Newspace parameters
| Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 925.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.38616218697\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | no (minimal twist has level 185) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 101.1 | −2.29684 | − | 1.32608i | 0.0638062 | + | 0.110516i | 2.51697 | + | 4.35953i | 0 | − | 0.338448i | 1.72659 | + | 2.99054i | − | 8.04652i | 1.49186 | − | 2.58397i | 0 | ||||||
| 101.2 | −2.05130 | − | 1.18432i | 1.07393 | + | 1.86010i | 1.80523 | + | 3.12676i | 0 | − | 5.08750i | −0.824280 | − | 1.42769i | − | 3.81462i | −0.806637 | + | 1.39714i | 0 | ||||||
| 101.3 | −1.49679 | − | 0.864172i | −0.833596 | − | 1.44383i | 0.493588 | + | 0.854919i | 0 | 2.88148i | 0.0212161 | + | 0.0367474i | 1.75051i | 0.110234 | − | 0.190931i | 0 | ||||||||
| 101.4 | −1.31801 | − | 0.760954i | −1.33553 | − | 2.31321i | 0.158102 | + | 0.273841i | 0 | 4.06511i | 0.696862 | + | 1.20700i | 2.56258i | −2.06729 | + | 3.58065i | 0 | ||||||||
| 101.5 | −1.22813 | − | 0.709060i | 1.32488 | + | 2.29477i | 0.00553227 | + | 0.00958218i | 0 | − | 3.75769i | 1.47091 | + | 2.54770i | 2.82055i | −2.01063 | + | 3.48252i | 0 | |||||||
| 101.6 | −0.108589 | − | 0.0626936i | −0.156745 | − | 0.271490i | −0.992139 | − | 1.71844i | 0 | 0.0393076i | 0.790882 | + | 1.36985i | 0.499578i | 1.45086 | − | 2.51297i | 0 | ||||||||
| 101.7 | 0.217929 | + | 0.125821i | 1.61547 | + | 2.79808i | −0.968338 | − | 1.67721i | 0 | 0.813045i | −0.127669 | − | 0.221129i | − | 0.990637i | −3.71951 | + | 6.44238i | 0 | |||||||
| 101.8 | 0.596292 | + | 0.344270i | 0.622433 | + | 1.07808i | −0.762957 | − | 1.32148i | 0 | 0.857138i | 0.273058 | + | 0.472950i | − | 2.42773i | 0.725155 | − | 1.25601i | 0 | |||||||
| 101.9 | 0.754635 | + | 0.435689i | −0.996238 | − | 1.72553i | −0.620350 | − | 1.07448i | 0 | − | 1.73620i | −1.67414 | − | 2.89970i | − | 2.82387i | −0.484979 | + | 0.840008i | 0 | ||||||
| 101.10 | 1.61472 | + | 0.932256i | 0.00733364 | + | 0.0127022i | 0.738203 | + | 1.27861i | 0 | 0.0273473i | −2.28706 | − | 3.96130i | − | 0.976246i | 1.49989 | − | 2.59789i | 0 | |||||||
| 101.11 | 1.86389 | + | 1.07612i | 0.823223 | + | 1.42586i | 1.31605 | + | 2.27946i | 0 | 3.54353i | 2.34537 | + | 4.06229i | 1.36041i | 0.144607 | − | 0.250467i | 0 | ||||||||
| 101.12 | 1.91807 | + | 1.10740i | −0.262986 | − | 0.455505i | 1.45267 | + | 2.51610i | 0 | − | 1.16492i | 0.973099 | + | 1.68546i | 2.00515i | 1.36168 | − | 2.35849i | 0 | |||||||
| 101.13 | 2.20795 | + | 1.27476i | 1.58363 | + | 2.74293i | 2.25003 | + | 3.89716i | 0 | 8.07501i | −2.10035 | − | 3.63792i | 6.37394i | −3.51579 | + | 6.08952i | 0 | ||||||||
| 101.14 | 2.32618 | + | 1.34302i | −1.52962 | − | 2.64937i | 2.60740 | + | 4.51616i | 0 | − | 8.21722i | −0.284485 | − | 0.492742i | 8.63511i | −3.17945 | + | 5.50697i | 0 | |||||||
| 751.1 | −2.29684 | + | 1.32608i | 0.0638062 | − | 0.110516i | 2.51697 | − | 4.35953i | 0 | 0.338448i | 1.72659 | − | 2.99054i | 8.04652i | 1.49186 | + | 2.58397i | 0 | ||||||||
| 751.2 | −2.05130 | + | 1.18432i | 1.07393 | − | 1.86010i | 1.80523 | − | 3.12676i | 0 | 5.08750i | −0.824280 | + | 1.42769i | 3.81462i | −0.806637 | − | 1.39714i | 0 | ||||||||
| 751.3 | −1.49679 | + | 0.864172i | −0.833596 | + | 1.44383i | 0.493588 | − | 0.854919i | 0 | − | 2.88148i | 0.0212161 | − | 0.0367474i | − | 1.75051i | 0.110234 | + | 0.190931i | 0 | ||||||
| 751.4 | −1.31801 | + | 0.760954i | −1.33553 | + | 2.31321i | 0.158102 | − | 0.273841i | 0 | − | 4.06511i | 0.696862 | − | 1.20700i | − | 2.56258i | −2.06729 | − | 3.58065i | 0 | ||||||
| 751.5 | −1.22813 | + | 0.709060i | 1.32488 | − | 2.29477i | 0.00553227 | − | 0.00958218i | 0 | 3.75769i | 1.47091 | − | 2.54770i | − | 2.82055i | −2.01063 | − | 3.48252i | 0 | |||||||
| 751.6 | −0.108589 | + | 0.0626936i | −0.156745 | + | 0.271490i | −0.992139 | + | 1.71844i | 0 | − | 0.0393076i | 0.790882 | − | 1.36985i | − | 0.499578i | 1.45086 | + | 2.51297i | 0 | ||||||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 37.e | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 925.2.n.d | 28 | |
| 5.b | even | 2 | 1 | 185.2.m.a | ✓ | 28 | |
| 5.c | odd | 4 | 1 | 925.2.m.c | 28 | ||
| 5.c | odd | 4 | 1 | 925.2.m.d | 28 | ||
| 37.e | even | 6 | 1 | inner | 925.2.n.d | 28 | |
| 185.l | even | 6 | 1 | 185.2.m.a | ✓ | 28 | |
| 185.q | odd | 12 | 1 | 6845.2.a.n | 14 | ||
| 185.q | odd | 12 | 1 | 6845.2.a.o | 14 | ||
| 185.r | odd | 12 | 1 | 925.2.m.c | 28 | ||
| 185.r | odd | 12 | 1 | 925.2.m.d | 28 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 185.2.m.a | ✓ | 28 | 5.b | even | 2 | 1 | |
| 185.2.m.a | ✓ | 28 | 185.l | even | 6 | 1 | |
| 925.2.m.c | 28 | 5.c | odd | 4 | 1 | ||
| 925.2.m.c | 28 | 185.r | odd | 12 | 1 | ||
| 925.2.m.d | 28 | 5.c | odd | 4 | 1 | ||
| 925.2.m.d | 28 | 185.r | odd | 12 | 1 | ||
| 925.2.n.d | 28 | 1.a | even | 1 | 1 | trivial | |
| 925.2.n.d | 28 | 37.e | even | 6 | 1 | inner | |
| 6845.2.a.n | 14 | 185.q | odd | 12 | 1 | ||
| 6845.2.a.o | 14 | 185.q | odd | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{28} - 6 T_{2}^{27} - 6 T_{2}^{26} + 108 T_{2}^{25} - 27 T_{2}^{24} - 1260 T_{2}^{23} + 1484 T_{2}^{22} + \cdots + 729 \)
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).