Properties

Label 925.2.y.b.193.16
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.16
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10315 - 1.21425i) q^{2} +(-0.180195 - 0.672498i) q^{3} +(1.94883 - 3.37547i) q^{4} +(-1.19556 - 1.19556i) q^{6} +(1.19887 + 4.47423i) q^{7} -4.60849i q^{8} +(2.17829 - 1.25764i) q^{9} -4.52235i q^{11} +(-2.62117 - 0.702340i) q^{12} +(1.72863 + 0.998024i) q^{13} +(7.95426 + 7.95426i) q^{14} +(-1.69822 - 2.94140i) q^{16} +(-1.95835 - 3.39197i) q^{17} +(3.05419 - 5.29000i) q^{18} +(-0.380525 - 1.42014i) q^{19} +(2.79288 - 1.61247i) q^{21} +(-5.49128 - 9.51118i) q^{22} -2.17011i q^{23} +(-3.09920 + 0.830428i) q^{24} +4.84742 q^{26} +(-2.71519 - 2.71519i) q^{27} +(17.4390 + 4.67278i) q^{28} +(1.43325 + 1.43325i) q^{29} +(-5.05094 + 5.05094i) q^{31} +(0.838921 + 0.484351i) q^{32} +(-3.04127 + 0.814906i) q^{33} +(-8.23743 - 4.75588i) q^{34} -9.80369i q^{36} +(1.78340 + 5.81545i) q^{37} +(-2.52471 - 2.52471i) q^{38} +(0.359679 - 1.34234i) q^{39} +(-0.811286 - 0.468396i) q^{41} +(3.91591 - 6.78255i) q^{42} +0.784090i q^{43} +(-15.2651 - 8.81329i) q^{44} +(-2.63506 - 4.56407i) q^{46} +(-6.76780 + 6.76780i) q^{47} +(-1.67207 + 1.67207i) q^{48} +(-12.5193 + 7.22802i) q^{49} +(-1.92821 + 1.92821i) q^{51} +(6.73760 - 3.88996i) q^{52} +(3.31335 - 12.3656i) q^{53} +(-9.00738 - 2.41352i) q^{54} +(20.6194 - 5.52496i) q^{56} +(-0.886472 + 0.511805i) q^{57} +(4.75469 + 1.27401i) q^{58} +(7.44042 + 1.99365i) q^{59} +(1.29225 + 4.82274i) q^{61} +(-4.48976 + 16.7560i) q^{62} +(8.23845 + 8.23845i) q^{63} +9.14537 q^{64} +(-5.40675 + 5.40675i) q^{66} +(-6.92312 + 1.85504i) q^{67} -15.2660 q^{68} +(-1.45939 + 0.391044i) q^{69} +(-6.96450 + 12.0629i) q^{71} +(-5.79581 - 10.0386i) q^{72} +(-6.73477 + 6.73477i) q^{73} +(10.8122 + 10.0653i) q^{74} +(-5.53521 - 1.48316i) q^{76} +(20.2340 - 5.42169i) q^{77} +(-0.873483 - 3.25988i) q^{78} +(-1.39018 - 5.18821i) q^{79} +(2.43622 - 4.21965i) q^{81} -2.27501 q^{82} +(2.38257 - 8.89188i) q^{83} -12.5697i q^{84} +(0.952085 + 1.64906i) q^{86} +(0.705596 - 1.22213i) q^{87} -20.8412 q^{88} +(-0.159121 + 0.593846i) q^{89} +(-2.39300 + 8.93078i) q^{91} +(-7.32514 - 4.22917i) q^{92} +(4.30691 + 2.48659i) q^{93} +(-6.01587 + 22.4515i) q^{94} +(0.174556 - 0.651451i) q^{96} -3.08147 q^{97} +(-17.5533 + 30.4032i) q^{98} +(-5.68747 - 9.85100i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.10315 1.21425i 1.48715 0.858608i 0.487260 0.873257i \(-0.337996\pi\)
0.999893 + 0.0146492i \(0.00466316\pi\)
\(3\) −0.180195 0.672498i −0.104036 0.388267i 0.894198 0.447671i \(-0.147747\pi\)
−0.998234 + 0.0594043i \(0.981080\pi\)
\(4\) 1.94883 3.37547i 0.974415 1.68774i
\(5\) 0 0
\(6\) −1.19556 1.19556i −0.488086 0.488086i
\(7\) 1.19887 + 4.47423i 0.453129 + 1.69110i 0.693530 + 0.720428i \(0.256054\pi\)
−0.240401 + 0.970674i \(0.577279\pi\)
\(8\) 4.60849i 1.62935i
\(9\) 2.17829 1.25764i 0.726097 0.419213i
\(10\) 0 0
\(11\) 4.52235i 1.36354i −0.731567 0.681770i \(-0.761211\pi\)
0.731567 0.681770i \(-0.238789\pi\)
\(12\) −2.62117 0.702340i −0.756667 0.202748i
\(13\) 1.72863 + 0.998024i 0.479435 + 0.276802i 0.720181 0.693786i \(-0.244059\pi\)
−0.240746 + 0.970588i \(0.577392\pi\)
\(14\) 7.95426 + 7.95426i 2.12586 + 2.12586i
\(15\) 0 0
\(16\) −1.69822 2.94140i −0.424554 0.735349i
\(17\) −1.95835 3.39197i −0.474971 0.822673i 0.524618 0.851337i \(-0.324208\pi\)
−0.999589 + 0.0286642i \(0.990875\pi\)
\(18\) 3.05419 5.29000i 0.719878 1.24687i
\(19\) −0.380525 1.42014i −0.0872984 0.325802i 0.908441 0.418013i \(-0.137273\pi\)
−0.995740 + 0.0922109i \(0.970607\pi\)
\(20\) 0 0
\(21\) 2.79288 1.61247i 0.609457 0.351870i
\(22\) −5.49128 9.51118i −1.17075 2.02779i
\(23\) 2.17011i 0.452499i −0.974069 0.226249i \(-0.927354\pi\)
0.974069 0.226249i \(-0.0726464\pi\)
\(24\) −3.09920 + 0.830428i −0.632621 + 0.169510i
\(25\) 0 0
\(26\) 4.84742 0.950657
\(27\) −2.71519 2.71519i −0.522538 0.522538i
\(28\) 17.4390 + 4.67278i 3.29567 + 0.883072i
\(29\) 1.43325 + 1.43325i 0.266149 + 0.266149i 0.827546 0.561398i \(-0.189736\pi\)
−0.561398 + 0.827546i \(0.689736\pi\)
\(30\) 0 0
\(31\) −5.05094 + 5.05094i −0.907176 + 0.907176i −0.996043 0.0888677i \(-0.971675\pi\)
0.0888677 + 0.996043i \(0.471675\pi\)
\(32\) 0.838921 + 0.484351i 0.148302 + 0.0856220i
\(33\) −3.04127 + 0.814906i −0.529417 + 0.141857i
\(34\) −8.23743 4.75588i −1.41271 0.815627i
\(35\) 0 0
\(36\) 9.80369i 1.63395i
\(37\) 1.78340 + 5.81545i 0.293188 + 0.956055i
\(38\) −2.52471 2.52471i −0.409562 0.409562i
\(39\) 0.359679 1.34234i 0.0575947 0.214946i
\(40\) 0 0
\(41\) −0.811286 0.468396i −0.126702 0.0731512i 0.435310 0.900281i \(-0.356639\pi\)
−0.562011 + 0.827130i \(0.689972\pi\)
\(42\) 3.91591 6.78255i 0.604237 1.04657i
\(43\) 0.784090i 0.119573i 0.998211 + 0.0597863i \(0.0190419\pi\)
−0.998211 + 0.0597863i \(0.980958\pi\)
\(44\) −15.2651 8.81329i −2.30129 1.32865i
\(45\) 0 0
\(46\) −2.63506 4.56407i −0.388519 0.672935i
\(47\) −6.76780 + 6.76780i −0.987185 + 0.987185i −0.999919 0.0127338i \(-0.995947\pi\)
0.0127338 + 0.999919i \(0.495947\pi\)
\(48\) −1.67207 + 1.67207i −0.241343 + 0.241343i
\(49\) −12.5193 + 7.22802i −1.78847 + 1.03257i
\(50\) 0 0
\(51\) −1.92821 + 1.92821i −0.270003 + 0.270003i
\(52\) 6.73760 3.88996i 0.934337 0.539440i
\(53\) 3.31335 12.3656i 0.455124 1.69855i −0.232598 0.972573i \(-0.574723\pi\)
0.687722 0.725974i \(-0.258611\pi\)
\(54\) −9.00738 2.41352i −1.22575 0.328438i
\(55\) 0 0
\(56\) 20.6194 5.52496i 2.75539 0.738304i
\(57\) −0.886472 + 0.511805i −0.117416 + 0.0677902i
\(58\) 4.75469 + 1.27401i 0.624321 + 0.167286i
\(59\) 7.44042 + 1.99365i 0.968660 + 0.259552i 0.708262 0.705950i \(-0.249479\pi\)
0.260398 + 0.965501i \(0.416146\pi\)
\(60\) 0 0
\(61\) 1.29225 + 4.82274i 0.165455 + 0.617488i 0.997982 + 0.0635026i \(0.0202271\pi\)
−0.832526 + 0.553986i \(0.813106\pi\)
\(62\) −4.48976 + 16.7560i −0.570200 + 2.12802i
\(63\) 8.23845 + 8.23845i 1.03795 + 1.03795i
\(64\) 9.14537 1.14317
\(65\) 0 0
\(66\) −5.40675 + 5.40675i −0.665525 + 0.665525i
\(67\) −6.92312 + 1.85504i −0.845794 + 0.226630i −0.655592 0.755115i \(-0.727581\pi\)
−0.190202 + 0.981745i \(0.560914\pi\)
\(68\) −15.2660 −1.85127
\(69\) −1.45939 + 0.391044i −0.175690 + 0.0470761i
\(70\) 0 0
\(71\) −6.96450 + 12.0629i −0.826534 + 1.43160i 0.0742071 + 0.997243i \(0.476357\pi\)
−0.900741 + 0.434356i \(0.856976\pi\)
\(72\) −5.79581 10.0386i −0.683042 1.18306i
\(73\) −6.73477 + 6.73477i −0.788245 + 0.788245i −0.981206 0.192962i \(-0.938191\pi\)
0.192962 + 0.981206i \(0.438191\pi\)
\(74\) 10.8122 + 10.0653i 1.25689 + 1.17007i
\(75\) 0 0
\(76\) −5.53521 1.48316i −0.634933 0.170130i
\(77\) 20.2340 5.42169i 2.30588 0.617859i
\(78\) −0.873483 3.25988i −0.0989025 0.369109i
\(79\) −1.39018 5.18821i −0.156407 0.583719i −0.998981 0.0451380i \(-0.985627\pi\)
0.842574 0.538581i \(-0.181039\pi\)
\(80\) 0 0
\(81\) 2.43622 4.21965i 0.270691 0.468851i
\(82\) −2.27501 −0.251233
\(83\) 2.38257 8.89188i 0.261521 0.976010i −0.702824 0.711363i \(-0.748078\pi\)
0.964345 0.264647i \(-0.0852553\pi\)
\(84\) 12.5697i 1.37147i
\(85\) 0 0
\(86\) 0.952085 + 1.64906i 0.102666 + 0.177823i
\(87\) 0.705596 1.22213i 0.0756478 0.131026i
\(88\) −20.8412 −2.22168
\(89\) −0.159121 + 0.593846i −0.0168668 + 0.0629476i −0.973846 0.227208i \(-0.927040\pi\)
0.956980 + 0.290155i \(0.0937070\pi\)
\(90\) 0 0
\(91\) −2.39300 + 8.93078i −0.250854 + 0.936200i
\(92\) −7.32514 4.22917i −0.763699 0.440922i
\(93\) 4.30691 + 2.48659i 0.446605 + 0.257848i
\(94\) −6.01587 + 22.4515i −0.620490 + 2.31570i
\(95\) 0 0
\(96\) 0.174556 0.651451i 0.0178155 0.0664884i
\(97\) −3.08147 −0.312876 −0.156438 0.987688i \(-0.550001\pi\)
−0.156438 + 0.987688i \(0.550001\pi\)
\(98\) −17.5533 + 30.4032i −1.77315 + 3.07119i
\(99\) −5.68747 9.85100i −0.571613 0.990062i
\(100\) 0 0
\(101\) 4.04535i 0.402527i 0.979537 + 0.201263i \(0.0645047\pi\)
−0.979537 + 0.201263i \(0.935495\pi\)
\(102\) −1.71398 + 6.39665i −0.169709 + 0.633362i
\(103\) −9.37287 −0.923537 −0.461768 0.887001i \(-0.652785\pi\)
−0.461768 + 0.887001i \(0.652785\pi\)
\(104\) 4.59938 7.96636i 0.451006 0.781165i
\(105\) 0 0
\(106\) −8.04651 30.0300i −0.781546 2.91677i
\(107\) −0.534381 1.99434i −0.0516605 0.192800i 0.935273 0.353927i \(-0.115154\pi\)
−0.986934 + 0.161127i \(0.948487\pi\)
\(108\) −14.4565 + 3.87360i −1.39107 + 0.372737i
\(109\) 0.683860 + 0.183240i 0.0655019 + 0.0175512i 0.291421 0.956595i \(-0.405872\pi\)
−0.225919 + 0.974146i \(0.572539\pi\)
\(110\) 0 0
\(111\) 3.58952 2.24725i 0.340702 0.213299i
\(112\) 11.1246 11.1246i 1.05117 1.05117i
\(113\) 9.09219 + 15.7481i 0.855322 + 1.48146i 0.876346 + 0.481682i \(0.159974\pi\)
−0.0210245 + 0.999779i \(0.506693\pi\)
\(114\) −1.24292 + 2.15280i −0.116410 + 0.201629i
\(115\) 0 0
\(116\) 7.63108 2.04474i 0.708528 0.189850i
\(117\) 5.02061 0.464155
\(118\) 18.0691 4.84161i 1.66340 0.445706i
\(119\) 12.8287 12.8287i 1.17600 1.17600i
\(120\) 0 0
\(121\) −9.45163 −0.859239
\(122\) 8.57383 + 8.57383i 0.776238 + 0.776238i
\(123\) −0.168806 + 0.629992i −0.0152207 + 0.0568044i
\(124\) 7.20589 + 26.8927i 0.647108 + 2.41504i
\(125\) 0 0
\(126\) 27.3303 + 7.32313i 2.43477 + 0.652396i
\(127\) 9.28942 + 2.48909i 0.824303 + 0.220871i 0.646227 0.763146i \(-0.276346\pi\)
0.178076 + 0.984017i \(0.443013\pi\)
\(128\) 17.5562 10.1361i 1.55177 0.895913i
\(129\) 0.527299 0.141289i 0.0464261 0.0124398i
\(130\) 0 0
\(131\) −5.99780 1.60711i −0.524031 0.140414i −0.0129002 0.999917i \(-0.504106\pi\)
−0.511130 + 0.859503i \(0.670773\pi\)
\(132\) −3.17623 + 11.8538i −0.276455 + 1.03174i
\(133\) 5.89783 3.40511i 0.511407 0.295261i
\(134\) −12.3079 + 12.3079i −1.06324 + 1.06324i
\(135\) 0 0
\(136\) −15.6318 + 9.02505i −1.34042 + 0.773891i
\(137\) 6.43284 6.43284i 0.549594 0.549594i −0.376729 0.926323i \(-0.622951\pi\)
0.926323 + 0.376729i \(0.122951\pi\)
\(138\) −2.59450 + 2.59450i −0.220859 + 0.220859i
\(139\) −2.64940 4.58889i −0.224719 0.389225i 0.731516 0.681824i \(-0.238813\pi\)
−0.956235 + 0.292599i \(0.905480\pi\)
\(140\) 0 0
\(141\) 5.77086 + 3.33181i 0.485994 + 0.280589i
\(142\) 33.8267i 2.83867i
\(143\) 4.51341 7.81746i 0.377430 0.653728i
\(144\) −7.39842 4.27148i −0.616535 0.355957i
\(145\) 0 0
\(146\) −5.98651 + 22.3420i −0.495447 + 1.84903i
\(147\) 7.11675 + 7.11675i 0.586980 + 0.586980i
\(148\) 23.1054 + 5.31353i 1.89926 + 0.436769i
\(149\) 15.7541i 1.29062i 0.763919 + 0.645312i \(0.223273\pi\)
−0.763919 + 0.645312i \(0.776727\pi\)
\(150\) 0 0
\(151\) 7.53981 + 4.35311i 0.613581 + 0.354251i 0.774366 0.632738i \(-0.218069\pi\)
−0.160784 + 0.986990i \(0.551402\pi\)
\(152\) −6.54468 + 1.75364i −0.530844 + 0.142239i
\(153\) −8.53174 4.92580i −0.689750 0.398227i
\(154\) 35.9719 35.9719i 2.89870 2.89870i
\(155\) 0 0
\(156\) −3.83007 3.83007i −0.306651 0.306651i
\(157\) 7.67073 + 2.05537i 0.612191 + 0.164036i 0.551575 0.834125i \(-0.314027\pi\)
0.0606157 + 0.998161i \(0.480694\pi\)
\(158\) −9.22356 9.22356i −0.733787 0.733787i
\(159\) −8.91290 −0.706839
\(160\) 0 0
\(161\) 9.70957 2.60167i 0.765221 0.205040i
\(162\) 11.8328i 0.929670i
\(163\) −3.54511 6.14031i −0.277674 0.480946i 0.693132 0.720811i \(-0.256230\pi\)
−0.970806 + 0.239865i \(0.922897\pi\)
\(164\) −3.16212 + 1.82565i −0.246920 + 0.142559i
\(165\) 0 0
\(166\) −5.78610 21.5940i −0.449088 1.67602i
\(167\) 9.20413 15.9420i 0.712237 1.23363i −0.251778 0.967785i \(-0.581015\pi\)
0.964015 0.265846i \(-0.0856513\pi\)
\(168\) −7.43106 12.8710i −0.573318 0.993017i
\(169\) −4.50790 7.80791i −0.346761 0.600608i
\(170\) 0 0
\(171\) −2.61491 2.61491i −0.199967 0.199967i
\(172\) 2.64667 + 1.52806i 0.201807 + 0.116513i
\(173\) −17.0711 4.57418i −1.29789 0.347768i −0.457237 0.889345i \(-0.651161\pi\)
−0.840652 + 0.541576i \(0.817828\pi\)
\(174\) 3.42709i 0.259807i
\(175\) 0 0
\(176\) −13.3020 + 7.67992i −1.00268 + 0.578896i
\(177\) 5.36292i 0.403102i
\(178\) 0.386426 + 1.44216i 0.0289639 + 0.108095i
\(179\) 4.89803 + 4.89803i 0.366096 + 0.366096i 0.866051 0.499955i \(-0.166650\pi\)
−0.499955 + 0.866051i \(0.666650\pi\)
\(180\) 0 0
\(181\) −4.02887 + 6.97821i −0.299463 + 0.518686i −0.976013 0.217711i \(-0.930141\pi\)
0.676550 + 0.736397i \(0.263474\pi\)
\(182\) 5.81141 + 21.6885i 0.430771 + 1.60766i
\(183\) 3.01043 1.73807i 0.222537 0.128482i
\(184\) −10.0009 −0.737277
\(185\) 0 0
\(186\) 12.0774 0.885560
\(187\) −15.3397 + 8.85636i −1.12175 + 0.647641i
\(188\) 9.65523 + 36.0338i 0.704180 + 2.62804i
\(189\) 8.89323 15.4035i 0.646887 1.12044i
\(190\) 0 0
\(191\) −10.8190 10.8190i −0.782839 0.782839i 0.197470 0.980309i \(-0.436727\pi\)
−0.980309 + 0.197470i \(0.936727\pi\)
\(192\) −1.64795 6.15024i −0.118931 0.443856i
\(193\) 15.5270i 1.11766i −0.829284 0.558828i \(-0.811251\pi\)
0.829284 0.558828i \(-0.188749\pi\)
\(194\) −6.48079 + 3.74169i −0.465294 + 0.268638i
\(195\) 0 0
\(196\) 56.3447i 4.02462i
\(197\) −4.72326 1.26560i −0.336519 0.0901699i 0.0866027 0.996243i \(-0.472399\pi\)
−0.423121 + 0.906073i \(0.639066\pi\)
\(198\) −23.9232 13.8121i −1.70015 0.981582i
\(199\) 7.16620 + 7.16620i 0.507999 + 0.507999i 0.913912 0.405913i \(-0.133046\pi\)
−0.405913 + 0.913912i \(0.633046\pi\)
\(200\) 0 0
\(201\) 2.49503 + 4.32152i 0.175986 + 0.304816i
\(202\) 4.91208 + 8.50797i 0.345613 + 0.598619i
\(203\) −4.69443 + 8.13100i −0.329485 + 0.570684i
\(204\) 2.75086 + 10.2664i 0.192599 + 0.718789i
\(205\) 0 0
\(206\) −19.7126 + 11.3811i −1.37344 + 0.792956i
\(207\) −2.72921 4.72713i −0.189693 0.328558i
\(208\) 6.77944i 0.470070i
\(209\) −6.42236 + 1.72087i −0.444244 + 0.119035i
\(210\) 0 0
\(211\) −8.64469 −0.595125 −0.297562 0.954702i \(-0.596174\pi\)
−0.297562 + 0.954702i \(0.596174\pi\)
\(212\) −35.2826 35.2826i −2.42322 2.42322i
\(213\) 9.36723 + 2.50994i 0.641832 + 0.171978i
\(214\) −3.54551 3.54551i −0.242366 0.242366i
\(215\) 0 0
\(216\) −12.5129 + 12.5129i −0.851395 + 0.851395i
\(217\) −28.6545 16.5437i −1.94519 1.12306i
\(218\) 1.66076 0.444999i 0.112481 0.0301392i
\(219\) 5.74269 + 3.31555i 0.388055 + 0.224044i
\(220\) 0 0
\(221\) 7.81794i 0.525891i
\(222\) 4.82058 9.08490i 0.323536 0.609739i
\(223\) 15.4450 + 15.4450i 1.03427 + 1.03427i 0.999391 + 0.0348829i \(0.0111058\pi\)
0.0348829 + 0.999391i \(0.488894\pi\)
\(224\) −1.16135 + 4.33420i −0.0775956 + 0.289591i
\(225\) 0 0
\(226\) 38.2445 + 22.0805i 2.54399 + 1.46877i
\(227\) −8.32107 + 14.4125i −0.552289 + 0.956593i 0.445820 + 0.895123i \(0.352912\pi\)
−0.998109 + 0.0614699i \(0.980421\pi\)
\(228\) 3.98968i 0.264223i
\(229\) 15.9930 + 9.23358i 1.05685 + 0.610172i 0.924559 0.381039i \(-0.124434\pi\)
0.132290 + 0.991211i \(0.457767\pi\)
\(230\) 0 0
\(231\) −7.29216 12.6304i −0.479789 0.831019i
\(232\) 6.60513 6.60513i 0.433648 0.433648i
\(233\) −13.8266 + 13.8266i −0.905809 + 0.905809i −0.995931 0.0901215i \(-0.971274\pi\)
0.0901215 + 0.995931i \(0.471274\pi\)
\(234\) 10.5591 6.09630i 0.690270 0.398528i
\(235\) 0 0
\(236\) 21.2296 21.2296i 1.38193 1.38193i
\(237\) −3.23856 + 1.86978i −0.210367 + 0.121455i
\(238\) 11.4033 42.5579i 0.739169 2.75862i
\(239\) −23.9019 6.40449i −1.54608 0.414272i −0.617858 0.786290i \(-0.711999\pi\)
−0.928226 + 0.372018i \(0.878666\pi\)
\(240\) 0 0
\(241\) 5.11826 1.37143i 0.329696 0.0883419i −0.0901738 0.995926i \(-0.528742\pi\)
0.419870 + 0.907584i \(0.362076\pi\)
\(242\) −19.8782 + 11.4767i −1.27782 + 0.737749i
\(243\) −14.4037 3.85947i −0.924001 0.247585i
\(244\) 18.7974 + 5.03675i 1.20338 + 0.322445i
\(245\) 0 0
\(246\) 0.409946 + 1.52994i 0.0261372 + 0.0975454i
\(247\) 0.759546 2.83466i 0.0483287 0.180365i
\(248\) 23.2772 + 23.2772i 1.47810 + 1.47810i
\(249\) −6.40910 −0.406160
\(250\) 0 0
\(251\) −19.4085 + 19.4085i −1.22506 + 1.22506i −0.259243 + 0.965812i \(0.583473\pi\)
−0.965812 + 0.259243i \(0.916527\pi\)
\(252\) 43.8640 11.7533i 2.76317 0.740390i
\(253\) −9.81398 −0.617000
\(254\) 22.5594 6.04478i 1.41551 0.379283i
\(255\) 0 0
\(256\) 15.4703 26.7953i 0.966891 1.67470i
\(257\) −5.78096 10.0129i −0.360607 0.624589i 0.627454 0.778653i \(-0.284097\pi\)
−0.988061 + 0.154065i \(0.950764\pi\)
\(258\) 0.937429 0.937429i 0.0583618 0.0583618i
\(259\) −23.8816 + 14.9513i −1.48393 + 0.929028i
\(260\) 0 0
\(261\) 4.92456 + 1.31953i 0.304823 + 0.0816770i
\(262\) −14.5657 + 3.90287i −0.899874 + 0.241120i
\(263\) 1.34811 + 5.03120i 0.0831277 + 0.310237i 0.994953 0.100341i \(-0.0319935\pi\)
−0.911825 + 0.410578i \(0.865327\pi\)
\(264\) 3.75548 + 14.0157i 0.231134 + 0.862604i
\(265\) 0 0
\(266\) 8.26935 14.3229i 0.507026 0.878196i
\(267\) 0.428034 0.0261952
\(268\) −7.23033 + 26.9840i −0.441663 + 1.64831i
\(269\) 15.6120i 0.951881i −0.879477 0.475941i \(-0.842108\pi\)
0.879477 0.475941i \(-0.157892\pi\)
\(270\) 0 0
\(271\) −1.95093 3.37911i −0.118510 0.205266i 0.800667 0.599109i \(-0.204479\pi\)
−0.919178 + 0.393843i \(0.871145\pi\)
\(272\) −6.65142 + 11.5206i −0.403301 + 0.698538i
\(273\) 6.43714 0.389594
\(274\) 5.71812 21.3403i 0.345444 1.28922i
\(275\) 0 0
\(276\) −1.52415 + 5.68822i −0.0917433 + 0.342391i
\(277\) 0.852343 + 0.492101i 0.0512123 + 0.0295675i 0.525388 0.850863i \(-0.323920\pi\)
−0.474175 + 0.880430i \(0.657254\pi\)
\(278\) −11.1442 6.43409i −0.668383 0.385891i
\(279\) −4.65017 + 17.3547i −0.278399 + 1.03900i
\(280\) 0 0
\(281\) 4.53841 16.9376i 0.270739 1.01041i −0.687904 0.725801i \(-0.741469\pi\)
0.958643 0.284610i \(-0.0918641\pi\)
\(282\) 16.1827 0.963663
\(283\) 3.70198 6.41202i 0.220060 0.381155i −0.734766 0.678321i \(-0.762708\pi\)
0.954826 + 0.297166i \(0.0960414\pi\)
\(284\) 27.1453 + 47.0170i 1.61077 + 2.78994i
\(285\) 0 0
\(286\) 21.9217i 1.29626i
\(287\) 1.12309 4.19143i 0.0662939 0.247412i
\(288\) 2.43655 0.143575
\(289\) 0.829699 1.43708i 0.0488058 0.0845341i
\(290\) 0 0
\(291\) 0.555266 + 2.07228i 0.0325503 + 0.121479i
\(292\) 9.60810 + 35.8579i 0.562272 + 2.09843i
\(293\) 8.20949 2.19973i 0.479603 0.128509i −0.0109145 0.999940i \(-0.503474\pi\)
0.490518 + 0.871431i \(0.336808\pi\)
\(294\) 23.6092 + 6.32606i 1.37691 + 0.368943i
\(295\) 0 0
\(296\) 26.8004 8.21875i 1.55774 0.477705i
\(297\) −12.2790 + 12.2790i −0.712501 + 0.712501i
\(298\) 19.1295 + 33.1332i 1.10814 + 1.91936i
\(299\) 2.16582 3.75131i 0.125253 0.216944i
\(300\) 0 0
\(301\) −3.50820 + 0.940020i −0.202209 + 0.0541818i
\(302\) 21.1432 1.21665
\(303\) 2.72049 0.728953i 0.156288 0.0418772i
\(304\) −3.53097 + 3.53097i −0.202515 + 0.202515i
\(305\) 0 0
\(306\) −23.9247 −1.36768
\(307\) −6.02262 6.02262i −0.343729 0.343729i 0.514038 0.857767i \(-0.328149\pi\)
−0.857767 + 0.514038i \(0.828149\pi\)
\(308\) 21.1319 78.8654i 1.20410 4.49377i
\(309\) 1.68895 + 6.30324i 0.0960809 + 0.358579i
\(310\) 0 0
\(311\) −18.4702 4.94907i −1.04735 0.280636i −0.306192 0.951970i \(-0.599055\pi\)
−0.741155 + 0.671334i \(0.765722\pi\)
\(312\) −6.18615 1.65757i −0.350222 0.0938416i
\(313\) −5.57898 + 3.22103i −0.315343 + 0.182063i −0.649315 0.760520i \(-0.724944\pi\)
0.333972 + 0.942583i \(0.391611\pi\)
\(314\) 18.6284 4.99148i 1.05126 0.281685i
\(315\) 0 0
\(316\) −20.2219 5.41843i −1.13757 0.304811i
\(317\) 5.17746 19.3226i 0.290795 1.08526i −0.653704 0.756750i \(-0.726786\pi\)
0.944499 0.328513i \(-0.106547\pi\)
\(318\) −18.7452 + 10.8225i −1.05118 + 0.606898i
\(319\) 6.48168 6.48168i 0.362904 0.362904i
\(320\) 0 0
\(321\) −1.24489 + 0.718740i −0.0694832 + 0.0401162i
\(322\) 17.2616 17.2616i 0.961951 0.961951i
\(323\) −4.07186 + 4.07186i −0.226564 + 0.226564i
\(324\) −9.49555 16.4468i −0.527531 0.913710i
\(325\) 0 0
\(326\) −14.9118 8.60933i −0.825888 0.476827i
\(327\) 0.492914i 0.0272582i
\(328\) −2.15860 + 3.73880i −0.119189 + 0.206441i
\(329\) −38.3944 22.1670i −2.11675 1.22211i
\(330\) 0 0
\(331\) −3.37049 + 12.5789i −0.185259 + 0.691397i 0.809316 + 0.587374i \(0.199838\pi\)
−0.994575 + 0.104023i \(0.966829\pi\)
\(332\) −25.3711 25.3711i −1.39242 1.39242i
\(333\) 11.1985 + 10.4249i 0.613674 + 0.571281i
\(334\) 44.7047i 2.44613i
\(335\) 0 0
\(336\) −9.48584 5.47665i −0.517495 0.298776i
\(337\) 24.7331 6.62721i 1.34730 0.361007i 0.488161 0.872754i \(-0.337668\pi\)
0.859137 + 0.511746i \(0.171001\pi\)
\(338\) −18.9616 10.9475i −1.03137 0.595464i
\(339\) 8.95223 8.95223i 0.486218 0.486218i
\(340\) 0 0
\(341\) 22.8421 + 22.8421i 1.23697 + 1.23697i
\(342\) −8.67473 2.32439i −0.469076 0.125688i
\(343\) −24.4213 24.4213i −1.31863 1.31863i
\(344\) 3.61347 0.194825
\(345\) 0 0
\(346\) −41.4572 + 11.1084i −2.22876 + 0.597193i
\(347\) 2.09128i 0.112266i 0.998423 + 0.0561330i \(0.0178771\pi\)
−0.998423 + 0.0561330i \(0.982123\pi\)
\(348\) −2.75017 4.76344i −0.147425 0.255347i
\(349\) 5.38379 3.10833i 0.288187 0.166385i −0.348937 0.937146i \(-0.613457\pi\)
0.637124 + 0.770761i \(0.280124\pi\)
\(350\) 0 0
\(351\) −1.98373 7.40337i −0.105883 0.395163i
\(352\) 2.19040 3.79389i 0.116749 0.202215i
\(353\) −3.63418 6.29458i −0.193428 0.335027i 0.752956 0.658071i \(-0.228627\pi\)
−0.946384 + 0.323044i \(0.895294\pi\)
\(354\) −6.51195 11.2790i −0.346106 0.599474i
\(355\) 0 0
\(356\) 1.69441 + 1.69441i 0.0898037 + 0.0898037i
\(357\) −10.9389 6.31558i −0.578949 0.334256i
\(358\) 16.2488 + 4.35384i 0.858774 + 0.230108i
\(359\) 11.8142i 0.623528i 0.950160 + 0.311764i \(0.100920\pi\)
−0.950160 + 0.311764i \(0.899080\pi\)
\(360\) 0 0
\(361\) 14.5825 8.41920i 0.767499 0.443116i
\(362\) 19.5683i 1.02849i
\(363\) 1.70314 + 6.35620i 0.0893916 + 0.333614i
\(364\) 25.4821 + 25.4821i 1.33562 + 1.33562i
\(365\) 0 0
\(366\) 4.22092 7.31085i 0.220631 0.382144i
\(367\) 0.642482 + 2.39777i 0.0335373 + 0.125163i 0.980665 0.195694i \(-0.0626959\pi\)
−0.947128 + 0.320857i \(0.896029\pi\)
\(368\) −6.38315 + 3.68531i −0.332745 + 0.192110i
\(369\) −2.35629 −0.122664
\(370\) 0 0
\(371\) 59.2989 3.07864
\(372\) 16.7869 9.69189i 0.870358 0.502501i
\(373\) −2.41009 8.99456i −0.124790 0.465721i 0.875043 0.484046i \(-0.160833\pi\)
−0.999832 + 0.0183252i \(0.994167\pi\)
\(374\) −21.5078 + 37.2525i −1.11214 + 1.92628i
\(375\) 0 0
\(376\) 31.1893 + 31.1893i 1.60847 + 1.60847i
\(377\) 1.04714 + 3.90799i 0.0539305 + 0.201272i
\(378\) 43.1946i 2.22169i
\(379\) 7.13805 4.12116i 0.366657 0.211690i −0.305340 0.952243i \(-0.598770\pi\)
0.671997 + 0.740554i \(0.265437\pi\)
\(380\) 0 0
\(381\) 6.69564i 0.343028i
\(382\) −35.8912 9.61701i −1.83635 0.492049i
\(383\) 21.8189 + 12.5971i 1.11489 + 0.643684i 0.940092 0.340920i \(-0.110738\pi\)
0.174801 + 0.984604i \(0.444072\pi\)
\(384\) −9.98007 9.98007i −0.509293 0.509293i
\(385\) 0 0
\(386\) −18.8537 32.6555i −0.959627 1.66212i
\(387\) 0.986101 + 1.70798i 0.0501263 + 0.0868214i
\(388\) −6.00526 + 10.4014i −0.304871 + 0.528052i
\(389\) 0.855458 + 3.19261i 0.0433734 + 0.161872i 0.984216 0.176973i \(-0.0566305\pi\)
−0.940842 + 0.338845i \(0.889964\pi\)
\(390\) 0 0
\(391\) −7.36094 + 4.24984i −0.372259 + 0.214924i
\(392\) 33.3102 + 57.6950i 1.68242 + 2.91404i
\(393\) 4.32311i 0.218072i
\(394\) −11.4705 + 3.07351i −0.577875 + 0.154841i
\(395\) 0 0
\(396\) −44.3357 −2.22795
\(397\) 25.8402 + 25.8402i 1.29688 + 1.29688i 0.930442 + 0.366439i \(0.119423\pi\)
0.366439 + 0.930442i \(0.380577\pi\)
\(398\) 23.7732 + 6.37001i 1.19164 + 0.319300i
\(399\) −3.35269 3.35269i −0.167845 0.167845i
\(400\) 0 0
\(401\) −3.57151 + 3.57151i −0.178353 + 0.178353i −0.790637 0.612285i \(-0.790251\pi\)
0.612285 + 0.790637i \(0.290251\pi\)
\(402\) 10.4948 + 6.05920i 0.523435 + 0.302206i
\(403\) −13.7722 + 3.69024i −0.686040 + 0.183824i
\(404\) 13.6550 + 7.88369i 0.679359 + 0.392228i
\(405\) 0 0
\(406\) 22.8010i 1.13159i
\(407\) 26.2995 8.06513i 1.30362 0.399774i
\(408\) 8.88611 + 8.88611i 0.439928 + 0.439928i
\(409\) 2.25114 8.40137i 0.111312 0.415421i −0.887673 0.460475i \(-0.847679\pi\)
0.998985 + 0.0450536i \(0.0143459\pi\)
\(410\) 0 0
\(411\) −5.48524 3.16690i −0.270567 0.156212i
\(412\) −18.2661 + 31.6379i −0.899908 + 1.55869i
\(413\) 35.6803i 1.75571i
\(414\) −11.4799 6.62791i −0.564205 0.325744i
\(415\) 0 0
\(416\) 0.966788 + 1.67453i 0.0474007 + 0.0821004i
\(417\) −2.60861 + 2.60861i −0.127744 + 0.127744i
\(418\) −11.4176 + 11.4176i −0.558454 + 0.558454i
\(419\) 17.6791 10.2071i 0.863682 0.498647i −0.00156147 0.999999i \(-0.500497\pi\)
0.865244 + 0.501352i \(0.167164\pi\)
\(420\) 0 0
\(421\) 25.1734 25.1734i 1.22688 1.22688i 0.261738 0.965139i \(-0.415704\pi\)
0.965139 0.261738i \(-0.0842956\pi\)
\(422\) −18.1811 + 10.4969i −0.885041 + 0.510979i
\(423\) −6.23081 + 23.2537i −0.302952 + 1.13063i
\(424\) −56.9867 15.2695i −2.76752 0.741555i
\(425\) 0 0
\(426\) 22.7484 6.09542i 1.10216 0.295324i
\(427\) −20.0288 + 11.5636i −0.969263 + 0.559604i
\(428\) −7.77324 2.08283i −0.375734 0.100678i
\(429\) −6.07052 1.62659i −0.293088 0.0785326i
\(430\) 0 0
\(431\) −3.95349 14.7546i −0.190433 0.710706i −0.993402 0.114685i \(-0.963414\pi\)
0.802969 0.596021i \(-0.203252\pi\)
\(432\) −3.37547 + 12.5974i −0.162402 + 0.606093i
\(433\) −10.0393 10.0393i −0.482460 0.482460i 0.423457 0.905916i \(-0.360817\pi\)
−0.905916 + 0.423457i \(0.860817\pi\)
\(434\) −80.3530 −3.85707
\(435\) 0 0
\(436\) 1.95125 1.95125i 0.0934478 0.0934478i
\(437\) −3.08185 + 0.825780i −0.147425 + 0.0395024i
\(438\) 16.1037 0.769463
\(439\) −15.6819 + 4.20195i −0.748455 + 0.200548i −0.612833 0.790213i \(-0.709970\pi\)
−0.135622 + 0.990761i \(0.543303\pi\)
\(440\) 0 0
\(441\) −18.1805 + 31.4895i −0.865737 + 1.49950i
\(442\) −9.49297 16.4423i −0.451534 0.782080i
\(443\) 0.940024 0.940024i 0.0446619 0.0446619i −0.684423 0.729085i \(-0.739946\pi\)
0.729085 + 0.684423i \(0.239946\pi\)
\(444\) −0.590155 16.4958i −0.0280075 0.782858i
\(445\) 0 0
\(446\) 51.2374 + 13.7290i 2.42616 + 0.650088i
\(447\) 10.5946 2.83881i 0.501107 0.134271i
\(448\) 10.9641 + 40.9185i 0.518004 + 1.93322i
\(449\) −8.59716 32.0850i −0.405725 1.51419i −0.802715 0.596363i \(-0.796612\pi\)
0.396990 0.917823i \(-0.370055\pi\)
\(450\) 0 0
\(451\) −2.11825 + 3.66892i −0.0997445 + 0.172763i
\(452\) 70.8766 3.33375
\(453\) 1.56882 5.85492i 0.0737097 0.275088i
\(454\) 40.4156i 1.89680i
\(455\) 0 0
\(456\) 2.35864 + 4.08529i 0.110454 + 0.191311i
\(457\) 11.4236 19.7863i 0.534374 0.925562i −0.464820 0.885405i \(-0.653881\pi\)
0.999193 0.0401569i \(-0.0127858\pi\)
\(458\) 44.8477 2.09560
\(459\) −3.89253 + 14.5271i −0.181688 + 0.678068i
\(460\) 0 0
\(461\) 8.04621 30.0289i 0.374750 1.39858i −0.478961 0.877836i \(-0.658986\pi\)
0.853710 0.520748i \(-0.174347\pi\)
\(462\) −30.6730 17.7091i −1.42704 0.823901i
\(463\) −21.3575 12.3308i −0.992567 0.573059i −0.0865265 0.996250i \(-0.527577\pi\)
−0.906041 + 0.423191i \(0.860910\pi\)
\(464\) 1.78179 6.64975i 0.0827177 0.308707i
\(465\) 0 0
\(466\) −12.2904 + 45.8684i −0.569341 + 2.12481i
\(467\) −27.3481 −1.26552 −0.632761 0.774348i \(-0.718078\pi\)
−0.632761 + 0.774348i \(0.718078\pi\)
\(468\) 9.78431 16.9469i 0.452280 0.783372i
\(469\) −16.5998 28.7517i −0.766508 1.32763i
\(470\) 0 0
\(471\) 5.52892i 0.254759i
\(472\) 9.18773 34.2891i 0.422900 1.57828i
\(473\) 3.54593 0.163042
\(474\) −4.54079 + 7.86487i −0.208565 + 0.361245i
\(475\) 0 0
\(476\) −18.3019 68.3036i −0.838866 3.13069i
\(477\) −8.33400 31.1029i −0.381588 1.42410i
\(478\) −58.0459 + 15.5534i −2.65496 + 0.711394i
\(479\) 20.7905 + 5.57080i 0.949943 + 0.254537i 0.700338 0.713811i \(-0.253033\pi\)
0.249605 + 0.968348i \(0.419699\pi\)
\(480\) 0 0
\(481\) −2.72113 + 11.8326i −0.124073 + 0.539521i
\(482\) 9.09921 9.09921i 0.414458 0.414458i
\(483\) −3.49924 6.06086i −0.159221 0.275779i
\(484\) −18.4196 + 31.9037i −0.837255 + 1.45017i
\(485\) 0 0
\(486\) −34.9796 + 9.37277i −1.58671 + 0.425157i
\(487\) −16.0414 −0.726904 −0.363452 0.931613i \(-0.618402\pi\)
−0.363452 + 0.931613i \(0.618402\pi\)
\(488\) 22.2255 5.95531i 1.00610 0.269584i
\(489\) −3.49054 + 3.49054i −0.157847 + 0.157847i
\(490\) 0 0
\(491\) 29.9068 1.34967 0.674837 0.737967i \(-0.264214\pi\)
0.674837 + 0.737967i \(0.264214\pi\)
\(492\) 1.79755 + 1.79755i 0.0810396 + 0.0810396i
\(493\) 2.05473 7.66837i 0.0925406 0.345366i
\(494\) −1.84456 6.88401i −0.0829908 0.309726i
\(495\) 0 0
\(496\) 23.4344 + 6.27923i 1.05224 + 0.281946i
\(497\) −62.3216 16.6990i −2.79551 0.749053i
\(498\) −13.4793 + 7.78228i −0.604022 + 0.348732i
\(499\) −28.8212 + 7.72260i −1.29021 + 0.345711i −0.837741 0.546068i \(-0.816124\pi\)
−0.452471 + 0.891779i \(0.649457\pi\)
\(500\) 0 0
\(501\) −12.3795 3.31709i −0.553077 0.148196i
\(502\) −17.2522 + 64.3860i −0.770002 + 2.87369i
\(503\) 3.06178 1.76772i 0.136518 0.0788188i −0.430185 0.902741i \(-0.641552\pi\)
0.566704 + 0.823922i \(0.308218\pi\)
\(504\) 37.9668 37.9668i 1.69117 1.69117i
\(505\) 0 0
\(506\) −20.6403 + 11.9167i −0.917573 + 0.529761i
\(507\) −4.43850 + 4.43850i −0.197121 + 0.197121i
\(508\) 26.5054 26.5054i 1.17598 1.17598i
\(509\) −2.44230 4.23019i −0.108253 0.187500i 0.806810 0.590812i \(-0.201192\pi\)
−0.915063 + 0.403312i \(0.867859\pi\)
\(510\) 0 0
\(511\) −38.2070 22.0588i −1.69018 0.975825i
\(512\) 34.5949i 1.52890i
\(513\) −2.82274 + 4.88913i −0.124627 + 0.215861i
\(514\) −24.3165 14.0391i −1.07255 0.619239i
\(515\) 0 0
\(516\) 0.550698 2.05523i 0.0242431 0.0904766i
\(517\) 30.6063 + 30.6063i 1.34607 + 1.34607i
\(518\) −32.0720 + 60.4432i −1.40916 + 2.65572i
\(519\) 12.3045i 0.540108i
\(520\) 0 0
\(521\) 14.3610 + 8.29133i 0.629167 + 0.363250i 0.780430 0.625244i \(-0.215000\pi\)
−0.151262 + 0.988494i \(0.548334\pi\)
\(522\) 11.9593 3.20450i 0.523446 0.140257i
\(523\) −36.8876 21.2971i −1.61298 0.931255i −0.988675 0.150076i \(-0.952048\pi\)
−0.624306 0.781180i \(-0.714618\pi\)
\(524\) −17.1134 + 17.1134i −0.747604 + 0.747604i
\(525\) 0 0
\(526\) 8.94443 + 8.94443i 0.389996 + 0.389996i
\(527\) 27.0242 + 7.24110i 1.17719 + 0.315427i
\(528\) 7.56170 + 7.56170i 0.329081 + 0.329081i
\(529\) 18.2906 0.795245
\(530\) 0 0
\(531\) 18.7147 5.01459i 0.812149 0.217615i
\(532\) 26.5439i 1.15083i
\(533\) −0.934941 1.61937i −0.0404968 0.0701425i
\(534\) 0.900219 0.519742i 0.0389563 0.0224914i
\(535\) 0 0
\(536\) 8.54895 + 31.9051i 0.369258 + 1.37809i
\(537\) 2.41132 4.17652i 0.104056 0.180230i
\(538\) −18.9570 32.8344i −0.817293 1.41559i
\(539\) 32.6876 + 56.6166i 1.40796 + 2.43865i
\(540\) 0 0
\(541\) −23.0072 23.0072i −0.989156 0.989156i 0.0107855 0.999942i \(-0.496567\pi\)
−0.999942 + 0.0107855i \(0.996567\pi\)
\(542\) −8.20619 4.73785i −0.352486 0.203508i
\(543\) 5.41882 + 1.45197i 0.232544 + 0.0623099i
\(544\) 3.79412i 0.162672i
\(545\) 0 0
\(546\) 13.5383 7.81633i 0.579385 0.334508i
\(547\) 4.03346i 0.172458i −0.996275 0.0862292i \(-0.972518\pi\)
0.996275 0.0862292i \(-0.0274817\pi\)
\(548\) −9.17736 34.2504i −0.392037 1.46310i
\(549\) 8.88015 + 8.88015i 0.378996 + 0.378996i
\(550\) 0 0
\(551\) 1.49003 2.58081i 0.0634774 0.109946i
\(552\) 1.80212 + 6.72560i 0.0767032 + 0.286260i
\(553\) 21.5466 12.4399i 0.916255 0.529000i
\(554\) 2.39014 0.101547
\(555\) 0 0
\(556\) −20.6529 −0.875878
\(557\) 6.64973 3.83923i 0.281758 0.162673i −0.352461 0.935827i \(-0.614655\pi\)
0.634219 + 0.773153i \(0.281322\pi\)
\(558\) 11.2930 + 42.1460i 0.478070 + 1.78418i
\(559\) −0.782540 + 1.35540i −0.0330979 + 0.0573273i
\(560\) 0 0
\(561\) 8.72002 + 8.72002i 0.368160 + 0.368160i
\(562\) −11.0216 41.1331i −0.464917 1.73509i
\(563\) 9.23724i 0.389303i −0.980872 0.194652i \(-0.937642\pi\)
0.980872 0.194652i \(-0.0623576\pi\)
\(564\) 22.4929 12.9863i 0.947120 0.546820i
\(565\) 0 0
\(566\) 17.9806i 0.755780i
\(567\) 21.8004 + 5.84141i 0.915532 + 0.245316i
\(568\) 55.5915 + 32.0958i 2.33257 + 1.34671i
\(569\) 10.2931 + 10.2931i 0.431510 + 0.431510i 0.889142 0.457632i \(-0.151302\pi\)
−0.457632 + 0.889142i \(0.651302\pi\)
\(570\) 0 0
\(571\) 17.8689 + 30.9499i 0.747792 + 1.29521i 0.948879 + 0.315640i \(0.102219\pi\)
−0.201087 + 0.979573i \(0.564447\pi\)
\(572\) −17.5917 30.4698i −0.735547 1.27401i
\(573\) −5.32625 + 9.22533i −0.222507 + 0.385394i
\(574\) −2.72743 10.1789i −0.113841 0.424860i
\(575\) 0 0
\(576\) 19.9213 11.5016i 0.830053 0.479232i
\(577\) −1.69903 2.94280i −0.0707315 0.122510i 0.828491 0.560003i \(-0.189200\pi\)
−0.899222 + 0.437492i \(0.855867\pi\)
\(578\) 4.02986i 0.167620i
\(579\) −10.4419 + 2.79789i −0.433949 + 0.116276i
\(580\) 0 0
\(581\) 42.6407 1.76903
\(582\) 3.68409 + 3.68409i 0.152710 + 0.152710i
\(583\) −55.9216 14.9841i −2.31603 0.620580i
\(584\) 31.0371 + 31.0371i 1.28432 + 1.28432i
\(585\) 0 0
\(586\) 14.5948 14.5948i 0.602904 0.602904i
\(587\) 2.31742 + 1.33796i 0.0956502 + 0.0552237i 0.547062 0.837092i \(-0.315746\pi\)
−0.451412 + 0.892316i \(0.649079\pi\)
\(588\) 37.8918 10.1531i 1.56263 0.418705i
\(589\) 9.09504 + 5.25102i 0.374755 + 0.216365i
\(590\) 0 0
\(591\) 3.40444i 0.140040i
\(592\) 14.0770 15.1216i 0.578560 0.621493i
\(593\) 7.88127 + 7.88127i 0.323645 + 0.323645i 0.850164 0.526519i \(-0.176503\pi\)
−0.526519 + 0.850164i \(0.676503\pi\)
\(594\) −10.9148 + 40.7345i −0.447839 + 1.67136i
\(595\) 0 0
\(596\) 53.1775 + 30.7020i 2.17823 + 1.25760i
\(597\) 3.52794 6.11058i 0.144389 0.250089i
\(598\) 10.5194i 0.430171i
\(599\) −6.25134 3.60922i −0.255423 0.147469i 0.366822 0.930291i \(-0.380446\pi\)
−0.622245 + 0.782823i \(0.713779\pi\)
\(600\) 0 0
\(601\) −18.5443 32.1197i −0.756438 1.31019i −0.944656 0.328061i \(-0.893605\pi\)
0.188219 0.982127i \(-0.439729\pi\)
\(602\) −6.23685 + 6.23685i −0.254195 + 0.254195i
\(603\) −12.7476 + 12.7476i −0.519123 + 0.519123i
\(604\) 29.3876 16.9670i 1.19577 0.690376i
\(605\) 0 0
\(606\) 4.83646 4.83646i 0.196468 0.196468i
\(607\) 25.3980 14.6635i 1.03087 0.595174i 0.113637 0.993522i \(-0.463750\pi\)
0.917234 + 0.398348i \(0.130417\pi\)
\(608\) 0.368615 1.37569i 0.0149493 0.0557916i
\(609\) 6.31400 + 1.69183i 0.255856 + 0.0685564i
\(610\) 0 0
\(611\) −18.4534 + 4.94458i −0.746546 + 0.200036i
\(612\) −33.2538 + 19.1991i −1.34421 + 0.776077i
\(613\) 40.7596 + 10.9215i 1.64627 + 0.441116i 0.958564 0.284878i \(-0.0919530\pi\)
0.687702 + 0.725993i \(0.258620\pi\)
\(614\) −19.9795 5.35348i −0.806306 0.216049i
\(615\) 0 0
\(616\) −24.9858 93.2483i −1.00671 3.75708i
\(617\) 2.50108 9.33416i 0.100690 0.375779i −0.897131 0.441765i \(-0.854353\pi\)
0.997821 + 0.0659858i \(0.0210192\pi\)
\(618\) 11.2059 + 11.2059i 0.450766 + 0.450766i
\(619\) 36.1951 1.45480 0.727402 0.686212i \(-0.240728\pi\)
0.727402 + 0.686212i \(0.240728\pi\)
\(620\) 0 0
\(621\) −5.89225 + 5.89225i −0.236448 + 0.236448i
\(622\) −44.8550 + 12.0189i −1.79852 + 0.481912i
\(623\) −2.84777 −0.114094
\(624\) −4.55916 + 1.22162i −0.182513 + 0.0489041i
\(625\) 0 0
\(626\) −7.82230 + 13.5486i −0.312642 + 0.541512i
\(627\) 2.31456 + 4.00893i 0.0924346 + 0.160101i
\(628\) 21.8868 21.8868i 0.873378 0.873378i
\(629\) 16.2333 17.4379i 0.647265 0.695296i
\(630\) 0 0
\(631\) −24.9812 6.69368i −0.994484 0.266471i −0.275351 0.961344i \(-0.588794\pi\)
−0.719133 + 0.694872i \(0.755461\pi\)
\(632\) −23.9098 + 6.40661i −0.951080 + 0.254841i
\(633\) 1.55773 + 5.81354i 0.0619143 + 0.231067i
\(634\) −12.5735 46.9250i −0.499358 1.86363i
\(635\) 0 0
\(636\) −17.3697 + 30.0853i −0.688755 + 1.19296i
\(637\) −28.8550 −1.14327
\(638\) 5.76154 21.5023i 0.228101 0.851286i
\(639\) 35.0353i 1.38597i
\(640\) 0 0
\(641\) −23.6056 40.8862i −0.932367 1.61491i −0.779263 0.626697i \(-0.784406\pi\)
−0.153104 0.988210i \(-0.548927\pi\)
\(642\) −1.74547 + 3.02324i −0.0688881 + 0.119318i
\(643\) 46.2642 1.82448 0.912240 0.409655i \(-0.134351\pi\)
0.912240 + 0.409655i \(0.134351\pi\)
\(644\) 10.1404 37.8446i 0.399589 1.49129i
\(645\) 0 0
\(646\) −3.61946 + 13.5080i −0.142406 + 0.531466i
\(647\) 24.4072 + 14.0915i 0.959548 + 0.553995i 0.896034 0.443986i \(-0.146436\pi\)
0.0635140 + 0.997981i \(0.479769\pi\)
\(648\) −19.4462 11.2273i −0.763920 0.441049i
\(649\) 9.01600 33.6482i 0.353909 1.32081i
\(650\) 0 0
\(651\) −5.96219 + 22.2512i −0.233677 + 0.872093i
\(652\) −27.6353 −1.08228
\(653\) 9.63180 16.6828i 0.376921 0.652847i −0.613691 0.789546i \(-0.710316\pi\)
0.990613 + 0.136699i \(0.0436493\pi\)
\(654\) −0.598523 1.03667i −0.0234041 0.0405371i
\(655\) 0 0
\(656\) 3.18175i 0.124227i
\(657\) −6.20039 + 23.1402i −0.241900 + 0.902785i
\(658\) −107.666 −4.19724
\(659\) −14.5221 + 25.1530i −0.565699 + 0.979820i 0.431285 + 0.902216i \(0.358060\pi\)
−0.996984 + 0.0776043i \(0.975273\pi\)
\(660\) 0 0
\(661\) −1.49896 5.59420i −0.0583028 0.217589i 0.930628 0.365967i \(-0.119262\pi\)
−0.988931 + 0.148378i \(0.952595\pi\)
\(662\) 8.18528 + 30.5479i 0.318130 + 1.18728i
\(663\) −5.25755 + 1.40876i −0.204186 + 0.0547116i
\(664\) −40.9781 10.9800i −1.59026 0.426108i
\(665\) 0 0
\(666\) 36.2106 + 8.32730i 1.40313 + 0.322676i
\(667\) 3.11032 3.11032i 0.120432 0.120432i
\(668\) −35.8746 62.1366i −1.38803 2.40414i
\(669\) 7.60362 13.1699i 0.293973 0.509176i
\(670\) 0 0
\(671\) 21.8101 5.84400i 0.841969 0.225605i
\(672\) 3.12401 0.120511
\(673\) 7.42208 1.98874i 0.286100 0.0766603i −0.112915 0.993605i \(-0.536019\pi\)
0.399015 + 0.916944i \(0.369352\pi\)
\(674\) 43.9703 43.9703i 1.69367 1.69367i
\(675\) 0 0
\(676\) −35.1405 −1.35156
\(677\) −5.23876 5.23876i −0.201342 0.201342i 0.599233 0.800575i \(-0.295472\pi\)
−0.800575 + 0.599233i \(0.795472\pi\)
\(678\) 7.95760 29.6982i 0.305610 1.14055i
\(679\) −3.69427 13.7872i −0.141773 0.529105i
\(680\) 0 0
\(681\) 11.1918 + 2.99884i 0.428871 + 0.114916i
\(682\) 75.7765 + 20.3043i 2.90163 + 0.777490i
\(683\) 21.3135 12.3053i 0.815537 0.470851i −0.0333377 0.999444i \(-0.510614\pi\)
0.848875 + 0.528593i \(0.177280\pi\)
\(684\) −13.9226 + 3.73055i −0.532343 + 0.142641i
\(685\) 0 0
\(686\) −81.0153 21.7080i −3.09318 0.828815i
\(687\) 3.32770 12.4191i 0.126960 0.473820i
\(688\) 2.30632 1.33155i 0.0879276 0.0507650i
\(689\) 18.0687 18.0687i 0.688364 0.688364i
\(690\) 0 0
\(691\) 18.7787 10.8419i 0.714376 0.412445i −0.0983035 0.995156i \(-0.531342\pi\)
0.812679 + 0.582712i \(0.198008\pi\)
\(692\) −48.7086 + 48.7086i −1.85162 + 1.85162i
\(693\) 37.2571 37.2571i 1.41528 1.41528i
\(694\) 2.53935 + 4.39829i 0.0963925 + 0.166957i
\(695\) 0 0
\(696\) −5.63216 3.25173i −0.213486 0.123256i
\(697\) 3.66914i 0.138979i
\(698\) 7.54861 13.0746i 0.285719 0.494880i
\(699\) 11.7898 + 6.80687i 0.445933 + 0.257459i
\(700\) 0 0
\(701\) −7.42616 + 27.7148i −0.280482 + 1.04677i 0.671595 + 0.740918i \(0.265609\pi\)
−0.952078 + 0.305856i \(0.901057\pi\)
\(702\) −13.1617 13.1617i −0.496755 0.496755i
\(703\) 7.58012 4.74559i 0.285890 0.178983i
\(704\) 41.3585i 1.55876i
\(705\) 0 0
\(706\) −15.2865 8.82564i −0.575313 0.332157i
\(707\) −18.0998 + 4.84983i −0.680714 + 0.182397i
\(708\) −18.1024 10.4514i −0.680329 0.392788i
\(709\) −32.1630 + 32.1630i −1.20791 + 1.20791i −0.236205 + 0.971703i \(0.575904\pi\)
−0.971703 + 0.236205i \(0.924096\pi\)
\(710\) 0 0
\(711\) −9.55310 9.55310i −0.358269 0.358269i
\(712\) 2.73673 + 0.733305i 0.102563 + 0.0274818i
\(713\) 10.9611 + 10.9611i 0.410496 + 0.410496i
\(714\) −30.6749 −1.14798
\(715\) 0 0
\(716\) 26.0786 6.98774i 0.974604 0.261144i
\(717\) 17.2280i 0.643393i
\(718\) 14.3454 + 24.8470i 0.535366 + 0.927281i
\(719\) 8.70722 5.02711i 0.324724 0.187480i −0.328772 0.944409i \(-0.606635\pi\)
0.653496 + 0.756930i \(0.273301\pi\)
\(720\) 0 0
\(721\) −11.2368 41.9364i −0.418481 1.56179i
\(722\) 20.4461 35.4137i 0.760926 1.31796i
\(723\) −1.84458 3.19490i −0.0686005 0.118820i
\(724\) 15.7032 + 27.1987i 0.583603 + 1.01083i
\(725\) 0 0
\(726\) 11.3000 + 11.3000i 0.419383 + 0.419383i
\(727\) −22.2087 12.8222i −0.823676 0.475549i 0.0280066 0.999608i \(-0.491084\pi\)
−0.851682 + 0.524058i \(0.824417\pi\)
\(728\) 41.1574 + 11.0281i 1.52539 + 0.408728i
\(729\) 4.23536i 0.156865i
\(730\) 0 0
\(731\) 2.65961 1.53553i 0.0983692 0.0567935i
\(732\) 13.5488i 0.500779i
\(733\) −0.868126 3.23989i −0.0320650 0.119668i 0.948038 0.318156i \(-0.103064\pi\)
−0.980103 + 0.198488i \(0.936397\pi\)
\(734\) 4.26274 + 4.26274i 0.157341 + 0.157341i
\(735\) 0 0
\(736\) 1.05109 1.82055i 0.0387438 0.0671063i
\(737\) 8.38916 + 31.3088i 0.309019 + 1.15327i
\(738\) −4.95564 + 2.86114i −0.182420 + 0.105320i
\(739\) −16.3666 −0.602055 −0.301028 0.953615i \(-0.597330\pi\)
−0.301028 + 0.953615i \(0.597330\pi\)
\(740\) 0 0
\(741\) −2.04317 −0.0750578
\(742\) 124.715 72.0040i 4.57841 2.64335i
\(743\) 3.47128 + 12.9550i 0.127349 + 0.475273i 0.999913 0.0132280i \(-0.00421071\pi\)
−0.872564 + 0.488501i \(0.837544\pi\)
\(744\) 11.4594 19.8483i 0.420123 0.727674i
\(745\) 0 0
\(746\) −15.9905 15.9905i −0.585453 0.585453i
\(747\) −5.99282 22.3655i −0.219266 0.818312i
\(748\) 69.0381i 2.52428i
\(749\) 8.28247 4.78189i 0.302635 0.174726i
\(750\) 0 0
\(751\) 10.8836i 0.397150i 0.980086 + 0.198575i \(0.0636313\pi\)
−0.980086 + 0.198575i \(0.936369\pi\)
\(752\) 31.4000 + 8.41360i 1.14504 + 0.306812i
\(753\) 16.5495 + 9.55488i 0.603098 + 0.348199i
\(754\) 6.94759 + 6.94759i 0.253016 + 0.253016i
\(755\) 0 0
\(756\) −34.6628 60.0377i −1.26067 2.18355i
\(757\) −3.24560 5.62155i −0.117963 0.204319i 0.800997 0.598668i \(-0.204303\pi\)
−0.918960 + 0.394350i \(0.870970\pi\)
\(758\) 10.0083 17.3348i 0.363517 0.629630i
\(759\) 1.76843 + 6.59989i 0.0641901 + 0.239561i
\(760\) 0 0
\(761\) 8.40713 4.85386i 0.304758 0.175952i −0.339820 0.940490i \(-0.610366\pi\)
0.644578 + 0.764538i \(0.277033\pi\)
\(762\) −8.13022 14.0819i −0.294527 0.510135i
\(763\) 3.27943i 0.118723i
\(764\) −57.6039 + 15.4349i −2.08403 + 0.558415i
\(765\) 0 0
\(766\) 61.1846 2.21069
\(767\) 10.8720 + 10.8720i 0.392565 + 0.392565i
\(768\) −20.8075 5.57534i −0.750824 0.201183i
\(769\) 36.7369 + 36.7369i 1.32477 + 1.32477i 0.909867 + 0.414900i \(0.136184\pi\)
0.414900 + 0.909867i \(0.363816\pi\)
\(770\) 0 0
\(771\) −5.69197 + 5.69197i −0.204991 + 0.204991i
\(772\) −52.4108 30.2594i −1.88631 1.08906i
\(773\) 8.20308 2.19801i 0.295044 0.0790568i −0.108261 0.994123i \(-0.534528\pi\)
0.403305 + 0.915066i \(0.367861\pi\)
\(774\) 4.14784 + 2.39476i 0.149091 + 0.0860777i
\(775\) 0 0
\(776\) 14.2009i 0.509783i
\(777\) 14.3581 + 13.3662i 0.515093 + 0.479510i
\(778\) 5.67580 + 5.67580i 0.203487 + 0.203487i
\(779\) −0.356473 + 1.33037i −0.0127720 + 0.0476656i
\(780\) 0 0
\(781\) 54.5525 + 31.4959i 1.95204 + 1.12701i
\(782\) −10.3208 + 17.8761i −0.369070 + 0.639248i
\(783\) 7.78311i 0.278146i
\(784\) 42.5210 + 24.5495i 1.51861 + 0.876767i
\(785\) 0 0
\(786\) 5.24935 + 9.09215i 0.187238 + 0.324306i
\(787\) −23.7345 + 23.7345i −0.846042 + 0.846042i −0.989637 0.143595i \(-0.954134\pi\)
0.143595 + 0.989637i \(0.454134\pi\)
\(788\) −13.4768 + 13.4768i −0.480092 + 0.480092i
\(789\) 3.14055 1.81320i 0.111807 0.0645515i
\(790\) 0 0
\(791\) −59.5605 + 59.5605i −2.11773 + 2.11773i
\(792\) −45.3982 + 26.2106i −1.61315 + 0.931355i
\(793\) −2.57939 + 9.62641i −0.0915968 + 0.341844i
\(794\) 85.7223 + 22.9692i 3.04217 + 0.815147i
\(795\) 0 0
\(796\) 38.1550 10.2236i 1.35237 0.362366i
\(797\) −28.3561 + 16.3714i −1.00442 + 0.579904i −0.909554 0.415586i \(-0.863577\pi\)
−0.0948693 + 0.995490i \(0.530243\pi\)
\(798\) −11.1223 2.98020i −0.393723 0.105498i
\(799\) 36.2099 + 9.70242i 1.28101 + 0.343247i
\(800\) 0 0
\(801\) 0.400232 + 1.49369i 0.0141415 + 0.0527768i
\(802\) −3.17470 + 11.8481i −0.112103 + 0.418372i
\(803\) 30.4570 + 30.4570i 1.07480 + 1.07480i
\(804\) 19.4496 0.685933
\(805\) 0 0
\(806\) −24.4840 + 24.4840i −0.862413 + 0.862413i
\(807\) −10.4991 + 2.81321i −0.369584 + 0.0990298i
\(808\) 18.6429 0.655855
\(809\) −18.8260 + 5.04441i −0.661887 + 0.177352i −0.574097 0.818787i \(-0.694647\pi\)
−0.0877894 + 0.996139i \(0.527980\pi\)
\(810\) 0 0
\(811\) −11.6244 + 20.1341i −0.408190 + 0.707005i −0.994687 0.102946i \(-0.967173\pi\)
0.586497 + 0.809951i \(0.300506\pi\)
\(812\) 18.2973 + 31.6919i 0.642109 + 1.11217i
\(813\) −1.92089 + 1.92089i −0.0673687 + 0.0673687i
\(814\) 45.5187 48.8965i 1.59543 1.71382i
\(815\) 0 0
\(816\) 8.94613 + 2.39711i 0.313177 + 0.0839156i
\(817\) 1.11352 0.298366i 0.0389570 0.0104385i
\(818\) −5.46692 20.4028i −0.191146 0.713368i
\(819\) 6.01904 + 22.4634i 0.210322 + 0.784934i
\(820\) 0 0
\(821\) −12.4512 + 21.5661i −0.434550 + 0.752662i −0.997259 0.0739930i \(-0.976426\pi\)
0.562709 + 0.826655i \(0.309759\pi\)
\(822\) −15.3817 −0.536499
\(823\) 3.58759 13.3891i 0.125056 0.466714i −0.874786 0.484509i \(-0.838998\pi\)
0.999842 + 0.0177955i \(0.00566479\pi\)
\(824\) 43.1947i 1.50476i
\(825\) 0 0
\(826\) 43.3250 + 75.0411i 1.50747 + 2.61101i
\(827\) −1.78380 + 3.08963i −0.0620287 + 0.107437i −0.895372 0.445319i \(-0.853090\pi\)
0.833343 + 0.552756i \(0.186424\pi\)
\(828\) −21.2751 −0.739360
\(829\) 12.6086 47.0558i 0.437914 1.63432i −0.296082 0.955163i \(-0.595680\pi\)
0.733996 0.679154i \(-0.237653\pi\)
\(830\) 0 0
\(831\) 0.177349 0.661874i 0.00615215 0.0229601i
\(832\) 15.8089 + 9.12729i 0.548076 + 0.316432i
\(833\) 49.0345 + 28.3101i 1.69894 + 0.980885i
\(834\) −2.31879 + 8.65383i −0.0802930 + 0.299658i
\(835\) 0 0
\(836\) −6.70735 + 25.0322i −0.231978 + 0.865755i
\(837\) 27.4285 0.948067
\(838\) 24.7879 42.9339i 0.856285 1.48313i
\(839\) −18.9565 32.8336i −0.654451 1.13354i −0.982031 0.188719i \(-0.939566\pi\)
0.327580 0.944824i \(-0.393767\pi\)
\(840\) 0 0
\(841\) 24.8916i 0.858330i
\(842\) 22.3766 83.5104i 0.771147 2.87796i
\(843\) −12.2083 −0.420476
\(844\) −16.8470 + 29.1799i −0.579899 + 1.00441i
\(845\) 0 0
\(846\) 15.1316 + 56.4718i 0.520234 + 1.94154i
\(847\) −11.3312 42.2888i −0.389346 1.45306i
\(848\) −41.9989 + 11.2536i −1.44225 + 0.386450i
\(849\) −4.97915 1.33416i −0.170884 0.0457882i
\(850\) 0 0
\(851\) 12.6202 3.87016i 0.432614 0.132667i
\(852\) 26.7274 26.7274i 0.915665 0.915665i
\(853\) 4.00565 + 6.93798i 0.137151 + 0.237552i 0.926417 0.376499i \(-0.122872\pi\)
−0.789266 + 0.614051i \(0.789539\pi\)
\(854\) −28.0824 + 48.6402i −0.960961 + 1.66443i
\(855\) 0 0
\(856\) −9.19086 + 2.46268i −0.314137 + 0.0841728i
\(857\) −30.5365 −1.04311 −0.521554 0.853219i \(-0.674647\pi\)
−0.521554 + 0.853219i \(0.674647\pi\)
\(858\) −14.7423 + 3.95019i −0.503295 + 0.134857i
\(859\) −6.75070 + 6.75070i −0.230331 + 0.230331i −0.812831 0.582500i \(-0.802075\pi\)
0.582500 + 0.812831i \(0.302075\pi\)
\(860\) 0 0
\(861\) −3.02110 −0.102959
\(862\) −26.2307 26.2307i −0.893420 0.893420i
\(863\) 0.412406 1.53912i 0.0140385 0.0523923i −0.958551 0.284920i \(-0.908033\pi\)
0.972590 + 0.232528i \(0.0746996\pi\)
\(864\) −0.962723 3.59293i −0.0327525 0.122234i
\(865\) 0 0
\(866\) −33.3045 8.92393i −1.13173 0.303247i
\(867\) −1.11594 0.299016i −0.0378994 0.0101551i
\(868\) −111.685 + 64.4816i −3.79085 + 2.18865i
\(869\) −23.4629 + 6.28686i −0.795924 + 0.213267i
\(870\) 0 0
\(871\) −13.8189 3.70276i −0.468235 0.125463i
\(872\) 0.844457 3.15156i 0.0285969 0.106725i
\(873\) −6.71234 + 3.87537i −0.227178 + 0.131161i
\(874\) −5.47889 + 5.47889i −0.185326 + 0.185326i
\(875\) 0 0
\(876\) 22.3831 12.9229i 0.756254 0.436623i
\(877\) −3.33771 + 3.33771i −0.112707 + 0.112707i −0.761211 0.648504i \(-0.775395\pi\)
0.648504 + 0.761211i \(0.275395\pi\)
\(878\) −27.8791 + 27.8791i −0.940875 + 0.940875i
\(879\) −2.95862 5.12449i −0.0997919 0.172845i
\(880\) 0 0
\(881\) 26.9466 + 15.5576i 0.907854 + 0.524150i 0.879740 0.475455i \(-0.157717\pi\)
0.0281138 + 0.999605i \(0.491050\pi\)
\(882\) 88.3029i 2.97331i
\(883\) 4.05330 7.02051i 0.136404 0.236259i −0.789729 0.613456i \(-0.789779\pi\)
0.926133 + 0.377197i \(0.123112\pi\)
\(884\) −26.3892 15.2358i −0.887566 0.512436i
\(885\) 0 0
\(886\) 0.835584 3.11844i 0.0280720 0.104766i
\(887\) 24.9312 + 24.9312i 0.837107 + 0.837107i 0.988477 0.151370i \(-0.0483686\pi\)
−0.151370 + 0.988477i \(0.548369\pi\)
\(888\) −10.3564 16.5423i −0.347538 0.555122i
\(889\) 44.5471i 1.49406i
\(890\) 0 0
\(891\) −19.0827 11.0174i −0.639296 0.369098i
\(892\) 82.2339 22.0345i 2.75339 0.737770i
\(893\) 12.1865 + 7.03589i 0.407806 + 0.235447i
\(894\) 18.8350 18.8350i 0.629937 0.629937i
\(895\) 0 0
\(896\) 66.3989 + 66.3989i 2.21823 + 2.21823i
\(897\) −2.91302 0.780541i −0.0972629 0.0260615i
\(898\) −57.0405 57.0405i −1.90347 1.90347i
\(899\) −14.4786 −0.482887
\(900\) 0 0
\(901\) −48.4325 + 12.9774i −1.61352 + 0.432341i
\(902\) 10.2884i 0.342566i
\(903\) 1.26432 + 2.18987i 0.0420740 + 0.0728744i
\(904\) 72.5751 41.9012i 2.41381 1.39361i
\(905\) 0 0
\(906\) −3.80990 14.2187i −0.126575 0.472386i
\(907\) −4.95785 + 8.58725i −0.164623 + 0.285135i −0.936521 0.350611i \(-0.885974\pi\)
0.771899 + 0.635746i \(0.219307\pi\)
\(908\) 32.4327 + 56.1751i 1.07632 + 1.86424i
\(909\) 5.08758 + 8.81194i 0.168744 + 0.292274i
\(910\) 0 0
\(911\) −0.888702 0.888702i −0.0294440 0.0294440i 0.692232 0.721676i \(-0.256628\pi\)
−0.721676 + 0.692232i \(0.756628\pi\)
\(912\) 3.01084 + 1.73831i 0.0996989 + 0.0575612i
\(913\) −40.2122 10.7748i −1.33083 0.356594i
\(914\) 55.4847i 1.83527i
\(915\) 0 0
\(916\) 62.3354 35.9894i 2.05962 1.18912i
\(917\) 28.7623i 0.949814i
\(918\) 9.45305 + 35.2793i 0.311997 + 1.16439i
\(919\) −13.9691 13.9691i −0.460799 0.460799i 0.438118 0.898917i \(-0.355645\pi\)
−0.898917 + 0.438118i \(0.855645\pi\)
\(920\) 0 0
\(921\) −2.96495 + 5.13545i −0.0976985 + 0.169219i
\(922\) −19.5403 72.9254i −0.643526 2.40167i
\(923\) −24.0781 + 13.9015i −0.792539 + 0.457573i
\(924\) −56.8447 −1.87005
\(925\) 0 0
\(926\) −59.8907 −1.96813
\(927\) −20.4169 + 11.7877i −0.670578 + 0.387158i
\(928\) 0.508188 + 1.89659i 0.0166821 + 0.0622585i
\(929\) −16.4629 + 28.5147i −0.540132 + 0.935535i 0.458764 + 0.888558i \(0.348292\pi\)
−0.998896 + 0.0469774i \(0.985041\pi\)
\(930\) 0 0
\(931\) 15.0287 + 15.0287i 0.492546 + 0.492546i
\(932\) 19.7256 + 73.6169i 0.646133 + 2.41140i
\(933\) 13.3130i 0.435847i
\(934\) −57.5173 + 33.2076i −1.88202 + 1.08659i
\(935\) 0 0
\(936\) 23.1374i 0.756270i
\(937\) 54.6618 + 14.6466i 1.78572 + 0.478483i 0.991608 0.129284i \(-0.0412679\pi\)
0.794115 + 0.607767i \(0.207935\pi\)
\(938\) −69.8238 40.3128i −2.27983 1.31626i
\(939\) 3.17144 + 3.17144i 0.103496 + 0.103496i
\(940\) 0 0
\(941\) 19.8813 + 34.4355i 0.648113 + 1.12256i 0.983573 + 0.180510i \(0.0577748\pi\)
−0.335460 + 0.942054i \(0.608892\pi\)
\(942\) −6.71352 11.6282i −0.218738 0.378866i
\(943\) −1.01647 + 1.76058i −0.0331008 + 0.0573323i
\(944\) −6.77131 25.2709i −0.220387 0.822497i
\(945\) 0 0
\(946\) 7.45762 4.30566i 0.242468 0.139989i
\(947\) 28.2853 + 48.9916i 0.919150 + 1.59201i 0.800710 + 0.599053i \(0.204456\pi\)
0.118440 + 0.992961i \(0.462211\pi\)
\(948\) 14.5756i 0.473392i
\(949\) −18.3634 + 4.92045i −0.596100 + 0.159725i
\(950\) 0 0
\(951\) −13.9273 −0.451625
\(952\) −59.1207 59.1207i −1.91611 1.91611i
\(953\) 8.59989 + 2.30433i 0.278578 + 0.0746447i 0.395403 0.918508i \(-0.370605\pi\)
−0.116825 + 0.993153i \(0.537272\pi\)
\(954\) −55.2945 55.2945i −1.79023 1.79023i
\(955\) 0 0
\(956\) −68.1989 + 68.1989i −2.20571 + 2.20571i
\(957\) −5.52688 3.19095i −0.178659 0.103149i
\(958\) 50.4900 13.5288i 1.63126 0.437094i
\(959\) 36.4941 + 21.0699i 1.17846 + 0.680382i
\(960\) 0 0
\(961\) 20.0240i 0.645935i
\(962\) 8.64487 + 28.1900i 0.278722 + 0.908880i
\(963\) −3.67219 3.67219i −0.118335 0.118335i
\(964\) 5.34539 19.9493i 0.172163 0.642522i
\(965\) 0 0
\(966\) −14.7189 8.49794i −0.473572 0.273417i
\(967\) −14.9557 + 25.9040i −0.480943 + 0.833018i −0.999761 0.0218671i \(-0.993039\pi\)
0.518818 + 0.854885i \(0.326372\pi\)
\(968\) 43.5577i 1.40000i
\(969\) 3.47205 + 2.00459i 0.111538 + 0.0643967i
\(970\) 0 0
\(971\) −13.5655 23.4962i −0.435339 0.754029i 0.561984 0.827148i \(-0.310038\pi\)
−0.997323 + 0.0731189i \(0.976705\pi\)
\(972\) −41.0980 + 41.0980i −1.31822 + 1.31822i
\(973\) 17.3555 17.3555i 0.556392 0.556392i
\(974\) −33.7374 + 19.4783i −1.08102 + 0.624126i
\(975\) 0 0
\(976\) 11.9911 11.9911i 0.383825 0.383825i
\(977\) 14.5390 8.39410i 0.465144 0.268551i −0.249061 0.968488i \(-0.580122\pi\)
0.714205 + 0.699937i \(0.246789\pi\)
\(978\) −3.10272 + 11.5795i −0.0992142 + 0.370272i
\(979\) 2.68558 + 0.719599i 0.0858315 + 0.0229985i
\(980\) 0 0
\(981\) 1.72010 0.460898i 0.0549184 0.0147153i
\(982\) 62.8984 36.3144i 2.00717 1.15884i
\(983\) −1.66842 0.447052i −0.0532143 0.0142587i 0.232114 0.972689i \(-0.425436\pi\)
−0.285328 + 0.958430i \(0.592103\pi\)
\(984\) 2.90331 + 0.777939i 0.0925540 + 0.0247998i
\(985\) 0 0
\(986\) −4.98994 18.6227i −0.158912 0.593068i
\(987\) −7.98879 + 29.8146i −0.254286 + 0.949008i
\(988\) −8.08810 8.08810i −0.257317 0.257317i
\(989\) 1.70156 0.0541065
\(990\) 0 0
\(991\) −8.93323 + 8.93323i −0.283773 + 0.283773i −0.834612 0.550838i \(-0.814308\pi\)
0.550838 + 0.834612i \(0.314308\pi\)
\(992\) −6.68377 + 1.79091i −0.212210 + 0.0568614i
\(993\) 9.06661 0.287720
\(994\) −151.349 + 40.5537i −4.80049 + 1.28629i
\(995\) 0 0
\(996\) −12.4902 + 21.6337i −0.395769 + 0.685491i
\(997\) 13.0904 + 22.6733i 0.414577 + 0.718069i 0.995384 0.0959724i \(-0.0305961\pi\)
−0.580807 + 0.814042i \(0.697263\pi\)
\(998\) −51.2380 + 51.2380i −1.62191 + 1.62191i
\(999\) 10.9478 20.6323i 0.346373 0.652777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.16 68
5.2 odd 4 925.2.t.b.82.16 68
5.3 odd 4 185.2.p.a.82.2 68
5.4 even 2 185.2.u.a.8.2 yes 68
37.14 odd 12 925.2.t.b.643.16 68
185.14 odd 12 185.2.p.a.88.2 yes 68
185.88 even 12 185.2.u.a.162.2 yes 68
185.162 even 12 inner 925.2.y.b.532.16 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.2 68 5.3 odd 4
185.2.p.a.88.2 yes 68 185.14 odd 12
185.2.u.a.8.2 yes 68 5.4 even 2
185.2.u.a.162.2 yes 68 185.88 even 12
925.2.t.b.82.16 68 5.2 odd 4
925.2.t.b.643.16 68 37.14 odd 12
925.2.y.b.193.16 68 1.1 even 1 trivial
925.2.y.b.532.16 68 185.162 even 12 inner