Properties

Label 925.2.y.b.193.11
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.11
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.713738 - 0.412077i) q^{2} +(-0.475172 - 1.77336i) q^{3} +(-0.660386 + 1.14382i) q^{4} +(-1.06991 - 1.06991i) q^{6} +(-0.320840 - 1.19739i) q^{7} +2.73682i q^{8} +(-0.320958 + 0.185305i) q^{9} +4.12374i q^{11} +(2.34221 + 0.627593i) q^{12} +(4.26154 + 2.46040i) q^{13} +(-0.722412 - 0.722412i) q^{14} +(-0.192990 - 0.334268i) q^{16} +(0.998860 + 1.73008i) q^{17} +(-0.152720 + 0.264518i) q^{18} +(0.608896 + 2.27243i) q^{19} +(-1.97096 + 1.13793i) q^{21} +(1.69930 + 2.94327i) q^{22} +0.794336i q^{23} +(4.85339 - 1.30046i) q^{24} +4.05550 q^{26} +(-3.41346 - 3.41346i) q^{27} +(1.58148 + 0.423756i) q^{28} +(-1.67939 - 1.67939i) q^{29} +(6.42495 - 6.42495i) q^{31} +(-5.01581 - 2.89588i) q^{32} +(7.31290 - 1.95948i) q^{33} +(1.42585 + 0.823214i) q^{34} -0.489491i q^{36} +(6.00606 - 0.962921i) q^{37} +(1.37101 + 1.37101i) q^{38} +(2.33823 - 8.72639i) q^{39} +(9.74356 + 5.62545i) q^{41} +(-0.937830 + 1.62437i) q^{42} +11.4197i q^{43} +(-4.71682 - 2.72326i) q^{44} +(0.327327 + 0.566948i) q^{46} +(2.19390 - 2.19390i) q^{47} +(-0.501076 + 0.501076i) q^{48} +(4.73137 - 2.73166i) q^{49} +(2.59343 - 2.59343i) q^{51} +(-5.62853 + 3.24963i) q^{52} +(0.938365 - 3.50202i) q^{53} +(-3.84292 - 1.02971i) q^{54} +(3.27705 - 0.878082i) q^{56} +(3.74052 - 2.15959i) q^{57} +(-1.89069 - 0.506608i) q^{58} +(-1.41608 - 0.379437i) q^{59} +(-1.72489 - 6.43736i) q^{61} +(1.93816 - 7.23330i) q^{62} +(0.324858 + 0.324858i) q^{63} -4.00134 q^{64} +(4.41203 - 4.41203i) q^{66} +(-5.70687 + 1.52915i) q^{67} -2.63853 q^{68} +(1.40865 - 0.377446i) q^{69} +(-3.30595 + 5.72607i) q^{71} +(-0.507147 - 0.878404i) q^{72} +(-5.14518 + 5.14518i) q^{73} +(3.88996 - 3.16223i) q^{74} +(-3.00136 - 0.804213i) q^{76} +(4.93773 - 1.32306i) q^{77} +(-1.92706 - 7.19188i) q^{78} +(2.30362 + 8.59723i) q^{79} +(-4.98724 + 8.63815i) q^{81} +9.27246 q^{82} +(-0.310366 + 1.15830i) q^{83} -3.00590i q^{84} +(4.70581 + 8.15069i) q^{86} +(-2.18018 + 3.77618i) q^{87} -11.2860 q^{88} +(-1.87621 + 7.00209i) q^{89} +(1.57879 - 5.89213i) q^{91} +(-0.908579 - 0.524568i) q^{92} +(-14.4467 - 8.34083i) q^{93} +(0.661816 - 2.46993i) q^{94} +(-2.75208 + 10.2709i) q^{96} +11.7662 q^{97} +(2.25131 - 3.89938i) q^{98} +(-0.764149 - 1.32355i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.713738 0.412077i 0.504689 0.291382i −0.225959 0.974137i \(-0.572552\pi\)
0.730648 + 0.682755i \(0.239218\pi\)
\(3\) −0.475172 1.77336i −0.274340 1.02385i −0.956282 0.292446i \(-0.905531\pi\)
0.681942 0.731407i \(-0.261136\pi\)
\(4\) −0.660386 + 1.14382i −0.330193 + 0.571911i
\(5\) 0 0
\(6\) −1.06991 1.06991i −0.436789 0.436789i
\(7\) −0.320840 1.19739i −0.121266 0.452571i 0.878413 0.477902i \(-0.158603\pi\)
−0.999679 + 0.0253311i \(0.991936\pi\)
\(8\) 2.73682i 0.967614i
\(9\) −0.320958 + 0.185305i −0.106986 + 0.0617683i
\(10\) 0 0
\(11\) 4.12374i 1.24335i 0.783273 + 0.621677i \(0.213548\pi\)
−0.783273 + 0.621677i \(0.786452\pi\)
\(12\) 2.34221 + 0.627593i 0.676138 + 0.181171i
\(13\) 4.26154 + 2.46040i 1.18194 + 0.682393i 0.956463 0.291855i \(-0.0942725\pi\)
0.225477 + 0.974248i \(0.427606\pi\)
\(14\) −0.722412 0.722412i −0.193073 0.193073i
\(15\) 0 0
\(16\) −0.192990 0.334268i −0.0482475 0.0835671i
\(17\) 0.998860 + 1.73008i 0.242259 + 0.419605i 0.961357 0.275303i \(-0.0887783\pi\)
−0.719098 + 0.694908i \(0.755445\pi\)
\(18\) −0.152720 + 0.264518i −0.0359964 + 0.0623475i
\(19\) 0.608896 + 2.27243i 0.139690 + 0.521331i 0.999934 + 0.0114491i \(0.00364443\pi\)
−0.860244 + 0.509882i \(0.829689\pi\)
\(20\) 0 0
\(21\) −1.97096 + 1.13793i −0.430098 + 0.248317i
\(22\) 1.69930 + 2.94327i 0.362291 + 0.627507i
\(23\) 0.794336i 0.165631i 0.996565 + 0.0828153i \(0.0263911\pi\)
−0.996565 + 0.0828153i \(0.973609\pi\)
\(24\) 4.85339 1.30046i 0.990694 0.265456i
\(25\) 0 0
\(26\) 4.05550 0.795349
\(27\) −3.41346 3.41346i −0.656920 0.656920i
\(28\) 1.58148 + 0.423756i 0.298871 + 0.0800824i
\(29\) −1.67939 1.67939i −0.311856 0.311856i 0.533772 0.845628i \(-0.320774\pi\)
−0.845628 + 0.533772i \(0.820774\pi\)
\(30\) 0 0
\(31\) 6.42495 6.42495i 1.15396 1.15396i 0.168203 0.985752i \(-0.446203\pi\)
0.985752 0.168203i \(-0.0537965\pi\)
\(32\) −5.01581 2.89588i −0.886678 0.511924i
\(33\) 7.31290 1.95948i 1.27301 0.341102i
\(34\) 1.42585 + 0.823214i 0.244531 + 0.141180i
\(35\) 0 0
\(36\) 0.489491i 0.0815818i
\(37\) 6.00606 0.962921i 0.987391 0.158303i
\(38\) 1.37101 + 1.37101i 0.222407 + 0.222407i
\(39\) 2.33823 8.72639i 0.374416 1.39734i
\(40\) 0 0
\(41\) 9.74356 + 5.62545i 1.52169 + 0.878547i 0.999672 + 0.0256114i \(0.00815325\pi\)
0.522016 + 0.852936i \(0.325180\pi\)
\(42\) −0.937830 + 1.62437i −0.144710 + 0.250646i
\(43\) 11.4197i 1.74149i 0.491732 + 0.870747i \(0.336364\pi\)
−0.491732 + 0.870747i \(0.663636\pi\)
\(44\) −4.71682 2.72326i −0.711088 0.410547i
\(45\) 0 0
\(46\) 0.327327 + 0.566948i 0.0482618 + 0.0835919i
\(47\) 2.19390 2.19390i 0.320014 0.320014i −0.528758 0.848772i \(-0.677342\pi\)
0.848772 + 0.528758i \(0.177342\pi\)
\(48\) −0.501076 + 0.501076i −0.0723241 + 0.0723241i
\(49\) 4.73137 2.73166i 0.675910 0.390237i
\(50\) 0 0
\(51\) 2.59343 2.59343i 0.363152 0.363152i
\(52\) −5.62853 + 3.24963i −0.780536 + 0.450643i
\(53\) 0.938365 3.50202i 0.128894 0.481040i −0.871054 0.491187i \(-0.836563\pi\)
0.999949 + 0.0101468i \(0.00322989\pi\)
\(54\) −3.84292 1.02971i −0.522955 0.140125i
\(55\) 0 0
\(56\) 3.27705 0.878082i 0.437914 0.117339i
\(57\) 3.74052 2.15959i 0.495444 0.286045i
\(58\) −1.89069 0.506608i −0.248259 0.0665209i
\(59\) −1.41608 0.379437i −0.184358 0.0493985i 0.165459 0.986217i \(-0.447089\pi\)
−0.349817 + 0.936818i \(0.613756\pi\)
\(60\) 0 0
\(61\) −1.72489 6.43736i −0.220849 0.824220i −0.984025 0.178029i \(-0.943028\pi\)
0.763176 0.646190i \(-0.223639\pi\)
\(62\) 1.93816 7.23330i 0.246146 0.918631i
\(63\) 0.324858 + 0.324858i 0.0409283 + 0.0409283i
\(64\) −4.00134 −0.500167
\(65\) 0 0
\(66\) 4.41203 4.41203i 0.543083 0.543083i
\(67\) −5.70687 + 1.52915i −0.697205 + 0.186816i −0.589978 0.807419i \(-0.700864\pi\)
−0.107227 + 0.994235i \(0.534197\pi\)
\(68\) −2.63853 −0.319969
\(69\) 1.40865 0.377446i 0.169581 0.0454392i
\(70\) 0 0
\(71\) −3.30595 + 5.72607i −0.392344 + 0.679559i −0.992758 0.120130i \(-0.961669\pi\)
0.600414 + 0.799689i \(0.295002\pi\)
\(72\) −0.507147 0.878404i −0.0597679 0.103521i
\(73\) −5.14518 + 5.14518i −0.602197 + 0.602197i −0.940895 0.338698i \(-0.890014\pi\)
0.338698 + 0.940895i \(0.390014\pi\)
\(74\) 3.88996 3.16223i 0.452198 0.367602i
\(75\) 0 0
\(76\) −3.00136 0.804213i −0.344280 0.0922495i
\(77\) 4.93773 1.32306i 0.562706 0.150777i
\(78\) −1.92706 7.19188i −0.218196 0.814320i
\(79\) 2.30362 + 8.59723i 0.259178 + 0.967264i 0.965718 + 0.259592i \(0.0835880\pi\)
−0.706541 + 0.707672i \(0.749745\pi\)
\(80\) 0 0
\(81\) −4.98724 + 8.63815i −0.554138 + 0.959795i
\(82\) 9.27246 1.02397
\(83\) −0.310366 + 1.15830i −0.0340671 + 0.127140i −0.980865 0.194688i \(-0.937631\pi\)
0.946798 + 0.321828i \(0.104297\pi\)
\(84\) 3.00590i 0.327970i
\(85\) 0 0
\(86\) 4.70581 + 8.15069i 0.507440 + 0.878912i
\(87\) −2.18018 + 3.77618i −0.233740 + 0.404849i
\(88\) −11.2860 −1.20309
\(89\) −1.87621 + 7.00209i −0.198877 + 0.742220i 0.792352 + 0.610065i \(0.208857\pi\)
−0.991229 + 0.132156i \(0.957810\pi\)
\(90\) 0 0
\(91\) 1.57879 5.89213i 0.165502 0.617663i
\(92\) −0.908579 0.524568i −0.0947259 0.0546900i
\(93\) −14.4467 8.34083i −1.49806 0.864904i
\(94\) 0.661816 2.46993i 0.0682611 0.254754i
\(95\) 0 0
\(96\) −2.75208 + 10.2709i −0.280883 + 1.04827i
\(97\) 11.7662 1.19468 0.597338 0.801990i \(-0.296225\pi\)
0.597338 + 0.801990i \(0.296225\pi\)
\(98\) 2.25131 3.89938i 0.227416 0.393896i
\(99\) −0.764149 1.32355i −0.0767999 0.133021i
\(100\) 0 0
\(101\) 3.14602i 0.313041i −0.987675 0.156521i \(-0.949972\pi\)
0.987675 0.156521i \(-0.0500277\pi\)
\(102\) 0.782335 2.91972i 0.0774628 0.289095i
\(103\) 7.98036 0.786328 0.393164 0.919468i \(-0.371380\pi\)
0.393164 + 0.919468i \(0.371380\pi\)
\(104\) −6.73369 + 11.6631i −0.660293 + 1.14366i
\(105\) 0 0
\(106\) −0.773356 2.88620i −0.0751150 0.280333i
\(107\) −0.559856 2.08941i −0.0541233 0.201991i 0.933570 0.358396i \(-0.116676\pi\)
−0.987693 + 0.156405i \(0.950010\pi\)
\(108\) 6.15858 1.65019i 0.592610 0.158789i
\(109\) −10.4305 2.79484i −0.999059 0.267697i −0.278008 0.960579i \(-0.589674\pi\)
−0.721051 + 0.692882i \(0.756341\pi\)
\(110\) 0 0
\(111\) −4.56152 10.1934i −0.432960 0.967513i
\(112\) −0.338331 + 0.338331i −0.0319692 + 0.0319692i
\(113\) 1.07951 + 1.86976i 0.101552 + 0.175892i 0.912324 0.409469i \(-0.134286\pi\)
−0.810773 + 0.585361i \(0.800953\pi\)
\(114\) 1.77983 3.08276i 0.166697 0.288727i
\(115\) 0 0
\(116\) 3.02998 0.811879i 0.281326 0.0753811i
\(117\) −1.82370 −0.168601
\(118\) −1.16707 + 0.312715i −0.107437 + 0.0287877i
\(119\) 1.75110 1.75110i 0.160523 0.160523i
\(120\) 0 0
\(121\) −6.00524 −0.545931
\(122\) −3.88380 3.88380i −0.351623 0.351623i
\(123\) 5.34610 19.9519i 0.482042 1.79901i
\(124\) 3.10605 + 11.5919i 0.278932 + 1.04099i
\(125\) 0 0
\(126\) 0.365730 + 0.0979971i 0.0325818 + 0.00873027i
\(127\) −3.65534 0.979445i −0.324359 0.0869117i 0.0929655 0.995669i \(-0.470365\pi\)
−0.417324 + 0.908758i \(0.637032\pi\)
\(128\) 7.17571 4.14290i 0.634249 0.366184i
\(129\) 20.2514 5.42633i 1.78303 0.477762i
\(130\) 0 0
\(131\) −9.54260 2.55693i −0.833741 0.223400i −0.183396 0.983039i \(-0.558709\pi\)
−0.650345 + 0.759639i \(0.725376\pi\)
\(132\) −2.58803 + 9.65866i −0.225259 + 0.840679i
\(133\) 2.52563 1.45817i 0.219000 0.126440i
\(134\) −3.44308 + 3.44308i −0.297437 + 0.297437i
\(135\) 0 0
\(136\) −4.73491 + 2.73370i −0.406016 + 0.234413i
\(137\) −14.9643 + 14.9643i −1.27849 + 1.27849i −0.336976 + 0.941513i \(0.609404\pi\)
−0.941513 + 0.336976i \(0.890596\pi\)
\(138\) 0.849868 0.849868i 0.0723456 0.0723456i
\(139\) −11.0779 19.1876i −0.939619 1.62747i −0.766183 0.642623i \(-0.777846\pi\)
−0.173436 0.984845i \(-0.555487\pi\)
\(140\) 0 0
\(141\) −4.93307 2.84811i −0.415440 0.239854i
\(142\) 5.44922i 0.457288i
\(143\) −10.1461 + 17.5735i −0.848457 + 1.46957i
\(144\) 0.123883 + 0.0715239i 0.0103236 + 0.00596033i
\(145\) 0 0
\(146\) −1.55210 + 5.79251i −0.128453 + 0.479392i
\(147\) −7.09244 7.09244i −0.584975 0.584975i
\(148\) −2.86491 + 7.50576i −0.235494 + 0.616970i
\(149\) 15.3831i 1.26024i −0.776499 0.630118i \(-0.783006\pi\)
0.776499 0.630118i \(-0.216994\pi\)
\(150\) 0 0
\(151\) −14.2305 8.21599i −1.15806 0.668608i −0.207224 0.978294i \(-0.566443\pi\)
−0.950839 + 0.309686i \(0.899776\pi\)
\(152\) −6.21925 + 1.66644i −0.504447 + 0.135166i
\(153\) −0.641183 0.370187i −0.0518366 0.0299279i
\(154\) 2.97904 2.97904i 0.240058 0.240058i
\(155\) 0 0
\(156\) 8.43730 + 8.43730i 0.675524 + 0.675524i
\(157\) 8.19871 + 2.19684i 0.654328 + 0.175327i 0.570685 0.821169i \(-0.306678\pi\)
0.0836433 + 0.996496i \(0.473344\pi\)
\(158\) 5.18690 + 5.18690i 0.412647 + 0.412647i
\(159\) −6.65625 −0.527875
\(160\) 0 0
\(161\) 0.951131 0.254855i 0.0749596 0.0200854i
\(162\) 8.22050i 0.645863i
\(163\) 0.474073 + 0.821119i 0.0371323 + 0.0643150i 0.883994 0.467498i \(-0.154844\pi\)
−0.846862 + 0.531813i \(0.821511\pi\)
\(164\) −12.8690 + 7.42993i −1.00490 + 0.580180i
\(165\) 0 0
\(166\) 0.255789 + 0.954618i 0.0198531 + 0.0740928i
\(167\) −0.925739 + 1.60343i −0.0716358 + 0.124077i −0.899618 0.436677i \(-0.856155\pi\)
0.827983 + 0.560754i \(0.189489\pi\)
\(168\) −3.11432 5.39416i −0.240275 0.416168i
\(169\) 5.60717 + 9.71191i 0.431321 + 0.747070i
\(170\) 0 0
\(171\) −0.616522 0.616522i −0.0471467 0.0471467i
\(172\) −13.0621 7.54143i −0.995979 0.575029i
\(173\) 1.94070 + 0.520009i 0.147549 + 0.0395356i 0.331837 0.943337i \(-0.392331\pi\)
−0.184289 + 0.982872i \(0.558998\pi\)
\(174\) 3.59360i 0.272430i
\(175\) 0 0
\(176\) 1.37844 0.795840i 0.103903 0.0599887i
\(177\) 2.69152i 0.202307i
\(178\) 1.54628 + 5.77080i 0.115899 + 0.432540i
\(179\) 16.5221 + 16.5221i 1.23492 + 1.23492i 0.962052 + 0.272865i \(0.0879712\pi\)
0.272865 + 0.962052i \(0.412029\pi\)
\(180\) 0 0
\(181\) −0.609064 + 1.05493i −0.0452713 + 0.0784123i −0.887773 0.460281i \(-0.847749\pi\)
0.842502 + 0.538693i \(0.181082\pi\)
\(182\) −1.30117 4.85602i −0.0964488 0.359952i
\(183\) −10.5962 + 6.11770i −0.783292 + 0.452234i
\(184\) −2.17396 −0.160266
\(185\) 0 0
\(186\) −13.7482 −1.00807
\(187\) −7.13438 + 4.11904i −0.521718 + 0.301214i
\(188\) 1.06061 + 3.95826i 0.0773531 + 0.288686i
\(189\) −2.99207 + 5.18241i −0.217641 + 0.376965i
\(190\) 0 0
\(191\) −5.47122 5.47122i −0.395883 0.395883i 0.480895 0.876778i \(-0.340312\pi\)
−0.876778 + 0.480895i \(0.840312\pi\)
\(192\) 1.90132 + 7.09583i 0.137216 + 0.512097i
\(193\) 20.4352i 1.47096i −0.677546 0.735480i \(-0.736957\pi\)
0.677546 0.735480i \(-0.263043\pi\)
\(194\) 8.39797 4.84857i 0.602939 0.348107i
\(195\) 0 0
\(196\) 7.21579i 0.515414i
\(197\) 26.8016 + 7.18146i 1.90953 + 0.511658i 0.993995 + 0.109426i \(0.0349012\pi\)
0.915538 + 0.402232i \(0.131765\pi\)
\(198\) −1.09080 0.629776i −0.0775201 0.0447562i
\(199\) 12.8241 + 12.8241i 0.909074 + 0.909074i 0.996198 0.0871235i \(-0.0277675\pi\)
−0.0871235 + 0.996198i \(0.527767\pi\)
\(200\) 0 0
\(201\) 5.42349 + 9.39375i 0.382543 + 0.662584i
\(202\) −1.29640 2.24544i −0.0912146 0.157988i
\(203\) −1.47207 + 2.54971i −0.103319 + 0.178954i
\(204\) 1.25375 + 4.67908i 0.0877804 + 0.327601i
\(205\) 0 0
\(206\) 5.69588 3.28852i 0.396851 0.229122i
\(207\) −0.147194 0.254948i −0.0102307 0.0177201i
\(208\) 1.89933i 0.131695i
\(209\) −9.37092 + 2.51093i −0.648200 + 0.173685i
\(210\) 0 0
\(211\) −18.6491 −1.28386 −0.641928 0.766765i \(-0.721865\pi\)
−0.641928 + 0.766765i \(0.721865\pi\)
\(212\) 3.38601 + 3.38601i 0.232552 + 0.232552i
\(213\) 11.7253 + 3.14179i 0.803404 + 0.215272i
\(214\) −1.26059 1.26059i −0.0861720 0.0861720i
\(215\) 0 0
\(216\) 9.34203 9.34203i 0.635645 0.635645i
\(217\) −9.75456 5.63180i −0.662182 0.382311i
\(218\) −8.59632 + 2.30338i −0.582216 + 0.156004i
\(219\) 11.5691 + 6.67943i 0.781768 + 0.451354i
\(220\) 0 0
\(221\) 9.83039i 0.661264i
\(222\) −7.45618 5.39571i −0.500426 0.362136i
\(223\) −7.82604 7.82604i −0.524071 0.524071i 0.394728 0.918798i \(-0.370839\pi\)
−0.918798 + 0.394728i \(0.870839\pi\)
\(224\) −1.85823 + 6.93499i −0.124158 + 0.463364i
\(225\) 0 0
\(226\) 1.54097 + 0.889680i 0.102504 + 0.0591806i
\(227\) −4.20907 + 7.29033i −0.279366 + 0.483876i −0.971227 0.238154i \(-0.923458\pi\)
0.691861 + 0.722030i \(0.256791\pi\)
\(228\) 5.70465i 0.377800i
\(229\) −17.6546 10.1929i −1.16665 0.673566i −0.213762 0.976886i \(-0.568572\pi\)
−0.952889 + 0.303319i \(0.901905\pi\)
\(230\) 0 0
\(231\) −4.69254 8.12771i −0.308746 0.534764i
\(232\) 4.59621 4.59621i 0.301756 0.301756i
\(233\) 6.42167 6.42167i 0.420698 0.420698i −0.464746 0.885444i \(-0.653854\pi\)
0.885444 + 0.464746i \(0.153854\pi\)
\(234\) −1.30164 + 0.751504i −0.0850911 + 0.0491274i
\(235\) 0 0
\(236\) 1.36917 1.36917i 0.0891252 0.0891252i
\(237\) 14.1514 8.17032i 0.919233 0.530719i
\(238\) 0.528239 1.97142i 0.0342407 0.127788i
\(239\) −5.80797 1.55624i −0.375686 0.100665i 0.0660347 0.997817i \(-0.478965\pi\)
−0.441721 + 0.897152i \(0.645632\pi\)
\(240\) 0 0
\(241\) −0.252833 + 0.0677464i −0.0162864 + 0.00436393i −0.266953 0.963710i \(-0.586017\pi\)
0.250667 + 0.968073i \(0.419350\pi\)
\(242\) −4.28616 + 2.47462i −0.275525 + 0.159074i
\(243\) 3.69978 + 0.991354i 0.237341 + 0.0635954i
\(244\) 8.50228 + 2.27818i 0.544303 + 0.145846i
\(245\) 0 0
\(246\) −4.40601 16.4435i −0.280917 1.04840i
\(247\) −2.99626 + 11.1822i −0.190647 + 0.711506i
\(248\) 17.5840 + 17.5840i 1.11658 + 1.11658i
\(249\) 2.20157 0.139519
\(250\) 0 0
\(251\) −17.9819 + 17.9819i −1.13500 + 1.13500i −0.145672 + 0.989333i \(0.546534\pi\)
−0.989333 + 0.145672i \(0.953466\pi\)
\(252\) −0.586112 + 0.157048i −0.0369216 + 0.00989310i
\(253\) −3.27564 −0.205938
\(254\) −3.01256 + 0.807212i −0.189025 + 0.0506490i
\(255\) 0 0
\(256\) 7.41572 12.8444i 0.463482 0.802775i
\(257\) −7.05043 12.2117i −0.439794 0.761745i 0.557879 0.829922i \(-0.311615\pi\)
−0.997673 + 0.0681767i \(0.978282\pi\)
\(258\) 12.2181 12.2181i 0.760665 0.760665i
\(259\) −3.07998 6.88266i −0.191380 0.427667i
\(260\) 0 0
\(261\) 0.850214 + 0.227814i 0.0526269 + 0.0141013i
\(262\) −7.86457 + 2.10730i −0.485875 + 0.130190i
\(263\) −3.04678 11.3707i −0.187872 0.701149i −0.993997 0.109404i \(-0.965106\pi\)
0.806125 0.591745i \(-0.201561\pi\)
\(264\) 5.36277 + 20.0141i 0.330055 + 1.23178i
\(265\) 0 0
\(266\) 1.20176 2.08151i 0.0736845 0.127625i
\(267\) 13.3088 0.814484
\(268\) 2.01966 7.53747i 0.123370 0.460424i
\(269\) 23.2856i 1.41975i 0.704328 + 0.709875i \(0.251248\pi\)
−0.704328 + 0.709875i \(0.748752\pi\)
\(270\) 0 0
\(271\) 3.22003 + 5.57726i 0.195603 + 0.338794i 0.947098 0.320944i \(-0.104000\pi\)
−0.751495 + 0.659739i \(0.770667\pi\)
\(272\) 0.385540 0.667774i 0.0233768 0.0404898i
\(273\) −11.1991 −0.677800
\(274\) −4.51416 + 16.8471i −0.272710 + 1.01777i
\(275\) 0 0
\(276\) −0.498520 + 1.86050i −0.0300074 + 0.111989i
\(277\) 15.9026 + 9.18139i 0.955497 + 0.551656i 0.894784 0.446499i \(-0.147329\pi\)
0.0607125 + 0.998155i \(0.480663\pi\)
\(278\) −15.8135 9.12992i −0.948430 0.547576i
\(279\) −0.871562 + 3.25271i −0.0521790 + 0.194735i
\(280\) 0 0
\(281\) 5.16431 19.2735i 0.308077 1.14976i −0.622188 0.782868i \(-0.713756\pi\)
0.930264 0.366890i \(-0.119577\pi\)
\(282\) −4.69456 −0.279557
\(283\) 5.55937 9.62911i 0.330470 0.572391i −0.652134 0.758104i \(-0.726126\pi\)
0.982604 + 0.185713i \(0.0594594\pi\)
\(284\) −4.36640 7.56283i −0.259098 0.448771i
\(285\) 0 0
\(286\) 16.7238i 0.988901i
\(287\) 3.60973 13.4717i 0.213076 0.795210i
\(288\) 2.14648 0.126483
\(289\) 6.50456 11.2662i 0.382621 0.662719i
\(290\) 0 0
\(291\) −5.59096 20.8657i −0.327748 1.22317i
\(292\) −2.48736 9.28297i −0.145562 0.543244i
\(293\) −28.1127 + 7.53277i −1.64236 + 0.440069i −0.957459 0.288568i \(-0.906821\pi\)
−0.684900 + 0.728637i \(0.740154\pi\)
\(294\) −7.98477 2.13951i −0.465681 0.124779i
\(295\) 0 0
\(296\) 2.63535 + 16.4375i 0.153176 + 0.955413i
\(297\) 14.0762 14.0762i 0.816784 0.816784i
\(298\) −6.33904 10.9795i −0.367211 0.636027i
\(299\) −1.95439 + 3.38510i −0.113025 + 0.195765i
\(300\) 0 0
\(301\) 13.6739 3.66390i 0.788149 0.211184i
\(302\) −13.5425 −0.779282
\(303\) −5.57905 + 1.49490i −0.320508 + 0.0858798i
\(304\) 0.642091 0.642091i 0.0368264 0.0368264i
\(305\) 0 0
\(306\) −0.610182 −0.0348818
\(307\) −17.5892 17.5892i −1.00387 1.00387i −0.999992 0.00387509i \(-0.998767\pi\)
−0.00387509 0.999992i \(-0.501233\pi\)
\(308\) −1.74746 + 6.52161i −0.0995708 + 0.371603i
\(309\) −3.79204 14.1521i −0.215722 0.805084i
\(310\) 0 0
\(311\) 21.0337 + 5.63596i 1.19271 + 0.319586i 0.799957 0.600058i \(-0.204856\pi\)
0.392754 + 0.919644i \(0.371522\pi\)
\(312\) 23.8826 + 6.39932i 1.35209 + 0.362290i
\(313\) 25.0189 14.4447i 1.41415 0.816460i 0.418374 0.908275i \(-0.362600\pi\)
0.995776 + 0.0918148i \(0.0292668\pi\)
\(314\) 6.75699 1.81053i 0.381319 0.102174i
\(315\) 0 0
\(316\) −11.3550 3.04256i −0.638767 0.171157i
\(317\) −0.284851 + 1.06308i −0.0159988 + 0.0597084i −0.973464 0.228841i \(-0.926506\pi\)
0.957465 + 0.288550i \(0.0931730\pi\)
\(318\) −4.75082 + 2.74289i −0.266413 + 0.153813i
\(319\) 6.92539 6.92539i 0.387747 0.387747i
\(320\) 0 0
\(321\) −3.43926 + 1.98566i −0.191961 + 0.110829i
\(322\) 0.573838 0.573838i 0.0319787 0.0319787i
\(323\) −3.32328 + 3.32328i −0.184912 + 0.184912i
\(324\) −6.58700 11.4090i −0.365945 0.633835i
\(325\) 0 0
\(326\) 0.676728 + 0.390709i 0.0374805 + 0.0216394i
\(327\) 19.8251i 1.09633i
\(328\) −15.3959 + 26.6664i −0.850094 + 1.47241i
\(329\) −3.33085 1.92307i −0.183636 0.106022i
\(330\) 0 0
\(331\) 0.504686 1.88351i 0.0277400 0.103527i −0.950668 0.310211i \(-0.899600\pi\)
0.978408 + 0.206684i \(0.0662670\pi\)
\(332\) −1.11993 1.11993i −0.0614641 0.0614641i
\(333\) −1.74926 + 1.42201i −0.0958587 + 0.0779257i
\(334\) 1.52590i 0.0834936i
\(335\) 0 0
\(336\) 0.760749 + 0.439219i 0.0415023 + 0.0239613i
\(337\) 0.813925 0.218091i 0.0443373 0.0118802i −0.236582 0.971611i \(-0.576027\pi\)
0.280920 + 0.959731i \(0.409361\pi\)
\(338\) 8.00410 + 4.62117i 0.435366 + 0.251359i
\(339\) 2.80282 2.80282i 0.152228 0.152228i
\(340\) 0 0
\(341\) 26.4948 + 26.4948i 1.43478 + 1.43478i
\(342\) −0.694090 0.185981i −0.0375321 0.0100567i
\(343\) −10.9247 10.9247i −0.589880 0.589880i
\(344\) −31.2538 −1.68509
\(345\) 0 0
\(346\) 1.59944 0.428568i 0.0859862 0.0230399i
\(347\) 25.8472i 1.38755i −0.720191 0.693776i \(-0.755946\pi\)
0.720191 0.693776i \(-0.244054\pi\)
\(348\) −2.87952 4.98747i −0.154358 0.267356i
\(349\) 15.4393 8.91390i 0.826448 0.477150i −0.0261867 0.999657i \(-0.508336\pi\)
0.852635 + 0.522507i \(0.175003\pi\)
\(350\) 0 0
\(351\) −6.14811 22.9451i −0.328162 1.22472i
\(352\) 11.9418 20.6839i 0.636503 1.10245i
\(353\) −3.51992 6.09669i −0.187347 0.324494i 0.757018 0.653394i \(-0.226655\pi\)
−0.944365 + 0.328900i \(0.893322\pi\)
\(354\) 1.10911 + 1.92104i 0.0589487 + 0.102102i
\(355\) 0 0
\(356\) −6.77013 6.77013i −0.358816 0.358816i
\(357\) −3.93742 2.27327i −0.208390 0.120314i
\(358\) 18.6008 + 4.98406i 0.983082 + 0.263416i
\(359\) 18.3910i 0.970639i −0.874337 0.485320i \(-0.838703\pi\)
0.874337 0.485320i \(-0.161297\pi\)
\(360\) 0 0
\(361\) 11.6613 6.73265i 0.613752 0.354350i
\(362\) 1.00392i 0.0527650i
\(363\) 2.85352 + 10.6495i 0.149771 + 0.558952i
\(364\) 5.69693 + 5.69693i 0.298600 + 0.298600i
\(365\) 0 0
\(366\) −5.04192 + 8.73287i −0.263546 + 0.456474i
\(367\) 4.24206 + 15.8316i 0.221434 + 0.826402i 0.983802 + 0.179258i \(0.0573698\pi\)
−0.762368 + 0.647143i \(0.775964\pi\)
\(368\) 0.265521 0.153299i 0.0138413 0.00799125i
\(369\) −4.16969 −0.217065
\(370\) 0 0
\(371\) −4.49435 −0.233335
\(372\) 19.0808 11.0163i 0.989295 0.571170i
\(373\) −1.39064 5.18993i −0.0720045 0.268724i 0.920533 0.390665i \(-0.127755\pi\)
−0.992537 + 0.121941i \(0.961088\pi\)
\(374\) −3.39472 + 5.87983i −0.175537 + 0.304039i
\(375\) 0 0
\(376\) 6.00433 + 6.00433i 0.309650 + 0.309650i
\(377\) −3.02483 11.2888i −0.155786 0.581403i
\(378\) 4.93184i 0.253667i
\(379\) 17.5612 10.1389i 0.902057 0.520803i 0.0241899 0.999707i \(-0.492299\pi\)
0.877867 + 0.478905i \(0.158966\pi\)
\(380\) 0 0
\(381\) 6.94765i 0.355939i
\(382\) −6.15958 1.65045i −0.315151 0.0844445i
\(383\) −5.99456 3.46096i −0.306308 0.176847i 0.338965 0.940799i \(-0.389923\pi\)
−0.645273 + 0.763952i \(0.723256\pi\)
\(384\) −10.7566 10.7566i −0.548919 0.548919i
\(385\) 0 0
\(386\) −8.42088 14.5854i −0.428612 0.742377i
\(387\) −2.11613 3.66525i −0.107569 0.186315i
\(388\) −7.77022 + 13.4584i −0.394473 + 0.683248i
\(389\) −9.03222 33.7087i −0.457952 1.70910i −0.679262 0.733896i \(-0.737700\pi\)
0.221311 0.975203i \(-0.428967\pi\)
\(390\) 0 0
\(391\) −1.37426 + 0.793431i −0.0694994 + 0.0401255i
\(392\) 7.47607 + 12.9489i 0.377599 + 0.654020i
\(393\) 18.1375i 0.914916i
\(394\) 22.0886 5.91862i 1.11281 0.298176i
\(395\) 0 0
\(396\) 2.01853 0.101435
\(397\) −8.75997 8.75997i −0.439650 0.439650i 0.452244 0.891894i \(-0.350624\pi\)
−0.891894 + 0.452244i \(0.850624\pi\)
\(398\) 14.4375 + 3.86852i 0.723687 + 0.193911i
\(399\) −3.78598 3.78598i −0.189536 0.189536i
\(400\) 0 0
\(401\) −22.1660 + 22.1660i −1.10692 + 1.10692i −0.113365 + 0.993553i \(0.536163\pi\)
−0.993553 + 0.113365i \(0.963837\pi\)
\(402\) 7.74189 + 4.46978i 0.386130 + 0.222933i
\(403\) 43.1882 11.5722i 2.15136 0.576455i
\(404\) 3.59849 + 2.07759i 0.179032 + 0.103364i
\(405\) 0 0
\(406\) 2.42643i 0.120422i
\(407\) 3.97084 + 24.7674i 0.196827 + 1.22768i
\(408\) 7.09775 + 7.09775i 0.351391 + 0.351391i
\(409\) 7.06463 26.3656i 0.349324 1.30369i −0.538156 0.842845i \(-0.680879\pi\)
0.887479 0.460848i \(-0.152455\pi\)
\(410\) 0 0
\(411\) 33.6478 + 19.4266i 1.65973 + 0.958243i
\(412\) −5.27011 + 9.12810i −0.259640 + 0.449709i
\(413\) 1.81734i 0.0894254i
\(414\) −0.210116 0.121311i −0.0103267 0.00596210i
\(415\) 0 0
\(416\) −14.2501 24.6818i −0.698667 1.21013i
\(417\) −28.7626 + 28.7626i −1.40851 + 1.40851i
\(418\) −5.65368 + 5.65368i −0.276531 + 0.276531i
\(419\) −30.6436 + 17.6921i −1.49704 + 0.864315i −0.999994 0.00341085i \(-0.998914\pi\)
−0.497043 + 0.867726i \(0.665581\pi\)
\(420\) 0 0
\(421\) 6.45054 6.45054i 0.314380 0.314380i −0.532224 0.846604i \(-0.678643\pi\)
0.846604 + 0.532224i \(0.178643\pi\)
\(422\) −13.3105 + 7.68485i −0.647947 + 0.374093i
\(423\) −0.297609 + 1.11069i −0.0144702 + 0.0540037i
\(424\) 9.58443 + 2.56814i 0.465461 + 0.124720i
\(425\) 0 0
\(426\) 9.66345 2.58931i 0.468195 0.125453i
\(427\) −7.15462 + 4.13072i −0.346236 + 0.199900i
\(428\) 2.75963 + 0.739442i 0.133392 + 0.0357423i
\(429\) 35.9854 + 9.64225i 1.73739 + 0.465532i
\(430\) 0 0
\(431\) −6.64876 24.8135i −0.320259 1.19522i −0.918992 0.394276i \(-0.870996\pi\)
0.598733 0.800949i \(-0.295671\pi\)
\(432\) −0.482247 + 1.79977i −0.0232021 + 0.0865916i
\(433\) 17.0203 + 17.0203i 0.817941 + 0.817941i 0.985809 0.167868i \(-0.0536882\pi\)
−0.167868 + 0.985809i \(0.553688\pi\)
\(434\) −9.28293 −0.445595
\(435\) 0 0
\(436\) 10.0849 10.0849i 0.482981 0.482981i
\(437\) −1.80507 + 0.483668i −0.0863484 + 0.0231370i
\(438\) 11.0098 0.526066
\(439\) −14.3903 + 3.85588i −0.686814 + 0.184031i −0.585317 0.810805i \(-0.699030\pi\)
−0.101497 + 0.994836i \(0.532363\pi\)
\(440\) 0 0
\(441\) −1.01238 + 1.75349i −0.0482086 + 0.0834997i
\(442\) 4.05088 + 7.01632i 0.192681 + 0.333732i
\(443\) 19.1200 19.1200i 0.908420 0.908420i −0.0877248 0.996145i \(-0.527960\pi\)
0.996145 + 0.0877248i \(0.0279596\pi\)
\(444\) 14.6718 + 1.51400i 0.696292 + 0.0718512i
\(445\) 0 0
\(446\) −8.81067 2.36081i −0.417197 0.111788i
\(447\) −27.2799 + 7.30964i −1.29030 + 0.345734i
\(448\) 1.28379 + 4.79116i 0.0606533 + 0.226361i
\(449\) 1.83666 + 6.85450i 0.0866772 + 0.323484i 0.995627 0.0934229i \(-0.0297809\pi\)
−0.908949 + 0.416907i \(0.863114\pi\)
\(450\) 0 0
\(451\) −23.1979 + 40.1799i −1.09235 + 1.89200i
\(452\) −2.85157 −0.134126
\(453\) −7.80801 + 29.1399i −0.366852 + 1.36911i
\(454\) 6.93784i 0.325609i
\(455\) 0 0
\(456\) 5.91042 + 10.2371i 0.276781 + 0.479398i
\(457\) −6.55090 + 11.3465i −0.306438 + 0.530767i −0.977581 0.210562i \(-0.932471\pi\)
0.671142 + 0.741329i \(0.265804\pi\)
\(458\) −16.8010 −0.785061
\(459\) 2.49597 9.31510i 0.116502 0.434792i
\(460\) 0 0
\(461\) −5.66561 + 21.1444i −0.263874 + 0.984791i 0.699062 + 0.715061i \(0.253601\pi\)
−0.962936 + 0.269730i \(0.913066\pi\)
\(462\) −6.69848 3.86737i −0.311641 0.179926i
\(463\) −23.5293 13.5846i −1.09350 0.631331i −0.158992 0.987280i \(-0.550824\pi\)
−0.934506 + 0.355949i \(0.884158\pi\)
\(464\) −0.237262 + 0.885474i −0.0110146 + 0.0411071i
\(465\) 0 0
\(466\) 1.93717 7.22961i 0.0897376 0.334905i
\(467\) −11.4311 −0.528967 −0.264483 0.964390i \(-0.585201\pi\)
−0.264483 + 0.964390i \(0.585201\pi\)
\(468\) 1.20435 2.08599i 0.0556709 0.0964248i
\(469\) 3.66198 + 6.34274i 0.169095 + 0.292880i
\(470\) 0 0
\(471\) 15.5832i 0.718035i
\(472\) 1.03845 3.87556i 0.0477987 0.178387i
\(473\) −47.0920 −2.16529
\(474\) 6.73360 11.6629i 0.309284 0.535696i
\(475\) 0 0
\(476\) 0.846546 + 3.15935i 0.0388014 + 0.144809i
\(477\) 0.347767 + 1.29788i 0.0159232 + 0.0594261i
\(478\) −4.78666 + 1.28258i −0.218937 + 0.0586639i
\(479\) −9.48503 2.54151i −0.433382 0.116124i 0.0355313 0.999369i \(-0.488688\pi\)
−0.468913 + 0.883244i \(0.655354\pi\)
\(480\) 0 0
\(481\) 27.9643 + 10.6738i 1.27506 + 0.486684i
\(482\) −0.152540 + 0.152540i −0.00694799 + 0.00694799i
\(483\) −0.903900 1.56560i −0.0411289 0.0712373i
\(484\) 3.96577 6.86892i 0.180262 0.312224i
\(485\) 0 0
\(486\) 3.04919 0.817028i 0.138314 0.0370611i
\(487\) 28.7566 1.30308 0.651542 0.758613i \(-0.274122\pi\)
0.651542 + 0.758613i \(0.274122\pi\)
\(488\) 17.6179 4.72071i 0.797526 0.213696i
\(489\) 1.23088 1.23088i 0.0556622 0.0556622i
\(490\) 0 0
\(491\) 31.5099 1.42202 0.711010 0.703182i \(-0.248238\pi\)
0.711010 + 0.703182i \(0.248238\pi\)
\(492\) 19.2910 + 19.2910i 0.869704 + 0.869704i
\(493\) 1.22800 4.58296i 0.0553063 0.206406i
\(494\) 2.46938 + 9.21584i 0.111103 + 0.414640i
\(495\) 0 0
\(496\) −3.38761 0.907707i −0.152108 0.0407572i
\(497\) 7.91702 + 2.12136i 0.355127 + 0.0951560i
\(498\) 1.57134 0.907215i 0.0704136 0.0406533i
\(499\) −28.6886 + 7.68709i −1.28428 + 0.344121i −0.835485 0.549514i \(-0.814813\pi\)
−0.448794 + 0.893635i \(0.648146\pi\)
\(500\) 0 0
\(501\) 3.28334 + 0.879770i 0.146689 + 0.0393052i
\(502\) −5.42443 + 20.2442i −0.242104 + 0.903544i
\(503\) 15.0571 8.69325i 0.671365 0.387613i −0.125229 0.992128i \(-0.539966\pi\)
0.796594 + 0.604515i \(0.206633\pi\)
\(504\) −0.889080 + 0.889080i −0.0396028 + 0.0396028i
\(505\) 0 0
\(506\) −2.33795 + 1.34981i −0.103934 + 0.0600065i
\(507\) 14.5584 14.5584i 0.646561 0.646561i
\(508\) 3.53424 3.53424i 0.156807 0.156807i
\(509\) 4.46764 + 7.73818i 0.198025 + 0.342989i 0.947888 0.318604i \(-0.103214\pi\)
−0.749863 + 0.661593i \(0.769881\pi\)
\(510\) 0 0
\(511\) 7.81156 + 4.51001i 0.345563 + 0.199511i
\(512\) 4.34822i 0.192166i
\(513\) 5.67840 9.83528i 0.250708 0.434238i
\(514\) −10.0643 5.81064i −0.443918 0.256296i
\(515\) 0 0
\(516\) −7.16695 + 26.7474i −0.315507 + 1.17749i
\(517\) 9.04709 + 9.04709i 0.397891 + 0.397891i
\(518\) −5.03448 3.64323i −0.221202 0.160074i
\(519\) 3.68867i 0.161914i
\(520\) 0 0
\(521\) 5.50222 + 3.17671i 0.241057 + 0.139174i 0.615662 0.788010i \(-0.288889\pi\)
−0.374606 + 0.927184i \(0.622222\pi\)
\(522\) 0.700707 0.187754i 0.0306691 0.00821776i
\(523\) 2.70312 + 1.56065i 0.118199 + 0.0682423i 0.557934 0.829885i \(-0.311594\pi\)
−0.439735 + 0.898128i \(0.644928\pi\)
\(524\) 9.22647 9.22647i 0.403060 0.403060i
\(525\) 0 0
\(526\) −6.86021 6.86021i −0.299119 0.299119i
\(527\) 17.5333 + 4.69803i 0.763762 + 0.204649i
\(528\) −2.06631 2.06631i −0.0899245 0.0899245i
\(529\) 22.3690 0.972567
\(530\) 0 0
\(531\) 0.524813 0.140623i 0.0227749 0.00610253i
\(532\) 3.85183i 0.166998i
\(533\) 27.6817 + 47.9462i 1.19903 + 2.07678i
\(534\) 9.49898 5.48424i 0.411061 0.237326i
\(535\) 0 0
\(536\) −4.18502 15.6187i −0.180765 0.674625i
\(537\) 21.4488 37.1505i 0.925585 1.60316i
\(538\) 9.59546 + 16.6198i 0.413690 + 0.716531i
\(539\) 11.2647 + 19.5110i 0.485203 + 0.840396i
\(540\) 0 0
\(541\) −2.14088 2.14088i −0.0920435 0.0920435i 0.659586 0.751629i \(-0.270732\pi\)
−0.751629 + 0.659586i \(0.770732\pi\)
\(542\) 4.59651 + 2.65380i 0.197437 + 0.113990i
\(543\) 2.16018 + 0.578819i 0.0927023 + 0.0248395i
\(544\) 11.5703i 0.496073i
\(545\) 0 0
\(546\) −7.99321 + 4.61488i −0.342078 + 0.197499i
\(547\) 45.1561i 1.93074i −0.260891 0.965368i \(-0.584016\pi\)
0.260891 0.965368i \(-0.415984\pi\)
\(548\) −7.23429 26.9988i −0.309034 1.15333i
\(549\) 1.74649 + 1.74649i 0.0745384 + 0.0745384i
\(550\) 0 0
\(551\) 2.79373 4.83888i 0.119017 0.206143i
\(552\) 1.03300 + 3.85522i 0.0439676 + 0.164089i
\(553\) 9.55515 5.51667i 0.406326 0.234593i
\(554\) 15.1337 0.642971
\(555\) 0 0
\(556\) 29.2629 1.24102
\(557\) 1.00267 0.578894i 0.0424847 0.0245285i −0.478607 0.878029i \(-0.658858\pi\)
0.521092 + 0.853501i \(0.325525\pi\)
\(558\) 0.718300 + 2.68073i 0.0304081 + 0.113485i
\(559\) −28.0972 + 48.6657i −1.18838 + 2.05834i
\(560\) 0 0
\(561\) 10.6946 + 10.6946i 0.451527 + 0.451527i
\(562\) −4.25618 15.8843i −0.179536 0.670038i
\(563\) 9.05216i 0.381503i −0.981638 0.190751i \(-0.938908\pi\)
0.981638 0.190751i \(-0.0610925\pi\)
\(564\) 6.51546 3.76170i 0.274350 0.158396i
\(565\) 0 0
\(566\) 9.16354i 0.385172i
\(567\) 11.9433 + 3.20021i 0.501573 + 0.134396i
\(568\) −15.6712 9.04780i −0.657551 0.379637i
\(569\) −0.221126 0.221126i −0.00927008 0.00927008i 0.702457 0.711727i \(-0.252087\pi\)
−0.711727 + 0.702457i \(0.752087\pi\)
\(570\) 0 0
\(571\) −14.6005 25.2888i −0.611012 1.05830i −0.991070 0.133342i \(-0.957429\pi\)
0.380058 0.924963i \(-0.375904\pi\)
\(572\) −13.4006 23.2106i −0.560309 0.970483i
\(573\) −7.10270 + 12.3022i −0.296719 + 0.513933i
\(574\) −2.97497 11.1028i −0.124173 0.463420i
\(575\) 0 0
\(576\) 1.28426 0.741467i 0.0535108 0.0308945i
\(577\) 7.37214 + 12.7689i 0.306906 + 0.531577i 0.977684 0.210081i \(-0.0673729\pi\)
−0.670778 + 0.741658i \(0.734040\pi\)
\(578\) 10.7215i 0.445956i
\(579\) −36.2391 + 9.71024i −1.50605 + 0.403544i
\(580\) 0 0
\(581\) 1.48652 0.0616711
\(582\) −12.5888 12.5888i −0.521821 0.521821i
\(583\) 14.4414 + 3.86957i 0.598103 + 0.160261i
\(584\) −14.0814 14.0814i −0.582694 0.582694i
\(585\) 0 0
\(586\) −16.9610 + 16.9610i −0.700652 + 0.700652i
\(587\) −29.6366 17.1107i −1.22323 0.706233i −0.257627 0.966245i \(-0.582940\pi\)
−0.965606 + 0.260011i \(0.916274\pi\)
\(588\) 12.7962 3.42874i 0.527708 0.141399i
\(589\) 18.5124 + 10.6881i 0.762790 + 0.440397i
\(590\) 0 0
\(591\) 50.9414i 2.09545i
\(592\) −1.48098 1.82180i −0.0608680 0.0748756i
\(593\) −2.15764 2.15764i −0.0886036 0.0886036i 0.661416 0.750019i \(-0.269956\pi\)
−0.750019 + 0.661416i \(0.769956\pi\)
\(594\) 4.24624 15.8472i 0.174225 0.650218i
\(595\) 0 0
\(596\) 17.5956 + 10.1588i 0.720743 + 0.416121i
\(597\) 16.6481 28.8354i 0.681362 1.18015i
\(598\) 3.22143i 0.131734i
\(599\) −6.31443 3.64564i −0.258000 0.148957i 0.365422 0.930842i \(-0.380925\pi\)
−0.623422 + 0.781885i \(0.714258\pi\)
\(600\) 0 0
\(601\) −6.91912 11.9843i −0.282237 0.488849i 0.689699 0.724097i \(-0.257743\pi\)
−0.971935 + 0.235248i \(0.924410\pi\)
\(602\) 8.24975 8.24975i 0.336235 0.336235i
\(603\) 1.54830 1.54830i 0.0630518 0.0630518i
\(604\) 18.7953 10.8514i 0.764768 0.441539i
\(605\) 0 0
\(606\) −3.36596 + 3.36596i −0.136733 + 0.136733i
\(607\) 8.17078 4.71740i 0.331642 0.191473i −0.324928 0.945739i \(-0.605340\pi\)
0.656570 + 0.754265i \(0.272007\pi\)
\(608\) 3.52658 13.1614i 0.143022 0.533764i
\(609\) 5.22105 + 1.39898i 0.211568 + 0.0566893i
\(610\) 0 0
\(611\) 14.7473 3.95153i 0.596612 0.159862i
\(612\) 0.846856 0.488933i 0.0342321 0.0197639i
\(613\) −25.9670 6.95785i −1.04880 0.281025i −0.307043 0.951696i \(-0.599340\pi\)
−0.741755 + 0.670671i \(0.766006\pi\)
\(614\) −19.8022 5.30597i −0.799150 0.214132i
\(615\) 0 0
\(616\) 3.62098 + 13.5137i 0.145894 + 0.544482i
\(617\) −7.44729 + 27.7937i −0.299817 + 1.11893i 0.637499 + 0.770451i \(0.279969\pi\)
−0.937316 + 0.348481i \(0.886698\pi\)
\(618\) −8.53826 8.53826i −0.343459 0.343459i
\(619\) −33.9719 −1.36544 −0.682722 0.730678i \(-0.739204\pi\)
−0.682722 + 0.730678i \(0.739204\pi\)
\(620\) 0 0
\(621\) 2.71143 2.71143i 0.108806 0.108806i
\(622\) 17.3350 4.64489i 0.695069 0.186243i
\(623\) 8.98620 0.360025
\(624\) −3.36821 + 0.902509i −0.134836 + 0.0361293i
\(625\) 0 0
\(626\) 11.9046 20.6194i 0.475804 0.824116i
\(627\) 8.90559 + 15.4249i 0.355655 + 0.616012i
\(628\) −7.92710 + 7.92710i −0.316326 + 0.316326i
\(629\) 7.66514 + 9.42912i 0.305629 + 0.375964i
\(630\) 0 0
\(631\) 24.1532 + 6.47184i 0.961525 + 0.257640i 0.705246 0.708963i \(-0.250837\pi\)
0.256279 + 0.966603i \(0.417503\pi\)
\(632\) −23.5291 + 6.30461i −0.935938 + 0.250784i
\(633\) 8.86151 + 33.0716i 0.352213 + 1.31448i
\(634\) 0.234761 + 0.876139i 0.00932355 + 0.0347959i
\(635\) 0 0
\(636\) 4.39569 7.61356i 0.174301 0.301897i
\(637\) 26.8839 1.06518
\(638\) 2.08912 7.79670i 0.0827090 0.308674i
\(639\) 2.45043i 0.0969377i
\(640\) 0 0
\(641\) −0.440835 0.763549i −0.0174119 0.0301584i 0.857188 0.515003i \(-0.172209\pi\)
−0.874600 + 0.484845i \(0.838876\pi\)
\(642\) −1.63649 + 2.83448i −0.0645870 + 0.111868i
\(643\) 27.9848 1.10361 0.551807 0.833972i \(-0.313938\pi\)
0.551807 + 0.833972i \(0.313938\pi\)
\(644\) −0.336605 + 1.25623i −0.0132641 + 0.0495022i
\(645\) 0 0
\(646\) −1.00250 + 3.74139i −0.0394430 + 0.147203i
\(647\) −20.1484 11.6327i −0.792114 0.457327i 0.0485920 0.998819i \(-0.484527\pi\)
−0.840706 + 0.541491i \(0.817860\pi\)
\(648\) −23.6411 13.6492i −0.928710 0.536191i
\(649\) 1.56470 5.83955i 0.0614199 0.229222i
\(650\) 0 0
\(651\) −5.35214 + 19.9745i −0.209767 + 0.782861i
\(652\) −1.25228 −0.0490433
\(653\) −19.9298 + 34.5194i −0.779914 + 1.35085i 0.152077 + 0.988369i \(0.451404\pi\)
−0.931991 + 0.362482i \(0.881930\pi\)
\(654\) 8.16945 + 14.1499i 0.319451 + 0.553305i
\(655\) 0 0
\(656\) 4.34262i 0.169551i
\(657\) 0.697957 2.60481i 0.0272299 0.101623i
\(658\) −3.16981 −0.123572
\(659\) −5.64501 + 9.77745i −0.219898 + 0.380875i −0.954777 0.297324i \(-0.903906\pi\)
0.734878 + 0.678199i \(0.237239\pi\)
\(660\) 0 0
\(661\) 1.49956 + 5.59642i 0.0583259 + 0.217675i 0.988937 0.148333i \(-0.0473908\pi\)
−0.930612 + 0.366008i \(0.880724\pi\)
\(662\) −0.415939 1.55230i −0.0161659 0.0603320i
\(663\) 17.4329 4.67112i 0.677037 0.181411i
\(664\) −3.17007 0.849418i −0.123023 0.0329638i
\(665\) 0 0
\(666\) −0.662534 + 1.73577i −0.0256727 + 0.0672597i
\(667\) 1.33400 1.33400i 0.0516528 0.0516528i
\(668\) −1.22269 2.11776i −0.0473073 0.0819386i
\(669\) −10.1597 + 17.5971i −0.392797 + 0.680345i
\(670\) 0 0
\(671\) 26.5460 7.11298i 1.02480 0.274594i
\(672\) 13.1812 0.508478
\(673\) −34.1375 + 9.14711i −1.31590 + 0.352595i −0.847442 0.530888i \(-0.821858\pi\)
−0.468462 + 0.883484i \(0.655192\pi\)
\(674\) 0.491059 0.491059i 0.0189149 0.0189149i
\(675\) 0 0
\(676\) −14.8116 −0.569676
\(677\) −26.8736 26.8736i −1.03284 1.03284i −0.999442 0.0333951i \(-0.989368\pi\)
−0.0333951 0.999442i \(-0.510632\pi\)
\(678\) 0.845501 3.15545i 0.0324713 0.121184i
\(679\) −3.77506 14.0887i −0.144874 0.540675i
\(680\) 0 0
\(681\) 14.9284 + 4.00006i 0.572059 + 0.153283i
\(682\) 29.8283 + 7.99246i 1.14218 + 0.306047i
\(683\) −9.59406 + 5.53913i −0.367107 + 0.211949i −0.672194 0.740375i \(-0.734648\pi\)
0.305087 + 0.952324i \(0.401314\pi\)
\(684\) 1.11233 0.298049i 0.0425312 0.0113962i
\(685\) 0 0
\(686\) −12.2992 3.29556i −0.469586 0.125825i
\(687\) −9.68676 + 36.1515i −0.369573 + 1.37927i
\(688\) 3.81725 2.20389i 0.145531 0.0840226i
\(689\) 12.6153 12.6153i 0.480604 0.480604i
\(690\) 0 0
\(691\) 3.68751 2.12898i 0.140279 0.0809904i −0.428218 0.903676i \(-0.640858\pi\)
0.568497 + 0.822685i \(0.307525\pi\)
\(692\) −1.87641 + 1.87641i −0.0713304 + 0.0713304i
\(693\) −1.33963 + 1.33963i −0.0508884 + 0.0508884i
\(694\) −10.6510 18.4481i −0.404308 0.700281i
\(695\) 0 0
\(696\) −10.3347 5.96676i −0.391737 0.226170i
\(697\) 22.4761i 0.851344i
\(698\) 7.34642 12.7244i 0.278066 0.481625i
\(699\) −14.4394 8.33657i −0.546147 0.315318i
\(700\) 0 0
\(701\) −9.60225 + 35.8361i −0.362672 + 1.35351i 0.507878 + 0.861429i \(0.330430\pi\)
−0.870549 + 0.492081i \(0.836236\pi\)
\(702\) −13.8433 13.8433i −0.522481 0.522481i
\(703\) 5.84524 + 13.0620i 0.220457 + 0.492644i
\(704\) 16.5005i 0.621885i
\(705\) 0 0
\(706\) −5.02460 2.90096i −0.189103 0.109179i
\(707\) −3.76702 + 1.00937i −0.141673 + 0.0379612i
\(708\) −3.07862 1.77744i −0.115702 0.0668004i
\(709\) 25.2496 25.2496i 0.948269 0.948269i −0.0504569 0.998726i \(-0.516068\pi\)
0.998726 + 0.0504569i \(0.0160677\pi\)
\(710\) 0 0
\(711\) −2.33247 2.33247i −0.0874746 0.0874746i
\(712\) −19.1635 5.13484i −0.718183 0.192436i
\(713\) 5.10357 + 5.10357i 0.191130 + 0.191130i
\(714\) −3.74704 −0.140230
\(715\) 0 0
\(716\) −29.8092 + 7.98736i −1.11402 + 0.298502i
\(717\) 11.0391i 0.412264i
\(718\) −7.57849 13.1263i −0.282827 0.489871i
\(719\) 37.1866 21.4697i 1.38683 0.800685i 0.393871 0.919166i \(-0.371136\pi\)
0.992956 + 0.118480i \(0.0378022\pi\)
\(720\) 0 0
\(721\) −2.56042 9.55560i −0.0953549 0.355869i
\(722\) 5.54874 9.61069i 0.206503 0.357673i
\(723\) 0.240278 + 0.416174i 0.00893604 + 0.0154777i
\(724\) −0.804434 1.39332i −0.0298965 0.0517823i
\(725\) 0 0
\(726\) 6.42506 + 6.42506i 0.238456 + 0.238456i
\(727\) −5.97867 3.45179i −0.221737 0.128020i 0.385017 0.922909i \(-0.374195\pi\)
−0.606754 + 0.794890i \(0.707529\pi\)
\(728\) 16.1257 + 4.32087i 0.597659 + 0.160142i
\(729\) 22.8913i 0.847826i
\(730\) 0 0
\(731\) −19.7570 + 11.4067i −0.730739 + 0.421893i
\(732\) 16.1602i 0.597297i
\(733\) 1.90920 + 7.12522i 0.0705178 + 0.263176i 0.992180 0.124818i \(-0.0398347\pi\)
−0.921662 + 0.387994i \(0.873168\pi\)
\(734\) 9.55154 + 9.55154i 0.352554 + 0.352554i
\(735\) 0 0
\(736\) 2.30030 3.98424i 0.0847902 0.146861i
\(737\) −6.30582 23.5337i −0.232278 0.866873i
\(738\) −2.97607 + 1.71823i −0.109550 + 0.0632490i
\(739\) −14.9613 −0.550359 −0.275179 0.961393i \(-0.588737\pi\)
−0.275179 + 0.961393i \(0.588737\pi\)
\(740\) 0 0
\(741\) 21.2538 0.780780
\(742\) −3.20779 + 1.85202i −0.117762 + 0.0679897i
\(743\) 4.39484 + 16.4018i 0.161231 + 0.601723i 0.998491 + 0.0549175i \(0.0174896\pi\)
−0.837260 + 0.546805i \(0.815844\pi\)
\(744\) 22.8274 39.5382i 0.836893 1.44954i
\(745\) 0 0
\(746\) −3.13120 3.13120i −0.114641 0.114641i
\(747\) −0.115025 0.429278i −0.00420853 0.0157065i
\(748\) 10.8806i 0.397835i
\(749\) −2.32222 + 1.34073i −0.0848519 + 0.0489893i
\(750\) 0 0
\(751\) 25.3188i 0.923895i −0.886907 0.461947i \(-0.847151\pi\)
0.886907 0.461947i \(-0.152849\pi\)
\(752\) −1.15675 0.309951i −0.0421825 0.0113028i
\(753\) 40.4329 + 23.3439i 1.47346 + 0.850700i
\(754\) −6.81078 6.81078i −0.248034 0.248034i
\(755\) 0 0
\(756\) −3.95184 6.84478i −0.143727 0.248942i
\(757\) 8.53899 + 14.7900i 0.310355 + 0.537551i 0.978439 0.206535i \(-0.0662188\pi\)
−0.668084 + 0.744086i \(0.732885\pi\)
\(758\) 8.35605 14.4731i 0.303505 0.525687i
\(759\) 1.55649 + 5.80890i 0.0564970 + 0.210850i
\(760\) 0 0
\(761\) −44.0238 + 25.4171i −1.59586 + 0.921370i −0.603587 + 0.797297i \(0.706262\pi\)
−0.992273 + 0.124073i \(0.960404\pi\)
\(762\) 2.86296 + 4.95880i 0.103714 + 0.179638i
\(763\) 13.3861i 0.484608i
\(764\) 9.87121 2.64498i 0.357128 0.0956921i
\(765\) 0 0
\(766\) −5.70472 −0.206120
\(767\) −5.10112 5.10112i −0.184191 0.184191i
\(768\) −26.3015 7.04748i −0.949075 0.254304i
\(769\) 34.2637 + 34.2637i 1.23558 + 1.23558i 0.961790 + 0.273790i \(0.0882772\pi\)
0.273790 + 0.961790i \(0.411723\pi\)
\(770\) 0 0
\(771\) −18.3056 + 18.3056i −0.659262 + 0.659262i
\(772\) 23.3743 + 13.4951i 0.841258 + 0.485701i
\(773\) 6.87810 1.84298i 0.247388 0.0662874i −0.132994 0.991117i \(-0.542459\pi\)
0.380382 + 0.924829i \(0.375792\pi\)
\(774\) −3.02073 1.74402i −0.108578 0.0626874i
\(775\) 0 0
\(776\) 32.2020i 1.15598i
\(777\) −10.7419 + 8.73236i −0.385365 + 0.313272i
\(778\) −20.3372 20.3372i −0.729124 0.729124i
\(779\) −6.85062 + 25.5669i −0.245449 + 0.916028i
\(780\) 0 0
\(781\) −23.6128 13.6329i −0.844933 0.487822i
\(782\) −0.653908 + 1.13260i −0.0233837 + 0.0405018i
\(783\) 11.4651i 0.409728i
\(784\) −1.82621 1.05436i −0.0652219 0.0376559i
\(785\) 0 0
\(786\) 7.47404 + 12.9454i 0.266590 + 0.461748i
\(787\) 19.6130 19.6130i 0.699129 0.699129i −0.265094 0.964223i \(-0.585403\pi\)
0.964223 + 0.265094i \(0.0854029\pi\)
\(788\) −25.9137 + 25.9137i −0.923137 + 0.923137i
\(789\) −18.7167 + 10.8061i −0.666332 + 0.384707i
\(790\) 0 0
\(791\) 1.89249 1.89249i 0.0672891 0.0672891i
\(792\) 3.62231 2.09134i 0.128713 0.0743126i
\(793\) 8.48783 31.6770i 0.301412 1.12488i
\(794\) −9.86210 2.64254i −0.349993 0.0937803i
\(795\) 0 0
\(796\) −23.1373 + 6.19961i −0.820079 + 0.219739i
\(797\) −43.0504 + 24.8552i −1.52492 + 0.880415i −0.525359 + 0.850881i \(0.676069\pi\)
−0.999564 + 0.0295340i \(0.990598\pi\)
\(798\) −4.26231 1.14208i −0.150884 0.0404293i
\(799\) 5.98703 + 1.60422i 0.211806 + 0.0567532i
\(800\) 0 0
\(801\) −0.695340 2.59504i −0.0245686 0.0916914i
\(802\) −6.68662 + 24.9548i −0.236113 + 0.881185i
\(803\) −21.2174 21.2174i −0.748745 0.748745i
\(804\) −14.3264 −0.505252
\(805\) 0 0
\(806\) 26.0564 26.0564i 0.917797 0.917797i
\(807\) 41.2939 11.0647i 1.45361 0.389495i
\(808\) 8.61011 0.302903
\(809\) −15.7995 + 4.23346i −0.555480 + 0.148841i −0.525629 0.850714i \(-0.676170\pi\)
−0.0298512 + 0.999554i \(0.509503\pi\)
\(810\) 0 0
\(811\) −7.45897 + 12.9193i −0.261920 + 0.453659i −0.966752 0.255716i \(-0.917689\pi\)
0.704832 + 0.709374i \(0.251022\pi\)
\(812\) −1.94427 3.36758i −0.0682306 0.118179i
\(813\) 8.36044 8.36044i 0.293214 0.293214i
\(814\) 13.0402 + 16.0412i 0.457060 + 0.562243i
\(815\) 0 0
\(816\) −1.36740 0.366395i −0.0478687 0.0128264i
\(817\) −25.9506 + 6.95343i −0.907895 + 0.243270i
\(818\) −5.82234 21.7293i −0.203573 0.759746i
\(819\) 0.585115 + 2.18368i 0.0204456 + 0.0763040i
\(820\) 0 0
\(821\) 5.80160 10.0487i 0.202477 0.350701i −0.746849 0.664994i \(-0.768434\pi\)
0.949326 + 0.314293i \(0.101767\pi\)
\(822\) 32.0210 1.11686
\(823\) 6.12304 22.8515i 0.213436 0.796553i −0.773276 0.634070i \(-0.781383\pi\)
0.986711 0.162483i \(-0.0519503\pi\)
\(824\) 21.8408i 0.760862i
\(825\) 0 0
\(826\) 0.748883 + 1.29710i 0.0260570 + 0.0451320i
\(827\) −3.22817 + 5.59136i −0.112255 + 0.194431i −0.916679 0.399624i \(-0.869141\pi\)
0.804424 + 0.594055i \(0.202474\pi\)
\(828\) 0.388820 0.0135124
\(829\) −2.90505 + 10.8418i −0.100897 + 0.376551i −0.997847 0.0655791i \(-0.979111\pi\)
0.896951 + 0.442131i \(0.145777\pi\)
\(830\) 0 0
\(831\) 8.72547 32.5639i 0.302683 1.12963i
\(832\) −17.0519 9.84490i −0.591167 0.341310i
\(833\) 9.45196 + 5.45709i 0.327491 + 0.189077i
\(834\) −8.67656 + 32.3814i −0.300445 + 1.12127i
\(835\) 0 0
\(836\) 3.31636 12.3768i 0.114699 0.428062i
\(837\) −43.8626 −1.51611
\(838\) −14.5810 + 25.2550i −0.503692 + 0.872420i
\(839\) 19.3905 + 33.5854i 0.669435 + 1.15950i 0.978062 + 0.208312i \(0.0667970\pi\)
−0.308628 + 0.951183i \(0.599870\pi\)
\(840\) 0 0
\(841\) 23.3593i 0.805492i
\(842\) 1.94588 7.26211i 0.0670593 0.250269i
\(843\) −36.6328 −1.26170
\(844\) 12.3156 21.3312i 0.423920 0.734251i
\(845\) 0 0
\(846\) 0.245275 + 0.915380i 0.00843274 + 0.0314714i
\(847\) 1.92672 + 7.19061i 0.0662028 + 0.247072i
\(848\) −1.35171 + 0.362190i −0.0464179 + 0.0124376i
\(849\) −19.7176 5.28331i −0.676705 0.181323i
\(850\) 0 0
\(851\) 0.764883 + 4.77083i 0.0262199 + 0.163542i
\(852\) −11.3369 + 11.3369i −0.388395 + 0.388395i
\(853\) −19.3647 33.5407i −0.663035 1.14841i −0.979814 0.199911i \(-0.935935\pi\)
0.316779 0.948499i \(-0.397399\pi\)
\(854\) −3.40435 + 5.89651i −0.116494 + 0.201774i
\(855\) 0 0
\(856\) 5.71835 1.53223i 0.195449 0.0523705i
\(857\) 32.5958 1.11345 0.556726 0.830696i \(-0.312057\pi\)
0.556726 + 0.830696i \(0.312057\pi\)
\(858\) 29.6574 7.94669i 1.01249 0.271295i
\(859\) 25.5200 25.5200i 0.870731 0.870731i −0.121821 0.992552i \(-0.538873\pi\)
0.992552 + 0.121821i \(0.0388734\pi\)
\(860\) 0 0
\(861\) −25.6055 −0.872633
\(862\) −14.9705 14.9705i −0.509898 0.509898i
\(863\) −2.11358 + 7.88799i −0.0719471 + 0.268510i −0.992524 0.122052i \(-0.961053\pi\)
0.920577 + 0.390562i \(0.127719\pi\)
\(864\) 7.23629 + 27.0062i 0.246183 + 0.918769i
\(865\) 0 0
\(866\) 19.1617 + 5.13435i 0.651139 + 0.174472i
\(867\) −23.0699 6.18156i −0.783495 0.209937i
\(868\) 12.8835 7.43831i 0.437296 0.252473i
\(869\) −35.4527 + 9.49953i −1.20265 + 0.322250i
\(870\) 0 0
\(871\) −28.0824 7.52466i −0.951536 0.254963i
\(872\) 7.64898 28.5464i 0.259027 0.966703i
\(873\) −3.77645 + 2.18033i −0.127813 + 0.0737931i
\(874\) −1.08904 + 1.08904i −0.0368374 + 0.0368374i
\(875\) 0 0
\(876\) −15.2802 + 8.82200i −0.516269 + 0.298068i
\(877\) −9.48217 + 9.48217i −0.320190 + 0.320190i −0.848840 0.528650i \(-0.822698\pi\)
0.528650 + 0.848840i \(0.322698\pi\)
\(878\) −8.68201 + 8.68201i −0.293004 + 0.293004i
\(879\) 26.7167 + 46.2747i 0.901131 + 1.56081i
\(880\) 0 0
\(881\) −18.1684 10.4895i −0.612110 0.353402i 0.161681 0.986843i \(-0.448308\pi\)
−0.773791 + 0.633441i \(0.781642\pi\)
\(882\) 1.66871i 0.0561885i
\(883\) 12.2856 21.2792i 0.413442 0.716103i −0.581822 0.813316i \(-0.697660\pi\)
0.995264 + 0.0972140i \(0.0309931\pi\)
\(884\) −11.2442 6.49185i −0.378184 0.218345i
\(885\) 0 0
\(886\) 5.76777 21.5256i 0.193772 0.723167i
\(887\) 7.43917 + 7.43917i 0.249783 + 0.249783i 0.820881 0.571099i \(-0.193483\pi\)
−0.571099 + 0.820881i \(0.693483\pi\)
\(888\) 27.8975 12.4841i 0.936179 0.418938i
\(889\) 4.69111i 0.157335i
\(890\) 0 0
\(891\) −35.6215 20.5661i −1.19336 0.688990i
\(892\) 14.1198 3.78339i 0.472766 0.126677i
\(893\) 6.32136 + 3.64964i 0.211536 + 0.122130i
\(894\) −16.4586 + 16.4586i −0.550457 + 0.550457i
\(895\) 0 0
\(896\) −7.26292 7.26292i −0.242637 0.242637i
\(897\) 6.93168 + 1.85734i 0.231442 + 0.0620148i
\(898\) 4.13547 + 4.13547i 0.138002 + 0.138002i
\(899\) −21.5801 −0.719735
\(900\) 0 0
\(901\) 6.99606 1.87459i 0.233073 0.0624516i
\(902\) 38.2372i 1.27316i
\(903\) −12.9949 22.5078i −0.432442 0.749012i
\(904\) −5.11721 + 2.95442i −0.170196 + 0.0982627i
\(905\) 0 0
\(906\) 6.43500 + 24.0157i 0.213788 + 0.797870i
\(907\) −17.8411 + 30.9017i −0.592404 + 1.02607i 0.401504 + 0.915857i \(0.368488\pi\)
−0.993908 + 0.110216i \(0.964846\pi\)
\(908\) −5.55922 9.62885i −0.184489 0.319545i
\(909\) 0.582974 + 1.00974i 0.0193360 + 0.0334910i
\(910\) 0 0
\(911\) −14.7906 14.7906i −0.490033 0.490033i 0.418283 0.908317i \(-0.362632\pi\)
−0.908317 + 0.418283i \(0.862632\pi\)
\(912\) −1.44376 0.833558i −0.0478078 0.0276019i
\(913\) −4.77654 1.27987i −0.158080 0.0423575i
\(914\) 10.7979i 0.357163i
\(915\) 0 0
\(916\) 23.3177 13.4625i 0.770440 0.444814i
\(917\) 12.2466i 0.404418i
\(918\) −2.05707 7.67707i −0.0678933 0.253381i
\(919\) 11.5779 + 11.5779i 0.381920 + 0.381920i 0.871794 0.489873i \(-0.162957\pi\)
−0.489873 + 0.871794i \(0.662957\pi\)
\(920\) 0 0
\(921\) −22.8342 + 39.5499i −0.752411 + 1.30321i
\(922\) 4.66933 + 17.4262i 0.153776 + 0.573901i
\(923\) −28.1769 + 16.2679i −0.927454 + 0.535466i
\(924\) 12.3955 0.407783
\(925\) 0 0
\(926\) −22.3916 −0.735835
\(927\) −2.56136 + 1.47880i −0.0841259 + 0.0485701i
\(928\) 3.56020 + 13.2868i 0.116869 + 0.436162i
\(929\) 7.03355 12.1825i 0.230763 0.399694i −0.727270 0.686352i \(-0.759211\pi\)
0.958033 + 0.286658i \(0.0925443\pi\)
\(930\) 0 0
\(931\) 9.08842 + 9.08842i 0.297861 + 0.297861i
\(932\) 3.10447 + 11.5860i 0.101690 + 0.379513i
\(933\) 39.9784i 1.30884i
\(934\) −8.15879 + 4.71048i −0.266964 + 0.154132i
\(935\) 0 0
\(936\) 4.99115i 0.163141i
\(937\) −24.5217 6.57057i −0.801090 0.214651i −0.165027 0.986289i \(-0.552771\pi\)
−0.636062 + 0.771638i \(0.719438\pi\)
\(938\) 5.22739 + 3.01803i 0.170680 + 0.0985423i
\(939\) −37.5039 37.5039i −1.22389 1.22389i
\(940\) 0 0
\(941\) 29.3296 + 50.8003i 0.956116 + 1.65604i 0.731793 + 0.681527i \(0.238684\pi\)
0.224324 + 0.974515i \(0.427983\pi\)
\(942\) −6.42146 11.1223i −0.209223 0.362384i
\(943\) −4.46850 + 7.73966i −0.145514 + 0.252038i
\(944\) 0.146455 + 0.546578i 0.00476671 + 0.0177896i
\(945\) 0 0
\(946\) −33.6114 + 19.4055i −1.09280 + 0.630928i
\(947\) 20.3531 + 35.2526i 0.661386 + 1.14555i 0.980252 + 0.197754i \(0.0633648\pi\)
−0.318865 + 0.947800i \(0.603302\pi\)
\(948\) 21.5822i 0.700959i
\(949\) −34.5856 + 9.26719i −1.12270 + 0.300826i
\(950\) 0 0
\(951\) 2.02058 0.0655217
\(952\) 4.79246 + 4.79246i 0.155325 + 0.155325i
\(953\) −6.73269 1.80402i −0.218093 0.0584379i 0.148118 0.988970i \(-0.452679\pi\)
−0.366211 + 0.930532i \(0.619345\pi\)
\(954\) 0.783042 + 0.783042i 0.0253519 + 0.0253519i
\(955\) 0 0
\(956\) 5.61556 5.61556i 0.181620 0.181620i
\(957\) −15.5720 8.99049i −0.503371 0.290621i
\(958\) −7.81712 + 2.09459i −0.252560 + 0.0676731i
\(959\) 22.7193 + 13.1170i 0.733644 + 0.423570i
\(960\) 0 0
\(961\) 51.5600i 1.66323i
\(962\) 24.3576 3.90513i 0.785320 0.125906i
\(963\) 0.566868 + 0.566868i 0.0182671 + 0.0182671i
\(964\) 0.0894775 0.333935i 0.00288188 0.0107553i
\(965\) 0 0
\(966\) −1.29030 0.744953i −0.0415146 0.0239685i
\(967\) −0.511694 + 0.886281i −0.0164550 + 0.0285009i −0.874136 0.485682i \(-0.838571\pi\)
0.857681 + 0.514183i \(0.171905\pi\)
\(968\) 16.4353i 0.528250i
\(969\) 7.47251 + 4.31425i 0.240052 + 0.138594i
\(970\) 0 0
\(971\) 7.81561 + 13.5370i 0.250815 + 0.434424i 0.963750 0.266805i \(-0.0859681\pi\)
−0.712936 + 0.701230i \(0.752635\pi\)
\(972\) −3.57722 + 3.57722i −0.114739 + 0.114739i
\(973\) −19.4208 + 19.4208i −0.622601 + 0.622601i
\(974\) 20.5246 11.8499i 0.657652 0.379695i
\(975\) 0 0
\(976\) −1.81892 + 1.81892i −0.0582222 + 0.0582222i
\(977\) 18.4196 10.6345i 0.589295 0.340229i −0.175524 0.984475i \(-0.556162\pi\)
0.764819 + 0.644246i \(0.222829\pi\)
\(978\) 0.371308 1.38574i 0.0118731 0.0443111i
\(979\) −28.8748 7.73698i −0.922843 0.247275i
\(980\) 0 0
\(981\) 3.86564 1.03579i 0.123420 0.0330704i
\(982\) 22.4898 12.9845i 0.717677 0.414351i
\(983\) 46.1634 + 12.3694i 1.47238 + 0.394524i 0.903748 0.428066i \(-0.140805\pi\)
0.568635 + 0.822590i \(0.307472\pi\)
\(984\) 54.6049 + 14.6313i 1.74074 + 0.466430i
\(985\) 0 0
\(986\) −1.01206 3.77706i −0.0322306 0.120286i
\(987\) −1.82757 + 6.82060i −0.0581723 + 0.217102i
\(988\) −10.8118 10.8118i −0.343968 0.343968i
\(989\) −9.07111 −0.288445
\(990\) 0 0
\(991\) −35.6021 + 35.6021i −1.13094 + 1.13094i −0.140916 + 0.990021i \(0.545005\pi\)
−0.990021 + 0.140916i \(0.954995\pi\)
\(992\) −50.8322 + 13.6204i −1.61392 + 0.432450i
\(993\) −3.57997 −0.113607
\(994\) 6.52484 1.74833i 0.206955 0.0554535i
\(995\) 0 0
\(996\) −1.45388 + 2.51820i −0.0460681 + 0.0797923i
\(997\) −14.7106 25.4796i −0.465891 0.806947i 0.533350 0.845894i \(-0.320933\pi\)
−0.999241 + 0.0389477i \(0.987599\pi\)
\(998\) −17.3085 + 17.3085i −0.547890 + 0.547890i
\(999\) −23.7883 17.2145i −0.752629 0.544644i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.11 68
5.2 odd 4 925.2.t.b.82.11 68
5.3 odd 4 185.2.p.a.82.7 68
5.4 even 2 185.2.u.a.8.7 yes 68
37.14 odd 12 925.2.t.b.643.11 68
185.14 odd 12 185.2.p.a.88.7 yes 68
185.88 even 12 185.2.u.a.162.7 yes 68
185.162 even 12 inner 925.2.y.b.532.11 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.7 68 5.3 odd 4
185.2.p.a.88.7 yes 68 185.14 odd 12
185.2.u.a.8.7 yes 68 5.4 even 2
185.2.u.a.162.7 yes 68 185.88 even 12
925.2.t.b.82.11 68 5.2 odd 4
925.2.t.b.643.11 68 37.14 odd 12
925.2.y.b.193.11 68 1.1 even 1 trivial
925.2.y.b.532.11 68 185.162 even 12 inner