Properties

Label 925.2.y.b.393.11
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.11
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.336728 + 0.194410i) q^{2} +(2.95460 + 0.791682i) q^{3} +(-0.924410 - 1.60112i) q^{4} +(0.840985 + 0.840985i) q^{6} +(3.04240 + 0.815208i) q^{7} -1.49650i q^{8} +(5.50482 + 3.17821i) q^{9} +5.40976i q^{11} +(-1.46368 - 5.46252i) q^{12} +(-0.424546 + 0.245112i) q^{13} +(0.865975 + 0.865975i) q^{14} +(-1.55789 + 2.69834i) q^{16} +(0.959776 - 1.66238i) q^{17} +(1.23575 + 2.14038i) q^{18} +(-3.33608 - 0.893901i) q^{19} +(8.34368 + 4.81723i) q^{21} +(-1.05171 + 1.82162i) q^{22} -2.76865i q^{23} +(1.18475 - 4.42155i) q^{24} -0.190608 q^{26} +(7.25964 + 7.25964i) q^{27} +(-1.50717 - 5.62484i) q^{28} +(-5.54567 - 5.54567i) q^{29} +(1.40152 - 1.40152i) q^{31} +(-3.64118 + 2.10223i) q^{32} +(-4.28281 + 15.9837i) q^{33} +(0.646366 - 0.373180i) q^{34} -11.7519i q^{36} +(5.62947 - 2.30414i) q^{37} +(-0.949569 - 0.949569i) q^{38} +(-1.44841 + 0.388101i) q^{39} +(-1.77472 + 1.02463i) q^{41} +(1.87303 + 3.24419i) q^{42} -4.07381i q^{43} +(8.66170 - 5.00084i) q^{44} +(0.538252 - 0.932280i) q^{46} +(-1.75880 + 1.75880i) q^{47} +(-6.73915 + 6.73915i) q^{48} +(2.52944 + 1.46037i) q^{49} +(4.15183 - 4.15183i) q^{51} +(0.784908 + 0.453167i) q^{52} +(9.91602 - 2.65699i) q^{53} +(1.03318 + 3.85587i) q^{54} +(1.21996 - 4.55294i) q^{56} +(-9.14910 - 5.28224i) q^{57} +(-0.789248 - 2.94551i) q^{58} +(3.54546 + 13.2318i) q^{59} +(1.33066 + 0.356550i) q^{61} +(0.744399 - 0.199461i) q^{62} +(14.1569 + 14.1569i) q^{63} +4.59676 q^{64} +(-4.54953 + 4.54953i) q^{66} +(1.99697 - 7.45279i) q^{67} -3.54890 q^{68} +(2.19189 - 8.18024i) q^{69} +(-4.08391 - 7.07355i) q^{71} +(4.75618 - 8.23794i) q^{72} +(0.148203 - 0.148203i) q^{73} +(2.34355 + 0.318555i) q^{74} +(1.65266 + 6.16781i) q^{76} +(-4.41008 + 16.4586i) q^{77} +(-0.563171 - 0.150901i) q^{78} +(-14.2072 - 3.80679i) q^{79} +(6.16738 + 10.6822i) q^{81} -0.796795 q^{82} +(-15.5054 + 4.15466i) q^{83} -17.8124i q^{84} +(0.791990 - 1.37177i) q^{86} +(-11.9948 - 20.7756i) q^{87} +8.09569 q^{88} +(-2.74139 + 0.734553i) q^{89} +(-1.49145 + 0.399634i) q^{91} +(-4.43295 + 2.55936i) q^{92} +(5.25048 - 3.03137i) q^{93} +(-0.934165 + 0.250309i) q^{94} +(-12.4225 + 3.32860i) q^{96} -2.02493 q^{97} +(0.567822 + 0.983497i) q^{98} +(-17.1933 + 29.7797i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.336728 + 0.194410i 0.238102 + 0.137469i 0.614304 0.789069i \(-0.289437\pi\)
−0.376202 + 0.926538i \(0.622770\pi\)
\(3\) 2.95460 + 0.791682i 1.70584 + 0.457078i 0.974398 0.224828i \(-0.0721820\pi\)
0.731440 + 0.681906i \(0.238849\pi\)
\(4\) −0.924410 1.60112i −0.462205 0.800562i
\(5\) 0 0
\(6\) 0.840985 + 0.840985i 0.343330 + 0.343330i
\(7\) 3.04240 + 0.815208i 1.14992 + 0.308120i 0.782932 0.622107i \(-0.213723\pi\)
0.366986 + 0.930227i \(0.380390\pi\)
\(8\) 1.49650i 0.529092i
\(9\) 5.50482 + 3.17821i 1.83494 + 1.05940i
\(10\) 0 0
\(11\) 5.40976i 1.63110i 0.578683 + 0.815552i \(0.303567\pi\)
−0.578683 + 0.815552i \(0.696433\pi\)
\(12\) −1.46368 5.46252i −0.422527 1.57689i
\(13\) −0.424546 + 0.245112i −0.117748 + 0.0679817i −0.557717 0.830031i \(-0.688323\pi\)
0.439969 + 0.898013i \(0.354989\pi\)
\(14\) 0.865975 + 0.865975i 0.231442 + 0.231442i
\(15\) 0 0
\(16\) −1.55789 + 2.69834i −0.389471 + 0.674584i
\(17\) 0.959776 1.66238i 0.232780 0.403186i −0.725845 0.687858i \(-0.758551\pi\)
0.958625 + 0.284672i \(0.0918845\pi\)
\(18\) 1.23575 + 2.14038i 0.291269 + 0.504493i
\(19\) −3.33608 0.893901i −0.765350 0.205075i −0.145034 0.989427i \(-0.546329\pi\)
−0.620316 + 0.784352i \(0.712996\pi\)
\(20\) 0 0
\(21\) 8.34368 + 4.81723i 1.82074 + 1.05120i
\(22\) −1.05171 + 1.82162i −0.224226 + 0.388370i
\(23\) 2.76865i 0.577303i −0.957434 0.288651i \(-0.906793\pi\)
0.957434 0.288651i \(-0.0932068\pi\)
\(24\) 1.18475 4.42155i 0.241836 0.902545i
\(25\) 0 0
\(26\) −0.190608 −0.0373814
\(27\) 7.25964 + 7.25964i 1.39712 + 1.39712i
\(28\) −1.50717 5.62484i −0.284829 1.06300i
\(29\) −5.54567 5.54567i −1.02981 1.02981i −0.999542 0.0302632i \(-0.990365\pi\)
−0.0302632 0.999542i \(-0.509635\pi\)
\(30\) 0 0
\(31\) 1.40152 1.40152i 0.251720 0.251720i −0.569955 0.821676i \(-0.693040\pi\)
0.821676 + 0.569955i \(0.193040\pi\)
\(32\) −3.64118 + 2.10223i −0.643675 + 0.371626i
\(33\) −4.28281 + 15.9837i −0.745542 + 2.78240i
\(34\) 0.646366 0.373180i 0.110851 0.0639998i
\(35\) 0 0
\(36\) 11.7519i 1.95864i
\(37\) 5.62947 2.30414i 0.925479 0.378799i
\(38\) −0.949569 0.949569i −0.154040 0.154040i
\(39\) −1.44841 + 0.388101i −0.231932 + 0.0621459i
\(40\) 0 0
\(41\) −1.77472 + 1.02463i −0.277164 + 0.160021i −0.632139 0.774855i \(-0.717823\pi\)
0.354975 + 0.934876i \(0.384489\pi\)
\(42\) 1.87303 + 3.24419i 0.289015 + 0.500589i
\(43\) 4.07381i 0.621251i −0.950532 0.310625i \(-0.899462\pi\)
0.950532 0.310625i \(-0.100538\pi\)
\(44\) 8.66170 5.00084i 1.30580 0.753904i
\(45\) 0 0
\(46\) 0.538252 0.932280i 0.0793609 0.137457i
\(47\) −1.75880 + 1.75880i −0.256547 + 0.256547i −0.823648 0.567101i \(-0.808065\pi\)
0.567101 + 0.823648i \(0.308065\pi\)
\(48\) −6.73915 + 6.73915i −0.972713 + 0.972713i
\(49\) 2.52944 + 1.46037i 0.361349 + 0.208625i
\(50\) 0 0
\(51\) 4.15183 4.15183i 0.581372 0.581372i
\(52\) 0.784908 + 0.453167i 0.108847 + 0.0628430i
\(53\) 9.91602 2.65699i 1.36207 0.364965i 0.497494 0.867468i \(-0.334254\pi\)
0.864576 + 0.502502i \(0.167587\pi\)
\(54\) 1.03318 + 3.85587i 0.140598 + 0.524717i
\(55\) 0 0
\(56\) 1.21996 4.55294i 0.163024 0.608412i
\(57\) −9.14910 5.28224i −1.21183 0.699649i
\(58\) −0.789248 2.94551i −0.103633 0.386765i
\(59\) 3.54546 + 13.2318i 0.461579 + 1.72264i 0.667989 + 0.744171i \(0.267155\pi\)
−0.206410 + 0.978466i \(0.566178\pi\)
\(60\) 0 0
\(61\) 1.33066 + 0.356550i 0.170374 + 0.0456516i 0.342998 0.939336i \(-0.388558\pi\)
−0.172624 + 0.984988i \(0.555224\pi\)
\(62\) 0.744399 0.199461i 0.0945388 0.0253316i
\(63\) 14.1569 + 14.1569i 1.78361 + 1.78361i
\(64\) 4.59676 0.574595
\(65\) 0 0
\(66\) −4.54953 + 4.54953i −0.560008 + 0.560008i
\(67\) 1.99697 7.45279i 0.243969 0.910503i −0.729931 0.683521i \(-0.760448\pi\)
0.973899 0.226982i \(-0.0728857\pi\)
\(68\) −3.54890 −0.430368
\(69\) 2.19189 8.18024i 0.263872 0.984785i
\(70\) 0 0
\(71\) −4.08391 7.07355i −0.484671 0.839476i 0.515173 0.857086i \(-0.327728\pi\)
−0.999845 + 0.0176103i \(0.994394\pi\)
\(72\) 4.75618 8.23794i 0.560521 0.970851i
\(73\) 0.148203 0.148203i 0.0173459 0.0173459i −0.698381 0.715727i \(-0.746096\pi\)
0.715727 + 0.698381i \(0.246096\pi\)
\(74\) 2.34355 + 0.318555i 0.272432 + 0.0370313i
\(75\) 0 0
\(76\) 1.65266 + 6.16781i 0.189573 + 0.707497i
\(77\) −4.41008 + 16.4586i −0.502575 + 1.87564i
\(78\) −0.563171 0.150901i −0.0637666 0.0170862i
\(79\) −14.2072 3.80679i −1.59843 0.428298i −0.653862 0.756614i \(-0.726852\pi\)
−0.944568 + 0.328316i \(0.893519\pi\)
\(80\) 0 0
\(81\) 6.16738 + 10.6822i 0.685265 + 1.18691i
\(82\) −0.796795 −0.0879913
\(83\) −15.5054 + 4.15466i −1.70194 + 0.456033i −0.973427 0.228999i \(-0.926455\pi\)
−0.728513 + 0.685032i \(0.759788\pi\)
\(84\) 17.8124i 1.94349i
\(85\) 0 0
\(86\) 0.791990 1.37177i 0.0854025 0.147921i
\(87\) −11.9948 20.7756i −1.28598 2.22738i
\(88\) 8.09569 0.863004
\(89\) −2.74139 + 0.734553i −0.290587 + 0.0778624i −0.401168 0.916005i \(-0.631395\pi\)
0.110581 + 0.993867i \(0.464729\pi\)
\(90\) 0 0
\(91\) −1.49145 + 0.399634i −0.156347 + 0.0418930i
\(92\) −4.43295 + 2.55936i −0.462167 + 0.266832i
\(93\) 5.25048 3.03137i 0.544450 0.314338i
\(94\) −0.934165 + 0.250309i −0.0963518 + 0.0258174i
\(95\) 0 0
\(96\) −12.4225 + 3.32860i −1.26787 + 0.339724i
\(97\) −2.02493 −0.205601 −0.102800 0.994702i \(-0.532780\pi\)
−0.102800 + 0.994702i \(0.532780\pi\)
\(98\) 0.567822 + 0.983497i 0.0573587 + 0.0993482i
\(99\) −17.1933 + 29.7797i −1.72800 + 2.99298i
\(100\) 0 0
\(101\) 0.549156i 0.0546431i 0.999627 + 0.0273215i \(0.00869780\pi\)
−0.999627 + 0.0273215i \(0.991302\pi\)
\(102\) 2.20519 0.590880i 0.218347 0.0585058i
\(103\) −13.5624 −1.33634 −0.668172 0.744007i \(-0.732923\pi\)
−0.668172 + 0.744007i \(0.732923\pi\)
\(104\) 0.366809 + 0.635331i 0.0359685 + 0.0622994i
\(105\) 0 0
\(106\) 3.85554 + 1.03309i 0.374483 + 0.100343i
\(107\) −1.20864 0.323853i −0.116843 0.0313080i 0.199924 0.979811i \(-0.435931\pi\)
−0.316767 + 0.948503i \(0.602597\pi\)
\(108\) 4.91271 18.3345i 0.472726 1.76424i
\(109\) 0.0307250 + 0.114667i 0.00294292 + 0.0109831i 0.967382 0.253323i \(-0.0815236\pi\)
−0.964439 + 0.264306i \(0.914857\pi\)
\(110\) 0 0
\(111\) 18.4570 2.35107i 1.75186 0.223154i
\(112\) −6.93941 + 6.93941i −0.655713 + 0.655713i
\(113\) −3.25248 + 5.63347i −0.305968 + 0.529952i −0.977476 0.211045i \(-0.932313\pi\)
0.671508 + 0.740997i \(0.265647\pi\)
\(114\) −2.05384 3.55735i −0.192359 0.333176i
\(115\) 0 0
\(116\) −3.75284 + 14.0058i −0.348442 + 1.30040i
\(117\) −3.11606 −0.288080
\(118\) −1.37854 + 5.14479i −0.126905 + 0.473617i
\(119\) 4.27520 4.27520i 0.391907 0.391907i
\(120\) 0 0
\(121\) −18.2655 −1.66050
\(122\) 0.378755 + 0.378755i 0.0342908 + 0.0342908i
\(123\) −6.05476 + 1.62237i −0.545939 + 0.146284i
\(124\) −3.53958 0.948429i −0.317864 0.0851714i
\(125\) 0 0
\(126\) 2.01479 + 7.51928i 0.179491 + 0.669871i
\(127\) 1.05728 + 3.94583i 0.0938185 + 0.350135i 0.996838 0.0794648i \(-0.0253211\pi\)
−0.903019 + 0.429600i \(0.858654\pi\)
\(128\) 8.83021 + 5.09812i 0.780487 + 0.450615i
\(129\) 3.22517 12.0365i 0.283960 1.05975i
\(130\) 0 0
\(131\) −2.83341 10.5744i −0.247556 0.923893i −0.972081 0.234645i \(-0.924607\pi\)
0.724525 0.689249i \(-0.242059\pi\)
\(132\) 29.5509 7.91815i 2.57208 0.689186i
\(133\) −9.42098 5.43920i −0.816902 0.471639i
\(134\) 2.12133 2.12133i 0.183255 0.183255i
\(135\) 0 0
\(136\) −2.48775 1.43630i −0.213323 0.123162i
\(137\) −3.16424 + 3.16424i −0.270339 + 0.270339i −0.829237 0.558897i \(-0.811225\pi\)
0.558897 + 0.829237i \(0.311225\pi\)
\(138\) 2.32839 2.32839i 0.198206 0.198206i
\(139\) 10.0902 17.4767i 0.855839 1.48236i −0.0200261 0.999799i \(-0.506375\pi\)
0.875865 0.482557i \(-0.160292\pi\)
\(140\) 0 0
\(141\) −6.58896 + 3.80414i −0.554891 + 0.320366i
\(142\) 3.17581i 0.266508i
\(143\) −1.32600 2.29669i −0.110885 0.192059i
\(144\) −17.1517 + 9.90257i −1.42931 + 0.825214i
\(145\) 0 0
\(146\) 0.0787164 0.0210920i 0.00651461 0.00174559i
\(147\) 6.31733 + 6.31733i 0.521045 + 0.521045i
\(148\) −8.89316 6.88351i −0.731013 0.565821i
\(149\) 17.4033i 1.42573i 0.701301 + 0.712866i \(0.252603\pi\)
−0.701301 + 0.712866i \(0.747397\pi\)
\(150\) 0 0
\(151\) 14.5658 8.40956i 1.18535 0.684360i 0.228102 0.973637i \(-0.426748\pi\)
0.957245 + 0.289277i \(0.0934148\pi\)
\(152\) −1.33772 + 4.99244i −0.108503 + 0.404940i
\(153\) 10.5668 6.10073i 0.854273 0.493215i
\(154\) −4.68472 + 4.68472i −0.377505 + 0.377505i
\(155\) 0 0
\(156\) 1.96032 + 1.96032i 0.156952 + 0.156952i
\(157\) −1.40627 5.24826i −0.112232 0.418857i 0.886833 0.462091i \(-0.152901\pi\)
−0.999065 + 0.0432340i \(0.986234\pi\)
\(158\) −4.04386 4.04386i −0.321713 0.321713i
\(159\) 31.4013 2.49029
\(160\) 0 0
\(161\) 2.25702 8.42332i 0.177878 0.663851i
\(162\) 4.79600i 0.376809i
\(163\) 11.0643 19.1640i 0.866624 1.50104i 0.00119876 0.999999i \(-0.499618\pi\)
0.865425 0.501038i \(-0.167048\pi\)
\(164\) 3.28113 + 1.89436i 0.256213 + 0.147925i
\(165\) 0 0
\(166\) −6.02881 1.61541i −0.467926 0.125380i
\(167\) 2.83580 + 4.91176i 0.219441 + 0.380083i 0.954637 0.297771i \(-0.0962433\pi\)
−0.735196 + 0.677854i \(0.762910\pi\)
\(168\) 7.20896 12.4863i 0.556183 0.963338i
\(169\) −6.37984 + 11.0502i −0.490757 + 0.850016i
\(170\) 0 0
\(171\) −15.5235 15.5235i −1.18711 1.18711i
\(172\) −6.52268 + 3.76587i −0.497350 + 0.287145i
\(173\) 1.22092 + 4.55655i 0.0928252 + 0.346428i 0.996681 0.0814094i \(-0.0259421\pi\)
−0.903856 + 0.427838i \(0.859275\pi\)
\(174\) 9.32765i 0.707127i
\(175\) 0 0
\(176\) −14.5974 8.42779i −1.10032 0.635268i
\(177\) 41.9016i 3.14952i
\(178\) −1.06591 0.285609i −0.0798930 0.0214073i
\(179\) 5.34956 + 5.34956i 0.399845 + 0.399845i 0.878178 0.478333i \(-0.158759\pi\)
−0.478333 + 0.878178i \(0.658759\pi\)
\(180\) 0 0
\(181\) 5.52605 + 9.57140i 0.410748 + 0.711436i 0.994972 0.100156i \(-0.0319343\pi\)
−0.584224 + 0.811593i \(0.698601\pi\)
\(182\) −0.579907 0.155386i −0.0429855 0.0115179i
\(183\) 3.64930 + 2.10693i 0.269764 + 0.155748i
\(184\) −4.14327 −0.305446
\(185\) 0 0
\(186\) 2.35731 0.172846
\(187\) 8.99308 + 5.19216i 0.657639 + 0.379688i
\(188\) 4.44191 + 1.19021i 0.323960 + 0.0868047i
\(189\) 16.1686 + 28.0048i 1.17609 + 2.03705i
\(190\) 0 0
\(191\) 9.74810 + 9.74810i 0.705348 + 0.705348i 0.965553 0.260205i \(-0.0837902\pi\)
−0.260205 + 0.965553i \(0.583790\pi\)
\(192\) 13.5816 + 3.63918i 0.980167 + 0.262635i
\(193\) 16.2149i 1.16717i 0.812052 + 0.583586i \(0.198351\pi\)
−0.812052 + 0.583586i \(0.801649\pi\)
\(194\) −0.681851 0.393667i −0.0489540 0.0282636i
\(195\) 0 0
\(196\) 5.39994i 0.385710i
\(197\) −3.48937 13.0225i −0.248607 0.927815i −0.971536 0.236893i \(-0.923871\pi\)
0.722928 0.690923i \(-0.242796\pi\)
\(198\) −11.5790 + 6.68511i −0.822880 + 0.475090i
\(199\) −11.8257 11.8257i −0.838302 0.838302i 0.150333 0.988635i \(-0.451965\pi\)
−0.988635 + 0.150333i \(0.951965\pi\)
\(200\) 0 0
\(201\) 11.8005 20.4390i 0.832342 1.44166i
\(202\) −0.106761 + 0.184916i −0.00751170 + 0.0130107i
\(203\) −12.3513 21.3930i −0.866889 1.50149i
\(204\) −10.4856 2.80960i −0.734138 0.196712i
\(205\) 0 0
\(206\) −4.56684 2.63667i −0.318187 0.183705i
\(207\) 8.79933 15.2409i 0.611596 1.05931i
\(208\) 1.52742i 0.105908i
\(209\) 4.83579 18.0474i 0.334499 1.24837i
\(210\) 0 0
\(211\) −10.9455 −0.753516 −0.376758 0.926312i \(-0.622961\pi\)
−0.376758 + 0.926312i \(0.622961\pi\)
\(212\) −13.4206 13.4206i −0.921733 0.921733i
\(213\) −6.46633 24.1327i −0.443065 1.65354i
\(214\) −0.344021 0.344021i −0.0235168 0.0235168i
\(215\) 0 0
\(216\) 10.8640 10.8640i 0.739204 0.739204i
\(217\) 5.40651 3.12145i 0.367018 0.211898i
\(218\) −0.0119465 + 0.0445849i −0.000809119 + 0.00301967i
\(219\) 0.555212 0.320552i 0.0375177 0.0216609i
\(220\) 0 0
\(221\) 0.941008i 0.0632991i
\(222\) 6.67205 + 2.79655i 0.447798 + 0.187692i
\(223\) 16.5949 + 16.5949i 1.11128 + 1.11128i 0.992978 + 0.118301i \(0.0377448\pi\)
0.118301 + 0.992978i \(0.462255\pi\)
\(224\) −12.7917 + 3.42752i −0.854679 + 0.229010i
\(225\) 0 0
\(226\) −2.19040 + 1.26463i −0.145703 + 0.0841219i
\(227\) 1.45267 + 2.51610i 0.0964172 + 0.166999i 0.910199 0.414171i \(-0.135928\pi\)
−0.813782 + 0.581170i \(0.802595\pi\)
\(228\) 19.5318i 1.29352i
\(229\) 0.474824 0.274140i 0.0313773 0.0181157i −0.484229 0.874941i \(-0.660900\pi\)
0.515607 + 0.856825i \(0.327567\pi\)
\(230\) 0 0
\(231\) −26.0600 + 45.1373i −1.71462 + 2.96982i
\(232\) −8.29908 + 8.29908i −0.544861 + 0.544861i
\(233\) 3.42406 3.42406i 0.224318 0.224318i −0.585996 0.810314i \(-0.699297\pi\)
0.810314 + 0.585996i \(0.199297\pi\)
\(234\) −1.04926 0.605793i −0.0685926 0.0396019i
\(235\) 0 0
\(236\) 17.9083 17.9083i 1.16573 1.16573i
\(237\) −38.9627 22.4951i −2.53090 1.46121i
\(238\) 2.27072 0.608438i 0.147189 0.0394392i
\(239\) 1.69865 + 6.33944i 0.109876 + 0.410064i 0.998853 0.0478891i \(-0.0152494\pi\)
−0.888976 + 0.457953i \(0.848583\pi\)
\(240\) 0 0
\(241\) −5.22983 + 19.5180i −0.336883 + 1.25726i 0.564930 + 0.825139i \(0.308903\pi\)
−0.901813 + 0.432126i \(0.857764\pi\)
\(242\) −6.15051 3.55100i −0.395370 0.228267i
\(243\) 1.79357 + 6.69370i 0.115058 + 0.429401i
\(244\) −0.659197 2.46016i −0.0422008 0.157495i
\(245\) 0 0
\(246\) −2.35421 0.630809i −0.150099 0.0402189i
\(247\) 1.63542 0.438211i 0.104060 0.0278827i
\(248\) −2.09737 2.09737i −0.133183 0.133183i
\(249\) −49.1014 −3.11168
\(250\) 0 0
\(251\) −8.09134 + 8.09134i −0.510721 + 0.510721i −0.914747 0.404027i \(-0.867610\pi\)
0.404027 + 0.914747i \(0.367610\pi\)
\(252\) 9.58021 35.7538i 0.603497 2.25228i
\(253\) 14.9777 0.941641
\(254\) −0.411092 + 1.53422i −0.0257942 + 0.0962652i
\(255\) 0 0
\(256\) −2.61451 4.52847i −0.163407 0.283029i
\(257\) 1.20066 2.07961i 0.0748953 0.129722i −0.826145 0.563457i \(-0.809471\pi\)
0.901041 + 0.433734i \(0.142804\pi\)
\(258\) 3.42602 3.42602i 0.213294 0.213294i
\(259\) 19.0054 2.42094i 1.18094 0.150430i
\(260\) 0 0
\(261\) −12.9026 48.1532i −0.798651 2.98061i
\(262\) 1.10169 4.11155i 0.0680624 0.254013i
\(263\) 0.649790 + 0.174111i 0.0400678 + 0.0107361i 0.278797 0.960350i \(-0.410064\pi\)
−0.238729 + 0.971086i \(0.576731\pi\)
\(264\) 23.9195 + 6.40922i 1.47214 + 0.394460i
\(265\) 0 0
\(266\) −2.11487 3.66306i −0.129671 0.224597i
\(267\) −8.68123 −0.531283
\(268\) −13.7789 + 3.69203i −0.841678 + 0.225527i
\(269\) 11.1924i 0.682413i 0.939988 + 0.341207i \(0.110836\pi\)
−0.939988 + 0.341207i \(0.889164\pi\)
\(270\) 0 0
\(271\) 0.729450 1.26345i 0.0443110 0.0767488i −0.843019 0.537883i \(-0.819224\pi\)
0.887330 + 0.461134i \(0.152557\pi\)
\(272\) 2.99044 + 5.17960i 0.181322 + 0.314059i
\(273\) −4.72303 −0.285851
\(274\) −1.68065 + 0.450328i −0.101532 + 0.0272053i
\(275\) 0 0
\(276\) −15.1238 + 4.05240i −0.910344 + 0.243926i
\(277\) 6.57388 3.79543i 0.394986 0.228045i −0.289332 0.957229i \(-0.593433\pi\)
0.684318 + 0.729183i \(0.260100\pi\)
\(278\) 6.79529 3.92326i 0.407555 0.235302i
\(279\) 12.1694 3.26079i 0.728564 0.195218i
\(280\) 0 0
\(281\) 18.0851 4.84588i 1.07886 0.289081i 0.324734 0.945805i \(-0.394725\pi\)
0.754131 + 0.656724i \(0.228059\pi\)
\(282\) −2.95825 −0.176161
\(283\) −12.5540 21.7442i −0.746259 1.29256i −0.949604 0.313451i \(-0.898515\pi\)
0.203345 0.979107i \(-0.434819\pi\)
\(284\) −7.55042 + 13.0777i −0.448035 + 0.776019i
\(285\) 0 0
\(286\) 1.03115i 0.0609729i
\(287\) −6.23469 + 1.67058i −0.368022 + 0.0986112i
\(288\) −26.7253 −1.57481
\(289\) 6.65766 + 11.5314i 0.391627 + 0.678318i
\(290\) 0 0
\(291\) −5.98286 1.60310i −0.350721 0.0939755i
\(292\) −0.374293 0.100291i −0.0219038 0.00586911i
\(293\) 0.383198 1.43011i 0.0223867 0.0835482i −0.953829 0.300351i \(-0.902896\pi\)
0.976215 + 0.216803i \(0.0695629\pi\)
\(294\) 0.899070 + 3.35537i 0.0524348 + 0.195689i
\(295\) 0 0
\(296\) −3.44814 8.42448i −0.200419 0.489663i
\(297\) −39.2729 + 39.2729i −2.27885 + 2.27885i
\(298\) −3.38337 + 5.86016i −0.195993 + 0.339470i
\(299\) 0.678627 + 1.17542i 0.0392460 + 0.0679761i
\(300\) 0 0
\(301\) 3.32101 12.3942i 0.191420 0.714388i
\(302\) 6.53961 0.376312
\(303\) −0.434757 + 1.62254i −0.0249761 + 0.0932123i
\(304\) 7.60928 7.60928i 0.436422 0.436422i
\(305\) 0 0
\(306\) 4.74417 0.271206
\(307\) −13.9807 13.9807i −0.797920 0.797920i 0.184847 0.982767i \(-0.440821\pi\)
−0.982767 + 0.184847i \(0.940821\pi\)
\(308\) 30.4291 8.15344i 1.73386 0.464585i
\(309\) −40.0715 10.7371i −2.27959 0.610813i
\(310\) 0 0
\(311\) −0.610669 2.27905i −0.0346278 0.129233i 0.946448 0.322856i \(-0.104643\pi\)
−0.981076 + 0.193623i \(0.937976\pi\)
\(312\) 0.580792 + 2.16754i 0.0328809 + 0.122713i
\(313\) 7.07463 + 4.08454i 0.399882 + 0.230872i 0.686433 0.727193i \(-0.259176\pi\)
−0.286551 + 0.958065i \(0.592509\pi\)
\(314\) 0.546784 2.04063i 0.0308568 0.115159i
\(315\) 0 0
\(316\) 7.03807 + 26.2665i 0.395923 + 1.47760i
\(317\) −21.7621 + 5.83113i −1.22228 + 0.327509i −0.811569 0.584256i \(-0.801386\pi\)
−0.410711 + 0.911765i \(0.634720\pi\)
\(318\) 10.5737 + 6.10473i 0.592944 + 0.342336i
\(319\) 30.0008 30.0008i 1.67972 1.67972i
\(320\) 0 0
\(321\) −3.31464 1.91371i −0.185005 0.106813i
\(322\) 2.39758 2.39758i 0.133612 0.133612i
\(323\) −4.68789 + 4.68789i −0.260841 + 0.260841i
\(324\) 11.4024 19.7495i 0.633465 1.09719i
\(325\) 0 0
\(326\) 7.45132 4.30202i 0.412691 0.238267i
\(327\) 0.363120i 0.0200806i
\(328\) 1.53336 + 2.65586i 0.0846657 + 0.146645i
\(329\) −6.78476 + 3.91718i −0.374056 + 0.215961i
\(330\) 0 0
\(331\) −11.8707 + 3.18073i −0.652470 + 0.174829i −0.569845 0.821752i \(-0.692997\pi\)
−0.0826246 + 0.996581i \(0.526330\pi\)
\(332\) 20.9855 + 20.9855i 1.15173 + 1.15173i
\(333\) 38.3122 + 5.20773i 2.09950 + 0.285382i
\(334\) 2.20523i 0.120665i
\(335\) 0 0
\(336\) −25.9970 + 15.0094i −1.41825 + 0.818828i
\(337\) −3.67654 + 13.7210i −0.200274 + 0.747433i 0.790564 + 0.612379i \(0.209787\pi\)
−0.990838 + 0.135054i \(0.956879\pi\)
\(338\) −4.29654 + 2.48061i −0.233701 + 0.134927i
\(339\) −14.0697 + 14.0697i −0.764161 + 0.764161i
\(340\) 0 0
\(341\) 7.58188 + 7.58188i 0.410582 + 0.410582i
\(342\) −2.20927 8.24513i −0.119464 0.445845i
\(343\) −9.08527 9.08527i −0.490558 0.490558i
\(344\) −6.09645 −0.328699
\(345\) 0 0
\(346\) −0.474720 + 1.77168i −0.0255211 + 0.0952460i
\(347\) 2.31008i 0.124011i −0.998076 0.0620057i \(-0.980250\pi\)
0.998076 0.0620057i \(-0.0197497\pi\)
\(348\) −22.1763 + 38.4104i −1.18877 + 2.05901i
\(349\) 12.0330 + 6.94728i 0.644114 + 0.371879i 0.786197 0.617975i \(-0.212047\pi\)
−0.142084 + 0.989855i \(0.545380\pi\)
\(350\) 0 0
\(351\) −4.86147 1.30263i −0.259486 0.0695291i
\(352\) −11.3726 19.6979i −0.606161 1.04990i
\(353\) −10.2684 + 17.7853i −0.546529 + 0.946617i 0.451979 + 0.892028i \(0.350718\pi\)
−0.998509 + 0.0545884i \(0.982615\pi\)
\(354\) −8.14608 + 14.1094i −0.432959 + 0.749908i
\(355\) 0 0
\(356\) 3.71028 + 3.71028i 0.196644 + 0.196644i
\(357\) 16.0161 9.24691i 0.847663 0.489398i
\(358\) 0.761338 + 2.84135i 0.0402380 + 0.150170i
\(359\) 27.9245i 1.47380i 0.676001 + 0.736900i \(0.263711\pi\)
−0.676001 + 0.736900i \(0.736289\pi\)
\(360\) 0 0
\(361\) −6.12409 3.53575i −0.322321 0.186092i
\(362\) 4.29727i 0.225860i
\(363\) −53.9673 14.4605i −2.83255 0.758979i
\(364\) 2.01858 + 2.01858i 0.105802 + 0.105802i
\(365\) 0 0
\(366\) 0.819214 + 1.41892i 0.0428210 + 0.0741682i
\(367\) 17.9431 + 4.80784i 0.936622 + 0.250967i 0.694676 0.719322i \(-0.255548\pi\)
0.241946 + 0.970290i \(0.422214\pi\)
\(368\) 7.47074 + 4.31323i 0.389439 + 0.224843i
\(369\) −13.0260 −0.678106
\(370\) 0 0
\(371\) 32.3345 1.67872
\(372\) −9.70720 5.60445i −0.503295 0.290577i
\(373\) 2.56767 + 0.688006i 0.132949 + 0.0356236i 0.324680 0.945824i \(-0.394743\pi\)
−0.191731 + 0.981448i \(0.561410\pi\)
\(374\) 2.01881 + 3.49669i 0.104390 + 0.180809i
\(375\) 0 0
\(376\) 2.63204 + 2.63204i 0.135737 + 0.135737i
\(377\) 3.71370 + 0.995082i 0.191265 + 0.0512494i
\(378\) 12.5733i 0.646703i
\(379\) −19.2622 11.1210i −0.989433 0.571249i −0.0843279 0.996438i \(-0.526874\pi\)
−0.905105 + 0.425189i \(0.860208\pi\)
\(380\) 0 0
\(381\) 12.4954i 0.640157i
\(382\) 1.38733 + 5.17758i 0.0709820 + 0.264908i
\(383\) 8.12659 4.69189i 0.415249 0.239744i −0.277793 0.960641i \(-0.589603\pi\)
0.693043 + 0.720897i \(0.256270\pi\)
\(384\) 22.0536 + 22.0536i 1.12542 + 1.12542i
\(385\) 0 0
\(386\) −3.15233 + 5.45999i −0.160449 + 0.277906i
\(387\) 12.9474 22.4256i 0.658155 1.13996i
\(388\) 1.87187 + 3.24217i 0.0950296 + 0.164596i
\(389\) 0.958452 + 0.256816i 0.0485954 + 0.0130211i 0.283035 0.959110i \(-0.408659\pi\)
−0.234439 + 0.972131i \(0.575325\pi\)
\(390\) 0 0
\(391\) −4.60254 2.65728i −0.232761 0.134384i
\(392\) 2.18545 3.78530i 0.110382 0.191187i
\(393\) 33.4864i 1.68917i
\(394\) 1.35674 5.06341i 0.0683514 0.255091i
\(395\) 0 0
\(396\) 63.5748 3.19475
\(397\) −8.65853 8.65853i −0.434559 0.434559i 0.455617 0.890176i \(-0.349419\pi\)
−0.890176 + 0.455617i \(0.849419\pi\)
\(398\) −1.68301 6.28108i −0.0843616 0.314842i
\(399\) −23.5291 23.5291i −1.17793 1.17793i
\(400\) 0 0
\(401\) −12.6663 + 12.6663i −0.632526 + 0.632526i −0.948701 0.316175i \(-0.897601\pi\)
0.316175 + 0.948701i \(0.397601\pi\)
\(402\) 7.94710 4.58826i 0.396365 0.228842i
\(403\) −0.251480 + 0.938537i −0.0125271 + 0.0467519i
\(404\) 0.879267 0.507645i 0.0437452 0.0252563i
\(405\) 0 0
\(406\) 9.60483i 0.476680i
\(407\) 12.4649 + 30.4541i 0.617861 + 1.50955i
\(408\) −6.21320 6.21320i −0.307599 0.307599i
\(409\) −0.410151 + 0.109900i −0.0202807 + 0.00543419i −0.268945 0.963156i \(-0.586675\pi\)
0.248664 + 0.968590i \(0.420008\pi\)
\(410\) 0 0
\(411\) −11.8541 + 6.84399i −0.584721 + 0.337589i
\(412\) 12.5372 + 21.7151i 0.617664 + 1.06983i
\(413\) 43.1467i 2.12311i
\(414\) 5.92596 3.42135i 0.291245 0.168150i
\(415\) 0 0
\(416\) 1.03056 1.78499i 0.0505275 0.0875162i
\(417\) 43.6485 43.6485i 2.13747 2.13747i
\(418\) 5.13694 5.13694i 0.251256 0.251256i
\(419\) −18.0063 10.3959i −0.879664 0.507874i −0.00911645 0.999958i \(-0.502902\pi\)
−0.870548 + 0.492084i \(0.836235\pi\)
\(420\) 0 0
\(421\) 15.3463 15.3463i 0.747934 0.747934i −0.226157 0.974091i \(-0.572616\pi\)
0.974091 + 0.226157i \(0.0726161\pi\)
\(422\) −3.68564 2.12790i −0.179414 0.103585i
\(423\) −15.2717 + 4.09204i −0.742536 + 0.198962i
\(424\) −3.97617 14.8393i −0.193100 0.720659i
\(425\) 0 0
\(426\) 2.51423 9.38325i 0.121815 0.454620i
\(427\) 3.75775 + 2.16954i 0.181850 + 0.104991i
\(428\) 0.598745 + 2.23455i 0.0289414 + 0.108011i
\(429\) −2.09953 7.83557i −0.101366 0.378305i
\(430\) 0 0
\(431\) 31.0889 + 8.33025i 1.49750 + 0.401254i 0.912262 0.409608i \(-0.134334\pi\)
0.585238 + 0.810862i \(0.301001\pi\)
\(432\) −30.8987 + 8.27927i −1.48661 + 0.398337i
\(433\) 7.64871 + 7.64871i 0.367573 + 0.367573i 0.866592 0.499018i \(-0.166306\pi\)
−0.499018 + 0.866592i \(0.666306\pi\)
\(434\) 2.42736 0.116517
\(435\) 0 0
\(436\) 0.155194 0.155194i 0.00743245 0.00743245i
\(437\) −2.47489 + 9.23643i −0.118390 + 0.441838i
\(438\) 0.249273 0.0119107
\(439\) 1.06390 3.97053i 0.0507772 0.189503i −0.935879 0.352322i \(-0.885392\pi\)
0.986656 + 0.162819i \(0.0520588\pi\)
\(440\) 0 0
\(441\) 9.28274 + 16.0782i 0.442035 + 0.765628i
\(442\) −0.182941 + 0.316864i −0.00870163 + 0.0150717i
\(443\) 2.43232 2.43232i 0.115563 0.115563i −0.646960 0.762524i \(-0.723960\pi\)
0.762524 + 0.646960i \(0.223960\pi\)
\(444\) −20.8262 27.3786i −0.988366 1.29933i
\(445\) 0 0
\(446\) 2.36176 + 8.81419i 0.111832 + 0.417364i
\(447\) −13.7779 + 51.4197i −0.651670 + 2.43207i
\(448\) 13.9852 + 3.74732i 0.660738 + 0.177044i
\(449\) 33.1099 + 8.87177i 1.56255 + 0.418684i 0.933470 0.358655i \(-0.116764\pi\)
0.629082 + 0.777339i \(0.283431\pi\)
\(450\) 0 0
\(451\) −5.54302 9.60080i −0.261011 0.452084i
\(452\) 12.0265 0.565679
\(453\) 49.6938 13.3154i 2.33482 0.625612i
\(454\) 1.12965i 0.0530173i
\(455\) 0 0
\(456\) −7.90485 + 13.6916i −0.370178 + 0.641168i
\(457\) −6.06294 10.5013i −0.283612 0.491231i 0.688659 0.725085i \(-0.258200\pi\)
−0.972272 + 0.233854i \(0.924866\pi\)
\(458\) 0.213182 0.00996134
\(459\) 19.0359 5.10066i 0.888521 0.238078i
\(460\) 0 0
\(461\) 24.6374 6.60156i 1.14748 0.307465i 0.365523 0.930802i \(-0.380890\pi\)
0.781953 + 0.623337i \(0.214224\pi\)
\(462\) −17.5503 + 10.1327i −0.816513 + 0.471414i
\(463\) −4.84319 + 2.79622i −0.225082 + 0.129951i −0.608301 0.793706i \(-0.708149\pi\)
0.383219 + 0.923658i \(0.374815\pi\)
\(464\) 23.6036 6.32457i 1.09577 0.293611i
\(465\) 0 0
\(466\) 1.81865 0.487305i 0.0842472 0.0225740i
\(467\) 41.2557 1.90909 0.954544 0.298069i \(-0.0963427\pi\)
0.954544 + 0.298069i \(0.0963427\pi\)
\(468\) 2.88052 + 4.98920i 0.133152 + 0.230626i
\(469\) 12.1511 21.0464i 0.561088 0.971832i
\(470\) 0 0
\(471\) 16.6198i 0.765801i
\(472\) 19.8014 5.30576i 0.911432 0.244218i
\(473\) 22.0384 1.01333
\(474\) −8.74654 15.1494i −0.401742 0.695837i
\(475\) 0 0
\(476\) −10.7972 2.89309i −0.494888 0.132605i
\(477\) 63.0303 + 16.8889i 2.88596 + 0.773291i
\(478\) −0.660467 + 2.46490i −0.0302091 + 0.112742i
\(479\) −0.353440 1.31906i −0.0161491 0.0602693i 0.957381 0.288828i \(-0.0932655\pi\)
−0.973530 + 0.228558i \(0.926599\pi\)
\(480\) 0 0
\(481\) −1.82519 + 2.35806i −0.0832217 + 0.107518i
\(482\) −5.55552 + 5.55552i −0.253047 + 0.253047i
\(483\) 13.3372 23.1007i 0.606863 1.05112i
\(484\) 16.8848 + 29.2454i 0.767492 + 1.32933i
\(485\) 0 0
\(486\) −0.697376 + 2.60264i −0.0316336 + 0.118058i
\(487\) 30.4648 1.38049 0.690246 0.723575i \(-0.257502\pi\)
0.690246 + 0.723575i \(0.257502\pi\)
\(488\) 0.533576 1.99133i 0.0241539 0.0901435i
\(489\) 47.8624 47.8624i 2.16441 2.16441i
\(490\) 0 0
\(491\) 14.1300 0.637678 0.318839 0.947809i \(-0.396707\pi\)
0.318839 + 0.947809i \(0.396707\pi\)
\(492\) 8.19469 + 8.19469i 0.369445 + 0.369445i
\(493\) −14.5416 + 3.89641i −0.654921 + 0.175486i
\(494\) 0.635885 + 0.170385i 0.0286098 + 0.00766598i
\(495\) 0 0
\(496\) 1.59836 + 5.96518i 0.0717687 + 0.267844i
\(497\) −6.65848 24.8498i −0.298674 1.11467i
\(498\) −16.5338 9.54580i −0.740898 0.427758i
\(499\) −2.26583 + 8.45621i −0.101433 + 0.378552i −0.997916 0.0645254i \(-0.979447\pi\)
0.896483 + 0.443077i \(0.146113\pi\)
\(500\) 0 0
\(501\) 4.49011 + 16.7573i 0.200603 + 0.748662i
\(502\) −4.29761 + 1.15154i −0.191812 + 0.0513958i
\(503\) 2.86527 + 1.65426i 0.127756 + 0.0737599i 0.562516 0.826786i \(-0.309833\pi\)
−0.434760 + 0.900546i \(0.643167\pi\)
\(504\) 21.1858 21.1858i 0.943691 0.943691i
\(505\) 0 0
\(506\) 5.04341 + 2.91181i 0.224207 + 0.129446i
\(507\) −27.5981 + 27.5981i −1.22568 + 1.22568i
\(508\) 5.34040 5.34040i 0.236942 0.236942i
\(509\) 4.62265 8.00666i 0.204895 0.354889i −0.745204 0.666836i \(-0.767648\pi\)
0.950099 + 0.311948i \(0.100981\pi\)
\(510\) 0 0
\(511\) 0.571710 0.330077i 0.0252910 0.0146017i
\(512\) 22.4256i 0.991083i
\(513\) −17.7294 30.7082i −0.782771 1.35580i
\(514\) 0.808593 0.466841i 0.0356655 0.0205915i
\(515\) 0 0
\(516\) −22.2533 + 5.96275i −0.979646 + 0.262495i
\(517\) −9.51469 9.51469i −0.418456 0.418456i
\(518\) 6.87031 + 2.87965i 0.301864 + 0.126525i
\(519\) 14.4294i 0.633379i
\(520\) 0 0
\(521\) 21.6531 12.5014i 0.948641 0.547698i 0.0559823 0.998432i \(-0.482171\pi\)
0.892658 + 0.450734i \(0.148838\pi\)
\(522\) 5.01679 18.7229i 0.219579 0.819479i
\(523\) −18.5479 + 10.7087i −0.811044 + 0.468257i −0.847318 0.531085i \(-0.821784\pi\)
0.0362741 + 0.999342i \(0.488451\pi\)
\(524\) −14.3118 + 14.3118i −0.625212 + 0.625212i
\(525\) 0 0
\(526\) 0.184954 + 0.184954i 0.00806436 + 0.00806436i
\(527\) −0.984714 3.67500i −0.0428948 0.160086i
\(528\) −36.4572 36.4572i −1.58660 1.58660i
\(529\) 15.3346 0.666722
\(530\) 0 0
\(531\) −22.5364 + 84.1069i −0.977996 + 3.64993i
\(532\) 20.1122i 0.871975i
\(533\) 0.502299 0.870007i 0.0217570 0.0376842i
\(534\) −2.92321 1.68772i −0.126500 0.0730347i
\(535\) 0 0
\(536\) −11.1531 2.98846i −0.481739 0.129082i
\(537\) 11.5706 + 20.0410i 0.499310 + 0.864831i
\(538\) −2.17592 + 3.76880i −0.0938104 + 0.162484i
\(539\) −7.90028 + 13.6837i −0.340289 + 0.589398i
\(540\) 0 0
\(541\) −14.4487 14.4487i −0.621199 0.621199i 0.324639 0.945838i \(-0.394757\pi\)
−0.945838 + 0.324639i \(0.894757\pi\)
\(542\) 0.491252 0.283625i 0.0211011 0.0121827i
\(543\) 8.74975 + 32.6545i 0.375488 + 1.40134i
\(544\) 8.07069i 0.346028i
\(545\) 0 0
\(546\) −1.59038 0.918204i −0.0680618 0.0392955i
\(547\) 44.9717i 1.92285i −0.275065 0.961426i \(-0.588699\pi\)
0.275065 0.961426i \(-0.411301\pi\)
\(548\) 7.99140 + 2.14129i 0.341376 + 0.0914713i
\(549\) 6.19187 + 6.19187i 0.264263 + 0.264263i
\(550\) 0 0
\(551\) 13.5435 + 23.4581i 0.576974 + 0.999348i
\(552\) −12.2417 3.28015i −0.521041 0.139613i
\(553\) −40.1205 23.1636i −1.70610 0.985015i
\(554\) 2.95148 0.125396
\(555\) 0 0
\(556\) −37.3099 −1.58229
\(557\) −8.38521 4.84121i −0.355293 0.205128i 0.311721 0.950174i \(-0.399095\pi\)
−0.667014 + 0.745045i \(0.732428\pi\)
\(558\) 4.73171 + 1.26786i 0.200309 + 0.0536727i
\(559\) 0.998539 + 1.72952i 0.0422337 + 0.0731509i
\(560\) 0 0
\(561\) 22.4604 + 22.4604i 0.948279 + 0.948279i
\(562\) 7.03183 + 1.88417i 0.296620 + 0.0794790i
\(563\) 1.67768i 0.0707056i −0.999375 0.0353528i \(-0.988745\pi\)
0.999375 0.0353528i \(-0.0112555\pi\)
\(564\) 12.1818 + 7.03316i 0.512946 + 0.296150i
\(565\) 0 0
\(566\) 9.76250i 0.410349i
\(567\) 10.0554 + 37.5273i 0.422287 + 1.57600i
\(568\) −10.5855 + 6.11156i −0.444159 + 0.256436i
\(569\) 21.0954 + 21.0954i 0.884366 + 0.884366i 0.993975 0.109609i \(-0.0349598\pi\)
−0.109609 + 0.993975i \(0.534960\pi\)
\(570\) 0 0
\(571\) −19.7886 + 34.2748i −0.828126 + 1.43436i 0.0713808 + 0.997449i \(0.477259\pi\)
−0.899507 + 0.436907i \(0.856074\pi\)
\(572\) −2.45153 + 4.24617i −0.102503 + 0.177541i
\(573\) 21.0843 + 36.5191i 0.880811 + 1.52561i
\(574\) −2.42417 0.649554i −0.101183 0.0271119i
\(575\) 0 0
\(576\) 25.3043 + 14.6095i 1.05435 + 0.608728i
\(577\) 11.1596 19.3289i 0.464578 0.804673i −0.534604 0.845103i \(-0.679539\pi\)
0.999182 + 0.0404293i \(0.0128725\pi\)
\(578\) 5.17726i 0.215346i
\(579\) −12.8370 + 47.9084i −0.533488 + 1.99101i
\(580\) 0 0
\(581\) −50.5605 −2.09760
\(582\) −1.70294 1.70294i −0.0705890 0.0705890i
\(583\) 14.3737 + 53.6433i 0.595297 + 2.22168i
\(584\) −0.221786 0.221786i −0.00917756 0.00917756i
\(585\) 0 0
\(586\) 0.407062 0.407062i 0.0168156 0.0168156i
\(587\) −20.5950 + 11.8905i −0.850047 + 0.490775i −0.860667 0.509169i \(-0.829953\pi\)
0.0106195 + 0.999944i \(0.496620\pi\)
\(588\) 4.27503 15.9546i 0.176299 0.657958i
\(589\) −5.92840 + 3.42276i −0.244276 + 0.141033i
\(590\) 0 0
\(591\) 41.2388i 1.69634i
\(592\) −2.55271 + 18.7798i −0.104916 + 0.771845i
\(593\) 24.4760 + 24.4760i 1.00511 + 1.00511i 0.999987 + 0.00511997i \(0.00162974\pi\)
0.00511997 + 0.999987i \(0.498370\pi\)
\(594\) −20.8593 + 5.58924i −0.855869 + 0.229329i
\(595\) 0 0
\(596\) 27.8648 16.0877i 1.14139 0.658980i
\(597\) −25.5780 44.3024i −1.04684 1.81318i
\(598\) 0.527727i 0.0215804i
\(599\) −0.950077 + 0.548527i −0.0388191 + 0.0224122i −0.519284 0.854602i \(-0.673801\pi\)
0.480465 + 0.877014i \(0.340468\pi\)
\(600\) 0 0
\(601\) 13.0027 22.5213i 0.530390 0.918663i −0.468981 0.883208i \(-0.655379\pi\)
0.999371 0.0354548i \(-0.0112880\pi\)
\(602\) 3.52782 3.52782i 0.143783 0.143783i
\(603\) 34.6795 34.6795i 1.41226 1.41226i
\(604\) −26.9295 15.5478i −1.09575 0.632629i
\(605\) 0 0
\(606\) −0.461832 + 0.461832i −0.0187606 + 0.0187606i
\(607\) −28.7465 16.5968i −1.16679 0.673644i −0.213865 0.976863i \(-0.568605\pi\)
−0.952921 + 0.303219i \(0.901939\pi\)
\(608\) 14.0264 3.75838i 0.568848 0.152422i
\(609\) −19.5565 72.9860i −0.792471 2.95754i
\(610\) 0 0
\(611\) 0.315589 1.17779i 0.0127674 0.0476484i
\(612\) −19.5361 11.2791i −0.789698 0.455933i
\(613\) 10.8981 + 40.6721i 0.440169 + 1.64273i 0.728386 + 0.685167i \(0.240271\pi\)
−0.288217 + 0.957565i \(0.593062\pi\)
\(614\) −1.98970 7.42567i −0.0802979 0.299676i
\(615\) 0 0
\(616\) 24.6303 + 6.59967i 0.992384 + 0.265908i
\(617\) −19.9307 + 5.34041i −0.802379 + 0.214997i −0.636628 0.771171i \(-0.719671\pi\)
−0.165751 + 0.986168i \(0.553005\pi\)
\(618\) −11.4058 11.4058i −0.458807 0.458807i
\(619\) −19.2166 −0.772379 −0.386189 0.922419i \(-0.626209\pi\)
−0.386189 + 0.922419i \(0.626209\pi\)
\(620\) 0 0
\(621\) 20.0994 20.0994i 0.806560 0.806560i
\(622\) 0.237440 0.886138i 0.00952048 0.0355309i
\(623\) −8.93921 −0.358142
\(624\) 1.20923 4.51292i 0.0484081 0.180661i
\(625\) 0 0
\(626\) 1.58815 + 2.75076i 0.0634752 + 0.109942i
\(627\) 28.5756 49.4945i 1.14120 1.97662i
\(628\) −7.10315 + 7.10315i −0.283447 + 0.283447i
\(629\) 1.57266 11.5698i 0.0627062 0.461317i
\(630\) 0 0
\(631\) −7.34303 27.4045i −0.292321 1.09096i −0.943322 0.331880i \(-0.892317\pi\)
0.651000 0.759077i \(-0.274350\pi\)
\(632\) −5.69686 + 21.2610i −0.226609 + 0.845715i
\(633\) −32.3394 8.66532i −1.28538 0.344416i
\(634\) −8.46153 2.26726i −0.336050 0.0900444i
\(635\) 0 0
\(636\) −29.0277 50.2774i −1.15102 1.99363i
\(637\) −1.43182 −0.0567307
\(638\) 15.9345 4.26964i 0.630854 0.169037i
\(639\) 51.9181i 2.05385i
\(640\) 0 0
\(641\) −5.71476 + 9.89826i −0.225719 + 0.390958i −0.956535 0.291617i \(-0.905807\pi\)
0.730816 + 0.682575i \(0.239140\pi\)
\(642\) −0.744088 1.28880i −0.0293668 0.0508648i
\(643\) 5.49147 0.216562 0.108281 0.994120i \(-0.465465\pi\)
0.108281 + 0.994120i \(0.465465\pi\)
\(644\) −15.5732 + 4.17283i −0.613670 + 0.164432i
\(645\) 0 0
\(646\) −2.48992 + 0.667171i −0.0979645 + 0.0262495i
\(647\) 19.0310 10.9876i 0.748187 0.431966i −0.0768511 0.997043i \(-0.524487\pi\)
0.825039 + 0.565076i \(0.191153\pi\)
\(648\) 15.9859 9.22947i 0.627986 0.362568i
\(649\) −71.5810 + 19.1801i −2.80980 + 0.752884i
\(650\) 0 0
\(651\) 18.4453 4.94239i 0.722927 0.193708i
\(652\) −40.9118 −1.60223
\(653\) 16.3919 + 28.3917i 0.641467 + 1.11105i 0.985106 + 0.171951i \(0.0550070\pi\)
−0.343639 + 0.939102i \(0.611660\pi\)
\(654\) −0.0705942 + 0.122273i −0.00276045 + 0.00478124i
\(655\) 0 0
\(656\) 6.38505i 0.249294i
\(657\) 1.28685 0.344811i 0.0502049 0.0134524i
\(658\) −3.04615 −0.118751
\(659\) 1.71645 + 2.97297i 0.0668632 + 0.115810i 0.897519 0.440976i \(-0.145368\pi\)
−0.830656 + 0.556786i \(0.812034\pi\)
\(660\) 0 0
\(661\) 32.2356 + 8.63751i 1.25382 + 0.335960i 0.823811 0.566864i \(-0.191844\pi\)
0.430009 + 0.902824i \(0.358510\pi\)
\(662\) −4.61554 1.23673i −0.179388 0.0480669i
\(663\) −0.744980 + 2.78030i −0.0289326 + 0.107978i
\(664\) 6.21744 + 23.2038i 0.241283 + 0.900482i
\(665\) 0 0
\(666\) 11.8884 + 9.20186i 0.460665 + 0.356565i
\(667\) −15.3540 + 15.3540i −0.594509 + 0.594509i
\(668\) 5.24289 9.08095i 0.202853 0.351352i
\(669\) 35.8935 + 62.1693i 1.38772 + 2.40360i
\(670\) 0 0
\(671\) −1.92885 + 7.19857i −0.0744625 + 0.277898i
\(672\) −40.5077 −1.56262
\(673\) 11.5014 42.9238i 0.443346 1.65459i −0.276921 0.960893i \(-0.589314\pi\)
0.720267 0.693697i \(-0.244019\pi\)
\(674\) −3.90550 + 3.90550i −0.150434 + 0.150434i
\(675\) 0 0
\(676\) 23.5903 0.907321
\(677\) 9.36277 + 9.36277i 0.359841 + 0.359841i 0.863754 0.503913i \(-0.168107\pi\)
−0.503913 + 0.863754i \(0.668107\pi\)
\(678\) −7.47295 + 2.00237i −0.286997 + 0.0769006i
\(679\) −6.16065 1.65074i −0.236424 0.0633496i
\(680\) 0 0
\(681\) 2.30011 + 8.58412i 0.0881404 + 0.328944i
\(682\) 1.07904 + 4.02702i 0.0413185 + 0.154203i
\(683\) −33.7758 19.5005i −1.29240 0.746165i −0.313318 0.949648i \(-0.601441\pi\)
−0.979078 + 0.203483i \(0.934774\pi\)
\(684\) −10.5050 + 39.2052i −0.401669 + 1.49905i
\(685\) 0 0
\(686\) −1.29300 4.82553i −0.0493668 0.184239i
\(687\) 1.61995 0.434063i 0.0618048 0.0165606i
\(688\) 10.9925 + 6.34654i 0.419086 + 0.241959i
\(689\) −3.55854 + 3.55854i −0.135570 + 0.135570i
\(690\) 0 0
\(691\) 8.34887 + 4.82022i 0.317606 + 0.183370i 0.650325 0.759656i \(-0.274633\pi\)
−0.332719 + 0.943026i \(0.607966\pi\)
\(692\) 6.16698 6.16698i 0.234433 0.234433i
\(693\) −76.5857 + 76.5857i −2.90925 + 2.90925i
\(694\) 0.449102 0.777867i 0.0170477 0.0295274i
\(695\) 0 0
\(696\) −31.0907 + 17.9502i −1.17849 + 0.680401i
\(697\) 3.93367i 0.148998i
\(698\) 2.70124 + 4.67868i 0.102243 + 0.177091i
\(699\) 12.8275 7.40595i 0.485180 0.280119i
\(700\) 0 0
\(701\) −10.3952 + 2.78539i −0.392622 + 0.105203i −0.449729 0.893165i \(-0.648479\pi\)
0.0571063 + 0.998368i \(0.481813\pi\)
\(702\) −1.38375 1.38375i −0.0522262 0.0522262i
\(703\) −20.8401 + 2.65463i −0.785997 + 0.100121i
\(704\) 24.8674i 0.937225i
\(705\) 0 0
\(706\) −6.91528 + 3.99254i −0.260260 + 0.150261i
\(707\) −0.447676 + 1.67075i −0.0168366 + 0.0628351i
\(708\) 67.0897 38.7342i 2.52138 1.45572i
\(709\) −8.98141 + 8.98141i −0.337304 + 0.337304i −0.855352 0.518048i \(-0.826659\pi\)
0.518048 + 0.855352i \(0.326659\pi\)
\(710\) 0 0
\(711\) −66.1090 66.1090i −2.47928 2.47928i
\(712\) 1.09926 + 4.10248i 0.0411963 + 0.153747i
\(713\) −3.88031 3.88031i −0.145319 0.145319i
\(714\) 7.19076 0.269108
\(715\) 0 0
\(716\) 3.62013 13.5105i 0.135290 0.504911i
\(717\) 20.0753i 0.749725i
\(718\) −5.42881 + 9.40297i −0.202601 + 0.350916i
\(719\) 35.4058 + 20.4415i 1.32041 + 0.762340i 0.983794 0.179301i \(-0.0573836\pi\)
0.336618 + 0.941641i \(0.390717\pi\)
\(720\) 0 0
\(721\) −41.2622 11.0562i −1.53669 0.411754i
\(722\) −1.37477 2.38117i −0.0511636 0.0886179i
\(723\) −30.9041 + 53.5275i −1.14934 + 1.99071i
\(724\) 10.2167 17.6958i 0.379699 0.657659i
\(725\) 0 0
\(726\) −15.3610 15.3610i −0.570101 0.570101i
\(727\) −10.5561 + 6.09457i −0.391505 + 0.226035i −0.682812 0.730594i \(-0.739243\pi\)
0.291307 + 0.956630i \(0.405910\pi\)
\(728\) 0.598051 + 2.23196i 0.0221652 + 0.0827218i
\(729\) 15.8072i 0.585450i
\(730\) 0 0
\(731\) −6.77223 3.90995i −0.250480 0.144615i
\(732\) 7.79065i 0.287951i
\(733\) 36.3558 + 9.74150i 1.34283 + 0.359811i 0.857484 0.514511i \(-0.172026\pi\)
0.485348 + 0.874321i \(0.338693\pi\)
\(734\) 5.10725 + 5.10725i 0.188512 + 0.188512i
\(735\) 0 0
\(736\) 5.82034 + 10.0811i 0.214541 + 0.371595i
\(737\) 40.3178 + 10.8031i 1.48513 + 0.397938i
\(738\) −4.38621 2.53238i −0.161459 0.0932182i
\(739\) −23.6026 −0.868235 −0.434117 0.900856i \(-0.642940\pi\)
−0.434117 + 0.900856i \(0.642940\pi\)
\(740\) 0 0
\(741\) 5.17895 0.190253
\(742\) 10.8879 + 6.28614i 0.399708 + 0.230771i
\(743\) −3.83523 1.02765i −0.140701 0.0377007i 0.187781 0.982211i \(-0.439870\pi\)
−0.328482 + 0.944510i \(0.606537\pi\)
\(744\) −4.53643 7.85733i −0.166314 0.288064i
\(745\) 0 0
\(746\) 0.730852 + 0.730852i 0.0267584 + 0.0267584i
\(747\) −98.5588 26.4087i −3.60608 0.966246i
\(748\) 19.1987i 0.701975i
\(749\) −3.41314 1.97058i −0.124713 0.0720034i
\(750\) 0 0
\(751\) 5.02392i 0.183325i 0.995790 + 0.0916627i \(0.0292182\pi\)
−0.995790 + 0.0916627i \(0.970782\pi\)
\(752\) −2.00583 7.48584i −0.0731449 0.272981i
\(753\) −30.3124 + 17.5009i −1.10465 + 0.637768i
\(754\) 1.05705 + 1.05705i 0.0384955 + 0.0384955i
\(755\) 0 0
\(756\) 29.8928 51.7759i 1.08719 1.88307i
\(757\) 22.2232 38.4917i 0.807715 1.39900i −0.106728 0.994288i \(-0.534037\pi\)
0.914443 0.404715i \(-0.132629\pi\)
\(758\) −4.32408 7.48952i −0.157058 0.272032i
\(759\) 44.2531 + 11.8576i 1.60629 + 0.430403i
\(760\) 0 0
\(761\) 20.2158 + 11.6716i 0.732821 + 0.423095i 0.819453 0.573146i \(-0.194277\pi\)
−0.0866322 + 0.996240i \(0.527610\pi\)
\(762\) −2.42922 + 4.20754i −0.0880014 + 0.152423i
\(763\) 0.373911i 0.0135365i
\(764\) 6.59669 24.6192i 0.238660 0.890690i
\(765\) 0 0
\(766\) 3.64860 0.131829
\(767\) −4.74848 4.74848i −0.171458 0.171458i
\(768\) −4.13973 15.4497i −0.149379 0.557492i
\(769\) 6.34019 + 6.34019i 0.228633 + 0.228633i 0.812121 0.583488i \(-0.198313\pi\)
−0.583488 + 0.812121i \(0.698313\pi\)
\(770\) 0 0
\(771\) 5.19387 5.19387i 0.187052 0.187052i
\(772\) 25.9620 14.9892i 0.934393 0.539472i
\(773\) 6.39564 23.8688i 0.230035 0.858503i −0.750289 0.661110i \(-0.770086\pi\)
0.980324 0.197393i \(-0.0632475\pi\)
\(774\) 8.71952 5.03422i 0.313417 0.180951i
\(775\) 0 0
\(776\) 3.03030i 0.108782i
\(777\) 58.0701 + 7.89338i 2.08325 + 0.283173i
\(778\) 0.272810 + 0.272810i 0.00978070 + 0.00978070i
\(779\) 6.83652 1.83184i 0.244944 0.0656325i
\(780\) 0 0
\(781\) 38.2662 22.0930i 1.36927 0.790550i
\(782\) −1.03320 1.78956i −0.0369472 0.0639945i
\(783\) 80.5192i 2.87752i
\(784\) −7.88116 + 4.55019i −0.281470 + 0.162507i
\(785\) 0 0
\(786\) 6.51009 11.2758i 0.232207 0.402194i
\(787\) −3.92787 + 3.92787i −0.140014 + 0.140014i −0.773640 0.633626i \(-0.781566\pi\)
0.633626 + 0.773640i \(0.281566\pi\)
\(788\) −17.6251 + 17.6251i −0.627866 + 0.627866i
\(789\) 1.78203 + 1.02886i 0.0634419 + 0.0366282i
\(790\) 0 0
\(791\) −14.4878 + 14.4878i −0.515127 + 0.515127i
\(792\) 44.5653 + 25.7298i 1.58356 + 0.914268i
\(793\) −0.652322 + 0.174789i −0.0231646 + 0.00620695i
\(794\) −1.23226 4.59887i −0.0437314 0.163208i
\(795\) 0 0
\(796\) −8.00263 + 29.8662i −0.283646 + 1.05858i
\(797\) 12.5378 + 7.23871i 0.444112 + 0.256408i 0.705340 0.708869i \(-0.250794\pi\)
−0.261228 + 0.965277i \(0.584128\pi\)
\(798\) −3.34861 12.4972i −0.118539 0.442395i
\(799\) 1.23574 + 4.61185i 0.0437174 + 0.163155i
\(800\) 0 0
\(801\) −17.4254 4.66912i −0.615696 0.164975i
\(802\) −6.72756 + 1.80264i −0.237558 + 0.0636536i
\(803\) 0.801745 + 0.801745i 0.0282930 + 0.0282930i
\(804\) −43.6339 −1.53885
\(805\) 0 0
\(806\) −0.267141 + 0.267141i −0.00940965 + 0.00940965i
\(807\) −8.86084 + 33.0691i −0.311916 + 1.16409i
\(808\) 0.821810 0.0289112
\(809\) 2.46645 9.20493i 0.0867159 0.323628i −0.908918 0.416976i \(-0.863090\pi\)
0.995634 + 0.0933474i \(0.0297567\pi\)
\(810\) 0 0
\(811\) 0.620382 + 1.07453i 0.0217846 + 0.0377320i 0.876712 0.481015i \(-0.159732\pi\)
−0.854928 + 0.518747i \(0.826399\pi\)
\(812\) −22.8352 + 39.5518i −0.801360 + 1.38800i
\(813\) 3.15548 3.15548i 0.110668 0.110668i
\(814\) −1.72331 + 12.6780i −0.0604018 + 0.444365i
\(815\) 0 0
\(816\) 4.73496 + 17.6711i 0.165757 + 0.618612i
\(817\) −3.64159 + 13.5906i −0.127403 + 0.475474i
\(818\) −0.159475 0.0427312i −0.00557591 0.00149406i
\(819\) −9.48030 2.54024i −0.331268 0.0887631i
\(820\) 0 0
\(821\) −21.0808 36.5130i −0.735724 1.27431i −0.954405 0.298515i \(-0.903509\pi\)
0.218681 0.975796i \(-0.429825\pi\)
\(822\) −5.32215 −0.185631
\(823\) 21.2999 5.70729i 0.742468 0.198944i 0.132293 0.991211i \(-0.457766\pi\)
0.610175 + 0.792267i \(0.291099\pi\)
\(824\) 20.2961i 0.707048i
\(825\) 0 0
\(826\) −8.38815 + 14.5287i −0.291861 + 0.505518i
\(827\) 12.7026 + 22.0015i 0.441713 + 0.765069i 0.997817 0.0660440i \(-0.0210378\pi\)
−0.556104 + 0.831113i \(0.687704\pi\)
\(828\) −32.5367 −1.13073
\(829\) −34.1099 + 9.13971i −1.18468 + 0.317435i −0.796783 0.604266i \(-0.793467\pi\)
−0.387901 + 0.921701i \(0.626800\pi\)
\(830\) 0 0
\(831\) 22.4280 6.00955i 0.778017 0.208469i
\(832\) −1.95154 + 1.12672i −0.0676573 + 0.0390620i
\(833\) 4.85539 2.80326i 0.168229 0.0971273i
\(834\) 23.1833 6.21196i 0.802774 0.215103i
\(835\) 0 0
\(836\) −33.3664 + 8.94050i −1.15400 + 0.309214i
\(837\) 20.3491 0.703366
\(838\) −4.04214 7.00119i −0.139633 0.241852i
\(839\) −8.80567 + 15.2519i −0.304005 + 0.526553i −0.977039 0.213059i \(-0.931657\pi\)
0.673034 + 0.739611i \(0.264991\pi\)
\(840\) 0 0
\(841\) 32.5089i 1.12100i
\(842\) 8.15101 2.18406i 0.280902 0.0752676i
\(843\) 57.2705 1.97250
\(844\) 10.1181 + 17.5250i 0.348279 + 0.603236i
\(845\) 0 0
\(846\) −5.93794 1.59107i −0.204151 0.0547020i
\(847\) −55.5710 14.8902i −1.90944 0.511633i
\(848\) −8.27857 + 30.8960i −0.284287 + 1.06097i
\(849\) −19.8776 74.1842i −0.682197 2.54599i
\(850\) 0 0
\(851\) −6.37936 15.5860i −0.218682 0.534281i
\(852\) −32.6619 + 32.6619i −1.11898 + 1.11898i
\(853\) 5.05228 8.75081i 0.172987 0.299622i −0.766476 0.642273i \(-0.777992\pi\)
0.939463 + 0.342651i \(0.111325\pi\)
\(854\) 0.843558 + 1.46109i 0.0288660 + 0.0499973i
\(855\) 0 0
\(856\) −0.484645 + 1.80872i −0.0165648 + 0.0618207i
\(857\) −13.8427 −0.472858 −0.236429 0.971649i \(-0.575977\pi\)
−0.236429 + 0.971649i \(0.575977\pi\)
\(858\) 0.816340 3.04662i 0.0278694 0.104010i
\(859\) −22.7197 + 22.7197i −0.775187 + 0.775187i −0.979008 0.203821i \(-0.934664\pi\)
0.203821 + 0.979008i \(0.434664\pi\)
\(860\) 0 0
\(861\) −19.7436 −0.672859
\(862\) 8.84901 + 8.84901i 0.301399 + 0.301399i
\(863\) 13.2710 3.55596i 0.451751 0.121046i −0.0257675 0.999668i \(-0.508203\pi\)
0.477519 + 0.878622i \(0.341536\pi\)
\(864\) −41.6951 11.1722i −1.41850 0.380085i
\(865\) 0 0
\(866\) 1.08855 + 4.06252i 0.0369904 + 0.138050i
\(867\) 10.5415 + 39.3414i 0.358008 + 1.33611i
\(868\) −9.99566 5.77099i −0.339275 0.195880i
\(869\) 20.5939 76.8573i 0.698599 2.60721i
\(870\) 0 0
\(871\) 0.978960 + 3.65353i 0.0331708 + 0.123795i
\(872\) 0.171599 0.0459799i 0.00581109 0.00155708i
\(873\) −11.1469 6.43565i −0.377265 0.217814i
\(874\) −2.62902 + 2.62902i −0.0889279 + 0.0889279i
\(875\) 0 0
\(876\) −1.02649 0.592642i −0.0346817 0.0200235i
\(877\) 22.9132 22.9132i 0.773723 0.773723i −0.205032 0.978755i \(-0.565730\pi\)
0.978755 + 0.205032i \(0.0657300\pi\)
\(878\) 1.13015 1.13015i 0.0381409 0.0381409i
\(879\) 2.26439 3.92204i 0.0763761 0.132287i
\(880\) 0 0
\(881\) −21.1405 + 12.2055i −0.712240 + 0.411212i −0.811890 0.583810i \(-0.801561\pi\)
0.0996497 + 0.995023i \(0.468228\pi\)
\(882\) 7.21863i 0.243064i
\(883\) −13.6450 23.6339i −0.459192 0.795344i 0.539727 0.841840i \(-0.318528\pi\)
−0.998918 + 0.0464967i \(0.985194\pi\)
\(884\) 1.50667 0.869877i 0.0506748 0.0292571i
\(885\) 0 0
\(886\) 1.29190 0.346163i 0.0434022 0.0116296i
\(887\) −26.0700 26.0700i −0.875344 0.875344i 0.117705 0.993049i \(-0.462446\pi\)
−0.993049 + 0.117705i \(0.962446\pi\)
\(888\) −3.51837 27.6208i −0.118069 0.926893i
\(889\) 12.8667i 0.431535i
\(890\) 0 0
\(891\) −57.7882 + 33.3641i −1.93598 + 1.11774i
\(892\) 11.2300 41.9111i 0.376009 1.40329i
\(893\) 7.43970 4.29531i 0.248960 0.143737i
\(894\) −14.6359 + 14.6359i −0.489497 + 0.489497i
\(895\) 0 0
\(896\) 22.7090 + 22.7090i 0.758654 + 0.758654i
\(897\) 1.07451 + 4.01014i 0.0358770 + 0.133895i
\(898\) 9.42426 + 9.42426i 0.314492 + 0.314492i
\(899\) −15.5447 −0.518446
\(900\) 0 0
\(901\) 5.10023 19.0343i 0.169913 0.634124i
\(902\) 4.31047i 0.143523i
\(903\) 19.6245 33.9906i 0.653062 1.13114i
\(904\) 8.43047 + 4.86733i 0.280393 + 0.161885i
\(905\) 0 0
\(906\) 19.3219 + 5.17729i 0.641928 + 0.172004i
\(907\) 10.4419 + 18.0858i 0.346716 + 0.600530i 0.985664 0.168720i \(-0.0539633\pi\)
−0.638948 + 0.769250i \(0.720630\pi\)
\(908\) 2.68573 4.65182i 0.0891290 0.154376i
\(909\) −1.74533 + 3.02300i −0.0578890 + 0.100267i
\(910\) 0 0
\(911\) 31.8066 + 31.8066i 1.05380 + 1.05380i 0.998468 + 0.0553319i \(0.0176217\pi\)
0.0553319 + 0.998468i \(0.482378\pi\)
\(912\) 28.5065 16.4582i 0.943945 0.544987i
\(913\) −22.4757 83.8805i −0.743838 2.77604i
\(914\) 4.71478i 0.155951i
\(915\) 0 0
\(916\) −0.877864 0.506835i −0.0290055 0.0167463i
\(917\) 34.4815i 1.13868i
\(918\) 7.40154 + 1.98324i 0.244287 + 0.0654566i
\(919\) 27.1309 + 27.1309i 0.894965 + 0.894965i 0.994985 0.100021i \(-0.0318909\pi\)
−0.100021 + 0.994985i \(0.531891\pi\)
\(920\) 0 0
\(921\) −30.2391 52.3756i −0.996411 1.72584i
\(922\) 9.57949 + 2.56682i 0.315484 + 0.0845336i
\(923\) 3.46762 + 2.00203i 0.114138 + 0.0658976i
\(924\) 96.3606 3.17003
\(925\) 0 0
\(926\) −2.17445 −0.0714569
\(927\) −74.6586 43.1041i −2.45211 1.41573i
\(928\) 31.8510 + 8.53446i 1.04556 + 0.280157i
\(929\) 15.3825 + 26.6433i 0.504684 + 0.874138i 0.999985 + 0.00541681i \(0.00172423\pi\)
−0.495302 + 0.868721i \(0.664942\pi\)
\(930\) 0 0
\(931\) −7.13300 7.13300i −0.233775 0.233775i
\(932\) −8.64758 2.31711i −0.283261 0.0758995i
\(933\) 7.21712i 0.236278i
\(934\) 13.8920 + 8.02052i 0.454559 + 0.262440i
\(935\) 0 0
\(936\) 4.66318i 0.152421i
\(937\) −0.585214 2.18405i −0.0191181 0.0713498i 0.955708 0.294317i \(-0.0950923\pi\)
−0.974826 + 0.222968i \(0.928426\pi\)
\(938\) 8.18326 4.72460i 0.267193 0.154264i
\(939\) 17.6690 + 17.6690i 0.576607 + 0.576607i
\(940\) 0 0
\(941\) 12.9110 22.3625i 0.420887 0.728998i −0.575139 0.818056i \(-0.695052\pi\)
0.996026 + 0.0890574i \(0.0283855\pi\)
\(942\) 3.23106 5.59636i 0.105274 0.182339i
\(943\) 2.83685 + 4.91356i 0.0923805 + 0.160008i
\(944\) −41.2273 11.0468i −1.34184 0.359544i
\(945\) 0 0
\(946\) 7.42093 + 4.28448i 0.241275 + 0.139300i
\(947\) 11.4207 19.7812i 0.371122 0.642802i −0.618617 0.785693i \(-0.712307\pi\)
0.989738 + 0.142891i \(0.0456400\pi\)
\(948\) 83.1787i 2.70152i
\(949\) −0.0265927 + 0.0992455i −0.000863237 + 0.00322164i
\(950\) 0 0
\(951\) −68.9146 −2.23471
\(952\) −6.39783 6.39783i −0.207355 0.207355i
\(953\) −9.03001 33.7005i −0.292511 1.09167i −0.943174 0.332299i \(-0.892176\pi\)
0.650663 0.759366i \(-0.274491\pi\)
\(954\) 17.9407 + 17.9407i 0.580851 + 0.580851i
\(955\) 0 0
\(956\) 8.57998 8.57998i 0.277496 0.277496i
\(957\) 112.391 64.8891i 3.63309 2.09757i
\(958\) 0.137425 0.512876i 0.00443999 0.0165703i
\(959\) −12.2064 + 7.04736i −0.394165 + 0.227571i
\(960\) 0 0
\(961\) 27.0715i 0.873274i
\(962\) −1.07302 + 0.439189i −0.0345957 + 0.0141600i
\(963\) −5.62404 5.62404i −0.181232 0.181232i
\(964\) 36.0852 9.66901i 1.16223 0.311418i
\(965\) 0 0
\(966\) 8.98200 5.18576i 0.288991 0.166849i
\(967\) 30.1956 + 52.3003i 0.971024 + 1.68186i 0.692477 + 0.721440i \(0.256520\pi\)
0.278547 + 0.960423i \(0.410147\pi\)
\(968\) 27.3343i 0.878557i
\(969\) −17.5622 + 10.1395i −0.564178 + 0.325728i
\(970\) 0 0
\(971\) −19.6729 + 34.0744i −0.631333 + 1.09350i 0.355947 + 0.934506i \(0.384159\pi\)
−0.987279 + 0.158994i \(0.949175\pi\)
\(972\) 9.05945 9.05945i 0.290582 0.290582i
\(973\) 44.9455 44.9455i 1.44089 1.44089i
\(974\) 10.2583 + 5.92266i 0.328698 + 0.189774i
\(975\) 0 0
\(976\) −3.03511 + 3.03511i −0.0971517 + 0.0971517i
\(977\) 34.6209 + 19.9884i 1.10762 + 0.639486i 0.938213 0.346060i \(-0.112481\pi\)
0.169410 + 0.985546i \(0.445814\pi\)
\(978\) 25.4215 6.81167i 0.812890 0.217813i
\(979\) −3.97375 14.8303i −0.127002 0.473977i
\(980\) 0 0
\(981\) −0.195301 + 0.728873i −0.00623548 + 0.0232711i
\(982\) 4.75796 + 2.74701i 0.151833 + 0.0876607i
\(983\) −9.30200 34.7155i −0.296688 1.10725i −0.939868 0.341539i \(-0.889052\pi\)
0.643180 0.765715i \(-0.277615\pi\)
\(984\) 2.42787 + 9.06093i 0.0773976 + 0.288852i
\(985\) 0 0
\(986\) −5.65407 1.51500i −0.180062 0.0482475i
\(987\) −23.1474 + 6.20233i −0.736790 + 0.197422i
\(988\) −2.21343 2.21343i −0.0704187 0.0704187i
\(989\) −11.2789 −0.358650
\(990\) 0 0
\(991\) 4.65585 4.65585i 0.147898 0.147898i −0.629280 0.777178i \(-0.716650\pi\)
0.777178 + 0.629280i \(0.216650\pi\)
\(992\) −2.15686 + 8.04950i −0.0684802 + 0.255572i
\(993\) −37.5911 −1.19292
\(994\) 2.58895 9.66209i 0.0821164 0.306463i
\(995\) 0 0
\(996\) 45.3898 + 78.6175i 1.43823 + 2.49109i
\(997\) −11.4324 + 19.8015i −0.362067 + 0.627119i −0.988301 0.152516i \(-0.951262\pi\)
0.626234 + 0.779636i \(0.284596\pi\)
\(998\) −2.40694 + 2.40694i −0.0761904 + 0.0761904i
\(999\) 57.5952 + 24.1407i 1.82223 + 0.763777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.11 68
5.2 odd 4 925.2.t.b.282.7 68
5.3 odd 4 185.2.p.a.97.11 68
5.4 even 2 185.2.u.a.23.7 yes 68
37.29 odd 12 925.2.t.b.843.7 68
185.29 odd 12 185.2.p.a.103.11 yes 68
185.103 even 12 185.2.u.a.177.7 yes 68
185.177 even 12 inner 925.2.y.b.732.11 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.11 68 5.3 odd 4
185.2.p.a.103.11 yes 68 185.29 odd 12
185.2.u.a.23.7 yes 68 5.4 even 2
185.2.u.a.177.7 yes 68 185.103 even 12
925.2.t.b.282.7 68 5.2 odd 4
925.2.t.b.843.7 68 37.29 odd 12
925.2.y.b.393.11 68 1.1 even 1 trivial
925.2.y.b.732.11 68 185.177 even 12 inner