Properties

Label 925.2.y.b.193.1
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.b.532.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.10002 + 1.21245i) q^{2} +(-0.586925 - 2.19044i) q^{3} +(1.94006 - 3.36028i) q^{4} +(3.88834 + 3.88834i) q^{6} +(0.132002 + 0.492639i) q^{7} +4.55908i q^{8} +(-1.85545 + 1.07124i) q^{9} -3.54199i q^{11} +(-8.49914 - 2.27734i) q^{12} +(3.22442 + 1.86162i) q^{13} +(-0.874506 - 0.874506i) q^{14} +(-1.64753 - 2.85361i) q^{16} +(2.57840 + 4.46592i) q^{17} +(2.59765 - 4.49927i) q^{18} +(1.61089 + 6.01191i) q^{19} +(1.00162 - 0.578285i) q^{21} +(4.29448 + 7.43826i) q^{22} +0.338516i q^{23} +(9.98638 - 2.67584i) q^{24} -9.02846 q^{26} +(-1.37503 - 1.37503i) q^{27} +(1.91150 + 0.512184i) q^{28} +(2.27033 + 2.27033i) q^{29} +(-5.38302 + 5.38302i) q^{31} +(-0.976852 - 0.563986i) q^{32} +(-7.75850 + 2.07889i) q^{33} +(-10.8294 - 6.25235i) q^{34} +8.31310i q^{36} +(5.22969 - 3.10650i) q^{37} +(-10.6720 - 10.6720i) q^{38} +(2.18526 - 8.15551i) q^{39} +(3.68619 + 2.12823i) q^{41} +(-1.40228 + 2.42882i) q^{42} +7.27408i q^{43} +(-11.9021 - 6.87167i) q^{44} +(-0.410433 - 0.710891i) q^{46} +(-5.08602 + 5.08602i) q^{47} +(-5.28368 + 5.28368i) q^{48} +(5.83691 - 3.36994i) q^{49} +(8.26899 - 8.26899i) q^{51} +(12.5111 - 7.22329i) q^{52} +(3.06455 - 11.4370i) q^{53} +(4.55474 + 1.22044i) q^{54} +(-2.24598 + 0.601809i) q^{56} +(12.2232 - 7.05709i) q^{57} +(-7.52039 - 2.01508i) q^{58} +(-4.75083 - 1.27298i) q^{59} +(3.52938 + 13.1718i) q^{61} +(4.77783 - 17.8311i) q^{62} +(-0.772660 - 0.772660i) q^{63} +9.32535 q^{64} +(13.7725 - 13.7725i) q^{66} +(6.51128 - 1.74469i) q^{67} +20.0090 q^{68} +(0.741497 - 0.198684i) q^{69} +(4.65903 - 8.06967i) q^{71} +(-4.88389 - 8.45915i) q^{72} +(3.04875 - 3.04875i) q^{73} +(-7.21600 + 12.8644i) q^{74} +(23.3269 + 6.25043i) q^{76} +(1.74492 - 0.467551i) q^{77} +(5.29903 + 19.7763i) q^{78} +(-0.309140 - 1.15373i) q^{79} +(-5.41860 + 9.38530i) q^{81} -10.3214 q^{82} +(-2.96248 + 11.0561i) q^{83} -4.48762i q^{84} +(-8.81944 - 15.2757i) q^{86} +(3.64049 - 6.30552i) q^{87} +16.1482 q^{88} +(3.23761 - 12.0829i) q^{89} +(-0.491475 + 1.83421i) q^{91} +(1.13751 + 0.656741i) q^{92} +(14.9506 + 8.63173i) q^{93} +(4.51421 - 16.8473i) q^{94} +(-0.662035 + 2.47075i) q^{96} +4.72808 q^{97} +(-8.17175 + 14.1539i) q^{98} +(3.79434 + 6.57199i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.10002 + 1.21245i −1.48494 + 0.857330i −0.999853 0.0171367i \(-0.994545\pi\)
−0.485086 + 0.874467i \(0.661212\pi\)
\(3\) −0.586925 2.19044i −0.338862 1.26465i −0.899622 0.436670i \(-0.856158\pi\)
0.560760 0.827978i \(-0.310509\pi\)
\(4\) 1.94006 3.36028i 0.970029 1.68014i
\(5\) 0 0
\(6\) 3.88834 + 3.88834i 1.58741 + 1.58741i
\(7\) 0.132002 + 0.492639i 0.0498922 + 0.186200i 0.986375 0.164514i \(-0.0526056\pi\)
−0.936483 + 0.350714i \(0.885939\pi\)
\(8\) 4.55908i 1.61188i
\(9\) −1.85545 + 1.07124i −0.618483 + 0.357081i
\(10\) 0 0
\(11\) 3.54199i 1.06795i −0.845500 0.533975i \(-0.820697\pi\)
0.845500 0.533975i \(-0.179303\pi\)
\(12\) −8.49914 2.27734i −2.45349 0.657411i
\(13\) 3.22442 + 1.86162i 0.894292 + 0.516320i 0.875344 0.483501i \(-0.160635\pi\)
0.0189483 + 0.999820i \(0.493968\pi\)
\(14\) −0.874506 0.874506i −0.233722 0.233722i
\(15\) 0 0
\(16\) −1.64753 2.85361i −0.411884 0.713404i
\(17\) 2.57840 + 4.46592i 0.625354 + 1.08315i 0.988472 + 0.151402i \(0.0483789\pi\)
−0.363118 + 0.931743i \(0.618288\pi\)
\(18\) 2.59765 4.49927i 0.612273 1.06049i
\(19\) 1.61089 + 6.01191i 0.369563 + 1.37923i 0.861129 + 0.508387i \(0.169758\pi\)
−0.491566 + 0.870841i \(0.663575\pi\)
\(20\) 0 0
\(21\) 1.00162 0.578285i 0.218571 0.126192i
\(22\) 4.29448 + 7.43826i 0.915586 + 1.58584i
\(23\) 0.338516i 0.0705855i 0.999377 + 0.0352927i \(0.0112364\pi\)
−0.999377 + 0.0352927i \(0.988764\pi\)
\(24\) 9.98638 2.67584i 2.03846 0.546204i
\(25\) 0 0
\(26\) −9.02846 −1.77063
\(27\) −1.37503 1.37503i −0.264624 0.264624i
\(28\) 1.91150 + 0.512184i 0.361239 + 0.0967937i
\(29\) 2.27033 + 2.27033i 0.421589 + 0.421589i 0.885751 0.464161i \(-0.153644\pi\)
−0.464161 + 0.885751i \(0.653644\pi\)
\(30\) 0 0
\(31\) −5.38302 + 5.38302i −0.966820 + 0.966820i −0.999467 0.0326474i \(-0.989606\pi\)
0.0326474 + 0.999467i \(0.489606\pi\)
\(32\) −0.976852 0.563986i −0.172685 0.0996995i
\(33\) −7.75850 + 2.07889i −1.35058 + 0.361887i
\(34\) −10.8294 6.25235i −1.85723 1.07227i
\(35\) 0 0
\(36\) 8.31310i 1.38552i
\(37\) 5.22969 3.10650i 0.859756 0.510705i
\(38\) −10.6720 10.6720i −1.73123 1.73123i
\(39\) 2.18526 8.15551i 0.349922 1.30593i
\(40\) 0 0
\(41\) 3.68619 + 2.12823i 0.575687 + 0.332373i 0.759417 0.650604i \(-0.225484\pi\)
−0.183731 + 0.982977i \(0.558817\pi\)
\(42\) −1.40228 + 2.42882i −0.216376 + 0.374775i
\(43\) 7.27408i 1.10929i 0.832088 + 0.554643i \(0.187145\pi\)
−0.832088 + 0.554643i \(0.812855\pi\)
\(44\) −11.9021 6.87167i −1.79431 1.03594i
\(45\) 0 0
\(46\) −0.410433 0.710891i −0.0605150 0.104815i
\(47\) −5.08602 + 5.08602i −0.741872 + 0.741872i −0.972938 0.231066i \(-0.925779\pi\)
0.231066 + 0.972938i \(0.425779\pi\)
\(48\) −5.28368 + 5.28368i −0.762633 + 0.762633i
\(49\) 5.83691 3.36994i 0.833844 0.481420i
\(50\) 0 0
\(51\) 8.26899 8.26899i 1.15789 1.15789i
\(52\) 12.5111 7.22329i 1.73498 1.00169i
\(53\) 3.06455 11.4370i 0.420948 1.57100i −0.351668 0.936125i \(-0.614385\pi\)
0.772616 0.634874i \(-0.218948\pi\)
\(54\) 4.55474 + 1.22044i 0.619822 + 0.166081i
\(55\) 0 0
\(56\) −2.24598 + 0.601809i −0.300132 + 0.0804202i
\(57\) 12.2232 7.05709i 1.61901 0.934734i
\(58\) −7.52039 2.01508i −0.987476 0.264593i
\(59\) −4.75083 1.27298i −0.618505 0.165728i −0.0640571 0.997946i \(-0.520404\pi\)
−0.554448 + 0.832218i \(0.687071\pi\)
\(60\) 0 0
\(61\) 3.52938 + 13.1718i 0.451890 + 1.68648i 0.697073 + 0.717001i \(0.254486\pi\)
−0.245182 + 0.969477i \(0.578848\pi\)
\(62\) 4.77783 17.8311i 0.606785 2.26455i
\(63\) −0.772660 0.772660i −0.0973460 0.0973460i
\(64\) 9.32535 1.16567
\(65\) 0 0
\(66\) 13.7725 13.7725i 1.69528 1.69528i
\(67\) 6.51128 1.74469i 0.795480 0.213148i 0.161881 0.986810i \(-0.448244\pi\)
0.633599 + 0.773662i \(0.281577\pi\)
\(68\) 20.0090 2.42645
\(69\) 0.741497 0.198684i 0.0892658 0.0239187i
\(70\) 0 0
\(71\) 4.65903 8.06967i 0.552925 0.957694i −0.445137 0.895463i \(-0.646845\pi\)
0.998062 0.0622314i \(-0.0198217\pi\)
\(72\) −4.88389 8.45915i −0.575572 0.996920i
\(73\) 3.04875 3.04875i 0.356829 0.356829i −0.505814 0.862643i \(-0.668808\pi\)
0.862643 + 0.505814i \(0.168808\pi\)
\(74\) −7.21600 + 12.8644i −0.838843 + 1.49546i
\(75\) 0 0
\(76\) 23.3269 + 6.25043i 2.67578 + 0.716974i
\(77\) 1.74492 0.467551i 0.198853 0.0532824i
\(78\) 5.29903 + 19.7763i 0.599997 + 2.23922i
\(79\) −0.309140 1.15373i −0.0347810 0.129804i 0.946352 0.323136i \(-0.104737\pi\)
−0.981133 + 0.193332i \(0.938071\pi\)
\(80\) 0 0
\(81\) −5.41860 + 9.38530i −0.602067 + 1.04281i
\(82\) −10.3214 −1.13981
\(83\) −2.96248 + 11.0561i −0.325174 + 1.21357i 0.588962 + 0.808161i \(0.299537\pi\)
−0.914137 + 0.405406i \(0.867130\pi\)
\(84\) 4.48762i 0.489640i
\(85\) 0 0
\(86\) −8.81944 15.2757i −0.951025 1.64722i
\(87\) 3.64049 6.30552i 0.390302 0.676023i
\(88\) 16.1482 1.72141
\(89\) 3.23761 12.0829i 0.343186 1.28079i −0.551531 0.834155i \(-0.685956\pi\)
0.894717 0.446634i \(-0.147377\pi\)
\(90\) 0 0
\(91\) −0.491475 + 1.83421i −0.0515206 + 0.192278i
\(92\) 1.13751 + 0.656741i 0.118593 + 0.0684700i
\(93\) 14.9506 + 8.63173i 1.55030 + 0.895069i
\(94\) 4.51421 16.8473i 0.465606 1.73766i
\(95\) 0 0
\(96\) −0.662035 + 2.47075i −0.0675686 + 0.252170i
\(97\) 4.72808 0.480064 0.240032 0.970765i \(-0.422842\pi\)
0.240032 + 0.970765i \(0.422842\pi\)
\(98\) −8.17175 + 14.1539i −0.825472 + 1.42976i
\(99\) 3.79434 + 6.57199i 0.381345 + 0.660509i
\(100\) 0 0
\(101\) 7.82698i 0.778814i −0.921066 0.389407i \(-0.872680\pi\)
0.921066 0.389407i \(-0.127320\pi\)
\(102\) −7.33933 + 27.3908i −0.726702 + 2.71209i
\(103\) −4.11567 −0.405529 −0.202764 0.979228i \(-0.564993\pi\)
−0.202764 + 0.979228i \(0.564993\pi\)
\(104\) −8.48727 + 14.7004i −0.832246 + 1.44149i
\(105\) 0 0
\(106\) 7.43120 + 27.7336i 0.721782 + 2.69373i
\(107\) 4.12965 + 15.4121i 0.399229 + 1.48994i 0.814457 + 0.580224i \(0.197035\pi\)
−0.415228 + 0.909717i \(0.636298\pi\)
\(108\) −7.28812 + 1.95285i −0.701299 + 0.187913i
\(109\) 8.54823 + 2.29049i 0.818772 + 0.219389i 0.643809 0.765186i \(-0.277353\pi\)
0.174962 + 0.984575i \(0.444020\pi\)
\(110\) 0 0
\(111\) −9.87402 9.63202i −0.937200 0.914231i
\(112\) 1.18832 1.18832i 0.112286 0.112286i
\(113\) −1.99398 3.45367i −0.187578 0.324894i 0.756864 0.653572i \(-0.226730\pi\)
−0.944442 + 0.328678i \(0.893397\pi\)
\(114\) −17.1127 + 29.6401i −1.60275 + 2.77605i
\(115\) 0 0
\(116\) 12.0335 3.22437i 1.11728 0.299375i
\(117\) −7.97699 −0.737473
\(118\) 11.5203 3.08684i 1.06053 0.284167i
\(119\) −1.85973 + 1.85973i −0.170481 + 0.170481i
\(120\) 0 0
\(121\) −1.54571 −0.140519
\(122\) −23.3819 23.3819i −2.11690 2.11690i
\(123\) 2.49822 9.32348i 0.225257 0.840670i
\(124\) 7.64508 + 28.5318i 0.686549 + 2.56223i
\(125\) 0 0
\(126\) 2.55941 + 0.685792i 0.228011 + 0.0610952i
\(127\) 10.7680 + 2.88527i 0.955504 + 0.256027i 0.702696 0.711490i \(-0.251979\pi\)
0.252808 + 0.967516i \(0.418646\pi\)
\(128\) −17.6297 + 10.1785i −1.55826 + 0.899663i
\(129\) 15.9334 4.26934i 1.40286 0.375895i
\(130\) 0 0
\(131\) −3.98701 1.06832i −0.348347 0.0933393i 0.0804031 0.996762i \(-0.474379\pi\)
−0.428750 + 0.903423i \(0.641046\pi\)
\(132\) −8.06632 + 30.1039i −0.702083 + 2.62021i
\(133\) −2.74906 + 1.58717i −0.238374 + 0.137625i
\(134\) −11.5585 + 11.5585i −0.998501 + 0.998501i
\(135\) 0 0
\(136\) −20.3605 + 11.7552i −1.74590 + 1.00800i
\(137\) 10.9312 10.9312i 0.933918 0.933918i −0.0640304 0.997948i \(-0.520395\pi\)
0.997948 + 0.0640304i \(0.0203955\pi\)
\(138\) −1.31627 + 1.31627i −0.112048 + 0.112048i
\(139\) −3.85294 6.67349i −0.326802 0.566038i 0.655073 0.755566i \(-0.272638\pi\)
−0.981875 + 0.189527i \(0.939304\pi\)
\(140\) 0 0
\(141\) 14.1257 + 8.15548i 1.18960 + 0.686815i
\(142\) 22.5953i 1.89616i
\(143\) 6.59384 11.4209i 0.551404 0.955060i
\(144\) 6.11383 + 3.52982i 0.509486 + 0.294152i
\(145\) 0 0
\(146\) −2.70599 + 10.0989i −0.223949 + 0.835789i
\(147\) −10.8075 10.8075i −0.891385 0.891385i
\(148\) −0.292792 23.6000i −0.0240674 1.93991i
\(149\) 4.52038i 0.370324i −0.982708 0.185162i \(-0.940719\pi\)
0.982708 0.185162i \(-0.0592810\pi\)
\(150\) 0 0
\(151\) 7.34080 + 4.23821i 0.597386 + 0.344901i 0.768013 0.640435i \(-0.221246\pi\)
−0.170626 + 0.985336i \(0.554579\pi\)
\(152\) −27.4088 + 7.34417i −2.22315 + 0.595691i
\(153\) −9.56819 5.52419i −0.773542 0.446605i
\(154\) −3.09749 + 3.09749i −0.249603 + 0.249603i
\(155\) 0 0
\(156\) −23.1652 23.1652i −1.85470 1.85470i
\(157\) 6.25734 + 1.67665i 0.499390 + 0.133811i 0.499717 0.866189i \(-0.333437\pi\)
−0.000326679 1.00000i \(0.500104\pi\)
\(158\) 2.04803 + 2.04803i 0.162933 + 0.162933i
\(159\) −26.8508 −2.12940
\(160\) 0 0
\(161\) −0.166766 + 0.0446849i −0.0131430 + 0.00352166i
\(162\) 26.2791i 2.06468i
\(163\) −5.44041 9.42307i −0.426126 0.738072i 0.570399 0.821368i \(-0.306789\pi\)
−0.996525 + 0.0832960i \(0.973455\pi\)
\(164\) 14.3029 8.25776i 1.11687 0.644823i
\(165\) 0 0
\(166\) −7.18370 26.8099i −0.557563 2.08085i
\(167\) 0.0342983 0.0594064i 0.00265408 0.00459701i −0.864695 0.502297i \(-0.832489\pi\)
0.867349 + 0.497700i \(0.165822\pi\)
\(168\) 2.63645 + 4.56646i 0.203406 + 0.352310i
\(169\) 0.431244 + 0.746936i 0.0331726 + 0.0574566i
\(170\) 0 0
\(171\) −9.42915 9.42915i −0.721065 0.721065i
\(172\) 24.4429 + 14.1121i 1.86376 + 1.07604i
\(173\) −5.77870 1.54840i −0.439346 0.117722i 0.0323639 0.999476i \(-0.489696\pi\)
−0.471710 + 0.881754i \(0.656363\pi\)
\(174\) 17.6556i 1.33847i
\(175\) 0 0
\(176\) −10.1075 + 5.83556i −0.761880 + 0.439872i
\(177\) 11.1535i 0.838351i
\(178\) 7.85087 + 29.2999i 0.588448 + 2.19612i
\(179\) 11.7111 + 11.7111i 0.875328 + 0.875328i 0.993047 0.117719i \(-0.0375583\pi\)
−0.117719 + 0.993047i \(0.537558\pi\)
\(180\) 0 0
\(181\) −7.37562 + 12.7750i −0.548226 + 0.949555i 0.450171 + 0.892943i \(0.351363\pi\)
−0.998396 + 0.0566121i \(0.981970\pi\)
\(182\) −1.19178 4.44777i −0.0883404 0.329691i
\(183\) 26.7805 15.4617i 1.97967 1.14296i
\(184\) −1.54332 −0.113775
\(185\) 0 0
\(186\) −41.8621 −3.06948
\(187\) 15.8183 9.13268i 1.15675 0.667848i
\(188\) 7.22327 + 26.9576i 0.526811 + 1.96609i
\(189\) 0.495886 0.858900i 0.0360704 0.0624758i
\(190\) 0 0
\(191\) −5.10682 5.10682i −0.369517 0.369517i 0.497784 0.867301i \(-0.334147\pi\)
−0.867301 + 0.497784i \(0.834147\pi\)
\(192\) −5.47328 20.4266i −0.395000 1.47416i
\(193\) 16.0854i 1.15785i −0.815381 0.578925i \(-0.803472\pi\)
0.815381 0.578925i \(-0.196528\pi\)
\(194\) −9.92906 + 5.73255i −0.712865 + 0.411573i
\(195\) 0 0
\(196\) 26.1515i 1.86797i
\(197\) 1.27500 + 0.341636i 0.0908403 + 0.0243406i 0.303953 0.952687i \(-0.401693\pi\)
−0.213113 + 0.977028i \(0.568360\pi\)
\(198\) −15.9364 9.20087i −1.13255 0.653877i
\(199\) −6.93417 6.93417i −0.491550 0.491550i 0.417244 0.908794i \(-0.362996\pi\)
−0.908794 + 0.417244i \(0.862996\pi\)
\(200\) 0 0
\(201\) −7.64327 13.2385i −0.539115 0.933775i
\(202\) 9.48980 + 16.4368i 0.667700 + 1.15649i
\(203\) −0.818764 + 1.41814i −0.0574660 + 0.0995340i
\(204\) −11.7438 43.8284i −0.822230 3.06860i
\(205\) 0 0
\(206\) 8.64298 4.99003i 0.602185 0.347672i
\(207\) −0.362633 0.628099i −0.0252048 0.0436559i
\(208\) 12.2683i 0.850655i
\(209\) 21.2942 5.70575i 1.47295 0.394675i
\(210\) 0 0
\(211\) 20.0827 1.38255 0.691276 0.722591i \(-0.257049\pi\)
0.691276 + 0.722591i \(0.257049\pi\)
\(212\) −32.4863 32.4863i −2.23117 2.23117i
\(213\) −20.4106 5.46900i −1.39851 0.374730i
\(214\) −27.3587 27.3587i −1.87020 1.87020i
\(215\) 0 0
\(216\) 6.26887 6.26887i 0.426543 0.426543i
\(217\) −3.36246 1.94132i −0.228259 0.131785i
\(218\) −20.7286 + 5.55420i −1.40391 + 0.376178i
\(219\) −8.46747 4.88870i −0.572179 0.330348i
\(220\) 0 0
\(221\) 19.2000i 1.29153i
\(222\) 32.4140 + 8.25571i 2.17548 + 0.554087i
\(223\) −7.38420 7.38420i −0.494483 0.494483i 0.415233 0.909715i \(-0.363700\pi\)
−0.909715 + 0.415233i \(0.863700\pi\)
\(224\) 0.148895 0.555683i 0.00994844 0.0371281i
\(225\) 0 0
\(226\) 8.37480 + 4.83519i 0.557083 + 0.321632i
\(227\) −7.02187 + 12.1622i −0.466058 + 0.807236i −0.999249 0.0387589i \(-0.987660\pi\)
0.533190 + 0.845995i \(0.320993\pi\)
\(228\) 54.7647i 3.62688i
\(229\) −4.87436 2.81421i −0.322107 0.185968i 0.330224 0.943902i \(-0.392876\pi\)
−0.652331 + 0.757934i \(0.726209\pi\)
\(230\) 0 0
\(231\) −2.04828 3.54772i −0.134767 0.233423i
\(232\) −10.3506 + 10.3506i −0.679552 + 0.679552i
\(233\) 0.663810 0.663810i 0.0434877 0.0434877i −0.685029 0.728516i \(-0.740210\pi\)
0.728516 + 0.685029i \(0.240210\pi\)
\(234\) 16.7518 9.67168i 1.09510 0.632258i
\(235\) 0 0
\(236\) −13.4945 + 13.4945i −0.878414 + 0.878414i
\(237\) −2.34572 + 1.35430i −0.152371 + 0.0879714i
\(238\) 1.65065 6.16031i 0.106996 0.399313i
\(239\) −16.2404 4.35161i −1.05051 0.281482i −0.308046 0.951372i \(-0.599675\pi\)
−0.742461 + 0.669889i \(0.766342\pi\)
\(240\) 0 0
\(241\) −17.7499 + 4.75606i −1.14337 + 0.306365i −0.780305 0.625399i \(-0.784936\pi\)
−0.363065 + 0.931764i \(0.618270\pi\)
\(242\) 3.24602 1.87409i 0.208662 0.120471i
\(243\) 18.1032 + 4.85075i 1.16132 + 0.311176i
\(244\) 51.1082 + 13.6944i 3.27186 + 0.876693i
\(245\) 0 0
\(246\) 6.05792 + 22.6085i 0.386239 + 1.44146i
\(247\) −5.99772 + 22.3838i −0.381625 + 1.42425i
\(248\) −24.5417 24.5417i −1.55840 1.55840i
\(249\) 25.9565 1.64492
\(250\) 0 0
\(251\) −5.87927 + 5.87927i −0.371096 + 0.371096i −0.867876 0.496780i \(-0.834516\pi\)
0.496780 + 0.867876i \(0.334516\pi\)
\(252\) −4.09536 + 1.09735i −0.257983 + 0.0691264i
\(253\) 1.19902 0.0753818
\(254\) −26.1112 + 6.99649i −1.63836 + 0.438999i
\(255\) 0 0
\(256\) 15.3565 26.5983i 0.959782 1.66239i
\(257\) 7.49045 + 12.9738i 0.467241 + 0.809286i 0.999300 0.0374219i \(-0.0119146\pi\)
−0.532058 + 0.846708i \(0.678581\pi\)
\(258\) −28.2841 + 28.2841i −1.76089 + 1.76089i
\(259\) 2.22071 + 2.16629i 0.137988 + 0.134606i
\(260\) 0 0
\(261\) −6.64456 1.78040i −0.411288 0.110204i
\(262\) 9.66809 2.59056i 0.597297 0.160045i
\(263\) 3.63934 + 13.5822i 0.224411 + 0.837514i 0.982640 + 0.185525i \(0.0593985\pi\)
−0.758228 + 0.651989i \(0.773935\pi\)
\(264\) −9.47781 35.3717i −0.583319 2.17698i
\(265\) 0 0
\(266\) 3.84873 6.66619i 0.235981 0.408730i
\(267\) −28.3671 −1.73604
\(268\) 6.76961 25.2645i 0.413520 1.54328i
\(269\) 1.04920i 0.0639708i 0.999488 + 0.0319854i \(0.0101830\pi\)
−0.999488 + 0.0319854i \(0.989817\pi\)
\(270\) 0 0
\(271\) −6.57360 11.3858i −0.399318 0.691638i 0.594324 0.804225i \(-0.297420\pi\)
−0.993642 + 0.112587i \(0.964086\pi\)
\(272\) 8.49601 14.7155i 0.515147 0.892260i
\(273\) 4.30618 0.260622
\(274\) −9.70226 + 36.2093i −0.586135 + 2.18749i
\(275\) 0 0
\(276\) 0.770916 2.87710i 0.0464037 0.173181i
\(277\) −13.8716 8.00875i −0.833461 0.481199i 0.0215750 0.999767i \(-0.493132\pi\)
−0.855036 + 0.518568i \(0.826465\pi\)
\(278\) 16.1825 + 9.34298i 0.970563 + 0.560355i
\(279\) 4.22139 15.7545i 0.252728 0.943195i
\(280\) 0 0
\(281\) 1.07217 4.00139i 0.0639603 0.238703i −0.926544 0.376187i \(-0.877235\pi\)
0.990504 + 0.137484i \(0.0439016\pi\)
\(282\) −39.5524 −2.35531
\(283\) 10.2040 17.6738i 0.606563 1.05060i −0.385239 0.922817i \(-0.625881\pi\)
0.991802 0.127782i \(-0.0407857\pi\)
\(284\) −18.0776 31.3113i −1.07271 1.85798i
\(285\) 0 0
\(286\) 31.9787i 1.89094i
\(287\) −0.561861 + 2.09689i −0.0331656 + 0.123776i
\(288\) 2.41666 0.142403
\(289\) −4.79631 + 8.30746i −0.282136 + 0.488674i
\(290\) 0 0
\(291\) −2.77503 10.3566i −0.162675 0.607112i
\(292\) −4.32990 16.1594i −0.253388 0.945657i
\(293\) −14.8251 + 3.97236i −0.866090 + 0.232068i −0.664396 0.747381i \(-0.731311\pi\)
−0.201694 + 0.979449i \(0.564644\pi\)
\(294\) 35.7994 + 9.59242i 2.08786 + 0.559441i
\(295\) 0 0
\(296\) 14.1628 + 23.8426i 0.823195 + 1.38582i
\(297\) −4.87034 + 4.87034i −0.282606 + 0.282606i
\(298\) 5.48072 + 9.49289i 0.317490 + 0.549908i
\(299\) −0.630188 + 1.09152i −0.0364447 + 0.0631240i
\(300\) 0 0
\(301\) −3.58350 + 0.960195i −0.206549 + 0.0553447i
\(302\) −20.5545 −1.18278
\(303\) −17.1445 + 4.59385i −0.984925 + 0.263910i
\(304\) 14.5017 14.5017i 0.831729 0.831729i
\(305\) 0 0
\(306\) 26.7912 1.53155
\(307\) −12.4311 12.4311i −0.709480 0.709480i 0.256946 0.966426i \(-0.417284\pi\)
−0.966426 + 0.256946i \(0.917284\pi\)
\(308\) 1.81415 6.77051i 0.103371 0.385785i
\(309\) 2.41559 + 9.01510i 0.137418 + 0.512851i
\(310\) 0 0
\(311\) −14.7974 3.96496i −0.839085 0.224832i −0.186412 0.982472i \(-0.559686\pi\)
−0.652673 + 0.757639i \(0.726353\pi\)
\(312\) 37.1817 + 9.96279i 2.10500 + 0.564032i
\(313\) −7.67727 + 4.43247i −0.433945 + 0.250538i −0.701026 0.713136i \(-0.747274\pi\)
0.267081 + 0.963674i \(0.413941\pi\)
\(314\) −15.1734 + 4.06570i −0.856285 + 0.229441i
\(315\) 0 0
\(316\) −4.47659 1.19950i −0.251828 0.0674771i
\(317\) 4.48626 16.7429i 0.251973 0.940377i −0.717776 0.696274i \(-0.754840\pi\)
0.969749 0.244103i \(-0.0784936\pi\)
\(318\) 56.3872 32.5551i 3.16204 1.82560i
\(319\) 8.04149 8.04149i 0.450237 0.450237i
\(320\) 0 0
\(321\) 31.3354 18.0915i 1.74897 1.00977i
\(322\) 0.296034 0.296034i 0.0164974 0.0164974i
\(323\) −22.6952 + 22.6952i −1.26280 + 1.26280i
\(324\) 21.0248 + 36.4160i 1.16805 + 2.02311i
\(325\) 0 0
\(326\) 22.8500 + 13.1924i 1.26554 + 0.730661i
\(327\) 20.0687i 1.10980i
\(328\) −9.70276 + 16.8057i −0.535745 + 0.927938i
\(329\) −3.17694 1.83421i −0.175150 0.101123i
\(330\) 0 0
\(331\) 5.45207 20.3474i 0.299673 1.11839i −0.637762 0.770234i \(-0.720140\pi\)
0.937435 0.348161i \(-0.113194\pi\)
\(332\) 31.4043 + 31.4043i 1.72353 + 1.72353i
\(333\) −6.37561 + 11.3662i −0.349381 + 0.622865i
\(334\) 0.166340i 0.00910170i
\(335\) 0 0
\(336\) −3.30040 1.90549i −0.180052 0.103953i
\(337\) −31.0294 + 8.31429i −1.69028 + 0.452908i −0.970461 0.241257i \(-0.922440\pi\)
−0.719816 + 0.694165i \(0.755774\pi\)
\(338\) −1.81124 1.04572i −0.0985186 0.0568797i
\(339\) −6.39473 + 6.39473i −0.347314 + 0.347314i
\(340\) 0 0
\(341\) 19.0666 + 19.0666i 1.03252 + 1.03252i
\(342\) 31.2338 + 8.36906i 1.68893 + 0.452547i
\(343\) 4.95511 + 4.95511i 0.267551 + 0.267551i
\(344\) −33.1632 −1.78804
\(345\) 0 0
\(346\) 14.0127 3.75470i 0.753329 0.201854i
\(347\) 3.43520i 0.184411i 0.995740 + 0.0922055i \(0.0293917\pi\)
−0.995740 + 0.0922055i \(0.970608\pi\)
\(348\) −14.1255 24.4662i −0.757209 1.31152i
\(349\) 2.54502 1.46937i 0.136232 0.0786533i −0.430335 0.902669i \(-0.641605\pi\)
0.566567 + 0.824016i \(0.308271\pi\)
\(350\) 0 0
\(351\) −1.87389 6.99345i −0.100021 0.373283i
\(352\) −1.99763 + 3.46000i −0.106474 + 0.184419i
\(353\) −1.46544 2.53821i −0.0779974 0.135095i 0.824388 0.566025i \(-0.191519\pi\)
−0.902386 + 0.430929i \(0.858186\pi\)
\(354\) −13.5231 23.4226i −0.718743 1.24490i
\(355\) 0 0
\(356\) −34.3209 34.3209i −1.81900 1.81900i
\(357\) 5.16515 + 2.98210i 0.273369 + 0.157829i
\(358\) −38.7926 10.3944i −2.05025 0.549364i
\(359\) 33.4016i 1.76287i 0.472306 + 0.881435i \(0.343422\pi\)
−0.472306 + 0.881435i \(0.656578\pi\)
\(360\) 0 0
\(361\) −17.0937 + 9.86904i −0.899667 + 0.519423i
\(362\) 35.7702i 1.88004i
\(363\) 0.907216 + 3.38578i 0.0476165 + 0.177707i
\(364\) 5.20997 + 5.20997i 0.273077 + 0.273077i
\(365\) 0 0
\(366\) −37.4931 + 64.9399i −1.95980 + 3.39447i
\(367\) 1.84441 + 6.88341i 0.0962772 + 0.359311i 0.997210 0.0746473i \(-0.0237831\pi\)
−0.900933 + 0.433959i \(0.857116\pi\)
\(368\) 0.965994 0.557717i 0.0503559 0.0290730i
\(369\) −9.11939 −0.474737
\(370\) 0 0
\(371\) 6.03886 0.313522
\(372\) 58.0101 33.4921i 3.00768 1.73649i
\(373\) 8.66861 + 32.3517i 0.448843 + 1.67511i 0.705584 + 0.708626i \(0.250685\pi\)
−0.256741 + 0.966480i \(0.582649\pi\)
\(374\) −22.1458 + 38.3576i −1.14513 + 1.98343i
\(375\) 0 0
\(376\) −23.1876 23.1876i −1.19581 1.19581i
\(377\) 3.09400 + 11.5470i 0.159349 + 0.594699i
\(378\) 2.40494i 0.123697i
\(379\) 0.843406 0.486941i 0.0433229 0.0250125i −0.478182 0.878261i \(-0.658704\pi\)
0.521505 + 0.853248i \(0.325371\pi\)
\(380\) 0 0
\(381\) 25.2800i 1.29513i
\(382\) 16.9162 + 4.53268i 0.865507 + 0.231912i
\(383\) 26.3897 + 15.2361i 1.34845 + 0.778527i 0.988030 0.154263i \(-0.0493003\pi\)
0.360419 + 0.932790i \(0.382634\pi\)
\(384\) 32.6427 + 32.6427i 1.66579 + 1.66579i
\(385\) 0 0
\(386\) 19.5027 + 33.7796i 0.992660 + 1.71934i
\(387\) −7.79232 13.4967i −0.396106 0.686075i
\(388\) 9.17275 15.8877i 0.465676 0.806574i
\(389\) 0.145105 + 0.541538i 0.00735710 + 0.0274571i 0.969507 0.245064i \(-0.0788091\pi\)
−0.962150 + 0.272521i \(0.912142\pi\)
\(390\) 0 0
\(391\) −1.51179 + 0.872830i −0.0764543 + 0.0441409i
\(392\) 15.3638 + 26.6110i 0.775991 + 1.34406i
\(393\) 9.36032i 0.472166i
\(394\) −3.09175 + 0.828432i −0.155760 + 0.0417358i
\(395\) 0 0
\(396\) 29.4449 1.47966
\(397\) 12.8419 + 12.8419i 0.644519 + 0.644519i 0.951663 0.307144i \(-0.0993735\pi\)
−0.307144 + 0.951663i \(0.599373\pi\)
\(398\) 22.9692 + 6.15458i 1.15134 + 0.308501i
\(399\) 5.09009 + 5.09009i 0.254823 + 0.254823i
\(400\) 0 0
\(401\) 19.2588 19.2588i 0.961739 0.961739i −0.0375556 0.999295i \(-0.511957\pi\)
0.999295 + 0.0375556i \(0.0119571\pi\)
\(402\) 32.1021 + 18.5341i 1.60111 + 0.924399i
\(403\) −27.3782 + 7.33598i −1.36381 + 0.365431i
\(404\) −26.3008 15.1848i −1.30852 0.755472i
\(405\) 0 0
\(406\) 3.97083i 0.197069i
\(407\) −11.0032 18.5235i −0.545408 0.918177i
\(408\) 37.6990 + 37.6990i 1.86638 + 1.86638i
\(409\) −4.51734 + 16.8590i −0.223368 + 0.833622i 0.759683 + 0.650293i \(0.225354\pi\)
−0.983052 + 0.183329i \(0.941313\pi\)
\(410\) 0 0
\(411\) −30.3600 17.5283i −1.49755 0.864609i
\(412\) −7.98463 + 13.8298i −0.393375 + 0.681345i
\(413\) 2.50848i 0.123434i
\(414\) 1.52307 + 0.879348i 0.0748550 + 0.0432176i
\(415\) 0 0
\(416\) −2.09985 3.63705i −0.102954 0.178321i
\(417\) −12.3565 + 12.3565i −0.605099 + 0.605099i
\(418\) −37.8002 + 37.8002i −1.84887 + 1.84887i
\(419\) 28.8474 16.6550i 1.40929 0.813652i 0.413967 0.910292i \(-0.364143\pi\)
0.995319 + 0.0966398i \(0.0308095\pi\)
\(420\) 0 0
\(421\) −22.7419 + 22.7419i −1.10837 + 1.10837i −0.115006 + 0.993365i \(0.536689\pi\)
−0.993365 + 0.115006i \(0.963311\pi\)
\(422\) −42.1741 + 24.3493i −2.05301 + 1.18530i
\(423\) 3.98848 14.8852i 0.193927 0.723744i
\(424\) 52.1425 + 13.9715i 2.53226 + 0.678517i
\(425\) 0 0
\(426\) 49.4936 13.2618i 2.39797 0.642534i
\(427\) −6.02306 + 3.47742i −0.291476 + 0.168284i
\(428\) 59.8007 + 16.0235i 2.89057 + 0.774527i
\(429\) −28.8867 7.74018i −1.39467 0.373699i
\(430\) 0 0
\(431\) 1.81621 + 6.77820i 0.0874840 + 0.326495i 0.995773 0.0918486i \(-0.0292776\pi\)
−0.908289 + 0.418343i \(0.862611\pi\)
\(432\) −1.65839 + 6.18921i −0.0797895 + 0.297779i
\(433\) 25.1107 + 25.1107i 1.20674 + 1.20674i 0.972076 + 0.234667i \(0.0754000\pi\)
0.234667 + 0.972076i \(0.424600\pi\)
\(434\) 9.41498 0.451933
\(435\) 0 0
\(436\) 24.2807 24.2807i 1.16284 1.16284i
\(437\) −2.03513 + 0.545311i −0.0973534 + 0.0260858i
\(438\) 23.7092 1.13287
\(439\) 29.9057 8.01322i 1.42732 0.382450i 0.539247 0.842148i \(-0.318709\pi\)
0.888076 + 0.459698i \(0.152042\pi\)
\(440\) 0 0
\(441\) −7.22006 + 12.5055i −0.343812 + 0.595500i
\(442\) −23.2790 40.3204i −1.10727 1.91785i
\(443\) −0.346705 + 0.346705i −0.0164725 + 0.0164725i −0.715295 0.698823i \(-0.753708\pi\)
0.698823 + 0.715295i \(0.253708\pi\)
\(444\) −51.5224 + 14.4928i −2.44515 + 0.687797i
\(445\) 0 0
\(446\) 24.4599 + 6.55402i 1.15821 + 0.310342i
\(447\) −9.90160 + 2.65313i −0.468329 + 0.125489i
\(448\) 1.23097 + 4.59403i 0.0581577 + 0.217048i
\(449\) −0.545210 2.03475i −0.0257301 0.0960259i 0.951867 0.306512i \(-0.0991620\pi\)
−0.977597 + 0.210486i \(0.932495\pi\)
\(450\) 0 0
\(451\) 7.53816 13.0565i 0.354958 0.614805i
\(452\) −15.4737 −0.727824
\(453\) 4.97503 18.5671i 0.233747 0.872357i
\(454\) 34.0546i 1.59826i
\(455\) 0 0
\(456\) 32.1739 + 55.7268i 1.50668 + 2.60965i
\(457\) 15.6850 27.1673i 0.733715 1.27083i −0.221570 0.975144i \(-0.571118\pi\)
0.955285 0.295687i \(-0.0955485\pi\)
\(458\) 13.6483 0.637745
\(459\) 2.59540 9.68615i 0.121143 0.452111i
\(460\) 0 0
\(461\) −8.90787 + 33.2446i −0.414881 + 1.54836i 0.370194 + 0.928955i \(0.379291\pi\)
−0.785075 + 0.619401i \(0.787375\pi\)
\(462\) 8.60286 + 4.96686i 0.400241 + 0.231079i
\(463\) 11.9951 + 6.92538i 0.557460 + 0.321850i 0.752125 0.659020i \(-0.229029\pi\)
−0.194665 + 0.980870i \(0.562362\pi\)
\(464\) 2.73820 10.2191i 0.127118 0.474409i
\(465\) 0 0
\(466\) −0.589180 + 2.19885i −0.0272932 + 0.101860i
\(467\) 12.9629 0.599850 0.299925 0.953963i \(-0.403038\pi\)
0.299925 + 0.953963i \(0.403038\pi\)
\(468\) −15.4758 + 26.8049i −0.715370 + 1.23906i
\(469\) 1.71901 + 2.97741i 0.0793764 + 0.137484i
\(470\) 0 0
\(471\) 14.6904i 0.676897i
\(472\) 5.80363 21.6594i 0.267134 0.996956i
\(473\) 25.7647 1.18466
\(474\) 3.28404 5.68813i 0.150841 0.261264i
\(475\) 0 0
\(476\) 2.64123 + 9.85721i 0.121061 + 0.451805i
\(477\) 6.56575 + 24.5037i 0.300625 + 1.12195i
\(478\) 39.3814 10.5522i 1.80126 0.482647i
\(479\) −20.7631 5.56346i −0.948691 0.254201i −0.248884 0.968533i \(-0.580064\pi\)
−0.699807 + 0.714332i \(0.746731\pi\)
\(480\) 0 0
\(481\) 22.6458 0.280954i 1.03256 0.0128104i
\(482\) 31.5086 31.5086i 1.43518 1.43518i
\(483\) 0.195759 + 0.339064i 0.00890733 + 0.0154279i
\(484\) −2.99877 + 5.19401i −0.136308 + 0.236092i
\(485\) 0 0
\(486\) −43.8984 + 11.7626i −1.99127 + 0.533560i
\(487\) 11.9469 0.541367 0.270684 0.962668i \(-0.412750\pi\)
0.270684 + 0.962668i \(0.412750\pi\)
\(488\) −60.0514 + 16.0907i −2.71840 + 0.728393i
\(489\) −17.4475 + 17.4475i −0.789004 + 0.789004i
\(490\) 0 0
\(491\) 14.8679 0.670980 0.335490 0.942044i \(-0.391098\pi\)
0.335490 + 0.942044i \(0.391098\pi\)
\(492\) −26.4828 26.4828i −1.19394 1.19394i
\(493\) −4.28529 + 15.9929i −0.193000 + 0.720286i
\(494\) −14.5438 54.2783i −0.654358 2.44210i
\(495\) 0 0
\(496\) 24.2298 + 6.49235i 1.08795 + 0.291515i
\(497\) 4.59044 + 1.23000i 0.205909 + 0.0551732i
\(498\) −54.5091 + 31.4709i −2.44261 + 1.41024i
\(499\) 7.92150 2.12256i 0.354615 0.0950188i −0.0771137 0.997022i \(-0.524570\pi\)
0.431729 + 0.902003i \(0.357904\pi\)
\(500\) 0 0
\(501\) −0.150256 0.0402611i −0.00671296 0.00179873i
\(502\) 5.21828 19.4749i 0.232903 0.869207i
\(503\) 9.43924 5.44975i 0.420875 0.242992i −0.274577 0.961565i \(-0.588538\pi\)
0.695452 + 0.718573i \(0.255204\pi\)
\(504\) 3.52262 3.52262i 0.156910 0.156910i
\(505\) 0 0
\(506\) −2.51797 + 1.45375i −0.111937 + 0.0646271i
\(507\) 1.38301 1.38301i 0.0614215 0.0614215i
\(508\) 30.5858 30.5858i 1.35703 1.35703i
\(509\) 18.1888 + 31.5039i 0.806204 + 1.39639i 0.915475 + 0.402374i \(0.131815\pi\)
−0.109272 + 0.994012i \(0.534852\pi\)
\(510\) 0 0
\(511\) 1.90437 + 1.09949i 0.0842445 + 0.0486386i
\(512\) 33.7617i 1.49207i
\(513\) 6.05154 10.4816i 0.267182 0.462773i
\(514\) −31.4602 18.1636i −1.38765 0.801160i
\(515\) 0 0
\(516\) 16.5655 61.8235i 0.729257 2.72163i
\(517\) 18.0146 + 18.0146i 0.792283 + 0.792283i
\(518\) −7.29005 1.85675i −0.320306 0.0815808i
\(519\) 13.5667i 0.595510i
\(520\) 0 0
\(521\) −8.37998 4.83818i −0.367134 0.211965i 0.305072 0.952329i \(-0.401320\pi\)
−0.672205 + 0.740365i \(0.734653\pi\)
\(522\) 16.1124 4.31729i 0.705218 0.188963i
\(523\) −38.2833 22.1028i −1.67401 0.966490i −0.965357 0.260933i \(-0.915970\pi\)
−0.708653 0.705557i \(-0.750697\pi\)
\(524\) −11.3249 + 11.3249i −0.494730 + 0.494730i
\(525\) 0 0
\(526\) −24.1104 24.1104i −1.05126 1.05126i
\(527\) −37.9198 10.1606i −1.65181 0.442601i
\(528\) 18.7147 + 18.7147i 0.814455 + 0.814455i
\(529\) 22.8854 0.995018
\(530\) 0 0
\(531\) 10.1786 2.72735i 0.441713 0.118357i
\(532\) 12.3168i 0.534002i
\(533\) 7.92389 + 13.7246i 0.343222 + 0.594477i
\(534\) 59.5716 34.3937i 2.57791 1.48836i
\(535\) 0 0
\(536\) 7.95420 + 29.6855i 0.343569 + 1.28222i
\(537\) 18.7788 32.5259i 0.810367 1.40360i
\(538\) −1.27210 2.20334i −0.0548441 0.0949927i
\(539\) −11.9363 20.6743i −0.514133 0.890505i
\(540\) 0 0
\(541\) 0.733586 + 0.733586i 0.0315393 + 0.0315393i 0.722701 0.691161i \(-0.242901\pi\)
−0.691161 + 0.722701i \(0.742901\pi\)
\(542\) 27.6094 + 15.9403i 1.18592 + 0.684694i
\(543\) 32.3116 + 8.65788i 1.38663 + 0.371545i
\(544\) 5.81673i 0.249390i
\(545\) 0 0
\(546\) −9.04307 + 5.22102i −0.387008 + 0.223439i
\(547\) 11.8157i 0.505204i 0.967570 + 0.252602i \(0.0812864\pi\)
−0.967570 + 0.252602i \(0.918714\pi\)
\(548\) −15.5248 57.9392i −0.663185 2.47504i
\(549\) −20.6588 20.6588i −0.881696 0.881696i
\(550\) 0 0
\(551\) −9.99178 + 17.3063i −0.425664 + 0.737272i
\(552\) 0.905815 + 3.38055i 0.0385541 + 0.143886i
\(553\) 0.527563 0.304589i 0.0224343 0.0129524i
\(554\) 38.8408 1.65019
\(555\) 0 0
\(556\) −29.8997 −1.26803
\(557\) −5.59913 + 3.23266i −0.237243 + 0.136972i −0.613909 0.789377i \(-0.710404\pi\)
0.376666 + 0.926349i \(0.377070\pi\)
\(558\) 10.2364 + 38.2029i 0.433343 + 1.61726i
\(559\) −13.5416 + 23.4547i −0.572747 + 0.992027i
\(560\) 0 0
\(561\) −29.2887 29.2887i −1.23657 1.23657i
\(562\) 2.59990 + 9.70295i 0.109670 + 0.409294i
\(563\) 1.58134i 0.0666457i 0.999445 + 0.0333229i \(0.0106090\pi\)
−0.999445 + 0.0333229i \(0.989391\pi\)
\(564\) 54.8094 31.6442i 2.30789 1.33246i
\(565\) 0 0
\(566\) 49.4871i 2.08010i
\(567\) −5.33883 1.43054i −0.224210 0.0600769i
\(568\) 36.7903 + 21.2409i 1.54369 + 0.891248i
\(569\) −16.2660 16.2660i −0.681906 0.681906i 0.278524 0.960429i \(-0.410155\pi\)
−0.960429 + 0.278524i \(0.910155\pi\)
\(570\) 0 0
\(571\) 9.98899 + 17.3014i 0.418026 + 0.724043i 0.995741 0.0921960i \(-0.0293886\pi\)
−0.577715 + 0.816239i \(0.696055\pi\)
\(572\) −25.5849 44.3143i −1.06976 1.85287i
\(573\) −8.18884 + 14.1835i −0.342094 + 0.592524i
\(574\) −1.36245 5.08475i −0.0568677 0.212233i
\(575\) 0 0
\(576\) −17.3027 + 9.98973i −0.720946 + 0.416239i
\(577\) −1.76615 3.05906i −0.0735258 0.127350i 0.826918 0.562322i \(-0.190092\pi\)
−0.900444 + 0.434971i \(0.856758\pi\)
\(578\) 23.2611i 0.967535i
\(579\) −35.2340 + 9.44091i −1.46427 + 0.392351i
\(580\) 0 0
\(581\) −5.83773 −0.242190
\(582\) 18.3844 + 18.3844i 0.762058 + 0.762058i
\(583\) −40.5099 10.8546i −1.67775 0.449552i
\(584\) 13.8995 + 13.8995i 0.575165 + 0.575165i
\(585\) 0 0
\(586\) 26.3167 26.3167i 1.08713 1.08713i
\(587\) 2.48280 + 1.43345i 0.102476 + 0.0591647i 0.550362 0.834926i \(-0.314490\pi\)
−0.447886 + 0.894091i \(0.647823\pi\)
\(588\) −57.2832 + 15.3490i −2.36232 + 0.632982i
\(589\) −41.0337 23.6908i −1.69077 0.976164i
\(590\) 0 0
\(591\) 2.99333i 0.123129i
\(592\) −17.4808 9.80546i −0.718458 0.403002i
\(593\) −29.6868 29.6868i −1.21909 1.21909i −0.967951 0.251137i \(-0.919195\pi\)
−0.251137 0.967951i \(-0.580805\pi\)
\(594\) 4.32279 16.1329i 0.177366 0.661939i
\(595\) 0 0
\(596\) −15.1897 8.76980i −0.622196 0.359225i
\(597\) −11.1190 + 19.2587i −0.455071 + 0.788206i
\(598\) 3.05628i 0.124980i
\(599\) 11.0786 + 6.39622i 0.452658 + 0.261342i 0.708952 0.705256i \(-0.249168\pi\)
−0.256294 + 0.966599i \(0.582501\pi\)
\(600\) 0 0
\(601\) 24.2575 + 42.0153i 0.989486 + 1.71384i 0.619997 + 0.784604i \(0.287134\pi\)
0.369488 + 0.929235i \(0.379533\pi\)
\(602\) 6.36123 6.36123i 0.259264 0.259264i
\(603\) −10.2124 + 10.2124i −0.415880 + 0.415880i
\(604\) 28.4832 16.4448i 1.15896 0.669128i
\(605\) 0 0
\(606\) 30.4340 30.4340i 1.23630 1.23630i
\(607\) 2.64364 1.52631i 0.107302 0.0619509i −0.445389 0.895337i \(-0.646934\pi\)
0.552691 + 0.833386i \(0.313601\pi\)
\(608\) 1.81703 6.78127i 0.0736905 0.275017i
\(609\) 3.58690 + 0.961107i 0.145349 + 0.0389460i
\(610\) 0 0
\(611\) −25.8677 + 6.93122i −1.04649 + 0.280407i
\(612\) −37.1257 + 21.4345i −1.50072 + 0.866439i
\(613\) −26.2765 7.04077i −1.06130 0.284374i −0.314385 0.949296i \(-0.601798\pi\)
−0.746913 + 0.664922i \(0.768465\pi\)
\(614\) 41.1776 + 11.0335i 1.66179 + 0.445276i
\(615\) 0 0
\(616\) 2.13160 + 7.95525i 0.0858848 + 0.320526i
\(617\) 8.29972 30.9750i 0.334134 1.24701i −0.570671 0.821179i \(-0.693317\pi\)
0.904805 0.425827i \(-0.140017\pi\)
\(618\) −16.0031 16.0031i −0.643740 0.643740i
\(619\) −48.2130 −1.93785 −0.968923 0.247363i \(-0.920436\pi\)
−0.968923 + 0.247363i \(0.920436\pi\)
\(620\) 0 0
\(621\) 0.465469 0.465469i 0.0186786 0.0186786i
\(622\) 35.8822 9.61461i 1.43875 0.385511i
\(623\) 6.37990 0.255605
\(624\) −26.8730 + 7.20059i −1.07578 + 0.288254i
\(625\) 0 0
\(626\) 10.7483 18.6166i 0.429588 0.744068i
\(627\) −24.9962 43.2946i −0.998250 1.72902i
\(628\) 17.7736 17.7736i 0.709245 0.709245i
\(629\) 27.3576 + 15.3456i 1.09082 + 0.611869i
\(630\) 0 0
\(631\) −34.6187 9.27605i −1.37815 0.369274i −0.507700 0.861534i \(-0.669504\pi\)
−0.870448 + 0.492260i \(0.836171\pi\)
\(632\) 5.25994 1.40940i 0.209229 0.0560627i
\(633\) −11.7871 43.9899i −0.468494 1.74844i
\(634\) 10.8787 + 40.5999i 0.432049 + 1.61243i
\(635\) 0 0
\(636\) −52.0920 + 90.2261i −2.06558 + 3.57770i
\(637\) 25.0942 0.994267
\(638\) −7.13741 + 26.6372i −0.282573 + 1.05458i
\(639\) 19.9638i 0.789757i
\(640\) 0 0
\(641\) 12.8244 + 22.2125i 0.506532 + 0.877339i 0.999971 + 0.00755909i \(0.00240616\pi\)
−0.493439 + 0.869780i \(0.664261\pi\)
\(642\) −43.8699 + 75.9850i −1.73141 + 2.99889i
\(643\) −38.4606 −1.51674 −0.758369 0.651825i \(-0.774004\pi\)
−0.758369 + 0.651825i \(0.774004\pi\)
\(644\) −0.173382 + 0.647072i −0.00683223 + 0.0254982i
\(645\) 0 0
\(646\) 20.1437 75.1772i 0.792543 2.95781i
\(647\) −8.15295 4.70711i −0.320526 0.185056i 0.331101 0.943595i \(-0.392580\pi\)
−0.651627 + 0.758540i \(0.725913\pi\)
\(648\) −42.7884 24.7039i −1.68089 0.970460i
\(649\) −4.50889 + 16.8274i −0.176989 + 0.660533i
\(650\) 0 0
\(651\) −2.27882 + 8.50466i −0.0893138 + 0.333324i
\(652\) −42.2189 −1.65342
\(653\) −10.8330 + 18.7633i −0.423928 + 0.734265i −0.996320 0.0857155i \(-0.972682\pi\)
0.572392 + 0.819980i \(0.306016\pi\)
\(654\) 24.3322 + 42.1446i 0.951465 + 1.64799i
\(655\) 0 0
\(656\) 14.0253i 0.547596i
\(657\) −2.39084 + 8.92275i −0.0932757 + 0.348110i
\(658\) 8.89551 0.346783
\(659\) −5.40133 + 9.35537i −0.210406 + 0.364433i −0.951842 0.306590i \(-0.900812\pi\)
0.741436 + 0.671024i \(0.234145\pi\)
\(660\) 0 0
\(661\) −4.86688 18.1634i −0.189300 0.706476i −0.993669 0.112346i \(-0.964163\pi\)
0.804370 0.594129i \(-0.202503\pi\)
\(662\) 13.2207 + 49.3403i 0.513837 + 1.91767i
\(663\) 42.0564 11.2690i 1.63333 0.437650i
\(664\) −50.4058 13.5062i −1.95612 0.524142i
\(665\) 0 0
\(666\) −0.392036 31.5994i −0.0151911 1.22445i
\(667\) −0.768543 + 0.768543i −0.0297581 + 0.0297581i
\(668\) −0.133081 0.230504i −0.00514907 0.00891846i
\(669\) −11.8406 + 20.5086i −0.457786 + 0.792908i
\(670\) 0 0
\(671\) 46.6545 12.5010i 1.80108 0.482597i
\(672\) −1.30458 −0.0503251
\(673\) 43.4302 11.6371i 1.67411 0.448577i 0.707896 0.706316i \(-0.249644\pi\)
0.966214 + 0.257740i \(0.0829777\pi\)
\(674\) 55.0817 55.0817i 2.12167 2.12167i
\(675\) 0 0
\(676\) 3.34655 0.128714
\(677\) 26.3401 + 26.3401i 1.01233 + 1.01233i 0.999923 + 0.0124109i \(0.00395062\pi\)
0.0124109 + 0.999923i \(0.496049\pi\)
\(678\) 5.67579 21.1823i 0.217978 0.813503i
\(679\) 0.624117 + 2.32924i 0.0239514 + 0.0893879i
\(680\) 0 0
\(681\) 30.7619 + 8.24263i 1.17880 + 0.315858i
\(682\) −63.1576 16.9230i −2.41843 0.648016i
\(683\) 19.6576 11.3493i 0.752178 0.434270i −0.0743020 0.997236i \(-0.523673\pi\)
0.826481 + 0.562965i \(0.190340\pi\)
\(684\) −49.9777 + 13.3915i −1.91094 + 0.512036i
\(685\) 0 0
\(686\) −16.4136 4.39802i −0.626676 0.167917i
\(687\) −3.30347 + 12.3287i −0.126035 + 0.470369i
\(688\) 20.7574 11.9843i 0.791369 0.456897i
\(689\) 31.1728 31.1728i 1.18759 1.18759i
\(690\) 0 0
\(691\) 3.35727 1.93832i 0.127716 0.0737371i −0.434781 0.900536i \(-0.643174\pi\)
0.562497 + 0.826799i \(0.309841\pi\)
\(692\) −16.4141 + 16.4141i −0.623969 + 0.623969i
\(693\) −2.73676 + 2.73676i −0.103961 + 0.103961i
\(694\) −4.16500 7.21398i −0.158101 0.273839i
\(695\) 0 0
\(696\) 28.7474 + 16.5973i 1.08967 + 0.629120i
\(697\) 21.9497i 0.831403i
\(698\) −3.56306 + 6.17139i −0.134864 + 0.233591i
\(699\) −1.84364 1.06443i −0.0697329 0.0402603i
\(700\) 0 0
\(701\) −0.649780 + 2.42501i −0.0245418 + 0.0915914i −0.977111 0.212732i \(-0.931764\pi\)
0.952569 + 0.304324i \(0.0984304\pi\)
\(702\) 12.4144 + 12.4144i 0.468551 + 0.468551i
\(703\) 27.1004 + 26.4362i 1.02211 + 0.997062i
\(704\) 33.0303i 1.24488i
\(705\) 0 0
\(706\) 6.15490 + 3.55353i 0.231643 + 0.133739i
\(707\) 3.85588 1.03318i 0.145015 0.0388567i
\(708\) 37.4790 + 21.6385i 1.40855 + 0.813224i
\(709\) −1.48911 + 1.48911i −0.0559246 + 0.0559246i −0.734516 0.678591i \(-0.762591\pi\)
0.678591 + 0.734516i \(0.262591\pi\)
\(710\) 0 0
\(711\) 1.80952 + 1.80952i 0.0678621 + 0.0678621i
\(712\) 55.0871 + 14.7606i 2.06448 + 0.553175i
\(713\) −1.82224 1.82224i −0.0682434 0.0682434i
\(714\) −14.4626 −0.541248
\(715\) 0 0
\(716\) 62.0727 16.6323i 2.31977 0.621579i
\(717\) 38.1277i 1.42391i
\(718\) −40.4977 70.1441i −1.51136 2.61775i
\(719\) 39.8189 22.9894i 1.48499 0.857361i 0.485138 0.874437i \(-0.338769\pi\)
0.999854 + 0.0170766i \(0.00543590\pi\)
\(720\) 0 0
\(721\) −0.543277 2.02754i −0.0202327 0.0755094i
\(722\) 23.9314 41.4504i 0.890634 1.54262i
\(723\) 20.8357 + 36.0885i 0.774888 + 1.34215i
\(724\) 28.6183 + 49.5683i 1.06359 + 1.84219i
\(725\) 0 0
\(726\) −6.01025 6.01025i −0.223061 0.223061i
\(727\) −3.64009 2.10161i −0.135003 0.0779443i 0.430977 0.902363i \(-0.358169\pi\)
−0.565981 + 0.824419i \(0.691502\pi\)
\(728\) −8.36233 2.24068i −0.309928 0.0830451i
\(729\) 9.98935i 0.369976i
\(730\) 0 0
\(731\) −32.4855 + 18.7555i −1.20152 + 0.693697i
\(732\) 119.987i 4.43484i
\(733\) 6.69183 + 24.9742i 0.247168 + 0.922444i 0.972281 + 0.233814i \(0.0751208\pi\)
−0.725113 + 0.688630i \(0.758213\pi\)
\(734\) −12.2191 12.2191i −0.451014 0.451014i
\(735\) 0 0
\(736\) 0.190918 0.330680i 0.00703734 0.0121890i
\(737\) −6.17969 23.0629i −0.227632 0.849533i
\(738\) 19.1509 11.0568i 0.704955 0.407006i
\(739\) 21.1987 0.779807 0.389904 0.920856i \(-0.372508\pi\)
0.389904 + 0.920856i \(0.372508\pi\)
\(740\) 0 0
\(741\) 52.5504 1.93049
\(742\) −12.6817 + 7.32180i −0.465561 + 0.268792i
\(743\) −12.0248 44.8773i −0.441148 1.64639i −0.725911 0.687789i \(-0.758582\pi\)
0.284763 0.958598i \(-0.408085\pi\)
\(744\) −39.3528 + 68.1610i −1.44274 + 2.49890i
\(745\) 0 0
\(746\) −57.4290 57.4290i −2.10262 2.10262i
\(747\) −6.34708 23.6876i −0.232227 0.866684i
\(748\) 70.8717i 2.59133i
\(749\) −7.04747 + 4.06886i −0.257509 + 0.148673i
\(750\) 0 0
\(751\) 15.3386i 0.559713i 0.960042 + 0.279857i \(0.0902869\pi\)
−0.960042 + 0.279857i \(0.909713\pi\)
\(752\) 22.8929 + 6.13414i 0.834819 + 0.223689i
\(753\) 16.3288 + 9.42747i 0.595056 + 0.343556i
\(754\) −20.4976 20.4976i −0.746477 0.746477i
\(755\) 0 0
\(756\) −1.92410 3.33263i −0.0699787 0.121207i
\(757\) 2.29300 + 3.97159i 0.0833404 + 0.144350i 0.904683 0.426086i \(-0.140108\pi\)
−0.821342 + 0.570435i \(0.806774\pi\)
\(758\) −1.18078 + 2.04517i −0.0428879 + 0.0742840i
\(759\) −0.703736 2.62638i −0.0255440 0.0953315i
\(760\) 0 0
\(761\) −36.6280 + 21.1472i −1.32776 + 0.766584i −0.984953 0.172821i \(-0.944712\pi\)
−0.342809 + 0.939405i \(0.611378\pi\)
\(762\) 30.6507 + 53.0886i 1.11036 + 1.92320i
\(763\) 4.51354i 0.163401i
\(764\) −27.0679 + 7.25282i −0.979281 + 0.262398i
\(765\) 0 0
\(766\) −73.8918 −2.66982
\(767\) −12.9489 12.9489i −0.467556 0.467556i
\(768\) −67.2749 18.0263i −2.42757 0.650466i
\(769\) −18.0202 18.0202i −0.649824 0.649824i 0.303126 0.952950i \(-0.401970\pi\)
−0.952950 + 0.303126i \(0.901970\pi\)
\(770\) 0 0
\(771\) 24.0220 24.0220i 0.865132 0.865132i
\(772\) −54.0513 31.2066i −1.94535 1.12315i
\(773\) −6.80793 + 1.82418i −0.244864 + 0.0656112i −0.379164 0.925330i \(-0.623788\pi\)
0.134299 + 0.990941i \(0.457122\pi\)
\(774\) 32.7280 + 18.8955i 1.17639 + 0.679186i
\(775\) 0 0
\(776\) 21.5557i 0.773805i
\(777\) 3.44172 6.13578i 0.123471 0.220120i
\(778\) −0.961310 0.961310i −0.0344646 0.0344646i
\(779\) −6.85666 + 25.5894i −0.245665 + 0.916836i
\(780\) 0 0
\(781\) −28.5827 16.5022i −1.02277 0.590497i
\(782\) 2.11652 3.66592i 0.0756867 0.131093i
\(783\) 6.24354i 0.223126i
\(784\) −19.2330 11.1042i −0.686894 0.396578i
\(785\) 0 0
\(786\) −11.3489 19.6569i −0.404802 0.701137i
\(787\) 27.3926 27.3926i 0.976441 0.976441i −0.0232881 0.999729i \(-0.507414\pi\)
0.999729 + 0.0232881i \(0.00741351\pi\)
\(788\) 3.62158 3.62158i 0.129013 0.129013i
\(789\) 27.6149 15.9435i 0.983116 0.567602i
\(790\) 0 0
\(791\) 1.43820 1.43820i 0.0511367 0.0511367i
\(792\) −29.9622 + 17.2987i −1.06466 + 0.614683i
\(793\) −13.1407 + 49.0418i −0.466640 + 1.74152i
\(794\) −42.5385 11.3982i −1.50964 0.404506i
\(795\) 0 0
\(796\) −36.7534 + 9.84805i −1.30269 + 0.349055i
\(797\) −3.44250 + 1.98753i −0.121939 + 0.0704018i −0.559729 0.828676i \(-0.689095\pi\)
0.437790 + 0.899077i \(0.355761\pi\)
\(798\) −16.8608 4.51783i −0.596865 0.159929i
\(799\) −35.8276 9.59997i −1.26749 0.339622i
\(800\) 0 0
\(801\) 6.93655 + 25.8875i 0.245091 + 0.914691i
\(802\) −17.0936 + 63.7942i −0.603596 + 2.25265i
\(803\) −10.7986 10.7986i −0.381076 0.381076i
\(804\) −59.3136 −2.09183
\(805\) 0 0
\(806\) 48.6004 48.6004i 1.71188 1.71188i
\(807\) 2.29820 0.615801i 0.0809005 0.0216772i
\(808\) 35.6839 1.25535
\(809\) 4.43352 1.18796i 0.155874 0.0417664i −0.180038 0.983660i \(-0.557622\pi\)
0.335912 + 0.941893i \(0.390955\pi\)
\(810\) 0 0
\(811\) −1.06741 + 1.84880i −0.0374817 + 0.0649202i −0.884158 0.467189i \(-0.845267\pi\)
0.846676 + 0.532109i \(0.178600\pi\)
\(812\) 3.17690 + 5.50255i 0.111487 + 0.193102i
\(813\) −21.0817 + 21.0817i −0.739366 + 0.739366i
\(814\) 45.5657 + 25.5590i 1.59708 + 0.895843i
\(815\) 0 0
\(816\) −37.2199 9.97305i −1.30296 0.349127i
\(817\) −43.7312 + 11.7177i −1.52996 + 0.409951i
\(818\) −10.9541 40.8812i −0.383001 1.42938i
\(819\) −1.05298 3.92978i −0.0367941 0.137317i
\(820\) 0 0
\(821\) 5.94240 10.2925i 0.207391 0.359212i −0.743501 0.668735i \(-0.766836\pi\)
0.950892 + 0.309523i \(0.100169\pi\)
\(822\) 85.0087 2.96502
\(823\) −3.87588 + 14.4650i −0.135105 + 0.504217i 0.864893 + 0.501957i \(0.167386\pi\)
−0.999997 + 0.00226077i \(0.999280\pi\)
\(824\) 18.7637i 0.653663i
\(825\) 0 0
\(826\) 3.04140 + 5.26786i 0.105824 + 0.183292i
\(827\) 1.58873 2.75176i 0.0552456 0.0956881i −0.837080 0.547080i \(-0.815739\pi\)
0.892326 + 0.451392i \(0.149072\pi\)
\(828\) −2.81412 −0.0977974
\(829\) −4.75678 + 17.7525i −0.165210 + 0.616571i 0.832804 + 0.553569i \(0.186734\pi\)
−0.998013 + 0.0630026i \(0.979932\pi\)
\(830\) 0 0
\(831\) −9.40108 + 35.0853i −0.326120 + 1.21710i
\(832\) 30.0688 + 17.3602i 1.04245 + 0.601858i
\(833\) 30.0998 + 17.3781i 1.04290 + 0.602116i
\(834\) 10.9673 40.9304i 0.379765 1.41730i
\(835\) 0 0
\(836\) 22.1390 82.6238i 0.765693 2.85760i
\(837\) 14.8036 0.511688
\(838\) −40.3867 + 69.9519i −1.39514 + 2.41645i
\(839\) 1.61759 + 2.80176i 0.0558456 + 0.0967274i 0.892597 0.450856i \(-0.148881\pi\)
−0.836751 + 0.547583i \(0.815548\pi\)
\(840\) 0 0
\(841\) 18.6912i 0.644525i
\(842\) 20.1851 75.3317i 0.695624 2.59610i
\(843\) −9.39407 −0.323549
\(844\) 38.9617 67.4836i 1.34112 2.32288i
\(845\) 0 0
\(846\) 9.67165 + 36.0951i 0.332518 + 1.24097i
\(847\) −0.204037 0.761477i −0.00701080 0.0261646i
\(848\) −37.6859 + 10.0979i −1.29414 + 0.346763i
\(849\) −44.7023 11.9779i −1.53418 0.411082i
\(850\) 0 0
\(851\) 1.05160 + 1.77033i 0.0360483 + 0.0606863i
\(852\) −57.9751 + 57.9751i −1.98619 + 1.98619i
\(853\) −15.2299 26.3789i −0.521461 0.903197i −0.999688 0.0249611i \(-0.992054\pi\)
0.478227 0.878236i \(-0.341280\pi\)
\(854\) 8.43237 14.6053i 0.288550 0.499783i
\(855\) 0 0
\(856\) −70.2650 + 18.8274i −2.40161 + 0.643509i
\(857\) −20.7543 −0.708954 −0.354477 0.935065i \(-0.615341\pi\)
−0.354477 + 0.935065i \(0.615341\pi\)
\(858\) 70.0473 18.7691i 2.39138 0.640767i
\(859\) 3.76826 3.76826i 0.128571 0.128571i −0.639893 0.768464i \(-0.721021\pi\)
0.768464 + 0.639893i \(0.221021\pi\)
\(860\) 0 0
\(861\) 4.92288 0.167771
\(862\) −12.0323 12.0323i −0.409822 0.409822i
\(863\) 7.29310 27.2182i 0.248260 0.926519i −0.723457 0.690370i \(-0.757448\pi\)
0.971717 0.236149i \(-0.0758855\pi\)
\(864\) 0.567703 + 2.11870i 0.0193136 + 0.0720795i
\(865\) 0 0
\(866\) −83.1784 22.2876i −2.82652 0.757363i
\(867\) 21.0120 + 5.63015i 0.713606 + 0.191210i
\(868\) −13.0467 + 7.53253i −0.442835 + 0.255671i
\(869\) −4.08649 + 1.09497i −0.138625 + 0.0371444i
\(870\) 0 0
\(871\) 24.2430 + 6.49590i 0.821444 + 0.220105i
\(872\) −10.4425 + 38.9721i −0.353629 + 1.31976i
\(873\) −8.77271 + 5.06493i −0.296911 + 0.171422i
\(874\) 3.61265 3.61265i 0.122200 0.122200i
\(875\) 0 0
\(876\) −32.8548 + 18.9687i −1.11006 + 0.640894i
\(877\) 9.40855 9.40855i 0.317704 0.317704i −0.530181 0.847885i \(-0.677876\pi\)
0.847885 + 0.530181i \(0.177876\pi\)
\(878\) −53.0871 + 53.0871i −1.79160 + 1.79160i
\(879\) 17.4024 + 30.1419i 0.586969 + 1.01666i
\(880\) 0 0
\(881\) −5.73392 3.31048i −0.193181 0.111533i 0.400290 0.916388i \(-0.368909\pi\)
−0.593471 + 0.804856i \(0.702243\pi\)
\(882\) 35.0158i 1.17904i
\(883\) 18.1081 31.3641i 0.609385 1.05549i −0.381957 0.924180i \(-0.624750\pi\)
0.991342 0.131305i \(-0.0419169\pi\)
\(884\) 64.5174 + 37.2491i 2.16995 + 1.25282i
\(885\) 0 0
\(886\) 0.307726 1.14845i 0.0103383 0.0385829i
\(887\) 10.3036 + 10.3036i 0.345961 + 0.345961i 0.858603 0.512642i \(-0.171333\pi\)
−0.512642 + 0.858603i \(0.671333\pi\)
\(888\) 43.9132 45.0165i 1.47363 1.51065i
\(889\) 5.68559i 0.190689i
\(890\) 0 0
\(891\) 33.2427 + 19.1927i 1.11367 + 0.642978i
\(892\) −39.1388 + 10.4872i −1.31046 + 0.351137i
\(893\) −38.7697 22.3837i −1.29738 0.749042i
\(894\) 17.5768 17.5768i 0.587856 0.587856i
\(895\) 0 0
\(896\) −7.34150 7.34150i −0.245262 0.245262i
\(897\) 2.76077 + 0.739746i 0.0921794 + 0.0246994i
\(898\) 3.61198 + 3.61198i 0.120533 + 0.120533i
\(899\) −24.4425 −0.815202
\(900\) 0 0
\(901\) 58.9786 15.8033i 1.96486 0.526483i
\(902\) 36.5585i 1.21726i
\(903\) 4.20649 + 7.28585i 0.139983 + 0.242458i
\(904\) 15.7456 9.09072i 0.523691 0.302353i
\(905\) 0 0
\(906\) 12.0639 + 45.0232i 0.400797 + 1.49580i
\(907\) 5.54646 9.60675i 0.184167 0.318987i −0.759128 0.650941i \(-0.774375\pi\)
0.943296 + 0.331954i \(0.107708\pi\)
\(908\) 27.2457 + 47.1909i 0.904180 + 1.56609i
\(909\) 8.38461 + 14.5226i 0.278100 + 0.481683i
\(910\) 0 0
\(911\) 2.08304 + 2.08304i 0.0690141 + 0.0690141i 0.740771 0.671757i \(-0.234460\pi\)
−0.671757 + 0.740771i \(0.734460\pi\)
\(912\) −40.2764 23.2536i −1.33369 0.770004i
\(913\) 39.1607 + 10.4931i 1.29603 + 0.347270i
\(914\) 76.0691i 2.51614i
\(915\) 0 0
\(916\) −18.9131 + 10.9195i −0.624906 + 0.360790i
\(917\) 2.10518i 0.0695191i
\(918\) 6.29356 + 23.4879i 0.207719 + 0.775216i
\(919\) 5.66143 + 5.66143i 0.186753 + 0.186753i 0.794291 0.607538i \(-0.207843\pi\)
−0.607538 + 0.794291i \(0.707843\pi\)
\(920\) 0 0
\(921\) −19.9334 + 34.5256i −0.656828 + 1.13766i
\(922\) −21.6006 80.6147i −0.711379 2.65490i
\(923\) 30.0453 17.3467i 0.988953 0.570972i
\(924\) −15.8951 −0.522911
\(925\) 0 0
\(926\) −33.5866 −1.10373
\(927\) 7.63641 4.40888i 0.250813 0.144807i
\(928\) −0.937342 3.49821i −0.0307697 0.114834i
\(929\) 11.4336 19.8035i 0.375124 0.649733i −0.615222 0.788354i \(-0.710934\pi\)
0.990346 + 0.138621i \(0.0442669\pi\)
\(930\) 0 0
\(931\) 29.6624 + 29.6624i 0.972146 + 0.972146i
\(932\) −0.942757 3.51842i −0.0308810 0.115250i
\(933\) 34.7400i 1.13734i
\(934\) −27.2223 + 15.7168i −0.890740 + 0.514269i
\(935\) 0 0
\(936\) 36.3678i 1.18872i
\(937\) −33.4153 8.95361i −1.09163 0.292502i −0.332279 0.943181i \(-0.607817\pi\)
−0.759352 + 0.650680i \(0.774484\pi\)
\(938\) −7.21990 4.16841i −0.235738 0.136104i
\(939\) 14.2150 + 14.2150i 0.463890 + 0.463890i
\(940\) 0 0
\(941\) −7.81481 13.5357i −0.254756 0.441250i 0.710074 0.704128i \(-0.248662\pi\)
−0.964829 + 0.262878i \(0.915328\pi\)
\(942\) 17.8113 + 30.8501i 0.580324 + 1.00515i
\(943\) −0.720438 + 1.24784i −0.0234607 + 0.0406351i
\(944\) 4.19456 + 15.6543i 0.136521 + 0.509504i
\(945\) 0 0
\(946\) −54.1065 + 31.2384i −1.75915 + 1.01565i
\(947\) 13.3898 + 23.1918i 0.435109 + 0.753631i 0.997305 0.0733735i \(-0.0233765\pi\)
−0.562196 + 0.827004i \(0.690043\pi\)
\(948\) 10.5097i 0.341339i
\(949\) 15.5060 4.15483i 0.503347 0.134872i
\(950\) 0 0
\(951\) −39.3074 −1.27463
\(952\) −8.47868 8.47868i −0.274796 0.274796i
\(953\) −8.42269 2.25685i −0.272838 0.0731067i 0.119806 0.992797i \(-0.461773\pi\)
−0.392644 + 0.919691i \(0.628439\pi\)
\(954\) −43.4977 43.4977i −1.40829 1.40829i
\(955\) 0 0
\(956\) −46.1300 + 46.1300i −1.49195 + 1.49195i
\(957\) −22.3341 12.8946i −0.721959 0.416823i
\(958\) 50.3484 13.4908i 1.62668 0.435868i
\(959\) 6.82809 + 3.94220i 0.220491 + 0.127300i
\(960\) 0 0
\(961\) 26.9539i 0.869480i
\(962\) −47.2160 + 28.0469i −1.52231 + 0.904268i
\(963\) −24.1725 24.1725i −0.778947 0.778947i
\(964\) −18.4541 + 68.8716i −0.594366 + 2.21820i
\(965\) 0 0
\(966\) −0.822194 0.474694i −0.0264537 0.0152730i
\(967\) −18.3121 + 31.7175i −0.588877 + 1.01996i 0.405503 + 0.914094i \(0.367096\pi\)
−0.994380 + 0.105871i \(0.966237\pi\)
\(968\) 7.04702i 0.226500i
\(969\) 63.0328 + 36.3920i 2.02491 + 1.16908i
\(970\) 0 0
\(971\) 13.4291 + 23.2599i 0.430961 + 0.746446i 0.996956 0.0779623i \(-0.0248414\pi\)
−0.565996 + 0.824408i \(0.691508\pi\)
\(972\) 51.4212 51.4212i 1.64934 1.64934i
\(973\) 2.77903 2.77903i 0.0890915 0.0890915i
\(974\) −25.0888 + 14.4850i −0.803897 + 0.464130i
\(975\) 0 0
\(976\) 31.7725 31.7725i 1.01701 1.01701i
\(977\) −11.8665 + 6.85116i −0.379645 + 0.219188i −0.677664 0.735372i \(-0.737007\pi\)
0.298019 + 0.954560i \(0.403674\pi\)
\(978\) 15.4859 57.7943i 0.495186 1.84806i
\(979\) −42.7977 11.4676i −1.36782 0.366506i
\(980\) 0 0
\(981\) −18.3145 + 4.90735i −0.584736 + 0.156680i
\(982\) −31.2230 + 18.0266i −0.996365 + 0.575251i
\(983\) 15.2749 + 4.09290i 0.487194 + 0.130543i 0.494050 0.869433i \(-0.335516\pi\)
−0.00685662 + 0.999976i \(0.502183\pi\)
\(984\) 42.5065 + 11.3896i 1.35506 + 0.363087i
\(985\) 0 0
\(986\) −10.3914 38.7812i −0.330929 1.23504i
\(987\) −2.15308 + 8.03542i −0.0685334 + 0.255770i
\(988\) 63.5798 + 63.5798i 2.02274 + 2.02274i
\(989\) −2.46239 −0.0782995
\(990\) 0 0
\(991\) 42.9379 42.9379i 1.36397 1.36397i 0.495169 0.868797i \(-0.335106\pi\)
0.868797 0.495169i \(-0.164894\pi\)
\(992\) 8.29436 2.22247i 0.263346 0.0705634i
\(993\) −47.7696 −1.51592
\(994\) −11.1313 + 2.98263i −0.353064 + 0.0946033i
\(995\) 0 0
\(996\) 50.3571 87.2210i 1.59562 2.76370i
\(997\) −19.5601 33.8791i −0.619475 1.07296i −0.989582 0.143973i \(-0.954012\pi\)
0.370106 0.928989i \(-0.379321\pi\)
\(998\) −14.0618 + 14.0618i −0.445119 + 0.445119i
\(999\) −11.4625 2.91945i −0.362658 0.0923674i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.193.1 68
5.2 odd 4 925.2.t.b.82.1 68
5.3 odd 4 185.2.p.a.82.17 68
5.4 even 2 185.2.u.a.8.17 yes 68
37.14 odd 12 925.2.t.b.643.1 68
185.14 odd 12 185.2.p.a.88.17 yes 68
185.88 even 12 185.2.u.a.162.17 yes 68
185.162 even 12 inner 925.2.y.b.532.1 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.17 68 5.3 odd 4
185.2.p.a.88.17 yes 68 185.14 odd 12
185.2.u.a.8.17 yes 68 5.4 even 2
185.2.u.a.162.17 yes 68 185.88 even 12
925.2.t.b.82.1 68 5.2 odd 4
925.2.t.b.643.1 68 37.14 odd 12
925.2.y.b.193.1 68 1.1 even 1 trivial
925.2.y.b.532.1 68 185.162 even 12 inner