Properties

Label 925.2.y.a.193.4
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.4
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.a.532.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.53267 + 0.884889i) q^{2} +(0.223454 + 0.833940i) q^{3} +(0.566056 - 0.980437i) q^{4} +(-1.08043 - 1.08043i) q^{6} +(-0.456178 - 1.70248i) q^{7} -1.53597i q^{8} +(1.95255 - 1.12731i) q^{9} +5.07893i q^{11} +(0.944113 + 0.252974i) q^{12} +(-3.67447 - 2.12146i) q^{13} +(2.20568 + 2.20568i) q^{14} +(2.49127 + 4.31501i) q^{16} +(-0.745779 - 1.29173i) q^{17} +(-1.99508 + 3.45558i) q^{18} +(-1.08710 - 4.05713i) q^{19} +(1.31783 - 0.760851i) q^{21} +(-4.49429 - 7.78434i) q^{22} +7.96415i q^{23} +(1.28091 - 0.343218i) q^{24} +7.50901 q^{26} +(3.20787 + 3.20787i) q^{27} +(-1.92740 - 0.516445i) q^{28} +(4.25340 + 4.25340i) q^{29} +(-6.65235 + 6.65235i) q^{31} +(-4.97623 - 2.87303i) q^{32} +(-4.23553 + 1.13491i) q^{33} +(2.28607 + 1.31986i) q^{34} -2.55247i q^{36} +(-0.273432 + 6.07661i) q^{37} +(5.25628 + 5.25628i) q^{38} +(0.948094 - 3.53833i) q^{39} +(-0.974387 - 0.562562i) q^{41} +(-1.34654 + 2.33227i) q^{42} +11.2292i q^{43} +(4.97957 + 2.87496i) q^{44} +(-7.04738 - 12.2064i) q^{46} +(-0.00582614 + 0.00582614i) q^{47} +(-3.04178 + 3.04178i) q^{48} +(3.37184 - 1.94673i) q^{49} +(0.910577 - 0.910577i) q^{51} +(-4.15991 + 2.40172i) q^{52} +(1.08040 - 4.03209i) q^{53} +(-7.75522 - 2.07801i) q^{54} +(-2.61496 + 0.700676i) q^{56} +(3.14048 - 1.81316i) q^{57} +(-10.2828 - 2.75528i) q^{58} +(-7.84855 - 2.10301i) q^{59} +(3.03813 + 11.3385i) q^{61} +(4.30928 - 16.0825i) q^{62} +(-2.80993 - 2.80993i) q^{63} +0.204149 q^{64} +(5.48741 - 5.48741i) q^{66} +(-8.30053 + 2.22412i) q^{67} -1.68861 q^{68} +(-6.64162 + 1.77962i) q^{69} +(2.01507 - 3.49020i) q^{71} +(-1.73151 - 2.99906i) q^{72} +(2.62998 - 2.62998i) q^{73} +(-4.95804 - 9.55541i) q^{74} +(-4.59312 - 1.23072i) q^{76} +(8.64678 - 2.31690i) q^{77} +(1.67791 + 6.26206i) q^{78} +(0.875572 + 3.26768i) q^{79} +(1.42356 - 2.46567i) q^{81} +1.99122 q^{82} +(1.50332 - 5.61047i) q^{83} -1.72274i q^{84} +(-9.93659 - 17.2107i) q^{86} +(-2.59664 + 4.49752i) q^{87} +7.80109 q^{88} +(-2.17709 + 8.12500i) q^{89} +(-1.93552 + 7.22347i) q^{91} +(7.80835 + 4.50815i) q^{92} +(-7.03415 - 4.06117i) q^{93} +(0.00377408 - 0.0140850i) q^{94} +(1.28398 - 4.79187i) q^{96} -6.00145 q^{97} +(-3.44528 + 5.96740i) q^{98} +(5.72551 + 9.91688i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 36 q^{4} + 8 q^{14} - 72 q^{16} + 16 q^{19} - 36 q^{21} - 4 q^{24} + 8 q^{26} + 24 q^{31} + 60 q^{34} - 24 q^{41} + 24 q^{44} + 12 q^{49} + 84 q^{51} + 28 q^{54} + 104 q^{56} + 4 q^{59} - 24 q^{61}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53267 + 0.884889i −1.08376 + 0.625711i −0.931909 0.362692i \(-0.881858\pi\)
−0.151854 + 0.988403i \(0.548524\pi\)
\(3\) 0.223454 + 0.833940i 0.129011 + 0.481476i 0.999951 0.00991401i \(-0.00315578\pi\)
−0.870940 + 0.491390i \(0.836489\pi\)
\(4\) 0.566056 0.980437i 0.283028 0.490219i
\(5\) 0 0
\(6\) −1.08043 1.08043i −0.441082 0.441082i
\(7\) −0.456178 1.70248i −0.172419 0.643477i −0.996977 0.0776993i \(-0.975243\pi\)
0.824558 0.565778i \(-0.191424\pi\)
\(8\) 1.53597i 0.543047i
\(9\) 1.95255 1.12731i 0.650850 0.375769i
\(10\) 0 0
\(11\) 5.07893i 1.53136i 0.643224 + 0.765678i \(0.277596\pi\)
−0.643224 + 0.765678i \(0.722404\pi\)
\(12\) 0.944113 + 0.252974i 0.272542 + 0.0730274i
\(13\) −3.67447 2.12146i −1.01911 0.588386i −0.105267 0.994444i \(-0.533570\pi\)
−0.913847 + 0.406058i \(0.866903\pi\)
\(14\) 2.20568 + 2.20568i 0.589492 + 0.589492i
\(15\) 0 0
\(16\) 2.49127 + 4.31501i 0.622818 + 1.07875i
\(17\) −0.745779 1.29173i −0.180878 0.313290i 0.761302 0.648398i \(-0.224561\pi\)
−0.942180 + 0.335108i \(0.891227\pi\)
\(18\) −1.99508 + 3.45558i −0.470245 + 0.814488i
\(19\) −1.08710 4.05713i −0.249399 0.930768i −0.971121 0.238586i \(-0.923316\pi\)
0.721723 0.692182i \(-0.243351\pi\)
\(20\) 0 0
\(21\) 1.31783 0.760851i 0.287575 0.166031i
\(22\) −4.49429 7.78434i −0.958186 1.65963i
\(23\) 7.96415i 1.66064i 0.557287 + 0.830320i \(0.311842\pi\)
−0.557287 + 0.830320i \(0.688158\pi\)
\(24\) 1.28091 0.343218i 0.261464 0.0700591i
\(25\) 0 0
\(26\) 7.50901 1.47264
\(27\) 3.20787 + 3.20787i 0.617355 + 0.617355i
\(28\) −1.92740 0.516445i −0.364244 0.0975989i
\(29\) 4.25340 + 4.25340i 0.789836 + 0.789836i 0.981467 0.191631i \(-0.0613777\pi\)
−0.191631 + 0.981467i \(0.561378\pi\)
\(30\) 0 0
\(31\) −6.65235 + 6.65235i −1.19480 + 1.19480i −0.219094 + 0.975704i \(0.570310\pi\)
−0.975704 + 0.219094i \(0.929690\pi\)
\(32\) −4.97623 2.87303i −0.879682 0.507885i
\(33\) −4.23553 + 1.13491i −0.737310 + 0.197562i
\(34\) 2.28607 + 1.31986i 0.392058 + 0.226355i
\(35\) 0 0
\(36\) 2.55247i 0.425412i
\(37\) −0.273432 + 6.07661i −0.0449520 + 0.998989i
\(38\) 5.25628 + 5.25628i 0.852681 + 0.852681i
\(39\) 0.948094 3.53833i 0.151817 0.566587i
\(40\) 0 0
\(41\) −0.974387 0.562562i −0.152174 0.0878575i 0.421980 0.906605i \(-0.361335\pi\)
−0.574153 + 0.818748i \(0.694669\pi\)
\(42\) −1.34654 + 2.33227i −0.207775 + 0.359877i
\(43\) 11.2292i 1.71244i 0.516614 + 0.856218i \(0.327192\pi\)
−0.516614 + 0.856218i \(0.672808\pi\)
\(44\) 4.97957 + 2.87496i 0.750699 + 0.433416i
\(45\) 0 0
\(46\) −7.04738 12.2064i −1.03908 1.79974i
\(47\) −0.00582614 + 0.00582614i −0.000849830 + 0.000849830i −0.707532 0.706682i \(-0.750191\pi\)
0.706682 + 0.707532i \(0.250191\pi\)
\(48\) −3.04178 + 3.04178i −0.439043 + 0.439043i
\(49\) 3.37184 1.94673i 0.481691 0.278104i
\(50\) 0 0
\(51\) 0.910577 0.910577i 0.127506 0.127506i
\(52\) −4.15991 + 2.40172i −0.576875 + 0.333059i
\(53\) 1.08040 4.03209i 0.148404 0.553850i −0.851177 0.524879i \(-0.824110\pi\)
0.999580 0.0289707i \(-0.00922294\pi\)
\(54\) −7.75522 2.07801i −1.05535 0.282781i
\(55\) 0 0
\(56\) −2.61496 + 0.700676i −0.349439 + 0.0936318i
\(57\) 3.14048 1.81316i 0.415967 0.240159i
\(58\) −10.2828 2.75528i −1.35020 0.361786i
\(59\) −7.84855 2.10301i −1.02179 0.273789i −0.291245 0.956649i \(-0.594069\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(60\) 0 0
\(61\) 3.03813 + 11.3385i 0.388993 + 1.45174i 0.831775 + 0.555113i \(0.187325\pi\)
−0.442782 + 0.896629i \(0.646008\pi\)
\(62\) 4.30928 16.0825i 0.547279 2.04247i
\(63\) −2.80993 2.80993i −0.354018 0.354018i
\(64\) 0.204149 0.0255186
\(65\) 0 0
\(66\) 5.48741 5.48741i 0.675453 0.675453i
\(67\) −8.30053 + 2.22412i −1.01407 + 0.271720i −0.727330 0.686288i \(-0.759239\pi\)
−0.286742 + 0.958008i \(0.592572\pi\)
\(68\) −1.68861 −0.204774
\(69\) −6.64162 + 1.77962i −0.799558 + 0.214241i
\(70\) 0 0
\(71\) 2.01507 3.49020i 0.239144 0.414210i −0.721325 0.692597i \(-0.756466\pi\)
0.960469 + 0.278387i \(0.0897998\pi\)
\(72\) −1.73151 2.99906i −0.204060 0.353443i
\(73\) 2.62998 2.62998i 0.307816 0.307816i −0.536246 0.844062i \(-0.680158\pi\)
0.844062 + 0.536246i \(0.180158\pi\)
\(74\) −4.95804 9.55541i −0.576361 1.11079i
\(75\) 0 0
\(76\) −4.59312 1.23072i −0.526867 0.141174i
\(77\) 8.64678 2.31690i 0.985393 0.264035i
\(78\) 1.67791 + 6.26206i 0.189986 + 0.709039i
\(79\) 0.875572 + 3.26768i 0.0985095 + 0.367643i 0.997528 0.0702678i \(-0.0223854\pi\)
−0.899019 + 0.437910i \(0.855719\pi\)
\(80\) 0 0
\(81\) 1.42356 2.46567i 0.158173 0.273964i
\(82\) 1.99122 0.219894
\(83\) 1.50332 5.61047i 0.165011 0.615829i −0.833028 0.553231i \(-0.813395\pi\)
0.998039 0.0625981i \(-0.0199386\pi\)
\(84\) 1.72274i 0.187966i
\(85\) 0 0
\(86\) −9.93659 17.2107i −1.07149 1.85588i
\(87\) −2.59664 + 4.49752i −0.278389 + 0.482184i
\(88\) 7.80109 0.831599
\(89\) −2.17709 + 8.12500i −0.230771 + 0.861248i 0.749239 + 0.662299i \(0.230419\pi\)
−0.980010 + 0.198949i \(0.936247\pi\)
\(90\) 0 0
\(91\) −1.93552 + 7.22347i −0.202898 + 0.757226i
\(92\) 7.80835 + 4.50815i 0.814076 + 0.470007i
\(93\) −7.03415 4.06117i −0.729408 0.421124i
\(94\) 0.00377408 0.0140850i 0.000389266 0.00145276i
\(95\) 0 0
\(96\) 1.28398 4.79187i 0.131045 0.489068i
\(97\) −6.00145 −0.609355 −0.304677 0.952456i \(-0.598549\pi\)
−0.304677 + 0.952456i \(0.598549\pi\)
\(98\) −3.44528 + 5.96740i −0.348026 + 0.602798i
\(99\) 5.72551 + 9.91688i 0.575436 + 0.996684i
\(100\) 0 0
\(101\) 9.27066i 0.922465i −0.887279 0.461232i \(-0.847407\pi\)
0.887279 0.461232i \(-0.152593\pi\)
\(102\) −0.589856 + 2.20137i −0.0584045 + 0.217969i
\(103\) −13.1554 −1.29624 −0.648120 0.761539i \(-0.724444\pi\)
−0.648120 + 0.761539i \(0.724444\pi\)
\(104\) −3.25849 + 5.64387i −0.319521 + 0.553427i
\(105\) 0 0
\(106\) 1.91206 + 7.13590i 0.185716 + 0.693100i
\(107\) 3.31035 + 12.3544i 0.320024 + 1.19434i 0.919221 + 0.393743i \(0.128820\pi\)
−0.599197 + 0.800602i \(0.704513\pi\)
\(108\) 4.96095 1.32928i 0.477367 0.127910i
\(109\) −16.4940 4.41956i −1.57984 0.423317i −0.640964 0.767571i \(-0.721465\pi\)
−0.938876 + 0.344254i \(0.888132\pi\)
\(110\) 0 0
\(111\) −5.12863 + 1.12982i −0.486788 + 0.107237i
\(112\) 6.20976 6.20976i 0.586767 0.586767i
\(113\) 2.77437 + 4.80535i 0.260991 + 0.452050i 0.966506 0.256646i \(-0.0826174\pi\)
−0.705515 + 0.708695i \(0.749284\pi\)
\(114\) −3.20889 + 5.55796i −0.300540 + 0.520550i
\(115\) 0 0
\(116\) 6.57785 1.76253i 0.610738 0.163647i
\(117\) −9.56612 −0.884388
\(118\) 13.8902 3.72187i 1.27870 0.342626i
\(119\) −1.85893 + 1.85893i −0.170408 + 0.170408i
\(120\) 0 0
\(121\) −14.7956 −1.34505
\(122\) −14.6897 14.6897i −1.32995 1.32995i
\(123\) 0.251413 0.938287i 0.0226692 0.0846025i
\(124\) 2.75661 + 10.2878i 0.247551 + 0.923873i
\(125\) 0 0
\(126\) 6.79317 + 1.82023i 0.605184 + 0.162159i
\(127\) 9.23310 + 2.47400i 0.819305 + 0.219532i 0.644043 0.764990i \(-0.277256\pi\)
0.175263 + 0.984522i \(0.443923\pi\)
\(128\) 9.63957 5.56541i 0.852026 0.491917i
\(129\) −9.36448 + 2.50920i −0.824497 + 0.220923i
\(130\) 0 0
\(131\) 14.8890 + 3.98950i 1.30086 + 0.348564i 0.841775 0.539829i \(-0.181511\pi\)
0.459084 + 0.888393i \(0.348178\pi\)
\(132\) −1.28484 + 4.79509i −0.111831 + 0.417359i
\(133\) −6.41127 + 3.70155i −0.555927 + 0.320965i
\(134\) 10.7539 10.7539i 0.928995 0.928995i
\(135\) 0 0
\(136\) −1.98405 + 1.14549i −0.170131 + 0.0982253i
\(137\) 0.140572 0.140572i 0.0120099 0.0120099i −0.701076 0.713086i \(-0.747297\pi\)
0.713086 + 0.701076i \(0.247297\pi\)
\(138\) 8.60467 8.60467i 0.732478 0.732478i
\(139\) −10.7764 18.6653i −0.914042 1.58317i −0.808299 0.588773i \(-0.799611\pi\)
−0.105743 0.994393i \(-0.533722\pi\)
\(140\) 0 0
\(141\) −0.00616052 0.00355678i −0.000518810 0.000299535i
\(142\) 7.13243i 0.598541i
\(143\) 10.7747 18.6624i 0.901028 1.56063i
\(144\) 9.72868 + 5.61686i 0.810723 + 0.468071i
\(145\) 0 0
\(146\) −1.70366 + 6.35813i −0.140996 + 0.526203i
\(147\) 2.37691 + 2.37691i 0.196044 + 0.196044i
\(148\) 5.80296 + 3.70778i 0.477000 + 0.304778i
\(149\) 4.45566i 0.365022i 0.983204 + 0.182511i \(0.0584226\pi\)
−0.983204 + 0.182511i \(0.941577\pi\)
\(150\) 0 0
\(151\) −3.72564 2.15100i −0.303188 0.175046i 0.340686 0.940177i \(-0.389341\pi\)
−0.643874 + 0.765131i \(0.722674\pi\)
\(152\) −6.23162 + 1.66976i −0.505451 + 0.135435i
\(153\) −2.91235 1.68144i −0.235449 0.135937i
\(154\) −11.2025 + 11.2025i −0.902722 + 0.902722i
\(155\) 0 0
\(156\) −2.93244 2.93244i −0.234783 0.234783i
\(157\) 0.322991 + 0.0865452i 0.0257775 + 0.00690706i 0.271685 0.962386i \(-0.412419\pi\)
−0.245907 + 0.969293i \(0.579086\pi\)
\(158\) −4.23350 4.23350i −0.336799 0.336799i
\(159\) 3.60394 0.285811
\(160\) 0 0
\(161\) 13.5588 3.63307i 1.06858 0.286326i
\(162\) 5.03875i 0.395882i
\(163\) 7.31795 + 12.6751i 0.573186 + 0.992788i 0.996236 + 0.0866815i \(0.0276262\pi\)
−0.423050 + 0.906106i \(0.639040\pi\)
\(164\) −1.10311 + 0.636883i −0.0861388 + 0.0497322i
\(165\) 0 0
\(166\) 2.66054 + 9.92928i 0.206498 + 0.770662i
\(167\) −2.87280 + 4.97584i −0.222304 + 0.385042i −0.955507 0.294968i \(-0.904691\pi\)
0.733203 + 0.680010i \(0.238024\pi\)
\(168\) −1.16864 2.02415i −0.0901628 0.156167i
\(169\) 2.50115 + 4.33211i 0.192396 + 0.333239i
\(170\) 0 0
\(171\) −6.69625 6.69625i −0.512075 0.512075i
\(172\) 11.0095 + 6.35635i 0.839468 + 0.484667i
\(173\) 4.22600 + 1.13235i 0.321297 + 0.0860913i 0.415863 0.909427i \(-0.363480\pi\)
−0.0945658 + 0.995519i \(0.530146\pi\)
\(174\) 9.19095i 0.696764i
\(175\) 0 0
\(176\) −21.9157 + 12.6530i −1.65195 + 0.953756i
\(177\) 7.01515i 0.527291i
\(178\) −3.85296 14.3794i −0.288791 1.07778i
\(179\) 3.38955 + 3.38955i 0.253347 + 0.253347i 0.822341 0.568995i \(-0.192667\pi\)
−0.568995 + 0.822341i \(0.692667\pi\)
\(180\) 0 0
\(181\) −6.12297 + 10.6053i −0.455117 + 0.788285i −0.998695 0.0510735i \(-0.983736\pi\)
0.543578 + 0.839358i \(0.317069\pi\)
\(182\) −3.42545 12.7839i −0.253911 0.947609i
\(183\) −8.77672 + 5.06724i −0.648794 + 0.374581i
\(184\) 12.2327 0.901806
\(185\) 0 0
\(186\) 14.3747 1.05401
\(187\) 6.56060 3.78776i 0.479758 0.276989i
\(188\) 0.00241424 + 0.00901008i 0.000176077 + 0.000657128i
\(189\) 3.99798 6.92470i 0.290810 0.503698i
\(190\) 0 0
\(191\) 8.10699 + 8.10699i 0.586601 + 0.586601i 0.936709 0.350108i \(-0.113855\pi\)
−0.350108 + 0.936709i \(0.613855\pi\)
\(192\) 0.0456178 + 0.170248i 0.00329218 + 0.0122866i
\(193\) 2.94463i 0.211959i 0.994368 + 0.105980i \(0.0337978\pi\)
−0.994368 + 0.105980i \(0.966202\pi\)
\(194\) 9.19825 5.31061i 0.660396 0.381280i
\(195\) 0 0
\(196\) 4.40783i 0.314845i
\(197\) 24.1687 + 6.47599i 1.72195 + 0.461395i 0.978303 0.207177i \(-0.0664277\pi\)
0.743647 + 0.668573i \(0.233094\pi\)
\(198\) −17.5507 10.1329i −1.24727 0.720112i
\(199\) −13.0511 13.0511i −0.925169 0.925169i 0.0722195 0.997389i \(-0.476992\pi\)
−0.997389 + 0.0722195i \(0.976992\pi\)
\(200\) 0 0
\(201\) −3.70957 6.42516i −0.261653 0.453196i
\(202\) 8.20350 + 14.2089i 0.577196 + 0.999733i
\(203\) 5.30102 9.18163i 0.372059 0.644424i
\(204\) −0.377326 1.40820i −0.0264181 0.0985937i
\(205\) 0 0
\(206\) 20.1629 11.6411i 1.40482 0.811071i
\(207\) 8.97803 + 15.5504i 0.624016 + 1.08083i
\(208\) 21.1405i 1.46583i
\(209\) 20.6059 5.52132i 1.42534 0.381918i
\(210\) 0 0
\(211\) 16.7927 1.15606 0.578029 0.816016i \(-0.303822\pi\)
0.578029 + 0.816016i \(0.303822\pi\)
\(212\) −3.34165 3.34165i −0.229505 0.229505i
\(213\) 3.36089 + 0.900547i 0.230284 + 0.0617045i
\(214\) −16.0059 16.0059i −1.09414 1.09414i
\(215\) 0 0
\(216\) 4.92719 4.92719i 0.335253 0.335253i
\(217\) 14.3602 + 8.29084i 0.974831 + 0.562819i
\(218\) 29.1907 7.82163i 1.97705 0.529748i
\(219\) 2.78092 + 1.60557i 0.187917 + 0.108494i
\(220\) 0 0
\(221\) 6.32855i 0.425704i
\(222\) 6.86075 6.26990i 0.460463 0.420808i
\(223\) 10.7596 + 10.7596i 0.720516 + 0.720516i 0.968710 0.248194i \(-0.0798372\pi\)
−0.248194 + 0.968710i \(0.579837\pi\)
\(224\) −2.62123 + 9.78255i −0.175138 + 0.653624i
\(225\) 0 0
\(226\) −8.50440 4.91002i −0.565704 0.326610i
\(227\) −1.03285 + 1.78895i −0.0685526 + 0.118737i −0.898264 0.439455i \(-0.855171\pi\)
0.829712 + 0.558192i \(0.188505\pi\)
\(228\) 4.10539i 0.271886i
\(229\) 8.25538 + 4.76625i 0.545531 + 0.314962i 0.747317 0.664467i \(-0.231341\pi\)
−0.201787 + 0.979429i \(0.564675\pi\)
\(230\) 0 0
\(231\) 3.86431 + 6.69318i 0.254253 + 0.440379i
\(232\) 6.53309 6.53309i 0.428918 0.428918i
\(233\) 6.47501 6.47501i 0.424192 0.424192i −0.462452 0.886644i \(-0.653030\pi\)
0.886644 + 0.462452i \(0.153030\pi\)
\(234\) 14.6617 8.46495i 0.958467 0.553371i
\(235\) 0 0
\(236\) −6.50459 + 6.50459i −0.423413 + 0.423413i
\(237\) −2.52940 + 1.46035i −0.164302 + 0.0948599i
\(238\) 1.20419 4.49408i 0.0780558 0.291308i
\(239\) 20.0354 + 5.36847i 1.29598 + 0.347258i 0.839930 0.542695i \(-0.182596\pi\)
0.456053 + 0.889952i \(0.349263\pi\)
\(240\) 0 0
\(241\) −11.5629 + 3.09827i −0.744832 + 0.199577i −0.611225 0.791457i \(-0.709323\pi\)
−0.133608 + 0.991034i \(0.542656\pi\)
\(242\) 22.6767 13.0924i 1.45772 0.841612i
\(243\) 15.5204 + 4.15868i 0.995635 + 0.266780i
\(244\) 12.8364 + 3.43951i 0.821767 + 0.220192i
\(245\) 0 0
\(246\) 0.444945 + 1.66056i 0.0283687 + 0.105873i
\(247\) −4.61248 + 17.2140i −0.293485 + 1.09530i
\(248\) 10.2178 + 10.2178i 0.648831 + 0.648831i
\(249\) 5.01472 0.317795
\(250\) 0 0
\(251\) −12.7774 + 12.7774i −0.806501 + 0.806501i −0.984102 0.177602i \(-0.943166\pi\)
0.177602 + 0.984102i \(0.443166\pi\)
\(252\) −4.34553 + 1.16438i −0.273743 + 0.0733492i
\(253\) −40.4494 −2.54303
\(254\) −16.3405 + 4.37843i −1.02530 + 0.274727i
\(255\) 0 0
\(256\) −10.0537 + 17.4135i −0.628355 + 1.08834i
\(257\) −11.9481 20.6947i −0.745303 1.29090i −0.950053 0.312088i \(-0.898972\pi\)
0.204751 0.978814i \(-0.434362\pi\)
\(258\) 12.1323 12.1323i 0.755325 0.755325i
\(259\) 10.4701 2.30651i 0.650577 0.143319i
\(260\) 0 0
\(261\) 13.0999 + 3.51010i 0.810861 + 0.217269i
\(262\) −26.3502 + 7.06052i −1.62792 + 0.436201i
\(263\) 2.09369 + 7.81377i 0.129103 + 0.481818i 0.999953 0.00973123i \(-0.00309760\pi\)
−0.870850 + 0.491549i \(0.836431\pi\)
\(264\) 1.74318 + 6.50564i 0.107285 + 0.400394i
\(265\) 0 0
\(266\) 6.55091 11.3465i 0.401662 0.695699i
\(267\) −7.26224 −0.444442
\(268\) −2.51795 + 9.39713i −0.153808 + 0.574021i
\(269\) 5.85649i 0.357076i 0.983933 + 0.178538i \(0.0571368\pi\)
−0.983933 + 0.178538i \(0.942863\pi\)
\(270\) 0 0
\(271\) −7.08302 12.2681i −0.430263 0.745237i 0.566633 0.823970i \(-0.308246\pi\)
−0.996896 + 0.0787334i \(0.974912\pi\)
\(272\) 3.71588 6.43609i 0.225308 0.390246i
\(273\) −6.45645 −0.390762
\(274\) −0.0910604 + 0.339842i −0.00550116 + 0.0205306i
\(275\) 0 0
\(276\) −2.01473 + 7.51906i −0.121272 + 0.452594i
\(277\) 17.5165 + 10.1132i 1.05247 + 0.607641i 0.923339 0.383987i \(-0.125449\pi\)
0.129127 + 0.991628i \(0.458783\pi\)
\(278\) 33.0333 + 19.0718i 1.98121 + 1.14385i
\(279\) −5.48982 + 20.4883i −0.328667 + 1.22660i
\(280\) 0 0
\(281\) 3.65016 13.6226i 0.217750 0.812656i −0.767430 0.641133i \(-0.778465\pi\)
0.985180 0.171523i \(-0.0548686\pi\)
\(282\) 0.0125894 0.000749689
\(283\) 15.5011 26.8486i 0.921442 1.59599i 0.124257 0.992250i \(-0.460345\pi\)
0.797185 0.603735i \(-0.206322\pi\)
\(284\) −2.28128 3.95129i −0.135369 0.234466i
\(285\) 0 0
\(286\) 38.1377i 2.25513i
\(287\) −0.513258 + 1.91550i −0.0302966 + 0.113069i
\(288\) −12.9551 −0.763388
\(289\) 7.38763 12.7957i 0.434566 0.752691i
\(290\) 0 0
\(291\) −1.34104 5.00485i −0.0786134 0.293389i
\(292\) −1.08981 4.06724i −0.0637765 0.238017i
\(293\) −29.2669 + 7.84205i −1.70979 + 0.458137i −0.975373 0.220560i \(-0.929212\pi\)
−0.734418 + 0.678697i \(0.762545\pi\)
\(294\) −5.74631 1.53972i −0.335132 0.0897983i
\(295\) 0 0
\(296\) 9.33349 + 0.419984i 0.542498 + 0.0244111i
\(297\) −16.2926 + 16.2926i −0.945390 + 0.945390i
\(298\) −3.94277 6.82907i −0.228398 0.395597i
\(299\) 16.8956 29.2640i 0.977097 1.69238i
\(300\) 0 0
\(301\) 19.1175 5.12252i 1.10191 0.295257i
\(302\) 7.61358 0.438113
\(303\) 7.73118 2.07156i 0.444144 0.119008i
\(304\) 14.7983 14.7983i 0.848739 0.848739i
\(305\) 0 0
\(306\) 5.95156 0.340228
\(307\) 7.31187 + 7.31187i 0.417310 + 0.417310i 0.884276 0.466965i \(-0.154653\pi\)
−0.466965 + 0.884276i \(0.654653\pi\)
\(308\) 2.62299 9.78912i 0.149459 0.557787i
\(309\) −2.93962 10.9708i −0.167229 0.624107i
\(310\) 0 0
\(311\) −8.87440 2.37789i −0.503221 0.134838i −0.00172654 0.999999i \(-0.500550\pi\)
−0.501494 + 0.865161i \(0.667216\pi\)
\(312\) −5.43477 1.45624i −0.307684 0.0824435i
\(313\) −1.42040 + 0.820070i −0.0802859 + 0.0463531i −0.539606 0.841918i \(-0.681427\pi\)
0.459320 + 0.888271i \(0.348093\pi\)
\(314\) −0.571622 + 0.153166i −0.0322585 + 0.00864364i
\(315\) 0 0
\(316\) 3.69938 + 0.991245i 0.208106 + 0.0557619i
\(317\) 0.185930 0.693899i 0.0104429 0.0389733i −0.960508 0.278253i \(-0.910245\pi\)
0.970951 + 0.239280i \(0.0769113\pi\)
\(318\) −5.52366 + 3.18909i −0.309751 + 0.178835i
\(319\) −21.6027 + 21.6027i −1.20952 + 1.20952i
\(320\) 0 0
\(321\) −9.56312 + 5.52127i −0.533761 + 0.308167i
\(322\) −17.5663 + 17.5663i −0.978934 + 0.978934i
\(323\) −4.42996 + 4.42996i −0.246490 + 0.246490i
\(324\) −1.61162 2.79141i −0.0895347 0.155079i
\(325\) 0 0
\(326\) −22.4320 12.9511i −1.24240 0.717298i
\(327\) 14.7426i 0.815267i
\(328\) −0.864079 + 1.49663i −0.0477108 + 0.0826375i
\(329\) 0.0125767 + 0.00726113i 0.000693373 + 0.000400319i
\(330\) 0 0
\(331\) 2.35027 8.77134i 0.129183 0.482117i −0.870771 0.491688i \(-0.836380\pi\)
0.999954 + 0.00957141i \(0.00304672\pi\)
\(332\) −4.64975 4.64975i −0.255188 0.255188i
\(333\) 6.31631 + 12.1731i 0.346132 + 0.667084i
\(334\) 10.1684i 0.556392i
\(335\) 0 0
\(336\) 6.56616 + 3.79098i 0.358214 + 0.206815i
\(337\) −29.5830 + 7.92675i −1.61149 + 0.431798i −0.948486 0.316818i \(-0.897386\pi\)
−0.663005 + 0.748615i \(0.730719\pi\)
\(338\) −7.66688 4.42647i −0.417023 0.240768i
\(339\) −3.38743 + 3.38743i −0.183980 + 0.183980i
\(340\) 0 0
\(341\) −33.7868 33.7868i −1.82966 1.82966i
\(342\) 16.1886 + 4.33772i 0.875378 + 0.234557i
\(343\) −13.5765 13.5765i −0.733065 0.733065i
\(344\) 17.2477 0.929934
\(345\) 0 0
\(346\) −7.47909 + 2.00402i −0.402078 + 0.107737i
\(347\) 15.1256i 0.811984i −0.913877 0.405992i \(-0.866926\pi\)
0.913877 0.405992i \(-0.133074\pi\)
\(348\) 2.93969 + 5.09169i 0.157584 + 0.272943i
\(349\) −9.49147 + 5.47990i −0.508067 + 0.293332i −0.732039 0.681263i \(-0.761431\pi\)
0.223972 + 0.974596i \(0.428098\pi\)
\(350\) 0 0
\(351\) −4.98187 18.5926i −0.265912 0.992398i
\(352\) 14.5919 25.2739i 0.777752 1.34711i
\(353\) −15.0422 26.0539i −0.800618 1.38671i −0.919210 0.393768i \(-0.871171\pi\)
0.118592 0.992943i \(-0.462162\pi\)
\(354\) 6.20763 + 10.7519i 0.329932 + 0.571458i
\(355\) 0 0
\(356\) 6.73370 + 6.73370i 0.356885 + 0.356885i
\(357\) −1.96562 1.13485i −0.104032 0.0600628i
\(358\) −8.19443 2.19569i −0.433089 0.116046i
\(359\) 13.7760i 0.727068i 0.931581 + 0.363534i \(0.118430\pi\)
−0.931581 + 0.363534i \(0.881570\pi\)
\(360\) 0 0
\(361\) 1.17601 0.678970i 0.0618953 0.0357353i
\(362\) 21.6726i 1.13909i
\(363\) −3.30612 12.3386i −0.173526 0.647609i
\(364\) 5.98655 + 5.98655i 0.313780 + 0.313780i
\(365\) 0 0
\(366\) 8.96789 15.5328i 0.468759 0.811915i
\(367\) 1.80899 + 6.75123i 0.0944283 + 0.352411i 0.996932 0.0782705i \(-0.0249398\pi\)
−0.902504 + 0.430682i \(0.858273\pi\)
\(368\) −34.3654 + 19.8409i −1.79142 + 1.03428i
\(369\) −2.53672 −0.132056
\(370\) 0 0
\(371\) −7.35741 −0.381978
\(372\) −7.96345 + 4.59770i −0.412885 + 0.238380i
\(373\) 5.90026 + 22.0201i 0.305504 + 1.14016i 0.932511 + 0.361142i \(0.117613\pi\)
−0.627007 + 0.779014i \(0.715720\pi\)
\(374\) −6.70350 + 11.6108i −0.346630 + 0.600380i
\(375\) 0 0
\(376\) 0.00894877 + 0.00894877i 0.000461498 + 0.000461498i
\(377\) −6.60558 24.6524i −0.340205 1.26966i
\(378\) 14.1511i 0.727852i
\(379\) −9.69628 + 5.59815i −0.498064 + 0.287558i −0.727914 0.685669i \(-0.759510\pi\)
0.229849 + 0.973226i \(0.426177\pi\)
\(380\) 0 0
\(381\) 8.25268i 0.422798i
\(382\) −19.5991 5.25158i −1.00278 0.268694i
\(383\) 17.3869 + 10.0383i 0.888430 + 0.512935i 0.873429 0.486952i \(-0.161891\pi\)
0.0150011 + 0.999887i \(0.495225\pi\)
\(384\) 6.79522 + 6.79522i 0.346767 + 0.346767i
\(385\) 0 0
\(386\) −2.60567 4.51315i −0.132625 0.229713i
\(387\) 12.6587 + 21.9256i 0.643480 + 1.11454i
\(388\) −3.39715 + 5.88404i −0.172464 + 0.298717i
\(389\) −3.05764 11.4113i −0.155028 0.578574i −0.999103 0.0423478i \(-0.986516\pi\)
0.844075 0.536226i \(-0.180150\pi\)
\(390\) 0 0
\(391\) 10.2875 5.93950i 0.520262 0.300373i
\(392\) −2.99012 5.17904i −0.151024 0.261581i
\(393\) 13.3080i 0.671300i
\(394\) −42.7733 + 11.4611i −2.15489 + 0.577400i
\(395\) 0 0
\(396\) 12.9638 0.651457
\(397\) −2.69155 2.69155i −0.135085 0.135085i 0.636331 0.771416i \(-0.280451\pi\)
−0.771416 + 0.636331i \(0.780451\pi\)
\(398\) 31.5519 + 8.45430i 1.58155 + 0.423776i
\(399\) −4.51949 4.51949i −0.226257 0.226257i
\(400\) 0 0
\(401\) 10.9226 10.9226i 0.545449 0.545449i −0.379672 0.925121i \(-0.623963\pi\)
0.925121 + 0.379672i \(0.123963\pi\)
\(402\) 11.3711 + 6.56511i 0.567139 + 0.327438i
\(403\) 38.5565 10.3312i 1.92064 0.514633i
\(404\) −9.08930 5.24771i −0.452209 0.261083i
\(405\) 0 0
\(406\) 18.7632i 0.931204i
\(407\) −30.8627 1.38874i −1.52981 0.0688375i
\(408\) −1.39862 1.39862i −0.0692419 0.0692419i
\(409\) 6.66691 24.8813i 0.329658 1.23030i −0.579888 0.814696i \(-0.696904\pi\)
0.909546 0.415603i \(-0.136429\pi\)
\(410\) 0 0
\(411\) 0.148640 + 0.0858175i 0.00733188 + 0.00423306i
\(412\) −7.44668 + 12.8980i −0.366872 + 0.635440i
\(413\) 14.3214i 0.704708i
\(414\) −27.5208 15.8891i −1.35257 0.780907i
\(415\) 0 0
\(416\) 12.1900 + 21.1137i 0.597664 + 1.03518i
\(417\) 13.1577 13.1577i 0.644335 0.644335i
\(418\) −26.6963 + 26.6963i −1.30576 + 1.30576i
\(419\) −27.9140 + 16.1161i −1.36369 + 0.787325i −0.990113 0.140275i \(-0.955201\pi\)
−0.373575 + 0.927600i \(0.621868\pi\)
\(420\) 0 0
\(421\) 24.8345 24.8345i 1.21036 1.21036i 0.239450 0.970909i \(-0.423033\pi\)
0.970909 0.239450i \(-0.0769672\pi\)
\(422\) −25.7377 + 14.8597i −1.25289 + 0.723358i
\(423\) −0.00480799 + 0.0179437i −0.000233773 + 0.000872452i
\(424\) −6.19317 1.65945i −0.300767 0.0805902i
\(425\) 0 0
\(426\) −5.94802 + 1.59377i −0.288183 + 0.0772183i
\(427\) 17.9176 10.3447i 0.867093 0.500617i
\(428\) 13.9866 + 3.74769i 0.676066 + 0.181151i
\(429\) 17.9710 + 4.81530i 0.867646 + 0.232485i
\(430\) 0 0
\(431\) 4.49781 + 16.7861i 0.216652 + 0.808557i 0.985578 + 0.169219i \(0.0541246\pi\)
−0.768926 + 0.639337i \(0.779209\pi\)
\(432\) −5.85032 + 21.8337i −0.281474 + 1.05047i
\(433\) −1.46291 1.46291i −0.0703030 0.0703030i 0.671081 0.741384i \(-0.265830\pi\)
−0.741384 + 0.671081i \(0.765830\pi\)
\(434\) −29.3459 −1.40865
\(435\) 0 0
\(436\) −13.6696 + 13.6696i −0.654656 + 0.654656i
\(437\) 32.3115 8.65785i 1.54567 0.414161i
\(438\) −5.68299 −0.271544
\(439\) −10.9636 + 2.93768i −0.523262 + 0.140208i −0.510775 0.859714i \(-0.670642\pi\)
−0.0124870 + 0.999922i \(0.503975\pi\)
\(440\) 0 0
\(441\) 4.38912 7.60218i 0.209006 0.362009i
\(442\) −5.60006 9.69959i −0.266368 0.461363i
\(443\) −11.3049 + 11.3049i −0.537112 + 0.537112i −0.922680 0.385567i \(-0.874006\pi\)
0.385567 + 0.922680i \(0.374006\pi\)
\(444\) −1.79538 + 5.66784i −0.0852049 + 0.268984i
\(445\) 0 0
\(446\) −26.0120 6.96989i −1.23170 0.330034i
\(447\) −3.71576 + 0.995634i −0.175749 + 0.0470919i
\(448\) −0.0931283 0.347560i −0.00439990 0.0164206i
\(449\) 1.16501 + 4.34789i 0.0549804 + 0.205190i 0.987952 0.154760i \(-0.0494605\pi\)
−0.932972 + 0.359950i \(0.882794\pi\)
\(450\) 0 0
\(451\) 2.85722 4.94884i 0.134541 0.233032i
\(452\) 6.28179 0.295471
\(453\) 0.961298 3.58761i 0.0451657 0.168561i
\(454\) 3.65582i 0.171576i
\(455\) 0 0
\(456\) −2.78496 4.82369i −0.130418 0.225890i
\(457\) −1.69554 + 2.93677i −0.0793142 + 0.137376i −0.902954 0.429737i \(-0.858606\pi\)
0.823640 + 0.567113i \(0.191940\pi\)
\(458\) −16.8704 −0.788301
\(459\) 1.75133 6.53606i 0.0817452 0.305077i
\(460\) 0 0
\(461\) −2.88225 + 10.7567i −0.134240 + 0.500989i 0.865760 + 0.500459i \(0.166835\pi\)
−1.00000 0.000529983i \(0.999831\pi\)
\(462\) −11.8454 6.83897i −0.551100 0.318178i
\(463\) −4.87143 2.81252i −0.226395 0.130709i 0.382513 0.923950i \(-0.375059\pi\)
−0.608908 + 0.793241i \(0.708392\pi\)
\(464\) −7.75708 + 28.9498i −0.360114 + 1.34396i
\(465\) 0 0
\(466\) −4.19440 + 15.6537i −0.194302 + 0.725144i
\(467\) 24.0241 1.11170 0.555852 0.831281i \(-0.312392\pi\)
0.555852 + 0.831281i \(0.312392\pi\)
\(468\) −5.41496 + 9.37898i −0.250306 + 0.433543i
\(469\) 7.57305 + 13.1169i 0.349691 + 0.605682i
\(470\) 0 0
\(471\) 0.288694i 0.0133023i
\(472\) −3.23017 + 12.0551i −0.148680 + 0.554883i
\(473\) −57.0323 −2.62235
\(474\) 2.58449 4.47647i 0.118710 0.205611i
\(475\) 0 0
\(476\) 0.770308 + 2.87483i 0.0353070 + 0.131767i
\(477\) −2.43587 9.09080i −0.111531 0.416239i
\(478\) −35.4582 + 9.50100i −1.62182 + 0.434566i
\(479\) −1.13540 0.304230i −0.0518778 0.0139006i 0.232787 0.972528i \(-0.425216\pi\)
−0.284665 + 0.958627i \(0.591882\pi\)
\(480\) 0 0
\(481\) 13.8960 21.7483i 0.633602 0.991635i
\(482\) 14.9805 14.9805i 0.682344 0.682344i
\(483\) 6.05953 + 10.4954i 0.275718 + 0.477558i
\(484\) −8.37511 + 14.5061i −0.380687 + 0.659369i
\(485\) 0 0
\(486\) −27.4677 + 7.35994i −1.24596 + 0.333854i
\(487\) −40.1900 −1.82118 −0.910592 0.413306i \(-0.864374\pi\)
−0.910592 + 0.413306i \(0.864374\pi\)
\(488\) 17.4155 4.66648i 0.788365 0.211242i
\(489\) −8.93503 + 8.93503i −0.404056 + 0.404056i
\(490\) 0 0
\(491\) 1.98284 0.0894844 0.0447422 0.998999i \(-0.485753\pi\)
0.0447422 + 0.998999i \(0.485753\pi\)
\(492\) −0.777618 0.777618i −0.0350577 0.0350577i
\(493\) 2.32214 8.66633i 0.104584 0.390312i
\(494\) −8.16307 30.4650i −0.367274 1.37068i
\(495\) 0 0
\(496\) −45.2778 12.1321i −2.03303 0.544750i
\(497\) −6.86122 1.83846i −0.307768 0.0824661i
\(498\) −7.68592 + 4.43747i −0.344414 + 0.198848i
\(499\) 13.7849 3.69365i 0.617096 0.165350i 0.0632887 0.997995i \(-0.479841\pi\)
0.553807 + 0.832645i \(0.313174\pi\)
\(500\) 0 0
\(501\) −4.79149 1.28388i −0.214068 0.0573593i
\(502\) 8.27697 30.8901i 0.369419 1.37869i
\(503\) −12.9393 + 7.47052i −0.576936 + 0.333094i −0.759915 0.650023i \(-0.774759\pi\)
0.182979 + 0.983117i \(0.441426\pi\)
\(504\) −4.31597 + 4.31597i −0.192248 + 0.192248i
\(505\) 0 0
\(506\) 61.9956 35.7932i 2.75604 1.59120i
\(507\) −3.05383 + 3.05383i −0.135626 + 0.135626i
\(508\) 7.65205 7.65205i 0.339505 0.339505i
\(509\) 14.2610 + 24.7007i 0.632106 + 1.09484i 0.987120 + 0.159979i \(0.0511427\pi\)
−0.355014 + 0.934861i \(0.615524\pi\)
\(510\) 0 0
\(511\) −5.67723 3.27775i −0.251146 0.144999i
\(512\) 13.3239i 0.588840i
\(513\) 9.52745 16.5020i 0.420647 0.728582i
\(514\) 36.6251 + 21.1455i 1.61546 + 0.932688i
\(515\) 0 0
\(516\) −2.84070 + 10.6016i −0.125055 + 0.466711i
\(517\) −0.0295906 0.0295906i −0.00130139 0.00130139i
\(518\) −14.0062 + 12.7999i −0.615395 + 0.562397i
\(519\) 3.77726i 0.165803i
\(520\) 0 0
\(521\) 20.2281 + 11.6787i 0.886208 + 0.511652i 0.872700 0.488256i \(-0.162367\pi\)
0.0135077 + 0.999909i \(0.495700\pi\)
\(522\) −23.1838 + 6.21209i −1.01473 + 0.271896i
\(523\) 22.7748 + 13.1491i 0.995874 + 0.574968i 0.907025 0.421077i \(-0.138348\pi\)
0.0888492 + 0.996045i \(0.471681\pi\)
\(524\) 12.3395 12.3395i 0.539052 0.539052i
\(525\) 0 0
\(526\) −10.1233 10.1233i −0.441395 0.441395i
\(527\) 13.5542 + 3.63184i 0.590431 + 0.158205i
\(528\) −15.4490 15.4490i −0.672331 0.672331i
\(529\) −40.4277 −1.75772
\(530\) 0 0
\(531\) −17.6954 + 4.74148i −0.767917 + 0.205763i
\(532\) 8.38112i 0.363368i
\(533\) 2.38690 + 4.13424i 0.103388 + 0.179074i
\(534\) 11.1306 6.42627i 0.481670 0.278092i
\(535\) 0 0
\(536\) 3.41618 + 12.7494i 0.147557 + 0.550689i
\(537\) −2.06927 + 3.58409i −0.0892957 + 0.154665i
\(538\) −5.18234 8.97607i −0.223426 0.386986i
\(539\) 9.88731 + 17.1253i 0.425877 + 0.737640i
\(540\) 0 0
\(541\) 14.4954 + 14.4954i 0.623204 + 0.623204i 0.946349 0.323145i \(-0.104740\pi\)
−0.323145 + 0.946349i \(0.604740\pi\)
\(542\) 21.7119 + 12.5354i 0.932605 + 0.538440i
\(543\) −10.2124 2.73640i −0.438255 0.117430i
\(544\) 8.57058i 0.367461i
\(545\) 0 0
\(546\) 9.89561 5.71324i 0.423493 0.244504i
\(547\) 35.8869i 1.53441i −0.641400 0.767207i \(-0.721646\pi\)
0.641400 0.767207i \(-0.278354\pi\)
\(548\) −0.0582505 0.217394i −0.00248834 0.00928661i
\(549\) 18.7140 + 18.7140i 0.798696 + 0.798696i
\(550\) 0 0
\(551\) 12.6327 21.8804i 0.538170 0.932138i
\(552\) 2.73344 + 10.2013i 0.116343 + 0.434198i
\(553\) 5.16374 2.98129i 0.219585 0.126777i
\(554\) −35.7961 −1.52083
\(555\) 0 0
\(556\) −24.4001 −1.03480
\(557\) 7.91255 4.56831i 0.335265 0.193566i −0.322911 0.946429i \(-0.604661\pi\)
0.658176 + 0.752864i \(0.271328\pi\)
\(558\) −9.71576 36.2597i −0.411301 1.53500i
\(559\) 23.8222 41.2613i 1.00757 1.74517i
\(560\) 0 0
\(561\) 4.62476 + 4.62476i 0.195257 + 0.195257i
\(562\) 6.45997 + 24.1089i 0.272498 + 1.01697i
\(563\) 25.2123i 1.06257i 0.847193 + 0.531286i \(0.178291\pi\)
−0.847193 + 0.531286i \(0.821709\pi\)
\(564\) −0.00697440 + 0.00402667i −0.000293675 + 0.000169553i
\(565\) 0 0
\(566\) 54.8668i 2.30623i
\(567\) −4.84715 1.29879i −0.203561 0.0545441i
\(568\) −5.36083 3.09508i −0.224936 0.129867i
\(569\) −29.7457 29.7457i −1.24700 1.24700i −0.957037 0.289966i \(-0.906356\pi\)
−0.289966 0.957037i \(-0.593644\pi\)
\(570\) 0 0
\(571\) −12.0676 20.9018i −0.505015 0.874712i −0.999983 0.00580103i \(-0.998153\pi\)
0.494968 0.868911i \(-0.335180\pi\)
\(572\) −12.1982 21.1279i −0.510032 0.883401i
\(573\) −4.94921 + 8.57229i −0.206756 + 0.358112i
\(574\) −0.908352 3.39001i −0.0379139 0.141496i
\(575\) 0 0
\(576\) 0.398611 0.230138i 0.0166088 0.00958910i
\(577\) 4.49827 + 7.79123i 0.187265 + 0.324353i 0.944338 0.328978i \(-0.106704\pi\)
−0.757072 + 0.653331i \(0.773371\pi\)
\(578\) 26.1489i 1.08765i
\(579\) −2.45565 + 0.657988i −0.102053 + 0.0273451i
\(580\) 0 0
\(581\) −10.2375 −0.424723
\(582\) 6.48411 + 6.48411i 0.268775 + 0.268775i
\(583\) 20.4787 + 5.48725i 0.848142 + 0.227259i
\(584\) −4.03957 4.03957i −0.167158 0.167158i
\(585\) 0 0
\(586\) 37.9173 37.9173i 1.56635 1.56635i
\(587\) −11.8890 6.86411i −0.490711 0.283312i 0.234159 0.972198i \(-0.424767\pi\)
−0.724869 + 0.688886i \(0.758100\pi\)
\(588\) 3.67587 0.984946i 0.151590 0.0406185i
\(589\) 34.2212 + 19.7576i 1.41006 + 0.814099i
\(590\) 0 0
\(591\) 21.6024i 0.888602i
\(592\) −26.9019 + 13.9586i −1.10566 + 0.573697i
\(593\) 29.2800 + 29.2800i 1.20239 + 1.20239i 0.973439 + 0.228948i \(0.0735285\pi\)
0.228948 + 0.973439i \(0.426472\pi\)
\(594\) 10.5540 39.3882i 0.433038 1.61612i
\(595\) 0 0
\(596\) 4.36850 + 2.52215i 0.178941 + 0.103311i
\(597\) 7.96753 13.8002i 0.326089 0.564803i
\(598\) 59.8028i 2.44552i
\(599\) 13.6676 + 7.89098i 0.558442 + 0.322417i 0.752520 0.658569i \(-0.228838\pi\)
−0.194078 + 0.980986i \(0.562171\pi\)
\(600\) 0 0
\(601\) −14.0555 24.3449i −0.573338 0.993050i −0.996220 0.0868653i \(-0.972315\pi\)
0.422882 0.906185i \(-0.361018\pi\)
\(602\) −24.7680 + 24.7680i −1.00947 + 1.00947i
\(603\) −13.6999 + 13.6999i −0.557905 + 0.557905i
\(604\) −4.21784 + 2.43517i −0.171622 + 0.0990857i
\(605\) 0 0
\(606\) −10.0163 + 10.0163i −0.406883 + 0.406883i
\(607\) −20.9733 + 12.1090i −0.851282 + 0.491488i −0.861083 0.508464i \(-0.830213\pi\)
0.00980151 + 0.999952i \(0.496880\pi\)
\(608\) −6.24656 + 23.3125i −0.253331 + 0.945446i
\(609\) 8.84147 + 2.36906i 0.358274 + 0.0959993i
\(610\) 0 0
\(611\) 0.0337679 0.00904807i 0.00136610 0.000366046i
\(612\) −3.29710 + 1.90358i −0.133277 + 0.0769477i
\(613\) −35.9689 9.63784i −1.45277 0.389269i −0.555784 0.831327i \(-0.687582\pi\)
−0.896987 + 0.442058i \(0.854249\pi\)
\(614\) −17.6769 4.73651i −0.713381 0.191150i
\(615\) 0 0
\(616\) −3.55869 13.2812i −0.143384 0.535115i
\(617\) 10.6716 39.8269i 0.429621 1.60337i −0.323998 0.946058i \(-0.605027\pi\)
0.753619 0.657311i \(-0.228306\pi\)
\(618\) 14.2134 + 14.2134i 0.571747 + 0.571747i
\(619\) 13.6890 0.550207 0.275104 0.961415i \(-0.411288\pi\)
0.275104 + 0.961415i \(0.411288\pi\)
\(620\) 0 0
\(621\) −25.5480 + 25.5480i −1.02520 + 1.02520i
\(622\) 15.7057 4.20833i 0.629742 0.168739i
\(623\) 14.8258 0.593983
\(624\) 17.6299 4.72392i 0.705761 0.189108i
\(625\) 0 0
\(626\) 1.45134 2.51380i 0.0580073 0.100472i
\(627\) 9.20891 + 15.9503i 0.367768 + 0.636994i
\(628\) 0.267683 0.267683i 0.0106817 0.0106817i
\(629\) 8.05325 4.17861i 0.321104 0.166612i
\(630\) 0 0
\(631\) 8.04532 + 2.15574i 0.320279 + 0.0858185i 0.415377 0.909649i \(-0.363650\pi\)
−0.0950978 + 0.995468i \(0.530316\pi\)
\(632\) 5.01905 1.34485i 0.199647 0.0534953i
\(633\) 3.75239 + 14.0041i 0.149144 + 0.556614i
\(634\) 0.329054 + 1.22805i 0.0130684 + 0.0487720i
\(635\) 0 0
\(636\) 2.04003 3.53344i 0.0808925 0.140110i
\(637\) −16.5196 −0.654531
\(638\) 13.9939 52.2259i 0.554023 2.06764i
\(639\) 9.08638i 0.359452i
\(640\) 0 0
\(641\) 1.42182 + 2.46266i 0.0561585 + 0.0972694i 0.892738 0.450576i \(-0.148781\pi\)
−0.836579 + 0.547846i \(0.815448\pi\)
\(642\) 9.77142 16.9246i 0.385647 0.667960i
\(643\) 28.1328 1.10945 0.554724 0.832035i \(-0.312824\pi\)
0.554724 + 0.832035i \(0.312824\pi\)
\(644\) 4.11304 15.3501i 0.162077 0.604878i
\(645\) 0 0
\(646\) 2.86966 10.7097i 0.112905 0.421368i
\(647\) −35.5702 20.5365i −1.39841 0.807372i −0.404183 0.914678i \(-0.632444\pi\)
−0.994226 + 0.107306i \(0.965777\pi\)
\(648\) −3.78720 2.18654i −0.148775 0.0858954i
\(649\) 10.6811 39.8623i 0.419268 1.56473i
\(650\) 0 0
\(651\) −3.70524 + 13.8281i −0.145220 + 0.541967i
\(652\) 16.5695 0.648911
\(653\) 21.4609 37.1713i 0.839829 1.45463i −0.0502088 0.998739i \(-0.515989\pi\)
0.890038 0.455887i \(-0.150678\pi\)
\(654\) 13.0455 + 22.5956i 0.510121 + 0.883556i
\(655\) 0 0
\(656\) 5.60599i 0.218877i
\(657\) 2.17038 8.09996i 0.0846745 0.316009i
\(658\) −0.0257012 −0.00100194
\(659\) 3.90506 6.76375i 0.152119 0.263478i −0.779887 0.625920i \(-0.784724\pi\)
0.932006 + 0.362442i \(0.118057\pi\)
\(660\) 0 0
\(661\) 12.7002 + 47.3979i 0.493982 + 1.84356i 0.535660 + 0.844434i \(0.320063\pi\)
−0.0416782 + 0.999131i \(0.513270\pi\)
\(662\) 4.15946 + 15.5233i 0.161662 + 0.603331i
\(663\) −5.27763 + 1.41414i −0.204966 + 0.0549206i
\(664\) −8.61751 2.30906i −0.334424 0.0896087i
\(665\) 0 0
\(666\) −20.4527 13.0682i −0.792526 0.506383i
\(667\) −33.8747 + 33.8747i −1.31163 + 1.31163i
\(668\) 3.25233 + 5.63320i 0.125836 + 0.217955i
\(669\) −6.56859 + 11.3771i −0.253956 + 0.439865i
\(670\) 0 0
\(671\) −57.5873 + 15.4305i −2.22313 + 0.595687i
\(672\) −8.74379 −0.337299
\(673\) −7.24213 + 1.94052i −0.279164 + 0.0748017i −0.395684 0.918387i \(-0.629493\pi\)
0.116521 + 0.993188i \(0.462826\pi\)
\(674\) 38.3268 38.3268i 1.47629 1.47629i
\(675\) 0 0
\(676\) 5.66315 0.217814
\(677\) −30.5875 30.5875i −1.17557 1.17557i −0.980860 0.194715i \(-0.937622\pi\)
−0.194715 0.980860i \(-0.562378\pi\)
\(678\) 2.19432 8.18933i 0.0842725 0.314509i
\(679\) 2.73773 + 10.2173i 0.105064 + 0.392106i
\(680\) 0 0
\(681\) −1.72267 0.461588i −0.0660128 0.0176881i
\(682\) 81.6817 + 21.8866i 3.12775 + 0.838079i
\(683\) 34.7149 20.0426i 1.32833 0.766911i 0.343287 0.939231i \(-0.388460\pi\)
0.985041 + 0.172320i \(0.0551263\pi\)
\(684\) −10.3557 + 2.77480i −0.395960 + 0.106097i
\(685\) 0 0
\(686\) 32.8221 + 8.79466i 1.25315 + 0.335782i
\(687\) −2.13007 + 7.94953i −0.0812672 + 0.303293i
\(688\) −48.4541 + 27.9750i −1.84730 + 1.06654i
\(689\) −12.5238 + 12.5238i −0.477118 + 0.477118i
\(690\) 0 0
\(691\) 28.5744 16.4974i 1.08702 0.627592i 0.154240 0.988033i \(-0.450707\pi\)
0.932782 + 0.360441i \(0.117374\pi\)
\(692\) 3.50236 3.50236i 0.133140 0.133140i
\(693\) 14.2714 14.2714i 0.542127 0.542127i
\(694\) 13.3845 + 23.1826i 0.508067 + 0.879998i
\(695\) 0 0
\(696\) 6.90805 + 3.98836i 0.261849 + 0.151179i
\(697\) 1.67819i 0.0635660i
\(698\) 9.69821 16.7978i 0.367083 0.635806i
\(699\) 6.84663 + 3.95290i 0.258963 + 0.149513i
\(700\) 0 0
\(701\) −1.13499 + 4.23585i −0.0428680 + 0.159986i −0.984042 0.177937i \(-0.943058\pi\)
0.941174 + 0.337923i \(0.109724\pi\)
\(702\) 24.0879 + 24.0879i 0.909140 + 0.909140i
\(703\) 24.9508 5.49656i 0.941038 0.207307i
\(704\) 1.03686i 0.0390781i
\(705\) 0 0
\(706\) 46.1097 + 26.6214i 1.73536 + 1.00191i
\(707\) −15.7831 + 4.22907i −0.593585 + 0.159051i
\(708\) −6.87791 3.97097i −0.258488 0.149238i
\(709\) 7.54090 7.54090i 0.283205 0.283205i −0.551181 0.834386i \(-0.685823\pi\)
0.834386 + 0.551181i \(0.185823\pi\)
\(710\) 0 0
\(711\) 5.39327 + 5.39327i 0.202264 + 0.202264i
\(712\) 12.4797 + 3.34394i 0.467698 + 0.125319i
\(713\) −52.9803 52.9803i −1.98413 1.98413i
\(714\) 4.01688 0.150328
\(715\) 0 0
\(716\) 5.24191 1.40457i 0.195899 0.0524911i
\(717\) 17.9079i 0.668784i
\(718\) −12.1902 21.1141i −0.454934 0.787969i
\(719\) 19.9831 11.5373i 0.745245 0.430268i −0.0787281 0.996896i \(-0.525086\pi\)
0.823973 + 0.566629i \(0.191753\pi\)
\(720\) 0 0
\(721\) 6.00120 + 22.3968i 0.223497 + 0.834100i
\(722\) −1.20163 + 2.08128i −0.0447199 + 0.0774571i
\(723\) −5.16755 8.95045i −0.192183 0.332871i
\(724\) 6.93188 + 12.0064i 0.257621 + 0.446213i
\(725\) 0 0
\(726\) 15.9855 + 15.9855i 0.593277 + 0.593277i
\(727\) 15.0509 + 8.68964i 0.558207 + 0.322281i 0.752425 0.658677i \(-0.228884\pi\)
−0.194219 + 0.980958i \(0.562217\pi\)
\(728\) 11.0950 + 2.97291i 0.411209 + 0.110183i
\(729\) 5.33104i 0.197446i
\(730\) 0 0
\(731\) 14.5051 8.37450i 0.536489 0.309742i
\(732\) 11.4734i 0.424068i
\(733\) −8.68494 32.4126i −0.320786 1.19719i −0.918481 0.395465i \(-0.870584\pi\)
0.597696 0.801723i \(-0.296083\pi\)
\(734\) −8.74667 8.74667i −0.322845 0.322845i
\(735\) 0 0
\(736\) 22.8812 39.6314i 0.843413 1.46083i
\(737\) −11.2962 42.1578i −0.416099 1.55290i
\(738\) 3.88796 2.24471i 0.143118 0.0826291i
\(739\) 21.1980 0.779781 0.389891 0.920861i \(-0.372513\pi\)
0.389891 + 0.920861i \(0.372513\pi\)
\(740\) 0 0
\(741\) −15.3861 −0.565224
\(742\) 11.2765 6.51049i 0.413973 0.239008i
\(743\) −5.93426 22.1470i −0.217707 0.812493i −0.985196 0.171431i \(-0.945161\pi\)
0.767489 0.641062i \(-0.221506\pi\)
\(744\) −6.23784 + 10.8042i −0.228690 + 0.396103i
\(745\) 0 0
\(746\) −28.5285 28.5285i −1.04450 1.04450i
\(747\) −3.38941 12.6494i −0.124012 0.462819i
\(748\) 8.57634i 0.313582i
\(749\) 19.5230 11.2716i 0.713355 0.411856i
\(750\) 0 0
\(751\) 9.63421i 0.351557i −0.984430 0.175779i \(-0.943756\pi\)
0.984430 0.175779i \(-0.0562443\pi\)
\(752\) −0.0396544 0.0106254i −0.00144605 0.000387467i
\(753\) −13.5107 7.80042i −0.492358 0.284263i
\(754\) 31.9388 + 31.9388i 1.16314 + 1.16314i
\(755\) 0 0
\(756\) −4.52615 7.83953i −0.164615 0.285121i
\(757\) −10.4032 18.0188i −0.378110 0.654906i 0.612677 0.790333i \(-0.290093\pi\)
−0.990787 + 0.135427i \(0.956759\pi\)
\(758\) 9.90748 17.1603i 0.359856 0.623289i
\(759\) −9.03856 33.7324i −0.328079 1.22441i
\(760\) 0 0
\(761\) 13.9463 8.05189i 0.505552 0.291881i −0.225451 0.974254i \(-0.572386\pi\)
0.731003 + 0.682374i \(0.239052\pi\)
\(762\) −7.30270 12.6487i −0.264549 0.458212i
\(763\) 30.0968i 1.08958i
\(764\) 12.5374 3.35939i 0.453587 0.121538i
\(765\) 0 0
\(766\) −35.5312 −1.28380
\(767\) 24.3778 + 24.3778i 0.880232 + 0.880232i
\(768\) −16.7683 4.49306i −0.605075 0.162129i
\(769\) −28.5069 28.5069i −1.02798 1.02798i −0.999597 0.0283867i \(-0.990963\pi\)
−0.0283867 0.999597i \(-0.509037\pi\)
\(770\) 0 0
\(771\) 14.5883 14.5883i 0.525386 0.525386i
\(772\) 2.88702 + 1.66682i 0.103906 + 0.0599903i
\(773\) 17.3557 4.65045i 0.624241 0.167265i 0.0671861 0.997740i \(-0.478598\pi\)
0.557055 + 0.830476i \(0.311931\pi\)
\(774\) −38.8034 22.4032i −1.39476 0.805265i
\(775\) 0 0
\(776\) 9.21804i 0.330908i
\(777\) 4.26306 + 8.21600i 0.152936 + 0.294747i
\(778\) 14.7840 + 14.7840i 0.530034 + 0.530034i
\(779\) −1.22313 + 4.56477i −0.0438231 + 0.163550i
\(780\) 0 0
\(781\) 17.7265 + 10.2344i 0.634303 + 0.366215i
\(782\) −10.5116 + 18.2066i −0.375894 + 0.651067i
\(783\) 27.2887i 0.975218i
\(784\) 16.8003 + 9.69967i 0.600012 + 0.346417i
\(785\) 0 0
\(786\) −11.7761 20.3968i −0.420040 0.727530i
\(787\) 17.0724 17.0724i 0.608565 0.608565i −0.334006 0.942571i \(-0.608400\pi\)
0.942571 + 0.334006i \(0.108400\pi\)
\(788\) 20.0301 20.0301i 0.713544 0.713544i
\(789\) −6.04837 + 3.49203i −0.215328 + 0.124320i
\(790\) 0 0
\(791\) 6.91541 6.91541i 0.245884 0.245884i
\(792\) 15.2320 8.79421i 0.541246 0.312489i
\(793\) 12.8905 48.1081i 0.457756 1.70837i
\(794\) 6.50699 + 1.74354i 0.230924 + 0.0618760i
\(795\) 0 0
\(796\) −20.1835 + 5.40814i −0.715384 + 0.191687i
\(797\) −13.5326 + 7.81304i −0.479349 + 0.276752i −0.720145 0.693824i \(-0.755925\pi\)
0.240796 + 0.970576i \(0.422591\pi\)
\(798\) 10.9261 + 2.92765i 0.386781 + 0.103638i
\(799\) 0.0118708 + 0.00318077i 0.000419959 + 0.000112528i
\(800\) 0 0
\(801\) 4.90849 + 18.3187i 0.173433 + 0.647260i
\(802\) −7.07548 + 26.4061i −0.249844 + 0.932430i
\(803\) 13.3575 + 13.3575i 0.471375 + 0.471375i
\(804\) −8.39929 −0.296220
\(805\) 0 0
\(806\) −49.9525 + 49.9525i −1.75950 + 1.75950i
\(807\) −4.88396 + 1.30865i −0.171924 + 0.0460668i
\(808\) −14.2395 −0.500942
\(809\) 7.31600 1.96032i 0.257217 0.0689210i −0.127906 0.991786i \(-0.540826\pi\)
0.385123 + 0.922865i \(0.374159\pi\)
\(810\) 0 0
\(811\) −15.7426 + 27.2670i −0.552799 + 0.957475i 0.445272 + 0.895395i \(0.353107\pi\)
−0.998071 + 0.0620803i \(0.980227\pi\)
\(812\) −6.00134 10.3946i −0.210606 0.364780i
\(813\) 8.64818 8.64818i 0.303305 0.303305i
\(814\) 48.5313 25.1816i 1.70102 0.882614i
\(815\) 0 0
\(816\) 6.19765 + 1.66065i 0.216961 + 0.0581345i
\(817\) 45.5583 12.2073i 1.59388 0.427079i
\(818\) 11.7989 + 44.0343i 0.412541 + 1.53962i
\(819\) 4.36386 + 16.2861i 0.152485 + 0.569084i
\(820\) 0 0
\(821\) −10.1275 + 17.5414i −0.353453 + 0.612199i −0.986852 0.161627i \(-0.948326\pi\)
0.633399 + 0.773826i \(0.281659\pi\)
\(822\) −0.303756 −0.0105947
\(823\) −2.51580 + 9.38910i −0.0876953 + 0.327283i −0.995811 0.0914361i \(-0.970854\pi\)
0.908116 + 0.418720i \(0.137521\pi\)
\(824\) 20.2063i 0.703919i
\(825\) 0 0
\(826\) −12.6728 21.9500i −0.440943 0.763737i
\(827\) 11.9888 20.7652i 0.416890 0.722075i −0.578735 0.815516i \(-0.696453\pi\)
0.995625 + 0.0934408i \(0.0297866\pi\)
\(828\) 20.3283 0.706456
\(829\) −4.86508 + 18.1567i −0.168971 + 0.630610i 0.828529 + 0.559946i \(0.189178\pi\)
−0.997500 + 0.0706633i \(0.977488\pi\)
\(830\) 0 0
\(831\) −4.51965 + 16.8676i −0.156785 + 0.585129i
\(832\) −0.750139 0.433093i −0.0260064 0.0150148i
\(833\) −5.02929 2.90366i −0.174255 0.100606i
\(834\) −8.52333 + 31.8095i −0.295139 + 1.10147i
\(835\) 0 0
\(836\) 6.25075 23.3281i 0.216187 0.806820i
\(837\) −42.6798 −1.47523
\(838\) 28.5220 49.4015i 0.985276 1.70655i
\(839\) −3.59689 6.23000i −0.124179 0.215084i 0.797233 0.603672i \(-0.206296\pi\)
−0.921412 + 0.388588i \(0.872963\pi\)
\(840\) 0 0
\(841\) 7.18276i 0.247681i
\(842\) −16.0874 + 60.0389i −0.554407 + 2.06908i
\(843\) 12.1761 0.419366
\(844\) 9.50561 16.4642i 0.327197 0.566721i
\(845\) 0 0
\(846\) −0.00850908 0.0317563i −0.000292548 0.00109180i
\(847\) 6.74941 + 25.1891i 0.231913 + 0.865509i
\(848\) 20.0901 5.38312i 0.689896 0.184857i
\(849\) 25.8539 + 6.92754i 0.887304 + 0.237752i
\(850\) 0 0
\(851\) −48.3951 2.17765i −1.65896 0.0746490i
\(852\) 2.78538 2.78538i 0.0954255 0.0954255i
\(853\) 15.8619 + 27.4736i 0.543100 + 0.940677i 0.998724 + 0.0505044i \(0.0160829\pi\)
−0.455624 + 0.890172i \(0.650584\pi\)
\(854\) −18.3079 + 31.7102i −0.626482 + 1.08510i
\(855\) 0 0
\(856\) 18.9760 5.08460i 0.648586 0.173788i
\(857\) 43.1899 1.47534 0.737669 0.675162i \(-0.235926\pi\)
0.737669 + 0.675162i \(0.235926\pi\)
\(858\) −31.8046 + 8.52202i −1.08579 + 0.290937i
\(859\) −26.5424 + 26.5424i −0.905616 + 0.905616i −0.995915 0.0902990i \(-0.971218\pi\)
0.0902990 + 0.995915i \(0.471218\pi\)
\(860\) 0 0
\(861\) −1.71210 −0.0583484
\(862\) −21.7475 21.7475i −0.740722 0.740722i
\(863\) 3.13402 11.6963i 0.106683 0.398147i −0.891847 0.452336i \(-0.850591\pi\)
0.998531 + 0.0541891i \(0.0172574\pi\)
\(864\) −6.74680 25.1794i −0.229531 0.856621i
\(865\) 0 0
\(866\) 3.53668 + 0.947650i 0.120181 + 0.0322025i
\(867\) 12.3217 + 3.30158i 0.418466 + 0.112128i
\(868\) 16.2573 9.38615i 0.551809 0.318587i
\(869\) −16.5963 + 4.44697i −0.562991 + 0.150853i
\(870\) 0 0
\(871\) 35.2184 + 9.43675i 1.19333 + 0.319752i
\(872\) −6.78831 + 25.3343i −0.229881 + 0.857928i
\(873\) −11.7181 + 6.76547i −0.396599 + 0.228976i
\(874\) −41.8618 + 41.8618i −1.41600 + 1.41600i
\(875\) 0 0
\(876\) 3.14831 1.81768i 0.106372 0.0614137i
\(877\) 0.910508 0.910508i 0.0307457 0.0307457i −0.691567 0.722312i \(-0.743079\pi\)
0.722312 + 0.691567i \(0.243079\pi\)
\(878\) 14.2040 14.2040i 0.479363 0.479363i
\(879\) −13.0796 22.6545i −0.441164 0.764118i
\(880\) 0 0
\(881\) −3.54878 2.04889i −0.119561 0.0690288i 0.439027 0.898474i \(-0.355323\pi\)
−0.558588 + 0.829445i \(0.688657\pi\)
\(882\) 15.5355i 0.523109i
\(883\) 15.0734 26.1079i 0.507261 0.878601i −0.492704 0.870197i \(-0.663991\pi\)
0.999965 0.00840425i \(-0.00267519\pi\)
\(884\) 6.20475 + 3.58231i 0.208688 + 0.120486i
\(885\) 0 0
\(886\) 7.32313 27.3303i 0.246025 0.918179i
\(887\) 39.0222 + 39.0222i 1.31024 + 1.31024i 0.921238 + 0.388998i \(0.127179\pi\)
0.388998 + 0.921238i \(0.372821\pi\)
\(888\) 1.73536 + 7.87742i 0.0582349 + 0.264349i
\(889\) 16.8478i 0.565056i
\(890\) 0 0
\(891\) 12.5230 + 7.23014i 0.419536 + 0.242219i
\(892\) 16.6396 4.45858i 0.557136 0.149284i
\(893\) 0.0299710 + 0.0173038i 0.00100294 + 0.000579048i
\(894\) 4.81401 4.81401i 0.161005 0.161005i
\(895\) 0 0
\(896\) −13.8724 13.8724i −0.463443 0.463443i
\(897\) 28.1798 + 7.55076i 0.940897 + 0.252113i
\(898\) −5.63298 5.63298i −0.187975 0.187975i
\(899\) −56.5902 −1.88739
\(900\) 0 0
\(901\) −6.01410 + 1.61147i −0.200359 + 0.0536860i
\(902\) 10.1133i 0.336735i
\(903\) 8.54375 + 14.7982i 0.284318 + 0.492453i
\(904\) 7.38088 4.26135i 0.245484 0.141730i
\(905\) 0 0
\(906\) 1.70128 + 6.34927i 0.0565213 + 0.210941i
\(907\) 22.7521 39.4078i 0.755471 1.30851i −0.189669 0.981848i \(-0.560742\pi\)
0.945140 0.326665i \(-0.105925\pi\)
\(908\) 1.16930 + 2.02529i 0.0388046 + 0.0672115i
\(909\) −10.4509 18.1014i −0.346633 0.600387i
\(910\) 0 0
\(911\) 33.0804 + 33.0804i 1.09600 + 1.09600i 0.994873 + 0.101129i \(0.0322453\pi\)
0.101129 + 0.994873i \(0.467755\pi\)
\(912\) 15.6476 + 9.03415i 0.518144 + 0.299151i
\(913\) 28.4952 + 7.63526i 0.943053 + 0.252690i
\(914\) 6.00147i 0.198511i
\(915\) 0 0
\(916\) 9.34601 5.39592i 0.308801 0.178286i
\(917\) 27.1682i 0.897172i
\(918\) 3.09947 + 11.5674i 0.102298 + 0.381780i
\(919\) 13.7077 + 13.7077i 0.452175 + 0.452175i 0.896076 0.443901i \(-0.146406\pi\)
−0.443901 + 0.896076i \(0.646406\pi\)
\(920\) 0 0
\(921\) −4.46380 + 7.73152i −0.147087 + 0.254762i
\(922\) −5.10093 19.0369i −0.167990 0.626948i
\(923\) −14.8086 + 8.54974i −0.487431 + 0.281418i
\(924\) 8.74966 0.287843
\(925\) 0 0
\(926\) 9.95508 0.327144
\(927\) −25.6866 + 14.8302i −0.843658 + 0.487086i
\(928\) −8.94576 33.3860i −0.293659 1.09595i
\(929\) −8.91466 + 15.4406i −0.292481 + 0.506591i −0.974396 0.224840i \(-0.927814\pi\)
0.681915 + 0.731431i \(0.261147\pi\)
\(930\) 0 0
\(931\) −11.5637 11.5637i −0.378984 0.378984i
\(932\) −2.68312 10.0135i −0.0878886 0.328005i
\(933\) 7.93207i 0.259684i
\(934\) −36.8211 + 21.2587i −1.20482 + 0.695605i
\(935\) 0 0
\(936\) 14.6933i 0.480264i
\(937\) 33.5237 + 8.98266i 1.09517 + 0.293451i 0.760797 0.648989i \(-0.224808\pi\)
0.334375 + 0.942440i \(0.391475\pi\)
\(938\) −23.2140 13.4026i −0.757964 0.437611i
\(939\) −1.00128 1.00128i −0.0326757 0.0326757i
\(940\) 0 0
\(941\) −9.76125 16.9070i −0.318208 0.551152i 0.661907 0.749586i \(-0.269748\pi\)
−0.980114 + 0.198435i \(0.936414\pi\)
\(942\) −0.255462 0.442473i −0.00832341 0.0144166i
\(943\) 4.48033 7.76016i 0.145900 0.252706i
\(944\) −10.4784 39.1058i −0.341042 1.27279i
\(945\) 0 0
\(946\) 87.4119 50.4673i 2.84200 1.64083i
\(947\) 7.82396 + 13.5515i 0.254245 + 0.440364i 0.964690 0.263388i \(-0.0848399\pi\)
−0.710446 + 0.703752i \(0.751507\pi\)
\(948\) 3.30656i 0.107392i
\(949\) −15.2432 + 4.08439i −0.494814 + 0.132585i
\(950\) 0 0
\(951\) 0.620217 0.0201119
\(952\) 2.85527 + 2.85527i 0.0925397 + 0.0925397i
\(953\) 7.24920 + 1.94242i 0.234825 + 0.0629211i 0.374312 0.927303i \(-0.377879\pi\)
−0.139488 + 0.990224i \(0.544546\pi\)
\(954\) 11.7777 + 11.7777i 0.381318 + 0.381318i
\(955\) 0 0
\(956\) 16.6046 16.6046i 0.537031 0.537031i
\(957\) −22.8426 13.1882i −0.738396 0.426313i
\(958\) 2.00941 0.538419i 0.0649210 0.0173955i
\(959\) −0.303448 0.175196i −0.00979883 0.00565736i
\(960\) 0 0
\(961\) 57.5075i 1.85508i
\(962\) −2.05320 + 45.6293i −0.0661980 + 1.47115i
\(963\) 20.3908 + 20.3908i 0.657085 + 0.657085i
\(964\) −3.50759 + 13.0905i −0.112972 + 0.421616i
\(965\) 0 0
\(966\) −18.5745 10.7240i −0.597626 0.345040i
\(967\) −5.47930 + 9.49043i −0.176203 + 0.305192i −0.940577 0.339581i \(-0.889715\pi\)
0.764374 + 0.644773i \(0.223048\pi\)
\(968\) 22.7255i 0.730426i
\(969\) −4.68422 2.70443i −0.150479 0.0868789i
\(970\) 0 0
\(971\) 21.6891 + 37.5666i 0.696035 + 1.20557i 0.969831 + 0.243780i \(0.0783875\pi\)
−0.273795 + 0.961788i \(0.588279\pi\)
\(972\) 12.8627 12.8627i 0.412573 0.412573i
\(973\) −26.8613 + 26.8613i −0.861133 + 0.861133i
\(974\) 61.5982 35.5637i 1.97373 1.13953i
\(975\) 0 0
\(976\) −41.3568 + 41.3568i −1.32380 + 1.32380i
\(977\) −12.0799 + 6.97431i −0.386469 + 0.223128i −0.680629 0.732628i \(-0.738293\pi\)
0.294160 + 0.955756i \(0.404960\pi\)
\(978\) 5.78796 21.6010i 0.185079 0.690723i
\(979\) −41.2663 11.0573i −1.31888 0.353392i
\(980\) 0 0
\(981\) −37.1876 + 9.96439i −1.18731 + 0.318138i
\(982\) −3.03905 + 1.75459i −0.0969799 + 0.0559913i
\(983\) −16.2097 4.34336i −0.517008 0.138532i −0.00912552 0.999958i \(-0.502905\pi\)
−0.507882 + 0.861427i \(0.669571\pi\)
\(984\) −1.44118 0.386163i −0.0459432 0.0123104i
\(985\) 0 0
\(986\) 4.10966 + 15.3375i 0.130878 + 0.488444i
\(987\) −0.00324505 + 0.0121107i −0.000103291 + 0.000385488i
\(988\) 14.2663 + 14.2663i 0.453873 + 0.453873i
\(989\) −89.4310 −2.84374
\(990\) 0 0
\(991\) 7.28810 7.28810i 0.231514 0.231514i −0.581810 0.813325i \(-0.697655\pi\)
0.813325 + 0.581810i \(0.197655\pi\)
\(992\) 52.2160 13.9912i 1.65786 0.444222i
\(993\) 7.83995 0.248793
\(994\) 12.1428 3.25366i 0.385147 0.103200i
\(995\) 0 0
\(996\) 2.83861 4.91662i 0.0899448 0.155789i
\(997\) −25.7984 44.6841i −0.817044 1.41516i −0.907851 0.419292i \(-0.862278\pi\)
0.0908077 0.995868i \(-0.471055\pi\)
\(998\) −17.8592 + 17.8592i −0.565324 + 0.565324i
\(999\) −20.3701 + 18.6159i −0.644482 + 0.588980i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.a.193.4 yes 56
5.2 odd 4 925.2.t.a.82.4 56
5.3 odd 4 925.2.t.a.82.11 yes 56
5.4 even 2 inner 925.2.y.a.193.11 yes 56
37.14 odd 12 925.2.t.a.643.4 yes 56
185.14 odd 12 925.2.t.a.643.11 yes 56
185.88 even 12 inner 925.2.y.a.532.11 yes 56
185.162 even 12 inner 925.2.y.a.532.4 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.a.82.4 56 5.2 odd 4
925.2.t.a.82.11 yes 56 5.3 odd 4
925.2.t.a.643.4 yes 56 37.14 odd 12
925.2.t.a.643.11 yes 56 185.14 odd 12
925.2.y.a.193.4 yes 56 1.1 even 1 trivial
925.2.y.a.193.11 yes 56 5.4 even 2 inner
925.2.y.a.532.4 yes 56 185.162 even 12 inner
925.2.y.a.532.11 yes 56 185.88 even 12 inner