(620\) 0 0
\(621\) −25.6430 + 25.6430i −1.02902 + 1.02902i
\(622\) −0.235995 + 0.880744i −0.00946252 + 0.0353146i
\(623\) 50.7829 2.03457
\(624\) −3.22650 + 12.0415i −0.129164 + 0.482045i
\(625\) 0 0
\(626\) 15.3231 + 26.5404i 0.612434 + 1.06077i
\(627\) 15.2974 26.4958i 0.610918 1.05814i
\(628\) −1.79685 + 1.79685i −0.0717023 + 0.0717023i
\(629\) −21.7397 13.6218i −0.866818 0.543136i
\(630\) 0 0
\(631\) −8.96677 33.4644i −0.356961 1.33220i −0.877998 0.478664i \(-0.841121\pi\)
0.521037 0.853534i \(-0.325545\pi\)
\(632\) −3.17574 + 11.8520i −0.126324 + 0.471448i
\(633\) −19.1912 5.14227i −0.762783 0.204387i
\(634\) 41.3849 + 11.0890i 1.64360 + 0.440402i
\(635\) 0 0
\(636\) −1.07135 1.85564i −0.0424819 0.0735808i
\(637\) −33.5874 −1.33078
\(638\) −3.68443 + 0.987240i −0.145868 + 0.0390852i
\(639\) 5.30529i 0.209874i
\(640\) 0 0
\(641\) −5.16086 + 8.93888i −0.203842 + 0.353065i −0.949763 0.312970i \(-0.898676\pi\)
0.745921 + 0.666034i \(0.232010\pi\)
\(642\) −5.31043 9.19793i −0.209586 0.363013i
\(643\) 9.55874 0.376960 0.188480 0.982077i \(-0.439644\pi\)
0.188480 + 0.982077i \(0.439644\pi\)
\(644\) 7.12601 1.90941i 0.280804 0.0752412i
\(645\) 0 0
\(646\) −27.2793 + 7.30946i −1.07329 + 0.287587i
\(647\) −1.47670 + 0.852572i −0.0580550 + 0.0335181i −0.528747 0.848780i \(-0.677338\pi\)
0.470692 + 0.882298i \(0.344004\pi\)
\(648\) −6.01537 + 3.47298i −0.236306 + 0.136431i
\(649\) 28.7107 7.69301i 1.12699 0.301977i
\(650\) 0 0
\(651\) −21.8316 + 5.84977i −0.855649 + 0.229270i
\(652\) 4.29706 0.168286
\(653\) 14.4314 + 24.9960i 0.564746 + 0.978168i 0.997073 + 0.0764516i \(0.0243591\pi\)
−0.432328 + 0.901717i \(0.642308\pi\)
\(654\) 5.61392 9.72359i 0.219522 0.380223i
\(655\) 0 0
\(656\) 3.52965i 0.137810i
\(657\) 5.08342 1.36210i 0.198323 0.0531405i
\(658\) −35.4713 −1.38281
\(659\) 11.5673 + 20.0352i 0.450598 + 0.780459i 0.998423 0.0561341i \(-0.0178774\pi\)
−0.547825 + 0.836593i \(0.684544\pi\)
\(660\) 0 0
\(661\) −32.1200 8.60652i −1.24932 0.334755i −0.427247 0.904135i \(-0.640517\pi\)
−0.822074 + 0.569380i \(0.807183\pi\)
\(662\) 27.0964 + 7.26045i 1.05313 + 0.282185i
\(663\) 3.99540 14.9110i 0.155168 0.579096i
\(664\) 2.05388 + 7.66518i 0.0797059 + 0.297466i
\(665\) 0 0
\(666\) 10.5324 5.58353i 0.408123 0.216357i
\(667\) −2.74614 + 2.74614i −0.106331 + 0.106331i
\(668\) 1.29410 2.24145i 0.0500703 0.0867242i
\(669\) 2.06294 + 3.57311i 0.0797577 + 0.138144i
\(670\) 0 0
\(671\) 2.20629 8.23400i 0.0851731 0.317870i
\(672\) 7.76029 0.299360
\(673\) 9.06446 33.8290i 0.349409 1.30401i −0.537966 0.842966i \(-0.680807\pi\)
0.887376 0.461047i \(-0.152526\pi\)
\(674\) 1.75783 1.75783i 0.0677092 0.0677092i
\(675\) 0 0
\(676\) 1.08878 0.0418761
\(677\) −9.71006 9.71006i −0.373188 0.373188i 0.495449 0.868637i \(-0.335004\pi\)
−0.868637 + 0.495449i \(0.835004\pi\)
\(678\) −2.43418 + 0.652235i −0.0934839 + 0.0250489i
\(679\) −42.3691 11.3528i −1.62598 0.435679i
\(680\) 0 0
\(681\) 1.36937 + 5.11054i 0.0524742 + 0.195836i
\(682\) −7.17614 26.7817i −0.274789 1.02553i
\(683\) 4.90289 + 2.83069i 0.187604 + 0.108313i 0.590860 0.806774i \(-0.298788\pi\)
−0.403256 + 0.915087i \(0.632122\pi\)
\(684\) −0.513253 + 1.91548i −0.0196247 + 0.0732404i
\(685\) 0 0
\(686\) −6.25638 23.3491i −0.238870 0.891474i
\(687\) −8.75186 + 2.34506i −0.333904 + 0.0894694i
\(688\) 9.36860 + 5.40896i 0.357174 + 0.206215i
\(689\) −13.9582 + 13.9582i −0.531766 + 0.531766i
\(690\) 0 0
\(691\) 27.9652 + 16.1457i 1.06385 + 0.614212i 0.926494 0.376310i \(-0.122807\pi\)
0.137353 + 0.990522i \(0.456141\pi\)
\(692\) −1.40076 + 1.40076i −0.0532488 + 0.0532488i
\(693\) 22.0118 22.0118i 0.836159 0.836159i
\(694\) −4.45765 + 7.72088i −0.169210 + 0.293081i
\(695\) 0 0
\(696\) −1.87790 + 1.08421i −0.0711816 + 0.0410967i
\(697\) 4.37079i 0.165555i
\(698\) −9.25368 16.0278i −0.350257 0.606663i
\(699\) −3.48210 + 2.01039i −0.131705 + 0.0760399i
\(700\) 0 0
\(701\) −45.2722 + 12.1306i −1.70991 + 0.458168i −0.975402 0.220435i \(-0.929252\pi\)
−0.734505 + 0.678603i \(0.762586\pi\)
\(702\) 15.3064 + 15.3064i 0.577704 + 0.577704i
\(703\) −9.07091 + 29.5392i −0.342116 + 1.11409i
\(704\) 42.8703i 1.61573i
\(705\) 0 0
\(706\) −16.4621 + 9.50440i −0.619559 + 0.357703i
\(707\) −21.0447 + 78.5397i −0.791466 + 2.95379i
\(708\) 1.69811 0.980401i 0.0638187 0.0368457i
\(709\) 21.6799 21.6799i 0.814204 0.814204i −0.171057 0.985261i \(-0.554718\pi\)
0.985261 + 0.171057i \(0.0547181\pi\)
\(710\) 0 0
\(711\) 4.32544 + 4.32544i 0.162217 + 0.162217i
\(712\) 9.16604 + 34.2081i 0.343512 + 1.28200i
\(713\) −19.9614 19.9614i −0.747560 0.747560i
\(714\) 29.2454 1.09448
\(715\) 0 0
\(716\) 1.45208 5.41924i 0.0542668 0.202526i
\(717\) 21.5399i 0.804421i
\(718\) −1.89562 + 3.28332i −0.0707440 + 0.122532i
\(719\) 4.69821 + 2.71251i 0.175214 + 0.101160i 0.585042 0.811003i \(-0.301078\pi\)
−0.409828 + 0.912163i \(0.634411\pi\)
\(720\) 0 0
\(721\) −75.0976 20.1223i −2.79678 0.749395i
\(722\) 4.48602 + 7.77001i 0.166952 + 0.289170i
\(723\) −13.0676 + 22.6337i −0.485989 + 0.841758i
\(724\) −0.0438528 + 0.0759554i −0.00162978 + 0.00282286i
\(725\) 0 0
\(726\) −14.8704 14.8704i −0.551891 0.551891i
\(727\) 22.1381 12.7814i 0.821057 0.474037i −0.0297241 0.999558i \(-0.509463\pi\)
0.850781 + 0.525521i \(0.176130\pi\)
\(728\) −9.82167 36.6550i −0.364015 1.35852i
\(729\) 23.8311i 0.882634i
\(730\) 0 0
\(731\) −11.6012 6.69795i −0.429085 0.247733i
\(732\) 0.562343i 0.0207848i
\(733\) −20.1942 5.41101i −0.745889 0.199860i −0.134195 0.990955i \(-0.542845\pi\)
−0.611694 + 0.791095i \(0.709511\pi\)
\(734\) 24.4070 + 24.4070i 0.900878 + 0.900878i
\(735\) 0 0
\(736\) 4.84631 + 8.39406i 0.178637 + 0.309409i
\(737\) −56.4628 15.1291i −2.07983 0.557289i
\(738\) 1.75886 + 1.01548i 0.0647445 + 0.0373802i
\(739\) 23.1549 0.851767 0.425884 0.904778i \(-0.359963\pi\)
0.425884 + 0.904778i \(0.359963\pi\)
\(740\) 0 0
\(741\) −18.5936 −0.683051
\(742\) −32.3869 18.6986i −1.18896 0.686448i
\(743\) 24.2877 + 6.50787i 0.891029 + 0.238750i 0.675159 0.737672i \(-0.264075\pi\)
0.215869 + 0.976422i \(0.430741\pi\)
\(744\) −7.88098 13.6503i −0.288931 0.500443i
\(745\) 0 0
\(746\) 32.0585 + 32.0585i 1.17374 + 1.17374i
\(747\) 3.82137 + 1.02393i 0.139817 + 0.0374638i
\(748\) 5.42146i 0.198228i
\(749\) 24.2590 + 14.0059i 0.886403 + 0.511765i
\(750\) 0 0
\(751\) 49.5019i 1.80635i 0.429272 + 0.903175i \(0.358770\pi\)
−0.429272 + 0.903175i \(0.641230\pi\)
\(752\) −5.54715 20.7022i −0.202284 0.754933i
\(753\) 26.7513 15.4449i 0.974871 0.562842i
\(754\) 1.63918 + 1.63918i 0.0596955 + 0.0596955i
\(755\) 0 0
\(756\) 3.09855 5.36685i 0.112693 0.195190i
\(757\) −17.8035 + 30.8365i −0.647078 + 1.12077i 0.336740 + 0.941598i \(0.390676\pi\)
−0.983817 + 0.179174i \(0.942658\pi\)
\(758\) 1.51994 + 2.63261i 0.0552067 + 0.0956207i
\(759\) −38.2229 10.2418i −1.38740 0.371753i
\(760\) 0 0
\(761\) 9.14549 + 5.28015i 0.331524 + 0.191405i 0.656517 0.754311i \(-0.272029\pi\)
−0.324994 + 0.945716i \(0.605362\pi\)
\(762\) 13.2018 22.8662i 0.478251 0.828355i
\(763\) 29.6127i 1.07205i
\(764\) −0.286848 + 1.07053i −0.0103778 + 0.0387305i
\(765\) 0 0
\(766\) −0.185247 −0.00669326
\(767\) −12.7732 12.7732i −0.461215 0.461215i
\(768\) 1.97011 + 7.35254i 0.0710901 + 0.265312i
\(769\) −10.0805 10.0805i −0.363511 0.363511i 0.501593 0.865104i \(-0.332748\pi\)
−0.865104 + 0.501593i \(0.832748\pi\)
\(770\) 0 0
\(771\) 4.59319 4.59319i 0.165420 0.165420i
\(772\) −1.81837 + 1.04984i −0.0654447 + 0.0377845i
\(773\) 0.806988 3.01172i 0.0290253 0.108324i −0.949893 0.312574i \(-0.898809\pi\)
0.978919 + 0.204250i \(0.0654755\pi\)
\(774\) 5.39067 3.11230i 0.193764 0.111869i
\(775\) 0 0
\(776\) 30.5896i 1.09810i
\(777\) 16.9903 27.1157i 0.609525 0.972771i
\(778\) −4.90864 4.90864i −0.175983 0.175983i
\(779\) −5.08513 + 1.36256i −0.182194 + 0.0488187i
\(780\) 0 0
\(781\) −15.1293 + 8.73493i −0.541370 + 0.312560i
\(782\) 18.2638 + 31.6339i 0.653113 + 1.13123i
\(783\) 3.26230i 0.116585i
\(784\) 33.2965 19.2237i 1.18916 0.686562i
\(785\) 0 0
\(786\) −11.5468 + 19.9996i −0.411861 + 0.713363i
\(787\) −14.6240 + 14.6240i −0.521288 + 0.521288i −0.917960 0.396673i \(-0.870165\pi\)
0.396673 + 0.917960i \(0.370165\pi\)
\(788\) 0.912581 0.912581i 0.0325094 0.0325094i
\(789\) −18.4294 10.6402i −0.656105 0.378803i
\(790\) 0 0
\(791\) 4.69976 4.69976i 0.167104 0.167104i
\(792\) 18.8005 + 10.8545i 0.668046 + 0.385697i
\(793\) −5.00411 + 1.34085i −0.177701 + 0.0476149i
\(794\) −1.45512 5.43057i −0.0516401 0.192724i
\(795\) 0 0
\(796\) 0.767844 2.86563i 0.0272155 0.101570i
\(797\) 8.17798 + 4.72156i 0.289679 + 0.167246i 0.637797 0.770204i \(-0.279846\pi\)
−0.348118 + 0.937451i \(0.613179\pi\)
\(798\) −9.11703 34.0252i −0.322739 1.20448i
\(799\) 6.86907 + 25.6357i 0.243010 + 0.906926i
\(800\) 0 0
\(801\) 17.0540 + 4.56961i 0.602574 + 0.161459i
\(802\) −12.5548 + 3.36405i −0.443325 + 0.118789i
\(803\) 12.2540 + 12.2540i 0.432434 + 0.432434i
\(804\) −3.85613 −0.135995
\(805\) 0 0
\(806\) −11.9151 + 11.9151i −0.419690 + 0.419690i
\(807\) 0.0550892 0.205596i 0.00193923 0.00723731i
\(808\) −56.7040 −1.99484
\(809\) 0.700060 2.61266i 0.0246128 0.0918562i −0.952527 0.304454i \(-0.901526\pi\)
0.977140 + 0.212598i \(0.0681925\pi\)
\(810\) 0 0
\(811\) −6.24691 10.8200i −0.219359 0.379940i 0.735253 0.677792i \(-0.237063\pi\)
−0.954612 + 0.297852i \(0.903730\pi\)
\(812\) 0.331828 0.574742i 0.0116449 0.0201695i
\(813\) −15.9596 + 15.9596i −0.559728 + 0.559728i
\(814\) 33.2640 + 20.8427i 1.16590 + 0.730537i
\(815\) 0 0
\(816\) 4.57353 + 17.0686i 0.160106 + 0.597522i
\(817\) −4.17606 + 15.5853i −0.146102 + 0.545260i
\(818\) −11.8068 3.16362i −0.412815 0.110614i
\(819\) −18.2739 4.89646i −0.638540 0.171096i
\(820\) 0 0
\(821\) −12.5053 21.6598i −0.436438 0.755932i 0.560974 0.827833i \(-0.310427\pi\)
−0.997412 + 0.0719010i \(0.977093\pi\)
\(822\) 16.8372 0.587264
\(823\) −1.31661 + 0.352784i −0.0458940 + 0.0122973i −0.281693 0.959505i \(-0.590896\pi\)
0.235799 + 0.971802i \(0.424229\pi\)
\(824\) 54.2188i 1.88880i
\(825\) 0 0
\(826\) 17.1112 29.6375i 0.595375 1.03122i
\(827\) −16.4986 28.5764i −0.573712 0.993698i −0.996180 0.0873203i \(-0.972170\pi\)
0.422469 0.906378i \(-0.361164\pi\)
\(828\) 2.56488 0.0891359
\(829\) −37.2077 + 9.96978i −1.29228 + 0.346265i −0.838525 0.544863i \(-0.816582\pi\)
−0.453752 + 0.891128i \(0.649915\pi\)
\(830\) 0 0
\(831\) 2.18484 0.585426i 0.0757912 0.0203082i
\(832\) 22.5633 13.0269i 0.782242 0.451628i
\(833\) −41.2312 + 23.8049i −1.42858 + 0.824790i
\(834\) 13.7062 3.67256i 0.474607 0.127171i
\(835\) 0 0
\(836\) −6.30752 + 1.69010i −0.218150 + 0.0584532i
\(837\) −23.7133 −0.819652
\(838\) −22.2298 38.5032i −0.767917 1.33007i
\(839\) 21.2111 36.7387i 0.732288 1.26836i −0.223614 0.974678i \(-0.571786\pi\)
0.955903 0.293683i \(-0.0948810\pi\)
\(840\) 0 0
\(841\) 28.6506i 0.987953i
\(842\) 11.1274 2.98158i 0.383476 0.102752i
\(843\) 4.18027 0.143976
\(844\) 2.12030 + 3.67247i 0.0729838 + 0.126412i
\(845\) 0 0
\(846\) −11.9120 3.19182i −0.409544 0.109737i
\(847\) 53.5751 + 14.3554i 1.84086 + 0.493257i
\(848\) 5.84834 21.8263i 0.200833 0.749518i
\(849\) −4.00368 14.9419i −0.137406 0.512806i
\(850\) 0 0
\(851\) 39.9407 + 1.44409i 1.36915 + 0.0495028i
\(852\) −0.814907 + 0.814907i −0.0279183 + 0.0279183i
\(853\) −20.9962 + 36.3664i −0.718895 + 1.24516i 0.242543 + 0.970141i \(0.422019\pi\)
−0.961438 + 0.275022i \(0.911315\pi\)
\(854\) −4.90736 8.49979i −0.167926 0.290857i
\(855\) 0 0
\(856\) −5.05599 + 18.8692i −0.172810 + 0.644936i
\(857\) 26.5861 0.908164 0.454082 0.890960i \(-0.349967\pi\)
0.454082 + 0.890960i \(0.349967\pi\)
\(858\) −6.11337 + 22.8154i −0.208707 + 0.778905i
\(859\) 8.37407 8.37407i 0.285720 0.285720i −0.549665 0.835385i \(-0.685245\pi\)
0.835385 + 0.549665i \(0.185245\pi\)
\(860\) 0 0
\(861\) 5.45165 0.185792
\(862\) 3.84874 + 3.84874i 0.131089 + 0.131089i
\(863\) 29.3868 7.87417i 1.00034 0.268040i 0.278751 0.960363i \(-0.410080\pi\)
0.721587 + 0.692324i \(0.243413\pi\)
\(864\) 7.86451 + 2.10729i 0.267556 + 0.0716914i
\(865\) 0 0
\(866\) 1.16831 + 4.36021i 0.0397009 + 0.148166i
\(867\) −0.250979 0.936666i −0.00852369 0.0318109i
\(868\) 4.17774 + 2.41202i 0.141802 + 0.0818693i
\(869\) −5.21341 + 19.4567i −0.176853 + 0.660024i
\(870\) 0 0
\(871\) 9.19455 + 34.3145i 0.311545 + 1.16270i
\(872\) −19.9476 + 5.34494i −0.675510 + 0.181002i
\(873\) −13.2069 7.62502i −0.446986 0.258068i
\(874\) 31.1104 31.1104i 1.05233 1.05233i
\(875\) 0 0
\(876\) 0.990049 + 0.571605i 0.0334506 + 0.0193127i
\(877\) −29.7086 + 29.7086i −1.00319 + 1.00319i −0.00319179 + 0.999995i \(0.501016\pi\)
−0.999995 + 0.00319179i \(0.998984\pi\)
\(878\) −7.89932 + 7.89932i −0.266589 + 0.266589i
\(879\) 6.48398 11.2306i 0.218699 0.378798i
\(880\) 0 0
\(881\) 32.3408 18.6720i 1.08959 0.629074i 0.156122 0.987738i \(-0.450101\pi\)
0.933467 + 0.358664i \(0.116767\pi\)
\(882\) 22.1226i 0.744906i
\(883\) −22.4292 38.8484i −0.754801 1.30735i −0.945473 0.325700i \(-0.894400\pi\)
0.190672 0.981654i \(-0.438933\pi\)
\(884\) −2.85340 + 1.64741i −0.0959703 + 0.0554085i
\(885\) 0 0
\(886\) 39.4530 10.5714i 1.32545 0.355153i
\(887\) 24.0980 + 24.0980i 0.809132 + 0.809132i 0.984503 0.175370i \(-0.0561122\pi\)
−0.175370 + 0.984503i \(0.556112\pi\)
\(888\) 21.3322 + 6.55070i 0.715863 + 0.219827i
\(889\) 69.6379i 2.33558i
\(890\) 0 0
\(891\) −9.87506 + 5.70137i −0.330827 + 0.191003i
\(892\) 0.227919 0.850605i 0.00763129 0.0284804i
\(893\) 27.6841 15.9834i 0.926414 0.534865i
\(894\) 19.1571 19.1571i 0.640710 0.640710i
\(895\) 0 0
\(896\) 25.9805 + 25.9805i 0.867947 + 0.867947i
\(897\) 6.22431 + 23.2295i 0.207824 + 0.775609i
\(898\) 23.8577 + 23.8577i 0.796143 + 0.796143i
\(899\) −2.53949 −0.0846966
\(900\) 0 0
\(901\) −7.24203 + 27.0276i −0.241267 + 0.900421i
\(902\) 6.68775i 0.222678i
\(903\) 8.35429 14.4701i 0.278013 0.481533i
\(904\) 4.01411 + 2.31755i 0.133507 + 0.0770804i
\(905\) 0 0
\(906\) −6.96350 1.86586i −0.231347 0.0619892i
\(907\) −3.65102 6.32376i −0.121230 0.209977i 0.799023 0.601301i \(-0.205351\pi\)
−0.920253 + 0.391324i \(0.872017\pi\)
\(908\) 0.564627 0.977963i 0.0187378 0.0324548i
\(909\) −14.1345 + 24.4817i −0.468812 + 0.812007i
\(910\) 0 0
\(911\) 38.5071 + 38.5071i 1.27580 + 1.27580i 0.942998 + 0.332797i \(0.107992\pi\)
0.332797 + 0.942998i \(0.392008\pi\)
\(912\) 18.4325 10.6420i 0.610362 0.352392i
\(913\) 3.37172 + 12.5834i 0.111588 + 0.416451i
\(914\) 35.1449i 1.16249i
\(915\) 0 0
\(916\) 1.67477 + 0.966931i 0.0553361 + 0.0319483i
\(917\) 60.9079i 2.01136i
\(918\) 29.6382 + 7.94153i 0.978206 + 0.262110i
\(919\) −9.38503 9.38503i −0.309583 0.309583i 0.535164 0.844748i \(-0.320250\pi\)
−0.844748 + 0.535164i \(0.820250\pi\)
\(920\) 0 0
\(921\) −6.92756 11.9989i −0.228271 0.395377i
\(922\) 37.7169 + 10.1062i 1.24214 + 0.332830i
\(923\) 9.19467 + 5.30854i 0.302646 + 0.174733i
\(924\) 6.76214 0.222458
\(925\) 0 0
\(926\) −24.8172 −0.815544
\(927\) −23.4087 13.5150i −0.768844 0.443892i
\(928\) 0.842219 + 0.225672i 0.0276472 + 0.00740805i
\(929\) 3.03772 + 5.26148i 0.0996643 + 0.172624i 0.911546 0.411199i \(-0.134890\pi\)
−0.811881 + 0.583822i \(0.801556\pi\)
\(930\) 0 0
\(931\) 40.5489 + 40.5489i 1.32894 + 1.32894i
\(932\) 0.828939 + 0.222113i 0.0271528 + 0.00727557i
\(933\) 0.850939i 0.0278585i
\(934\) −25.2967 14.6051i −0.827734 0.477892i
\(935\) 0 0
\(936\) 13.1933i 0.431237i
\(937\) 8.90460 + 33.2324i 0.290901 + 1.08566i 0.944419 + 0.328745i \(0.106626\pi\)
−0.653518 + 0.756911i \(0.726708\pi\)
\(938\) −58.2853 + 33.6511i −1.90308 + 1.09875i
\(939\) 20.2234 + 20.2234i 0.659966 + 0.659966i
\(940\) 0 0
\(941\) −27.4941 + 47.6211i −0.896281 + 1.55240i −0.0640700 + 0.997945i \(0.520408\pi\)
−0.832211 + 0.554459i \(0.812925\pi\)
\(942\) 7.84666 13.5908i 0.255658 0.442813i
\(943\) 3.40456 + 5.89688i 0.110868 + 0.192029i
\(944\) 19.9734 + 5.35185i 0.650078 + 0.174188i
\(945\) 0 0
\(946\) 17.7510 + 10.2485i 0.577135 + 0.333209i
\(947\) −19.3878 + 33.5806i −0.630018 + 1.09122i 0.357530 + 0.933902i \(0.383619\pi\)
−0.987548 + 0.157321i \(0.949714\pi\)
\(948\) 1.32880i 0.0431574i
\(949\) 2.72587 10.1731i 0.0884853 0.330232i
\(950\) 0 0
\(951\) 39.9844 1.29658
\(952\) −38.0359 38.0359i −1.23275 1.23275i
\(953\) 10.5419 + 39.3428i 0.341485 + 1.27444i 0.896666 + 0.442708i \(0.145982\pi\)
−0.555181 + 0.831729i \(0.687351\pi\)
\(954\) −9.19368 9.19368i −0.297656 0.297656i
\(955\) 0 0
\(956\) −3.25085 + 3.25085i −0.105140 + 0.105140i
\(957\) −3.08283 + 1.77987i −0.0996538 + 0.0575352i
\(958\) −2.12444 + 7.92852i −0.0686375 + 0.256159i
\(959\) −38.4576 + 22.2035i −1.24186 + 0.716988i
\(960\) 0 0
\(961\) 12.5407i 0.404540i
\(962\) 0.861985 23.8408i 0.0277915 0.768658i
\(963\) 6.88639 + 6.88639i 0.221911 + 0.221911i
\(964\) 5.38813 1.44374i 0.173540 0.0464999i
\(965\) 0 0
\(966\) −39.4567 + 22.7803i −1.26950 + 0.732945i
\(967\) 23.0800 + 39.9757i 0.742202 + 1.28553i 0.951491 + 0.307678i \(0.0995519\pi\)
−0.209288 + 0.977854i \(0.567115\pi\)
\(968\) 38.6800i 1.24322i
\(969\) −22.8251 + 13.1781i −0.733247 + 0.423341i
\(970\) 0 0
\(971\) −2.87600 + 4.98139i −0.0922954 + 0.159860i −0.908477 0.417936i \(-0.862754\pi\)
0.816181 + 0.577796i \(0.196087\pi\)
\(972\) 2.54213 2.54213i 0.0815390 0.0815390i
\(973\) −26.4631 + 26.4631i −0.848368 + 0.848368i
\(974\) −14.9977 8.65893i −0.480557 0.277450i
\(975\) 0 0
\(976\) 4.19334 4.19334i 0.134225 0.134225i
\(977\) −41.8050 24.1361i −1.33746 0.772184i −0.351031 0.936364i \(-0.614169\pi\)
−0.986430 + 0.164180i \(0.947502\pi\)
\(978\) −25.6332 + 6.86838i −0.819658 + 0.219627i
\(979\) 15.0473 + 56.1574i 0.480915 + 1.79480i
\(980\) 0 0
\(981\) −2.66465 + 9.94460i −0.0850757 + 0.317507i
\(982\) −2.17558 1.25607i −0.0694257 0.0400829i
\(983\) 7.98131 + 29.7867i 0.254564 + 0.950047i 0.968332 + 0.249665i \(0.0803204\pi\)
−0.713768 + 0.700382i \(0.753013\pi\)
\(984\) 0.983993 + 3.67231i 0.0313685 + 0.117069i
\(985\) 0 0
\(986\) 3.17399 + 0.850468i 0.101080 + 0.0270844i
\(987\) −31.9752 + 8.56773i −1.01778 + 0.272714i
\(988\) 2.80618 + 2.80618i 0.0892766 + 0.0892766i
\(989\) 20.8691 0.663598
\(990\) 0 0
\(991\) −18.7066 + 18.7066i −0.594235 + 0.594235i −0.938773 0.344537i \(-0.888036\pi\)
0.344537 + 0.938773i \(0.388036\pi\)
\(992\) −1.64039 + 6.12200i −0.0520823 + 0.194374i
\(993\) 26.1794 0.830778
\(994\) −5.20590 + 19.4287i −0.165121 + 0.616241i
\(995\) 0 0
\(996\) 0.429694 + 0.744252i 0.0136154 + 0.0235825i
\(997\) −16.0200 + 27.7475i −0.507359 + 0.878771i 0.492605 + 0.870253i \(0.336045\pi\)
−0.999964 + 0.00851805i \(0.997289\pi\)
\(998\) −18.4125 + 18.4125i −0.582836 + 0.582836i
\(999\) 24.5817 22.8662i 0.777731 0.723455i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.13 68
5.2 odd 4 925.2.t.b.282.5 68
5.3 odd 4 185.2.p.a.97.13 68
5.4 even 2 185.2.u.a.23.5 yes 68
37.29 odd 12 925.2.t.b.843.5 68
185.29 odd 12 185.2.p.a.103.13 yes 68
185.103 even 12 185.2.u.a.177.5 yes 68
185.177 even 12 inner 925.2.y.b.732.13 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.13 68 5.3 odd 4
185.2.p.a.103.13 yes 68 185.29 odd 12
185.2.u.a.23.5 yes 68 5.4 even 2
185.2.u.a.177.5 yes 68 185.103 even 12
925.2.t.b.282.5 68 5.2 odd 4
925.2.t.b.843.5 68 37.29 odd 12
925.2.y.b.393.13 68 1.1 even 1 trivial
925.2.y.b.732.13 68 185.177 even 12 inner