Properties

Label 925.2.y.b.193.13
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.13
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.54509 - 0.892058i) q^{2} +(0.471934 + 1.76128i) q^{3} +(0.591534 - 1.02457i) q^{4} +(2.30034 + 2.30034i) q^{6} +(0.134169 + 0.500724i) q^{7} +1.45750i q^{8} +(-0.281310 + 0.162414i) q^{9} +5.59836i q^{11} +(2.08371 + 0.558329i) q^{12} +(-1.32347 - 0.764108i) q^{13} +(0.653977 + 0.653977i) q^{14} +(2.48324 + 4.30110i) q^{16} +(-3.63263 - 6.29189i) q^{17} +(-0.289766 + 0.501889i) q^{18} +(0.654716 + 2.44343i) q^{19} +(-0.818597 + 0.472617i) q^{21} +(4.99406 + 8.64996i) q^{22} +1.14851i q^{23} +(-2.56707 + 0.687844i) q^{24} -2.72651 q^{26} +(3.44922 + 3.44922i) q^{27} +(0.592390 + 0.158730i) q^{28} +(3.86835 + 3.86835i) q^{29} +(2.49059 - 2.49059i) q^{31} +(5.14920 + 2.97289i) q^{32} +(-9.86028 + 2.64205i) q^{33} +(-11.2255 - 6.48102i) q^{34} +0.384294i q^{36} +(1.49687 - 5.89571i) q^{37} +(3.19128 + 3.19128i) q^{38} +(0.721216 - 2.69162i) q^{39} +(-6.02783 - 3.48017i) q^{41} +(-0.843203 + 1.46047i) q^{42} +10.5642i q^{43} +(5.73589 + 3.31162i) q^{44} +(1.02454 + 1.77455i) q^{46} +(-1.35499 + 1.35499i) q^{47} +(-6.40352 + 6.40352i) q^{48} +(5.82945 - 3.36564i) q^{49} +(9.36743 - 9.36743i) q^{51} +(-1.56576 + 0.903991i) q^{52} +(2.14463 - 8.00388i) q^{53} +(8.40626 + 2.25245i) q^{54} +(-0.729806 + 0.195551i) q^{56} +(-3.99459 + 2.30628i) q^{57} +(9.42773 + 2.52615i) q^{58} +(3.01861 + 0.808835i) q^{59} +(-0.446001 - 1.66450i) q^{61} +(1.62643 - 6.06993i) q^{62} +(-0.119068 - 0.119068i) q^{63} +0.674985 q^{64} +(-12.8781 + 12.8781i) q^{66} +(4.42331 - 1.18522i) q^{67} -8.59528 q^{68} +(-2.02285 + 0.542020i) q^{69} +(2.78939 - 4.83137i) q^{71} +(-0.236719 - 0.410010i) q^{72} +(5.42800 - 5.42800i) q^{73} +(-2.94652 - 10.4447i) q^{74} +(2.89075 + 0.774573i) q^{76} +(-2.80323 + 0.751124i) q^{77} +(-1.28673 - 4.80215i) q^{78} +(-0.923868 - 3.44792i) q^{79} +(-4.93449 + 8.54678i) q^{81} -12.4181 q^{82} +(2.06428 - 7.70401i) q^{83} +1.11828i q^{84} +(9.42386 + 16.3226i) q^{86} +(-4.98764 + 8.63885i) q^{87} -8.15962 q^{88} +(-0.896627 + 3.34626i) q^{89} +(0.205039 - 0.765214i) q^{91} +(1.17672 + 0.679382i) q^{92} +(5.56202 + 3.21123i) q^{93} +(-0.884854 + 3.30232i) q^{94} +(-2.80601 + 10.4722i) q^{96} -13.3259 q^{97} +(6.00468 - 10.4004i) q^{98} +(-0.909254 - 1.57487i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54509 0.892058i 1.09254 0.630780i 0.158291 0.987393i \(-0.449402\pi\)
0.934252 + 0.356613i \(0.116068\pi\)
\(3\) 0.471934 + 1.76128i 0.272471 + 1.01688i 0.957517 + 0.288376i \(0.0931153\pi\)
−0.685046 + 0.728500i \(0.740218\pi\)
\(4\) 0.591534 1.02457i 0.295767 0.512283i
\(5\) 0 0
\(6\) 2.30034 + 2.30034i 0.939111 + 0.939111i
\(7\) 0.134169 + 0.500724i 0.0507110 + 0.189256i 0.986635 0.162946i \(-0.0520997\pi\)
−0.935924 + 0.352202i \(0.885433\pi\)
\(8\) 1.45750i 0.515305i
\(9\) −0.281310 + 0.162414i −0.0937700 + 0.0541381i
\(10\) 0 0
\(11\) 5.59836i 1.68797i 0.536368 + 0.843984i \(0.319796\pi\)
−0.536368 + 0.843984i \(0.680204\pi\)
\(12\) 2.08371 + 0.558329i 0.601516 + 0.161176i
\(13\) −1.32347 0.764108i −0.367066 0.211925i 0.305110 0.952317i \(-0.401307\pi\)
−0.672176 + 0.740392i \(0.734640\pi\)
\(14\) 0.653977 + 0.653977i 0.174783 + 0.174783i
\(15\) 0 0
\(16\) 2.48324 + 4.30110i 0.620811 + 1.07528i
\(17\) −3.63263 6.29189i −0.881041 1.52601i −0.850185 0.526484i \(-0.823510\pi\)
−0.0308564 0.999524i \(-0.509823\pi\)
\(18\) −0.289766 + 0.501889i −0.0682985 + 0.118296i
\(19\) 0.654716 + 2.44343i 0.150202 + 0.560562i 0.999469 + 0.0325976i \(0.0103780\pi\)
−0.849266 + 0.527965i \(0.822955\pi\)
\(20\) 0 0
\(21\) −0.818597 + 0.472617i −0.178632 + 0.103133i
\(22\) 4.99406 + 8.64996i 1.06474 + 1.84418i
\(23\) 1.14851i 0.239481i 0.992805 + 0.119740i \(0.0382062\pi\)
−0.992805 + 0.119740i \(0.961794\pi\)
\(24\) −2.56707 + 0.687844i −0.524001 + 0.140406i
\(25\) 0 0
\(26\) −2.72651 −0.534713
\(27\) 3.44922 + 3.44922i 0.663803 + 0.663803i
\(28\) 0.592390 + 0.158730i 0.111951 + 0.0299972i
\(29\) 3.86835 + 3.86835i 0.718334 + 0.718334i 0.968264 0.249930i \(-0.0804075\pi\)
−0.249930 + 0.968264i \(0.580408\pi\)
\(30\) 0 0
\(31\) 2.49059 2.49059i 0.447323 0.447323i −0.447141 0.894464i \(-0.647558\pi\)
0.894464 + 0.447141i \(0.147558\pi\)
\(32\) 5.14920 + 2.97289i 0.910258 + 0.525538i
\(33\) −9.86028 + 2.64205i −1.71645 + 0.459922i
\(34\) −11.2255 6.48102i −1.92515 1.11149i
\(35\) 0 0
\(36\) 0.384294i 0.0640490i
\(37\) 1.49687 5.89571i 0.246083 0.969249i
\(38\) 3.19128 + 3.19128i 0.517694 + 0.517694i
\(39\) 0.721216 2.69162i 0.115487 0.431003i
\(40\) 0 0
\(41\) −6.02783 3.48017i −0.941390 0.543512i −0.0509939 0.998699i \(-0.516239\pi\)
−0.890396 + 0.455187i \(0.849572\pi\)
\(42\) −0.843203 + 1.46047i −0.130109 + 0.225356i
\(43\) 10.5642i 1.61102i 0.592580 + 0.805512i \(0.298109\pi\)
−0.592580 + 0.805512i \(0.701891\pi\)
\(44\) 5.73589 + 3.31162i 0.864718 + 0.499245i
\(45\) 0 0
\(46\) 1.02454 + 1.77455i 0.151060 + 0.261643i
\(47\) −1.35499 + 1.35499i −0.197646 + 0.197646i −0.798990 0.601344i \(-0.794632\pi\)
0.601344 + 0.798990i \(0.294632\pi\)
\(48\) −6.40352 + 6.40352i −0.924269 + 0.924269i
\(49\) 5.82945 3.36564i 0.832779 0.480805i
\(50\) 0 0
\(51\) 9.36743 9.36743i 1.31170 1.31170i
\(52\) −1.56576 + 0.903991i −0.217132 + 0.125361i
\(53\) 2.14463 8.00388i 0.294588 1.09942i −0.646956 0.762528i \(-0.723958\pi\)
0.941544 0.336890i \(-0.109375\pi\)
\(54\) 8.40626 + 2.25245i 1.14395 + 0.306520i
\(55\) 0 0
\(56\) −0.729806 + 0.195551i −0.0975245 + 0.0261316i
\(57\) −3.99459 + 2.30628i −0.529096 + 0.305474i
\(58\) 9.42773 + 2.52615i 1.23792 + 0.331700i
\(59\) 3.01861 + 0.808835i 0.392990 + 0.105301i 0.449902 0.893078i \(-0.351459\pi\)
−0.0569123 + 0.998379i \(0.518126\pi\)
\(60\) 0 0
\(61\) −0.446001 1.66450i −0.0571045 0.213117i 0.931478 0.363798i \(-0.118520\pi\)
−0.988582 + 0.150681i \(0.951853\pi\)
\(62\) 1.62643 6.06993i 0.206557 0.770882i
\(63\) −0.119068 0.119068i −0.0150011 0.0150011i
\(64\) 0.674985 0.0843731
\(65\) 0 0
\(66\) −12.8781 + 12.8781i −1.58519 + 1.58519i
\(67\) 4.42331 1.18522i 0.540394 0.144798i 0.0217100 0.999764i \(-0.493089\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(68\) −8.59528 −1.04233
\(69\) −2.02285 + 0.542020i −0.243522 + 0.0652516i
\(70\) 0 0
\(71\) 2.78939 4.83137i 0.331040 0.573378i −0.651676 0.758497i \(-0.725934\pi\)
0.982716 + 0.185120i \(0.0592672\pi\)
\(72\) −0.236719 0.410010i −0.0278976 0.0483201i
\(73\) 5.42800 5.42800i 0.635300 0.635300i −0.314093 0.949392i \(-0.601700\pi\)
0.949392 + 0.314093i \(0.101700\pi\)
\(74\) −2.94652 10.4447i −0.342526 1.21417i
\(75\) 0 0
\(76\) 2.89075 + 0.774573i 0.331591 + 0.0888497i
\(77\) −2.80323 + 0.751124i −0.319458 + 0.0855985i
\(78\) −1.28673 4.80215i −0.145694 0.543737i
\(79\) −0.923868 3.44792i −0.103943 0.387922i 0.894280 0.447508i \(-0.147688\pi\)
−0.998223 + 0.0595866i \(0.981022\pi\)
\(80\) 0 0
\(81\) −4.93449 + 8.54678i −0.548276 + 0.949642i
\(82\) −12.4181 −1.37134
\(83\) 2.06428 7.70401i 0.226584 0.845625i −0.755179 0.655519i \(-0.772450\pi\)
0.981764 0.190106i \(-0.0608832\pi\)
\(84\) 1.11828i 0.122014i
\(85\) 0 0
\(86\) 9.42386 + 16.3226i 1.01620 + 1.76011i
\(87\) −4.98764 + 8.63885i −0.534731 + 0.926182i
\(88\) −8.15962 −0.869818
\(89\) −0.896627 + 3.34626i −0.0950423 + 0.354703i −0.997026 0.0770677i \(-0.975444\pi\)
0.901984 + 0.431770i \(0.142111\pi\)
\(90\) 0 0
\(91\) 0.205039 0.765214i 0.0214939 0.0802162i
\(92\) 1.17672 + 0.679382i 0.122682 + 0.0708305i
\(93\) 5.56202 + 3.21123i 0.576754 + 0.332989i
\(94\) −0.884854 + 3.30232i −0.0912657 + 0.340608i
\(95\) 0 0
\(96\) −2.80601 + 10.4722i −0.286388 + 1.06881i
\(97\) −13.3259 −1.35304 −0.676519 0.736425i \(-0.736513\pi\)
−0.676519 + 0.736425i \(0.736513\pi\)
\(98\) 6.00468 10.4004i 0.606565 1.05060i
\(99\) −0.909254 1.57487i −0.0913835 0.158281i
\(100\) 0 0
\(101\) 13.7961i 1.37276i −0.727242 0.686381i \(-0.759198\pi\)
0.727242 0.686381i \(-0.240802\pi\)
\(102\) 6.11723 22.8298i 0.605696 2.26049i
\(103\) 1.57697 0.155384 0.0776920 0.996977i \(-0.475245\pi\)
0.0776920 + 0.996977i \(0.475245\pi\)
\(104\) 1.11369 1.92897i 0.109206 0.189151i
\(105\) 0 0
\(106\) −3.82628 14.2799i −0.371641 1.38698i
\(107\) 1.09735 + 4.09537i 0.106085 + 0.395915i 0.998466 0.0553681i \(-0.0176332\pi\)
−0.892381 + 0.451283i \(0.850967\pi\)
\(108\) 5.57429 1.49363i 0.536386 0.143724i
\(109\) 16.6734 + 4.46764i 1.59703 + 0.427922i 0.944143 0.329536i \(-0.106892\pi\)
0.652883 + 0.757458i \(0.273559\pi\)
\(110\) 0 0
\(111\) 11.0904 0.145983i 1.05266 0.0138561i
\(112\) −1.82049 + 1.82049i −0.172020 + 0.172020i
\(113\) 4.21859 + 7.30681i 0.396852 + 0.687367i 0.993336 0.115258i \(-0.0367695\pi\)
−0.596484 + 0.802625i \(0.703436\pi\)
\(114\) −4.11466 + 7.12681i −0.385374 + 0.667487i
\(115\) 0 0
\(116\) 6.25164 1.67512i 0.580450 0.155531i
\(117\) 0.496408 0.0458930
\(118\) 5.38555 1.44305i 0.495780 0.132844i
\(119\) 2.66312 2.66312i 0.244128 0.244128i
\(120\) 0 0
\(121\) −20.3416 −1.84924
\(122\) −2.17394 2.17394i −0.196819 0.196819i
\(123\) 3.28482 12.2591i 0.296182 1.10537i
\(124\) −1.07851 4.02504i −0.0968527 0.361459i
\(125\) 0 0
\(126\) −0.290186 0.0777550i −0.0258518 0.00692696i
\(127\) −16.4315 4.40281i −1.45806 0.390686i −0.559241 0.829005i \(-0.688907\pi\)
−0.898819 + 0.438319i \(0.855574\pi\)
\(128\) −9.25548 + 5.34365i −0.818077 + 0.472317i
\(129\) −18.6065 + 4.98559i −1.63821 + 0.438957i
\(130\) 0 0
\(131\) −2.80001 0.750260i −0.244638 0.0655505i 0.134417 0.990925i \(-0.457084\pi\)
−0.379054 + 0.925374i \(0.623751\pi\)
\(132\) −3.12573 + 11.6654i −0.272060 + 1.01534i
\(133\) −1.13564 + 0.655664i −0.0984728 + 0.0568533i
\(134\) 5.77712 5.77712i 0.499068 0.499068i
\(135\) 0 0
\(136\) 9.17045 5.29456i 0.786359 0.454005i
\(137\) 14.2642 14.2642i 1.21868 1.21868i 0.250581 0.968096i \(-0.419378\pi\)
0.968096 0.250581i \(-0.0806216\pi\)
\(138\) −2.64197 + 2.64197i −0.224899 + 0.224899i
\(139\) 1.16560 + 2.01888i 0.0988651 + 0.171239i 0.911215 0.411931i \(-0.135145\pi\)
−0.812350 + 0.583170i \(0.801812\pi\)
\(140\) 0 0
\(141\) −3.02599 1.74706i −0.254834 0.147129i
\(142\) 9.95319i 0.835253i
\(143\) 4.27775 7.40928i 0.357723 0.619595i
\(144\) −1.39712 0.806629i −0.116427 0.0672191i
\(145\) 0 0
\(146\) 3.54466 13.2288i 0.293358 1.09483i
\(147\) 8.67894 + 8.67894i 0.715827 + 0.715827i
\(148\) −5.15510 5.02115i −0.423747 0.412736i
\(149\) 11.6362i 0.953273i −0.879101 0.476636i \(-0.841856\pi\)
0.879101 0.476636i \(-0.158144\pi\)
\(150\) 0 0
\(151\) 1.09708 + 0.633398i 0.0892790 + 0.0515452i 0.543975 0.839102i \(-0.316919\pi\)
−0.454696 + 0.890647i \(0.650252\pi\)
\(152\) −3.56131 + 0.954250i −0.288860 + 0.0773999i
\(153\) 2.04379 + 1.17998i 0.165230 + 0.0953958i
\(154\) −3.66120 + 3.66120i −0.295028 + 0.295028i
\(155\) 0 0
\(156\) −2.33112 2.33112i −0.186639 0.186639i
\(157\) 8.14942 + 2.18363i 0.650395 + 0.174273i 0.568907 0.822402i \(-0.307366\pi\)
0.0814873 + 0.996674i \(0.474033\pi\)
\(158\) −4.50320 4.50320i −0.358256 0.358256i
\(159\) 15.1092 1.19824
\(160\) 0 0
\(161\) −0.575086 + 0.154094i −0.0453232 + 0.0121443i
\(162\) 17.6074i 1.38337i
\(163\) −10.4583 18.1144i −0.819160 1.41883i −0.906302 0.422631i \(-0.861107\pi\)
0.0871421 0.996196i \(-0.472227\pi\)
\(164\) −7.13133 + 4.11728i −0.556864 + 0.321505i
\(165\) 0 0
\(166\) −3.68292 13.7448i −0.285850 1.06681i
\(167\) −8.29321 + 14.3643i −0.641748 + 1.11154i 0.343294 + 0.939228i \(0.388457\pi\)
−0.985042 + 0.172312i \(0.944876\pi\)
\(168\) −0.688840 1.19311i −0.0531452 0.0920501i
\(169\) −5.33228 9.23578i −0.410175 0.710444i
\(170\) 0 0
\(171\) −0.581027 0.581027i −0.0444322 0.0444322i
\(172\) 10.8237 + 6.24907i 0.825300 + 0.476487i
\(173\) −6.68355 1.79085i −0.508141 0.136156i −0.00436519 0.999990i \(-0.501389\pi\)
−0.503776 + 0.863835i \(0.668056\pi\)
\(174\) 17.7971i 1.34919i
\(175\) 0 0
\(176\) −24.0791 + 13.9021i −1.81503 + 1.04791i
\(177\) 5.69834i 0.428313i
\(178\) 1.59969 + 5.97011i 0.119902 + 0.447479i
\(179\) −4.64628 4.64628i −0.347279 0.347279i 0.511816 0.859095i \(-0.328973\pi\)
−0.859095 + 0.511816i \(0.828973\pi\)
\(180\) 0 0
\(181\) 7.11660 12.3263i 0.528973 0.916208i −0.470456 0.882423i \(-0.655911\pi\)
0.999429 0.0337848i \(-0.0107561\pi\)
\(182\) −0.365812 1.36523i −0.0271158 0.101198i
\(183\) 2.72116 1.57106i 0.201154 0.116136i
\(184\) −1.67396 −0.123406
\(185\) 0 0
\(186\) 11.4584 0.840172
\(187\) 35.2243 20.3367i 2.57585 1.48717i
\(188\) 0.586757 + 2.18981i 0.0427936 + 0.159708i
\(189\) −1.26433 + 2.18989i −0.0919666 + 0.159291i
\(190\) 0 0
\(191\) −10.2203 10.2203i −0.739518 0.739518i 0.232967 0.972485i \(-0.425157\pi\)
−0.972485 + 0.232967i \(0.925157\pi\)
\(192\) 0.318548 + 1.18884i 0.0229892 + 0.0857970i
\(193\) 11.2201i 0.807642i 0.914838 + 0.403821i \(0.132318\pi\)
−0.914838 + 0.403821i \(0.867682\pi\)
\(194\) −20.5897 + 11.8875i −1.47825 + 0.853470i
\(195\) 0 0
\(196\) 7.96355i 0.568825i
\(197\) 3.72926 + 0.999253i 0.265699 + 0.0711938i 0.389209 0.921149i \(-0.372748\pi\)
−0.123510 + 0.992343i \(0.539415\pi\)
\(198\) −2.80976 1.62221i −0.199681 0.115286i
\(199\) −3.32935 3.32935i −0.236011 0.236011i 0.579185 0.815196i \(-0.303371\pi\)
−0.815196 + 0.579185i \(0.803371\pi\)
\(200\) 0 0
\(201\) 4.17502 + 7.23134i 0.294483 + 0.510060i
\(202\) −12.3069 21.3162i −0.865911 1.49980i
\(203\) −1.41796 + 2.45599i −0.0995215 + 0.172376i
\(204\) −4.05640 15.1387i −0.284005 1.05992i
\(205\) 0 0
\(206\) 2.43657 1.40675i 0.169764 0.0980131i
\(207\) −0.186534 0.323087i −0.0129650 0.0224561i
\(208\) 7.58986i 0.526262i
\(209\) −13.6792 + 3.66534i −0.946211 + 0.253537i
\(210\) 0 0
\(211\) 14.1666 0.975272 0.487636 0.873047i \(-0.337859\pi\)
0.487636 + 0.873047i \(0.337859\pi\)
\(212\) −6.93189 6.93189i −0.476084 0.476084i
\(213\) 9.82580 + 2.63281i 0.673253 + 0.180397i
\(214\) 5.34882 + 5.34882i 0.365637 + 0.365637i
\(215\) 0 0
\(216\) −5.02725 + 5.02725i −0.342061 + 0.342061i
\(217\) 1.58126 + 0.912939i 0.107343 + 0.0619743i
\(218\) 29.7473 7.97078i 2.01474 0.539849i
\(219\) 12.1219 + 6.99858i 0.819122 + 0.472920i
\(220\) 0 0
\(221\) 11.1029i 0.746860i
\(222\) 17.0055 10.1188i 1.14133 0.679133i
\(223\) 8.90135 + 8.90135i 0.596079 + 0.596079i 0.939267 0.343188i \(-0.111507\pi\)
−0.343188 + 0.939267i \(0.611507\pi\)
\(224\) −0.797737 + 2.97719i −0.0533010 + 0.198922i
\(225\) 0 0
\(226\) 13.0362 + 7.52645i 0.867155 + 0.500652i
\(227\) −6.75561 + 11.7011i −0.448386 + 0.776627i −0.998281 0.0586067i \(-0.981334\pi\)
0.549895 + 0.835233i \(0.314668\pi\)
\(228\) 5.45696i 0.361396i
\(229\) 17.7518 + 10.2490i 1.17307 + 0.677273i 0.954402 0.298526i \(-0.0964948\pi\)
0.218670 + 0.975799i \(0.429828\pi\)
\(230\) 0 0
\(231\) −2.64588 4.58280i −0.174086 0.301526i
\(232\) −5.63812 + 5.63812i −0.370161 + 0.370161i
\(233\) −2.52261 + 2.52261i −0.165262 + 0.165262i −0.784893 0.619631i \(-0.787282\pi\)
0.619631 + 0.784893i \(0.287282\pi\)
\(234\) 0.766995 0.442825i 0.0501400 0.0289484i
\(235\) 0 0
\(236\) 2.61432 2.61432i 0.170177 0.170177i
\(237\) 5.63675 3.25438i 0.366146 0.211395i
\(238\) 1.73910 6.49041i 0.112729 0.420711i
\(239\) −19.2631 5.16154i −1.24603 0.333872i −0.425227 0.905087i \(-0.639806\pi\)
−0.820801 + 0.571214i \(0.806473\pi\)
\(240\) 0 0
\(241\) 24.3058 6.51271i 1.56567 0.419521i 0.631218 0.775605i \(-0.282555\pi\)
0.934454 + 0.356085i \(0.115889\pi\)
\(242\) −31.4296 + 18.1459i −2.02037 + 1.16646i
\(243\) −3.24685 0.869990i −0.208285 0.0558099i
\(244\) −1.96921 0.527649i −0.126066 0.0337792i
\(245\) 0 0
\(246\) −5.86050 21.8717i −0.373652 1.39449i
\(247\) 1.00055 3.73409i 0.0636633 0.237595i
\(248\) 3.63004 + 3.63004i 0.230508 + 0.230508i
\(249\) 14.5431 0.921633
\(250\) 0 0
\(251\) −10.4158 + 10.4158i −0.657439 + 0.657439i −0.954773 0.297334i \(-0.903902\pi\)
0.297334 + 0.954773i \(0.403902\pi\)
\(252\) −0.192425 + 0.0515602i −0.0121217 + 0.00324799i
\(253\) −6.42977 −0.404236
\(254\) −29.3157 + 7.85512i −1.83943 + 0.492874i
\(255\) 0 0
\(256\) −10.2087 + 17.6820i −0.638043 + 1.10512i
\(257\) 4.10172 + 7.10439i 0.255858 + 0.443160i 0.965128 0.261777i \(-0.0843086\pi\)
−0.709270 + 0.704937i \(0.750975\pi\)
\(258\) −24.3013 + 24.3013i −1.51293 + 1.51293i
\(259\) 3.15296 0.0415024i 0.195915 0.00257883i
\(260\) 0 0
\(261\) −1.71648 0.459929i −0.106247 0.0284689i
\(262\) −4.99554 + 1.33855i −0.308625 + 0.0826959i
\(263\) 7.65884 + 28.5832i 0.472264 + 1.76251i 0.631605 + 0.775290i \(0.282396\pi\)
−0.159341 + 0.987224i \(0.550937\pi\)
\(264\) −3.85080 14.3714i −0.237000 0.884497i
\(265\) 0 0
\(266\) −1.16978 + 2.02612i −0.0717238 + 0.124229i
\(267\) −6.31685 −0.386585
\(268\) 1.40220 5.23308i 0.0856529 0.319661i
\(269\) 7.39825i 0.451079i −0.974234 0.225540i \(-0.927586\pi\)
0.974234 0.225540i \(-0.0724145\pi\)
\(270\) 0 0
\(271\) −8.75582 15.1655i −0.531878 0.921240i −0.999307 0.0372094i \(-0.988153\pi\)
0.467429 0.884030i \(-0.345180\pi\)
\(272\) 18.0414 31.2486i 1.09392 1.89472i
\(273\) 1.44452 0.0874264
\(274\) 9.31500 34.7641i 0.562740 2.10017i
\(275\) 0 0
\(276\) −0.641247 + 2.39316i −0.0385985 + 0.144052i
\(277\) 0.288374 + 0.166493i 0.0173267 + 0.0100036i 0.508638 0.860980i \(-0.330149\pi\)
−0.491312 + 0.870984i \(0.663482\pi\)
\(278\) 3.60192 + 2.07957i 0.216029 + 0.124724i
\(279\) −0.296120 + 1.10513i −0.0177282 + 0.0661627i
\(280\) 0 0
\(281\) −8.01899 + 29.9273i −0.478373 + 1.78531i 0.129836 + 0.991536i \(0.458555\pi\)
−0.608209 + 0.793777i \(0.708112\pi\)
\(282\) −6.23390 −0.371224
\(283\) −7.97950 + 13.8209i −0.474332 + 0.821568i −0.999568 0.0293891i \(-0.990644\pi\)
0.525236 + 0.850957i \(0.323977\pi\)
\(284\) −3.30004 5.71583i −0.195821 0.339172i
\(285\) 0 0
\(286\) 15.2640i 0.902579i
\(287\) 0.933859 3.48521i 0.0551240 0.205726i
\(288\) −1.93136 −0.113806
\(289\) −17.8919 + 30.9898i −1.05247 + 1.82293i
\(290\) 0 0
\(291\) −6.28893 23.4706i −0.368664 1.37587i
\(292\) −2.35050 8.77220i −0.137553 0.513354i
\(293\) −29.4468 + 7.89026i −1.72030 + 0.460954i −0.977913 0.209015i \(-0.932974\pi\)
−0.742390 + 0.669968i \(0.766308\pi\)
\(294\) 21.1519 + 5.66762i 1.23360 + 0.330543i
\(295\) 0 0
\(296\) 8.59301 + 2.18169i 0.499458 + 0.126808i
\(297\) −19.3100 + 19.3100i −1.12048 + 1.12048i
\(298\) −10.3801 17.9789i −0.601305 1.04149i
\(299\) 0.877585 1.52002i 0.0507521 0.0879052i
\(300\) 0 0
\(301\) −5.28974 + 1.41738i −0.304896 + 0.0816965i
\(302\) 2.26011 0.130055
\(303\) 24.2988 6.51084i 1.39593 0.374038i
\(304\) −8.88364 + 8.88364i −0.509512 + 0.509512i
\(305\) 0 0
\(306\) 4.21045 0.240695
\(307\) −16.2385 16.2385i −0.926780 0.926780i 0.0707164 0.997496i \(-0.477471\pi\)
−0.997496 + 0.0707164i \(0.977471\pi\)
\(308\) −0.888630 + 3.31641i −0.0506344 + 0.188970i
\(309\) 0.744227 + 2.77749i 0.0423376 + 0.158006i
\(310\) 0 0
\(311\) 19.8748 + 5.32544i 1.12700 + 0.301978i 0.773712 0.633537i \(-0.218398\pi\)
0.353286 + 0.935515i \(0.385064\pi\)
\(312\) 3.92304 + 1.05117i 0.222098 + 0.0595110i
\(313\) 1.96207 1.13280i 0.110903 0.0640299i −0.443522 0.896263i \(-0.646271\pi\)
0.554426 + 0.832233i \(0.312938\pi\)
\(314\) 14.5395 3.89585i 0.820512 0.219855i
\(315\) 0 0
\(316\) −4.07912 1.09300i −0.229469 0.0614859i
\(317\) −0.786799 + 2.93637i −0.0441910 + 0.164923i −0.984495 0.175413i \(-0.943874\pi\)
0.940304 + 0.340336i \(0.110541\pi\)
\(318\) 23.3451 13.4783i 1.30913 0.755825i
\(319\) −21.6564 + 21.6564i −1.21253 + 1.21253i
\(320\) 0 0
\(321\) −6.69522 + 3.86549i −0.373691 + 0.215751i
\(322\) −0.751099 + 0.751099i −0.0418571 + 0.0418571i
\(323\) 12.9955 12.9955i 0.723088 0.723088i
\(324\) 5.83783 + 10.1114i 0.324324 + 0.561745i
\(325\) 0 0
\(326\) −32.3181 18.6589i −1.78993 1.03342i
\(327\) 31.4750i 1.74057i
\(328\) 5.07236 8.78558i 0.280074 0.485103i
\(329\) −0.860276 0.496681i −0.0474285 0.0273829i
\(330\) 0 0
\(331\) −8.80720 + 32.8689i −0.484088 + 1.80664i 0.100047 + 0.994983i \(0.468101\pi\)
−0.584135 + 0.811657i \(0.698566\pi\)
\(332\) −6.67217 6.67217i −0.366183 0.366183i
\(333\) 0.536465 + 1.90163i 0.0293981 + 0.104209i
\(334\) 29.5921i 1.61921i
\(335\) 0 0
\(336\) −4.06555 2.34725i −0.221794 0.128053i
\(337\) 13.5915 3.64184i 0.740377 0.198383i 0.131131 0.991365i \(-0.458139\pi\)
0.609246 + 0.792982i \(0.291472\pi\)
\(338\) −16.4777 9.51340i −0.896268 0.517461i
\(339\) −10.8784 + 10.8784i −0.590836 + 0.590836i
\(340\) 0 0
\(341\) 13.9432 + 13.9432i 0.755067 + 0.755067i
\(342\) −1.41605 0.379429i −0.0765711 0.0205172i
\(343\) 5.03327 + 5.03327i 0.271771 + 0.271771i
\(344\) −15.3973 −0.830168
\(345\) 0 0
\(346\) −11.9242 + 3.19509i −0.641050 + 0.171769i
\(347\) 1.28181i 0.0688112i 0.999408 + 0.0344056i \(0.0109538\pi\)
−0.999408 + 0.0344056i \(0.989046\pi\)
\(348\) 5.90072 + 10.2203i 0.316312 + 0.547868i
\(349\) 12.5495 7.24548i 0.671761 0.387842i −0.124982 0.992159i \(-0.539887\pi\)
0.796744 + 0.604317i \(0.206554\pi\)
\(350\) 0 0
\(351\) −1.92938 7.20053i −0.102983 0.384336i
\(352\) −16.6433 + 28.8271i −0.887091 + 1.53649i
\(353\) −1.79288 3.10536i −0.0954254 0.165282i 0.814361 0.580359i \(-0.197088\pi\)
−0.909786 + 0.415077i \(0.863754\pi\)
\(354\) 5.08325 + 8.80444i 0.270171 + 0.467951i
\(355\) 0 0
\(356\) 2.89808 + 2.89808i 0.153598 + 0.153598i
\(357\) 5.94731 + 3.43368i 0.314765 + 0.181730i
\(358\) −11.3237 3.03416i −0.598474 0.160361i
\(359\) 8.45187i 0.446073i −0.974810 0.223036i \(-0.928403\pi\)
0.974810 0.223036i \(-0.0715969\pi\)
\(360\) 0 0
\(361\) 10.9128 6.30049i 0.574356 0.331605i
\(362\) 25.3937i 1.33466i
\(363\) −9.59990 35.8273i −0.503864 1.88045i
\(364\) −0.662726 0.662726i −0.0347363 0.0347363i
\(365\) 0 0
\(366\) 2.80296 4.85487i 0.146513 0.253768i
\(367\) 0.171428 + 0.639778i 0.00894846 + 0.0333961i 0.970256 0.242082i \(-0.0778304\pi\)
−0.961307 + 0.275478i \(0.911164\pi\)
\(368\) −4.93986 + 2.85203i −0.257508 + 0.148672i
\(369\) 2.26092 0.117699
\(370\) 0 0
\(371\) 4.29548 0.223010
\(372\) 6.58024 3.79910i 0.341170 0.196974i
\(373\) 3.46797 + 12.9426i 0.179565 + 0.670144i 0.995729 + 0.0923244i \(0.0294297\pi\)
−0.816164 + 0.577820i \(0.803904\pi\)
\(374\) 36.2831 62.8442i 1.87615 3.24959i
\(375\) 0 0
\(376\) −1.97491 1.97491i −0.101848 0.101848i
\(377\) −2.16382 8.07549i −0.111442 0.415909i
\(378\) 4.51143i 0.232043i
\(379\) −13.4140 + 7.74459i −0.689032 + 0.397813i −0.803249 0.595643i \(-0.796897\pi\)
0.114217 + 0.993456i \(0.463564\pi\)
\(380\) 0 0
\(381\) 31.0183i 1.58912i
\(382\) −24.9085 6.67420i −1.27443 0.341482i
\(383\) −8.66601 5.00333i −0.442813 0.255658i 0.261977 0.965074i \(-0.415625\pi\)
−0.704790 + 0.709416i \(0.748959\pi\)
\(384\) −13.7796 13.7796i −0.703190 0.703190i
\(385\) 0 0
\(386\) 10.0090 + 17.3361i 0.509444 + 0.882384i
\(387\) −1.71578 2.97181i −0.0872178 0.151066i
\(388\) −7.88271 + 13.6533i −0.400184 + 0.693139i
\(389\) 7.52118 + 28.0694i 0.381339 + 1.42318i 0.843858 + 0.536567i \(0.180279\pi\)
−0.462519 + 0.886609i \(0.653054\pi\)
\(390\) 0 0
\(391\) 7.22630 4.17211i 0.365450 0.210992i
\(392\) 4.90542 + 8.49644i 0.247761 + 0.429135i
\(393\) 5.28567i 0.266627i
\(394\) 6.65344 1.78278i 0.335195 0.0898153i
\(395\) 0 0
\(396\) −2.15142 −0.108113
\(397\) −4.87014 4.87014i −0.244425 0.244425i 0.574253 0.818678i \(-0.305293\pi\)
−0.818678 + 0.574253i \(0.805293\pi\)
\(398\) −8.11411 2.17417i −0.406724 0.108981i
\(399\) −1.69076 1.69076i −0.0846437 0.0846437i
\(400\) 0 0
\(401\) −12.2227 + 12.2227i −0.610373 + 0.610373i −0.943043 0.332670i \(-0.892050\pi\)
0.332670 + 0.943043i \(0.392050\pi\)
\(402\) 12.9016 + 7.44872i 0.643471 + 0.371508i
\(403\) −5.19931 + 1.39315i −0.258996 + 0.0693977i
\(404\) −14.1350 8.16085i −0.703243 0.406018i
\(405\) 0 0
\(406\) 5.05962i 0.251105i
\(407\) 33.0063 + 8.37999i 1.63606 + 0.415381i
\(408\) 13.6530 + 13.6530i 0.675926 + 0.675926i
\(409\) 5.14727 19.2099i 0.254516 0.949867i −0.713843 0.700306i \(-0.753047\pi\)
0.968359 0.249561i \(-0.0802863\pi\)
\(410\) 0 0
\(411\) 31.8551 + 18.3916i 1.57130 + 0.907188i
\(412\) 0.932834 1.61572i 0.0459574 0.0796006i
\(413\) 1.62001i 0.0797156i
\(414\) −0.576425 0.332799i −0.0283297 0.0163562i
\(415\) 0 0
\(416\) −4.54322 7.86908i −0.222750 0.385814i
\(417\) −3.00573 + 3.00573i −0.147191 + 0.147191i
\(418\) −17.8659 + 17.8659i −0.873851 + 0.873851i
\(419\) 25.2333 14.5684i 1.23273 0.711715i 0.265129 0.964213i \(-0.414585\pi\)
0.967597 + 0.252498i \(0.0812521\pi\)
\(420\) 0 0
\(421\) −10.7843 + 10.7843i −0.525594 + 0.525594i −0.919256 0.393661i \(-0.871208\pi\)
0.393661 + 0.919256i \(0.371208\pi\)
\(422\) 21.8887 12.6375i 1.06553 0.615182i
\(423\) 0.161103 0.601244i 0.00783309 0.0292335i
\(424\) 11.6657 + 3.12581i 0.566535 + 0.151803i
\(425\) 0 0
\(426\) 17.5304 4.69724i 0.849348 0.227582i
\(427\) 0.773614 0.446646i 0.0374378 0.0216147i
\(428\) 4.84510 + 1.29824i 0.234197 + 0.0627529i
\(429\) 15.0686 + 4.03763i 0.727520 + 0.194938i
\(430\) 0 0
\(431\) 2.59309 + 9.67755i 0.124905 + 0.466151i 0.999836 0.0180956i \(-0.00576032\pi\)
−0.874931 + 0.484247i \(0.839094\pi\)
\(432\) −6.27020 + 23.4007i −0.301675 + 1.12587i
\(433\) −3.97942 3.97942i −0.191239 0.191239i 0.604992 0.796231i \(-0.293176\pi\)
−0.796231 + 0.604992i \(0.793176\pi\)
\(434\) 3.25758 0.156369
\(435\) 0 0
\(436\) 14.4403 14.4403i 0.691565 0.691565i
\(437\) −2.80631 + 0.751948i −0.134244 + 0.0359705i
\(438\) 24.9725 1.19323
\(439\) 25.0684 6.71707i 1.19645 0.320588i 0.395018 0.918673i \(-0.370738\pi\)
0.801433 + 0.598085i \(0.204072\pi\)
\(440\) 0 0
\(441\) −1.09326 + 1.89357i −0.0520598 + 0.0901702i
\(442\) 9.90440 + 17.1549i 0.471104 + 0.815977i
\(443\) 13.4522 13.4522i 0.639135 0.639135i −0.311207 0.950342i \(-0.600733\pi\)
0.950342 + 0.311207i \(0.100733\pi\)
\(444\) 6.41079 11.4492i 0.304242 0.543356i
\(445\) 0 0
\(446\) 21.6939 + 5.81287i 1.02724 + 0.275247i
\(447\) 20.4946 5.49150i 0.969360 0.259739i
\(448\) 0.0905618 + 0.337981i 0.00427864 + 0.0159681i
\(449\) −7.64918 28.5471i −0.360987 1.34722i −0.872780 0.488114i \(-0.837685\pi\)
0.511793 0.859109i \(-0.328982\pi\)
\(450\) 0 0
\(451\) 19.4833 33.7460i 0.917430 1.58904i
\(452\) 9.98175 0.469502
\(453\) −0.597844 + 2.23118i −0.0280892 + 0.104830i
\(454\) 24.1056i 1.13133i
\(455\) 0 0
\(456\) −3.36140 5.82212i −0.157412 0.272646i
\(457\) −0.940769 + 1.62946i −0.0440073 + 0.0762229i −0.887190 0.461404i \(-0.847346\pi\)
0.843183 + 0.537627i \(0.180679\pi\)
\(458\) 36.5708 1.70884
\(459\) 9.17240 34.2319i 0.428131 1.59781i
\(460\) 0 0
\(461\) −3.29629 + 12.3019i −0.153523 + 0.572957i 0.845704 + 0.533653i \(0.179181\pi\)
−0.999227 + 0.0393048i \(0.987486\pi\)
\(462\) −8.17624 4.72055i −0.380393 0.219620i
\(463\) 27.2476 + 15.7314i 1.26630 + 0.731100i 0.974286 0.225313i \(-0.0723405\pi\)
0.292016 + 0.956413i \(0.405674\pi\)
\(464\) −7.03212 + 26.2442i −0.326458 + 1.21836i
\(465\) 0 0
\(466\) −1.64734 + 6.14797i −0.0763117 + 0.284799i
\(467\) 0.00854231 0.000395291 0.000197645 1.00000i \(-0.499937\pi\)
0.000197645 1.00000i \(0.499937\pi\)
\(468\) 0.293642 0.508603i 0.0135736 0.0235102i
\(469\) 1.18694 + 2.05584i 0.0548078 + 0.0949298i
\(470\) 0 0
\(471\) 15.3839i 0.708855i
\(472\) −1.17888 + 4.39963i −0.0542623 + 0.202510i
\(473\) −59.1421 −2.71936
\(474\) 5.80619 10.0566i 0.266687 0.461916i
\(475\) 0 0
\(476\) −1.15322 4.30386i −0.0528576 0.197267i
\(477\) 0.696639 + 2.59989i 0.0318969 + 0.119041i
\(478\) −34.3676 + 9.20878i −1.57194 + 0.421200i
\(479\) 29.4942 + 7.90296i 1.34763 + 0.361095i 0.859258 0.511543i \(-0.170926\pi\)
0.488368 + 0.872638i \(0.337592\pi\)
\(480\) 0 0
\(481\) −6.48602 + 6.65905i −0.295737 + 0.303626i
\(482\) 31.7449 31.7449i 1.44594 1.44594i
\(483\) −0.542805 0.940166i −0.0246985 0.0427790i
\(484\) −12.0328 + 20.8413i −0.546943 + 0.947334i
\(485\) 0 0
\(486\) −5.79275 + 1.55216i −0.262764 + 0.0704075i
\(487\) 8.10762 0.367391 0.183696 0.982983i \(-0.441194\pi\)
0.183696 + 0.982983i \(0.441194\pi\)
\(488\) 2.42601 0.650047i 0.109820 0.0294262i
\(489\) 26.9688 26.9688i 1.21957 1.21957i
\(490\) 0 0
\(491\) −39.0457 −1.76211 −0.881055 0.473015i \(-0.843166\pi\)
−0.881055 + 0.473015i \(0.843166\pi\)
\(492\) −10.6172 10.6172i −0.478660 0.478660i
\(493\) 10.2870 38.3915i 0.463302 1.72907i
\(494\) −1.78509 6.66205i −0.0803151 0.299740i
\(495\) 0 0
\(496\) 16.8970 + 4.52754i 0.758698 + 0.203293i
\(497\) 2.79343 + 0.748497i 0.125302 + 0.0335747i
\(498\) 22.4704 12.9733i 1.00692 0.581347i
\(499\) −20.2333 + 5.42151i −0.905769 + 0.242700i −0.681492 0.731825i \(-0.738669\pi\)
−0.224277 + 0.974525i \(0.572002\pi\)
\(500\) 0 0
\(501\) −29.2133 7.82769i −1.30516 0.349715i
\(502\) −6.80184 + 25.3848i −0.303581 + 1.13298i
\(503\) −15.8054 + 9.12523i −0.704726 + 0.406874i −0.809105 0.587664i \(-0.800048\pi\)
0.104379 + 0.994538i \(0.466715\pi\)
\(504\) 0.173541 0.173541i 0.00773015 0.00773015i
\(505\) 0 0
\(506\) −9.93457 + 5.73573i −0.441645 + 0.254984i
\(507\) 13.7503 13.7503i 0.610673 0.610673i
\(508\) −14.2308 + 14.2308i −0.631388 + 0.631388i
\(509\) −2.01917 3.49730i −0.0894981 0.155015i 0.817801 0.575501i \(-0.195193\pi\)
−0.907299 + 0.420486i \(0.861860\pi\)
\(510\) 0 0
\(511\) 3.44620 + 1.98966i 0.152451 + 0.0880176i
\(512\) 15.0523i 0.665224i
\(513\) −6.16969 + 10.6862i −0.272398 + 0.471808i
\(514\) 12.6750 + 7.31794i 0.559072 + 0.322781i
\(515\) 0 0
\(516\) −5.89829 + 22.0127i −0.259658 + 0.969057i
\(517\) −7.58575 7.58575i −0.333621 0.333621i
\(518\) 4.83458 2.87674i 0.212419 0.126397i
\(519\) 12.6168i 0.553814i
\(520\) 0 0
\(521\) −24.7277 14.2766i −1.08334 0.625468i −0.151546 0.988450i \(-0.548425\pi\)
−0.931796 + 0.362983i \(0.881758\pi\)
\(522\) −3.06240 + 0.820567i −0.134038 + 0.0359152i
\(523\) −11.7475 6.78240i −0.513681 0.296574i 0.220665 0.975350i \(-0.429177\pi\)
−0.734345 + 0.678776i \(0.762511\pi\)
\(524\) −2.42499 + 2.42499i −0.105936 + 0.105936i
\(525\) 0 0
\(526\) 37.3314 + 37.3314i 1.62773 + 1.62773i
\(527\) −24.7179 6.62314i −1.07673 0.288508i
\(528\) −35.8492 35.8492i −1.56014 1.56014i
\(529\) 21.6809 0.942649
\(530\) 0 0
\(531\) −0.980532 + 0.262733i −0.0425515 + 0.0114016i
\(532\) 1.55139i 0.0672613i
\(533\) 5.31845 + 9.21183i 0.230368 + 0.399009i
\(534\) −9.76009 + 5.63499i −0.422360 + 0.243850i
\(535\) 0 0
\(536\) 1.72746 + 6.44699i 0.0746151 + 0.278467i
\(537\) 5.99066 10.3761i 0.258516 0.447763i
\(538\) −6.59966 11.4310i −0.284532 0.492823i
\(539\) 18.8420 + 32.6354i 0.811584 + 1.40571i
\(540\) 0 0
\(541\) 17.7354 + 17.7354i 0.762506 + 0.762506i 0.976775 0.214269i \(-0.0687368\pi\)
−0.214269 + 0.976775i \(0.568737\pi\)
\(542\) −27.0570 15.6214i −1.16220 0.670996i
\(543\) 25.0687 + 6.71713i 1.07580 + 0.288260i
\(544\) 43.1976i 1.85208i
\(545\) 0 0
\(546\) 2.23191 1.28860i 0.0955171 0.0551468i
\(547\) 5.95549i 0.254638i −0.991862 0.127319i \(-0.959363\pi\)
0.991862 0.127319i \(-0.0406372\pi\)
\(548\) −6.17688 23.0524i −0.263863 0.984752i
\(549\) 0.395803 + 0.395803i 0.0168924 + 0.0168924i
\(550\) 0 0
\(551\) −6.91938 + 11.9847i −0.294776 + 0.510566i
\(552\) −0.789996 2.94830i −0.0336244 0.125488i
\(553\) 1.60250 0.925206i 0.0681454 0.0393437i
\(554\) 0.594084 0.0252402
\(555\) 0 0
\(556\) 2.75797 0.116964
\(557\) −31.2534 + 18.0441i −1.32425 + 0.764555i −0.984403 0.175927i \(-0.943708\pi\)
−0.339845 + 0.940482i \(0.610375\pi\)
\(558\) 0.528312 + 1.97169i 0.0223652 + 0.0834682i
\(559\) 8.07218 13.9814i 0.341417 0.591351i
\(560\) 0 0
\(561\) 52.4422 + 52.4422i 2.21411 + 2.21411i
\(562\) 14.3068 + 53.3937i 0.603496 + 2.25228i
\(563\) 7.14047i 0.300935i −0.988615 0.150467i \(-0.951922\pi\)
0.988615 0.150467i \(-0.0480779\pi\)
\(564\) −3.57995 + 2.06689i −0.150743 + 0.0870316i
\(565\) 0 0
\(566\) 28.4727i 1.19680i
\(567\) −4.94163 1.32411i −0.207529 0.0556072i
\(568\) 7.04173 + 4.06554i 0.295464 + 0.170586i
\(569\) 4.46279 + 4.46279i 0.187090 + 0.187090i 0.794437 0.607347i \(-0.207766\pi\)
−0.607347 + 0.794437i \(0.707766\pi\)
\(570\) 0 0
\(571\) −13.7670 23.8452i −0.576133 0.997891i −0.995918 0.0902676i \(-0.971228\pi\)
0.419785 0.907624i \(-0.362106\pi\)
\(572\) −5.06087 8.76568i −0.211605 0.366511i
\(573\) 13.1776 22.8242i 0.550500 0.953495i
\(574\) −1.66611 6.21802i −0.0695422 0.259535i
\(575\) 0 0
\(576\) −0.189880 + 0.109627i −0.00791167 + 0.00456780i
\(577\) 9.79920 + 16.9727i 0.407946 + 0.706583i 0.994659 0.103212i \(-0.0329119\pi\)
−0.586714 + 0.809795i \(0.699579\pi\)
\(578\) 63.8426i 2.65550i
\(579\) −19.7618 + 5.29515i −0.821271 + 0.220059i
\(580\) 0 0
\(581\) 4.13454 0.171530
\(582\) −30.6541 30.6541i −1.27065 1.27065i
\(583\) 44.8086 + 12.0064i 1.85578 + 0.497256i
\(584\) 7.91133 + 7.91133i 0.327373 + 0.327373i
\(585\) 0 0
\(586\) −38.4594 + 38.4594i −1.58874 + 1.58874i
\(587\) −4.50181 2.59912i −0.185809 0.107277i 0.404210 0.914666i \(-0.367547\pi\)
−0.590019 + 0.807389i \(0.700880\pi\)
\(588\) 14.0260 3.75827i 0.578424 0.154988i
\(589\) 7.71622 + 4.45496i 0.317941 + 0.183563i
\(590\) 0 0
\(591\) 7.03986i 0.289581i
\(592\) 29.0751 8.20231i 1.19498 0.337113i
\(593\) −31.9545 31.9545i −1.31221 1.31221i −0.919781 0.392432i \(-0.871634\pi\)
−0.392432 0.919781i \(-0.628366\pi\)
\(594\) −12.6100 + 47.0613i −0.517396 + 1.93095i
\(595\) 0 0
\(596\) −11.9220 6.88319i −0.488346 0.281947i
\(597\) 4.29268 7.43515i 0.175688 0.304300i
\(598\) 3.13143i 0.128054i
\(599\) −24.4318 14.1057i −0.998257 0.576344i −0.0905247 0.995894i \(-0.528854\pi\)
−0.907732 + 0.419550i \(0.862188\pi\)
\(600\) 0 0
\(601\) −16.5666 28.6942i −0.675767 1.17046i −0.976244 0.216674i \(-0.930479\pi\)
0.300477 0.953789i \(-0.402854\pi\)
\(602\) −6.90874 + 6.90874i −0.281579 + 0.281579i
\(603\) −1.05182 + 1.05182i −0.0428336 + 0.0428336i
\(604\) 1.29792 0.749353i 0.0528115 0.0304907i
\(605\) 0 0
\(606\) 31.7357 31.7357i 1.28918 1.28918i
\(607\) 39.6225 22.8760i 1.60823 0.928510i 0.618459 0.785817i \(-0.287757\pi\)
0.989767 0.142693i \(-0.0455762\pi\)
\(608\) −3.89280 + 14.5281i −0.157874 + 0.589193i
\(609\) −4.99486 1.33837i −0.202402 0.0542335i
\(610\) 0 0
\(611\) 2.82866 0.757937i 0.114435 0.0306629i
\(612\) 2.41794 1.39600i 0.0977394 0.0564298i
\(613\) 16.4808 + 4.41602i 0.665654 + 0.178362i 0.575796 0.817593i \(-0.304692\pi\)
0.0898578 + 0.995955i \(0.471359\pi\)
\(614\) −39.5756 10.6043i −1.59714 0.427953i
\(615\) 0 0
\(616\) −1.09476 4.08572i −0.0441093 0.164618i
\(617\) 1.82050 6.79418i 0.0732904 0.273524i −0.919550 0.392973i \(-0.871446\pi\)
0.992840 + 0.119450i \(0.0381131\pi\)
\(618\) 3.62758 + 3.62758i 0.145923 + 0.145923i
\(619\) −33.5633 −1.34902 −0.674511 0.738265i \(-0.735645\pi\)
−0.674511 + 0.738265i \(0.735645\pi\)
\(620\) 0 0
\(621\) −3.96147 + 3.96147i −0.158968 + 0.158968i
\(622\) 35.4590 9.50120i 1.42178 0.380964i
\(623\) −1.79585 −0.0719493
\(624\) 13.3679 3.58191i 0.535143 0.143391i
\(625\) 0 0
\(626\) 2.02105 3.50057i 0.0807776 0.139911i
\(627\) −12.9114 22.3631i −0.515630 0.893098i
\(628\) 7.05793 7.05793i 0.281642 0.281642i
\(629\) −42.5327 + 11.9988i −1.69589 + 0.478423i
\(630\) 0 0
\(631\) 14.5346 + 3.89453i 0.578613 + 0.155039i 0.536244 0.844063i \(-0.319843\pi\)
0.0423693 + 0.999102i \(0.486509\pi\)
\(632\) 5.02535 1.34654i 0.199898 0.0535625i
\(633\) 6.68571 + 24.9514i 0.265733 + 0.991730i
\(634\) 1.40374 + 5.23883i 0.0557496 + 0.208060i
\(635\) 0 0
\(636\) 8.93761 15.4804i 0.354399 0.613837i
\(637\) −10.2868 −0.407579
\(638\) −14.1423 + 52.7798i −0.559899 + 2.08957i
\(639\) 1.81215i 0.0716875i
\(640\) 0 0
\(641\) −6.51204 11.2792i −0.257210 0.445501i 0.708283 0.705928i \(-0.249470\pi\)
−0.965493 + 0.260427i \(0.916137\pi\)
\(642\) −6.89648 + 11.9450i −0.272182 + 0.471433i
\(643\) 20.7795 0.819465 0.409732 0.912206i \(-0.365622\pi\)
0.409732 + 0.912206i \(0.365622\pi\)
\(644\) −0.182304 + 0.680366i −0.00718376 + 0.0268102i
\(645\) 0 0
\(646\) 8.48646 31.6719i 0.333895 1.24611i
\(647\) −23.9186 13.8094i −0.940336 0.542903i −0.0502706 0.998736i \(-0.516008\pi\)
−0.890066 + 0.455832i \(0.849342\pi\)
\(648\) −12.4569 7.19202i −0.489355 0.282529i
\(649\) −4.52815 + 16.8993i −0.177745 + 0.663355i
\(650\) 0 0
\(651\) −0.861693 + 3.21588i −0.0337724 + 0.126040i
\(652\) −24.7458 −0.969121
\(653\) 6.28388 10.8840i 0.245907 0.425924i −0.716479 0.697609i \(-0.754247\pi\)
0.962386 + 0.271685i \(0.0875808\pi\)
\(654\) 28.0775 + 48.6317i 1.09792 + 1.90165i
\(655\) 0 0
\(656\) 34.5685i 1.34967i
\(657\) −0.645366 + 2.40854i −0.0251781 + 0.0939660i
\(658\) −1.77227 −0.0690903
\(659\) 6.48868 11.2387i 0.252763 0.437799i −0.711522 0.702663i \(-0.751994\pi\)
0.964286 + 0.264865i \(0.0853273\pi\)
\(660\) 0 0
\(661\) −2.31806 8.65112i −0.0901621 0.336490i 0.906079 0.423107i \(-0.139061\pi\)
−0.996242 + 0.0866179i \(0.972394\pi\)
\(662\) 15.7131 + 58.6420i 0.610706 + 2.27918i
\(663\) −19.5553 + 5.23982i −0.759464 + 0.203498i
\(664\) 11.2286 + 3.00870i 0.435754 + 0.116760i
\(665\) 0 0
\(666\) 2.52525 + 2.45964i 0.0978516 + 0.0953090i
\(667\) −4.44284 + 4.44284i −0.172027 + 0.172027i
\(668\) 9.81143 + 16.9939i 0.379616 + 0.657513i
\(669\) −11.4769 + 19.8786i −0.443724 + 0.768552i
\(670\) 0 0
\(671\) 9.31845 2.49687i 0.359735 0.0963906i
\(672\) −5.62015 −0.216802
\(673\) −20.3974 + 5.46547i −0.786262 + 0.210678i −0.629544 0.776965i \(-0.716758\pi\)
−0.156718 + 0.987643i \(0.550091\pi\)
\(674\) 17.7514 17.7514i 0.683757 0.683757i
\(675\) 0 0
\(676\) −12.6169 −0.485265
\(677\) 8.32530 + 8.32530i 0.319967 + 0.319967i 0.848754 0.528787i \(-0.177353\pi\)
−0.528787 + 0.848754i \(0.677353\pi\)
\(678\) −7.10397 + 26.5124i −0.272826 + 1.01820i
\(679\) −1.78792 6.67259i −0.0686139 0.256071i
\(680\) 0 0
\(681\) −23.7970 6.37640i −0.911905 0.244344i
\(682\) 33.9816 + 9.10535i 1.30122 + 0.348662i
\(683\) −37.5275 + 21.6665i −1.43595 + 0.829046i −0.997565 0.0697413i \(-0.977783\pi\)
−0.438385 + 0.898787i \(0.644449\pi\)
\(684\) −0.938998 + 0.251604i −0.0359035 + 0.00962031i
\(685\) 0 0
\(686\) 12.2668 + 3.28689i 0.468350 + 0.125494i
\(687\) −9.67370 + 36.1027i −0.369075 + 1.37741i
\(688\) −45.4377 + 26.2334i −1.73229 + 1.00014i
\(689\) −8.95420 + 8.95420i −0.341128 + 0.341128i
\(690\) 0 0
\(691\) −36.0683 + 20.8241i −1.37210 + 0.792185i −0.991193 0.132426i \(-0.957723\pi\)
−0.380912 + 0.924611i \(0.624390\pi\)
\(692\) −5.78839 + 5.78839i −0.220042 + 0.220042i
\(693\) 0.666584 0.666584i 0.0253214 0.0253214i
\(694\) 1.14345 + 1.98051i 0.0434047 + 0.0751792i
\(695\) 0 0
\(696\) −12.5911 7.26950i −0.477266 0.275550i
\(697\) 50.5687i 1.91542i
\(698\) 12.9268 22.3898i 0.489286 0.847467i
\(699\) −5.63353 3.25252i −0.213080 0.123022i
\(700\) 0 0
\(701\) −1.36360 + 5.08902i −0.0515024 + 0.192210i −0.986884 0.161430i \(-0.948389\pi\)
0.935382 + 0.353640i \(0.115056\pi\)
\(702\) −9.40435 9.40435i −0.354944 0.354944i
\(703\) 15.3858 0.202523i 0.580286 0.00763831i
\(704\) 3.77881i 0.142419i
\(705\) 0 0
\(706\) −5.54032 3.19870i −0.208513 0.120385i
\(707\) 6.90803 1.85100i 0.259803 0.0696141i
\(708\) 5.83833 + 3.37076i 0.219418 + 0.126681i
\(709\) 29.6747 29.6747i 1.11446 1.11446i 0.121918 0.992540i \(-0.461095\pi\)
0.992540 0.121918i \(-0.0389046\pi\)
\(710\) 0 0
\(711\) 0.819885 + 0.819885i 0.0307481 + 0.0307481i
\(712\) −4.87718 1.30684i −0.182780 0.0489757i
\(713\) 2.86046 + 2.86046i 0.107125 + 0.107125i
\(714\) 12.2522 0.458526
\(715\) 0 0
\(716\) −7.50885 + 2.01199i −0.280619 + 0.0751916i
\(717\) 36.3637i 1.35803i
\(718\) −7.53956 13.0589i −0.281374 0.487354i
\(719\) −28.8381 + 16.6497i −1.07548 + 0.620929i −0.929674 0.368384i \(-0.879911\pi\)
−0.145807 + 0.989313i \(0.546578\pi\)
\(720\) 0 0
\(721\) 0.211580 + 0.789629i 0.00787967 + 0.0294073i
\(722\) 11.2408 19.4696i 0.418339 0.724585i
\(723\) 22.9414 + 39.7357i 0.853200 + 1.47779i
\(724\) −8.41942 14.5829i −0.312905 0.541968i
\(725\) 0 0
\(726\) −46.7927 46.7927i −1.73664 1.73664i
\(727\) −39.0531 22.5473i −1.44840 0.836233i −0.450012 0.893023i \(-0.648580\pi\)
−0.998386 + 0.0567895i \(0.981914\pi\)
\(728\) 1.11530 + 0.298844i 0.0413358 + 0.0110759i
\(729\) 23.4777i 0.869546i
\(730\) 0 0
\(731\) 66.4687 38.3757i 2.45844 1.41938i
\(732\) 3.71735i 0.137397i
\(733\) 12.5896 + 46.9849i 0.465007 + 1.73543i 0.656867 + 0.754006i \(0.271881\pi\)
−0.191861 + 0.981422i \(0.561452\pi\)
\(734\) 0.835590 + 0.835590i 0.0308422 + 0.0308422i
\(735\) 0 0
\(736\) −3.41439 + 5.91390i −0.125856 + 0.217989i
\(737\) 6.63530 + 24.7633i 0.244415 + 0.912167i
\(738\) 3.49332 2.01687i 0.128591 0.0742420i
\(739\) −44.4645 −1.63565 −0.817826 0.575466i \(-0.804821\pi\)
−0.817826 + 0.575466i \(0.804821\pi\)
\(740\) 0 0
\(741\) 7.04898 0.258951
\(742\) 6.63690 3.83182i 0.243648 0.140670i
\(743\) −6.11311 22.8144i −0.224268 0.836981i −0.982696 0.185224i \(-0.940699\pi\)
0.758428 0.651757i \(-0.225968\pi\)
\(744\) −4.68038 + 8.10665i −0.171591 + 0.297204i
\(745\) 0 0
\(746\) 16.9039 + 16.9039i 0.618896 + 0.618896i
\(747\) 0.670538 + 2.50248i 0.0245337 + 0.0915611i
\(748\) 48.1195i 1.75942i
\(749\) −1.90342 + 1.09894i −0.0695495 + 0.0401544i
\(750\) 0 0
\(751\) 2.24894i 0.0820651i 0.999158 + 0.0410326i \(0.0130647\pi\)
−0.999158 + 0.0410326i \(0.986935\pi\)
\(752\) −9.19275 2.46319i −0.335225 0.0898233i
\(753\) −23.2607 13.4296i −0.847667 0.489401i
\(754\) −10.5471 10.5471i −0.384103 0.384103i
\(755\) 0 0
\(756\) 1.49579 + 2.59078i 0.0544013 + 0.0942259i
\(757\) 12.0194 + 20.8182i 0.436851 + 0.756649i 0.997445 0.0714426i \(-0.0227603\pi\)
−0.560593 + 0.828091i \(0.689427\pi\)
\(758\) −13.8172 + 23.9322i −0.501865 + 0.869255i
\(759\) −3.03442 11.3246i −0.110143 0.411058i
\(760\) 0 0
\(761\) 1.34466 0.776338i 0.0487438 0.0281422i −0.475430 0.879754i \(-0.657708\pi\)
0.524174 + 0.851611i \(0.324374\pi\)
\(762\) −27.6701 47.9261i −1.00238 1.73618i
\(763\) 8.94821i 0.323947i
\(764\) −16.5171 + 4.42574i −0.597567 + 0.160118i
\(765\) 0 0
\(766\) −17.8530 −0.645056
\(767\) −3.37702 3.37702i −0.121937 0.121937i
\(768\) −35.9607 9.63564i −1.29762 0.347696i
\(769\) −0.327336 0.327336i −0.0118040 0.0118040i 0.701180 0.712984i \(-0.252657\pi\)
−0.712984 + 0.701180i \(0.752657\pi\)
\(770\) 0 0
\(771\) −10.5771 + 10.5771i −0.380924 + 0.380924i
\(772\) 11.4958 + 6.63708i 0.413741 + 0.238874i
\(773\) 8.07254 2.16303i 0.290349 0.0777988i −0.110705 0.993853i \(-0.535311\pi\)
0.401054 + 0.916055i \(0.368644\pi\)
\(774\) −5.30205 3.06114i −0.190578 0.110030i
\(775\) 0 0
\(776\) 19.4225i 0.697227i
\(777\) 1.56108 + 5.53365i 0.0560035 + 0.198519i
\(778\) 36.6604 + 36.6604i 1.31434 + 1.31434i
\(779\) 4.55705 17.0071i 0.163273 0.609344i
\(780\) 0 0
\(781\) 27.0477 + 15.6160i 0.967844 + 0.558785i
\(782\) 7.44352 12.8926i 0.266180 0.461037i
\(783\) 26.6856i 0.953665i
\(784\) 28.9519 + 16.7154i 1.03400 + 0.596978i
\(785\) 0 0
\(786\) −4.71512 8.16683i −0.168183 0.291301i
\(787\) 10.6002 10.6002i 0.377856 0.377856i −0.492472 0.870328i \(-0.663907\pi\)
0.870328 + 0.492472i \(0.163907\pi\)
\(788\) 3.22979 3.22979i 0.115056 0.115056i
\(789\) −46.7285 + 26.9787i −1.66358 + 0.960468i
\(790\) 0 0
\(791\) −3.09269 + 3.09269i −0.109964 + 0.109964i
\(792\) 2.29538 1.32524i 0.0815628 0.0470903i
\(793\) −0.681585 + 2.54371i −0.0242038 + 0.0903298i
\(794\) −11.8692 3.18035i −0.421224 0.112867i
\(795\) 0 0
\(796\) −5.38056 + 1.44172i −0.190709 + 0.0511003i
\(797\) −11.2338 + 6.48582i −0.397921 + 0.229740i −0.685586 0.727991i \(-0.740454\pi\)
0.287666 + 0.957731i \(0.407121\pi\)
\(798\) −4.12062 1.10412i −0.145868 0.0390853i
\(799\) 13.4477 + 3.60329i 0.475744 + 0.127475i
\(800\) 0 0
\(801\) −0.291250 1.08696i −0.0102908 0.0384059i
\(802\) −7.98182 + 29.7885i −0.281848 + 1.05187i
\(803\) 30.3879 + 30.3879i 1.07237 + 1.07237i
\(804\) 9.87866 0.348393
\(805\) 0 0
\(806\) −6.79062 + 6.79062i −0.239189 + 0.239189i
\(807\) 13.0304 3.49148i 0.458691 0.122906i
\(808\) 20.1078 0.707391
\(809\) −33.4015 + 8.94991i −1.17434 + 0.314662i −0.792677 0.609641i \(-0.791313\pi\)
−0.381658 + 0.924304i \(0.624647\pi\)
\(810\) 0 0
\(811\) −1.04400 + 1.80826i −0.0366598 + 0.0634966i −0.883773 0.467916i \(-0.845005\pi\)
0.847113 + 0.531412i \(0.178338\pi\)
\(812\) 1.67755 + 2.90560i 0.0588703 + 0.101966i
\(813\) 22.5786 22.5786i 0.791865 0.791865i
\(814\) 58.4731 16.4957i 2.04948 0.578173i
\(815\) 0 0
\(816\) 63.5519 + 17.0287i 2.22476 + 0.596123i
\(817\) −25.8129 + 6.91654i −0.903079 + 0.241979i
\(818\) −9.18332 34.2726i −0.321087 1.19831i
\(819\) 0.0666024 + 0.248564i 0.00232728 + 0.00868551i
\(820\) 0 0
\(821\) 4.52054 7.82980i 0.157768 0.273262i −0.776296 0.630369i \(-0.782904\pi\)
0.934063 + 0.357107i \(0.116237\pi\)
\(822\) 65.6253 2.28895
\(823\) 14.4870 54.0662i 0.504985 1.88463i 0.0402289 0.999190i \(-0.487191\pi\)
0.464756 0.885439i \(-0.346142\pi\)
\(824\) 2.29844i 0.0800701i
\(825\) 0 0
\(826\) 1.44514 + 2.50306i 0.0502830 + 0.0870927i
\(827\) 17.2477 29.8739i 0.599761 1.03882i −0.393095 0.919498i \(-0.628595\pi\)
0.992856 0.119319i \(-0.0380712\pi\)
\(828\) −0.441366 −0.0153385
\(829\) 0.0403492 0.150585i 0.00140139 0.00523005i −0.965222 0.261433i \(-0.915805\pi\)
0.966623 + 0.256203i \(0.0824716\pi\)
\(830\) 0 0
\(831\) −0.157147 + 0.586480i −0.00545136 + 0.0203448i
\(832\) −0.893325 0.515761i −0.0309705 0.0178808i
\(833\) −42.3525 24.4522i −1.46743 0.847219i
\(834\) −1.96284 + 7.32541i −0.0679675 + 0.253658i
\(835\) 0 0
\(836\) −4.33634 + 16.1834i −0.149975 + 0.559716i
\(837\) 17.1812 0.593869
\(838\) 25.9918 45.0191i 0.897871 1.55516i
\(839\) −20.0598 34.7446i −0.692541 1.19952i −0.971003 0.239069i \(-0.923158\pi\)
0.278462 0.960447i \(-0.410175\pi\)
\(840\) 0 0
\(841\) 0.928230i 0.0320079i
\(842\) −7.04248 + 26.2829i −0.242700 + 0.905769i
\(843\) −56.4948 −1.94578
\(844\) 8.38005 14.5147i 0.288453 0.499615i
\(845\) 0 0
\(846\) −0.287426 1.07269i −0.00988191 0.0368798i
\(847\) −2.72921 10.1855i −0.0937767 0.349979i
\(848\) 39.7512 10.6513i 1.36506 0.365767i
\(849\) −28.1083 7.53159i −0.964674 0.258484i
\(850\) 0 0
\(851\) 6.77128 + 1.71917i 0.232116 + 0.0589322i
\(852\) 8.50978 8.50978i 0.291540 0.291540i
\(853\) −3.24666 5.62338i −0.111164 0.192541i 0.805076 0.593172i \(-0.202124\pi\)
−0.916240 + 0.400631i \(0.868791\pi\)
\(854\) 0.796869 1.38022i 0.0272683 0.0472301i
\(855\) 0 0
\(856\) −5.96901 + 1.59939i −0.204017 + 0.0546661i
\(857\) 25.9706 0.887137 0.443569 0.896240i \(-0.353712\pi\)
0.443569 + 0.896240i \(0.353712\pi\)
\(858\) 26.8842 7.20359i 0.917811 0.245927i
\(859\) −17.4971 + 17.4971i −0.596993 + 0.596993i −0.939511 0.342518i \(-0.888720\pi\)
0.342518 + 0.939511i \(0.388720\pi\)
\(860\) 0 0
\(861\) 6.57915 0.224217
\(862\) 12.6395 + 12.6395i 0.430503 + 0.430503i
\(863\) 7.15937 26.7191i 0.243708 0.909530i −0.730321 0.683104i \(-0.760629\pi\)
0.974029 0.226425i \(-0.0727039\pi\)
\(864\) 7.50657 + 28.0149i 0.255379 + 0.953086i
\(865\) 0 0
\(866\) −9.69843 2.59869i −0.329566 0.0883070i
\(867\) −63.0254 16.8876i −2.14046 0.573534i
\(868\) 1.87073 1.08007i 0.0634968 0.0366599i
\(869\) 19.3027 5.17214i 0.654799 0.175453i
\(870\) 0 0
\(871\) −6.75977 1.81128i −0.229046 0.0613727i
\(872\) −6.51159 + 24.3016i −0.220510 + 0.822955i
\(873\) 3.74870 2.16432i 0.126874 0.0732510i
\(874\) −3.66521 + 3.66521i −0.123978 + 0.123978i
\(875\) 0 0
\(876\) 14.3410 8.27979i 0.484538 0.279748i
\(877\) −3.01345 + 3.01345i −0.101757 + 0.101757i −0.756152 0.654395i \(-0.772923\pi\)
0.654395 + 0.756152i \(0.272923\pi\)
\(878\) 32.7410 32.7410i 1.10495 1.10495i
\(879\) −27.7939 48.1404i −0.937465 1.62374i
\(880\) 0 0
\(881\) 25.4081 + 14.6694i 0.856021 + 0.494224i 0.862678 0.505754i \(-0.168786\pi\)
−0.00665684 + 0.999978i \(0.502119\pi\)
\(882\) 3.90099i 0.131353i
\(883\) 16.0263 27.7584i 0.539328 0.934144i −0.459612 0.888120i \(-0.652011\pi\)
0.998940 0.0460243i \(-0.0146552\pi\)
\(884\) 11.3756 + 6.56772i 0.382604 + 0.220896i
\(885\) 0 0
\(886\) 8.78473 32.7851i 0.295129 1.10144i
\(887\) −37.8878 37.8878i −1.27215 1.27215i −0.944959 0.327189i \(-0.893899\pi\)
−0.327189 0.944959i \(-0.606101\pi\)
\(888\) 0.212771 + 16.1643i 0.00714012 + 0.542439i
\(889\) 8.81837i 0.295759i
\(890\) 0 0
\(891\) −47.8479 27.6250i −1.60297 0.925473i
\(892\) 14.3855 3.85458i 0.481662 0.129061i
\(893\) −4.19798 2.42370i −0.140480 0.0811061i
\(894\) 26.7672 26.7672i 0.895229 0.895229i
\(895\) 0 0
\(896\) −3.91749 3.91749i −0.130874 0.130874i
\(897\) 3.09135 + 0.828324i 0.103217 + 0.0276569i
\(898\) −37.2844 37.2844i −1.24420 1.24420i
\(899\) 19.2689 0.642655
\(900\) 0 0
\(901\) −58.1502 + 15.5813i −1.93727 + 0.519089i
\(902\) 69.5207i 2.31479i
\(903\) −4.99281 8.64781i −0.166150 0.287781i
\(904\) −10.6497 + 6.14860i −0.354203 + 0.204499i
\(905\) 0 0
\(906\) 1.06662 + 3.98069i 0.0354362 + 0.132250i
\(907\) 15.3116 26.5205i 0.508414 0.880600i −0.491538 0.870856i \(-0.663565\pi\)
0.999953 0.00974360i \(-0.00310153\pi\)
\(908\) 7.99234 + 13.8431i 0.265235 + 0.459401i
\(909\) 2.24068 + 3.88098i 0.0743188 + 0.128724i
\(910\) 0 0
\(911\) −36.9318 36.9318i −1.22361 1.22361i −0.966341 0.257264i \(-0.917179\pi\)
−0.257264 0.966341i \(-0.582821\pi\)
\(912\) −19.8391 11.4541i −0.656937 0.379283i
\(913\) 43.1298 + 11.5566i 1.42739 + 0.382467i
\(914\) 3.35688i 0.111036i
\(915\) 0 0
\(916\) 21.0016 12.1253i 0.693911 0.400630i
\(917\) 1.50269i 0.0496233i
\(918\) −16.3646 61.0736i −0.540113 2.01573i
\(919\) 27.0236 + 27.0236i 0.891426 + 0.891426i 0.994657 0.103232i \(-0.0329183\pi\)
−0.103232 + 0.994657i \(0.532918\pi\)
\(920\) 0 0
\(921\) 20.9370 36.2640i 0.689899 1.19494i
\(922\) 5.88096 + 21.9480i 0.193679 + 0.722820i
\(923\) −7.38337 + 4.26279i −0.243027 + 0.140311i
\(924\) −6.26051 −0.205956
\(925\) 0 0
\(926\) 56.1333 1.84465
\(927\) −0.443619 + 0.256123i −0.0145703 + 0.00841219i
\(928\) 8.41871 + 31.4191i 0.276358 + 1.03138i
\(929\) 12.6270 21.8706i 0.414279 0.717552i −0.581073 0.813851i \(-0.697367\pi\)
0.995352 + 0.0962988i \(0.0307004\pi\)
\(930\) 0 0
\(931\) 12.0403 + 12.0403i 0.394607 + 0.394607i
\(932\) 1.09237 + 4.07679i 0.0357819 + 0.133540i
\(933\) 37.5184i 1.22830i
\(934\) 0.0131986 0.00762023i 0.000431872 0.000249342i
\(935\) 0 0
\(936\) 0.723516i 0.0236489i
\(937\) 8.40811 + 2.25295i 0.274681 + 0.0736006i 0.393530 0.919312i \(-0.371254\pi\)
−0.118849 + 0.992912i \(0.537920\pi\)
\(938\) 3.66785 + 2.11764i 0.119760 + 0.0691433i
\(939\) 2.92116 + 2.92116i 0.0953283 + 0.0953283i
\(940\) 0 0
\(941\) −19.3440 33.5049i −0.630598 1.09223i −0.987430 0.158059i \(-0.949476\pi\)
0.356832 0.934169i \(-0.383857\pi\)
\(942\) 13.7234 + 23.7696i 0.447131 + 0.774454i
\(943\) 3.99701 6.92303i 0.130161 0.225445i
\(944\) 4.01707 + 14.9919i 0.130744 + 0.487945i
\(945\) 0 0
\(946\) −91.3798 + 52.7582i −2.97101 + 1.71532i
\(947\) −6.73712 11.6690i −0.218927 0.379193i 0.735553 0.677467i \(-0.236922\pi\)
−0.954480 + 0.298274i \(0.903589\pi\)
\(948\) 7.70030i 0.250094i
\(949\) −11.3314 + 3.03624i −0.367833 + 0.0985605i
\(950\) 0 0
\(951\) −5.54309 −0.179747
\(952\) 3.88150 + 3.88150i 0.125800 + 0.125800i
\(953\) −23.8171 6.38179i −0.771513 0.206726i −0.148473 0.988916i \(-0.547436\pi\)
−0.623040 + 0.782190i \(0.714103\pi\)
\(954\) 3.39562 + 3.39562i 0.109937 + 0.109937i
\(955\) 0 0
\(956\) −16.6831 + 16.6831i −0.539571 + 0.539571i
\(957\) −48.3634 27.9226i −1.56337 0.902610i
\(958\) 52.6211 14.0998i 1.70011 0.455543i
\(959\) 9.05626 + 5.22864i 0.292442 + 0.168841i
\(960\) 0 0
\(961\) 18.5939i 0.599805i
\(962\) −4.08122 + 16.0747i −0.131584 + 0.518270i
\(963\) −0.973843 0.973843i −0.0313817 0.0313817i
\(964\) 7.70498 28.7554i 0.248161 0.926148i
\(965\) 0 0
\(966\) −1.67736 0.968427i −0.0539683 0.0311586i
\(967\) 2.76210 4.78411i 0.0888233 0.153846i −0.818191 0.574947i \(-0.805023\pi\)
0.907014 + 0.421100i \(0.138356\pi\)
\(968\) 29.6480i 0.952921i
\(969\) 29.0217 + 16.7557i 0.932311 + 0.538270i
\(970\) 0 0
\(971\) 8.56763 + 14.8396i 0.274948 + 0.476224i 0.970122 0.242617i \(-0.0780059\pi\)
−0.695174 + 0.718842i \(0.744673\pi\)
\(972\) −2.81198 + 2.81198i −0.0901944 + 0.0901944i
\(973\) −0.854516 + 0.854516i −0.0273945 + 0.0273945i
\(974\) 12.5270 7.23246i 0.401391 0.231743i
\(975\) 0 0
\(976\) 6.05164 6.05164i 0.193708 0.193708i
\(977\) −22.5666 + 13.0289i −0.721971 + 0.416830i −0.815478 0.578789i \(-0.803526\pi\)
0.0935067 + 0.995619i \(0.470192\pi\)
\(978\) 17.6115 65.7270i 0.563154 2.10172i
\(979\) −18.7336 5.01964i −0.598727 0.160428i
\(980\) 0 0
\(981\) −5.41601 + 1.45122i −0.172920 + 0.0463338i
\(982\) −60.3291 + 34.8310i −1.92518 + 1.11150i
\(983\) −16.0529 4.30135i −0.512007 0.137192i −0.00643984 0.999979i \(-0.502050\pi\)
−0.505567 + 0.862788i \(0.668717\pi\)
\(984\) 17.8677 + 4.78763i 0.569601 + 0.152624i
\(985\) 0 0
\(986\) −18.3531 68.4948i −0.584483 2.18132i
\(987\) 0.468800 1.74959i 0.0149221 0.0556900i
\(988\) −3.23397 3.23397i −0.102886 0.102886i
\(989\) −12.1331 −0.385809
\(990\) 0 0
\(991\) 27.6853 27.6853i 0.879454 0.879454i −0.114024 0.993478i \(-0.536374\pi\)
0.993478 + 0.114024i \(0.0363742\pi\)
\(992\) 20.2288 5.42028i 0.642264 0.172094i
\(993\) −62.0478 −1.96903
\(994\) 4.98380 1.33541i 0.158077 0.0423565i
\(995\) 0 0
\(996\) 8.60274 14.9004i 0.272588 0.472137i
\(997\) −6.37104 11.0350i −0.201773 0.349481i 0.747327 0.664457i \(-0.231337\pi\)
−0.949100 + 0.314976i \(0.898004\pi\)
\(998\) −26.4260 + 26.4260i −0.836501 + 0.836501i
\(999\) 25.4986 15.1726i 0.806741 0.480040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.13 68
5.2 odd 4 925.2.t.b.82.13 68
5.3 odd 4 185.2.p.a.82.5 68
5.4 even 2 185.2.u.a.8.5 yes 68
37.14 odd 12 925.2.t.b.643.13 68
185.14 odd 12 185.2.p.a.88.5 yes 68
185.88 even 12 185.2.u.a.162.5 yes 68
185.162 even 12 inner 925.2.y.b.532.13 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.5 68 5.3 odd 4
185.2.p.a.88.5 yes 68 185.14 odd 12
185.2.u.a.8.5 yes 68 5.4 even 2
185.2.u.a.162.5 yes 68 185.88 even 12
925.2.t.b.82.13 68 5.2 odd 4
925.2.t.b.643.13 68 37.14 odd 12
925.2.y.b.193.13 68 1.1 even 1 trivial
925.2.y.b.532.13 68 185.162 even 12 inner