Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(11,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.m (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −2.32618 | + | 1.34302i | 1.52962 | − | 2.64937i | 2.60740 | − | 4.51616i | 0.866025 | + | 0.500000i | 8.21722i | 0.284485 | − | 0.492742i | 8.63511i | −3.17945 | − | 5.50697i | −2.68604 | ||||||
11.2 | −2.20795 | + | 1.27476i | −1.58363 | + | 2.74293i | 2.25003 | − | 3.89716i | −0.866025 | − | 0.500000i | − | 8.07501i | 2.10035 | − | 3.63792i | 6.37394i | −3.51579 | − | 6.08952i | 2.54952 | |||||
11.3 | −1.91807 | + | 1.10740i | 0.262986 | − | 0.455505i | 1.45267 | − | 2.51610i | −0.866025 | − | 0.500000i | 1.16492i | −0.973099 | + | 1.68546i | 2.00515i | 1.36168 | + | 2.35849i | 2.21480 | ||||||
11.4 | −1.86389 | + | 1.07612i | −0.823223 | + | 1.42586i | 1.31605 | − | 2.27946i | 0.866025 | + | 0.500000i | − | 3.54353i | −2.34537 | + | 4.06229i | 1.36041i | 0.144607 | + | 0.250467i | −2.15223 | |||||
11.5 | −1.61472 | + | 0.932256i | −0.00733364 | + | 0.0127022i | 0.738203 | − | 1.27861i | 0.866025 | + | 0.500000i | − | 0.0273473i | 2.28706 | − | 3.96130i | − | 0.976246i | 1.49989 | + | 2.59789i | −1.86451 | ||||
11.6 | −0.754635 | + | 0.435689i | 0.996238 | − | 1.72553i | −0.620350 | + | 1.07448i | −0.866025 | − | 0.500000i | 1.73620i | 1.67414 | − | 2.89970i | − | 2.82387i | −0.484979 | − | 0.840008i | 0.871378 | |||||
11.7 | −0.596292 | + | 0.344270i | −0.622433 | + | 1.07808i | −0.762957 | + | 1.32148i | −0.866025 | − | 0.500000i | − | 0.857138i | −0.273058 | + | 0.472950i | − | 2.42773i | 0.725155 | + | 1.25601i | 0.688539 | ||||
11.8 | −0.217929 | + | 0.125821i | −1.61547 | + | 2.79808i | −0.968338 | + | 1.67721i | 0.866025 | + | 0.500000i | − | 0.813045i | 0.127669 | − | 0.221129i | − | 0.990637i | −3.71951 | − | 6.44238i | −0.251643 | ||||
11.9 | 0.108589 | − | 0.0626936i | 0.156745 | − | 0.271490i | −0.992139 | + | 1.71844i | 0.866025 | + | 0.500000i | − | 0.0393076i | −0.790882 | + | 1.36985i | 0.499578i | 1.45086 | + | 2.51297i | 0.125387 | |||||
11.10 | 1.22813 | − | 0.709060i | −1.32488 | + | 2.29477i | 0.00553227 | − | 0.00958218i | −0.866025 | − | 0.500000i | 3.75769i | −1.47091 | + | 2.54770i | 2.82055i | −2.01063 | − | 3.48252i | −1.41812 | ||||||
11.11 | 1.31801 | − | 0.760954i | 1.33553 | − | 2.31321i | 0.158102 | − | 0.273841i | −0.866025 | − | 0.500000i | − | 4.06511i | −0.696862 | + | 1.20700i | 2.56258i | −2.06729 | − | 3.58065i | −1.52191 | |||||
11.12 | 1.49679 | − | 0.864172i | 0.833596 | − | 1.44383i | 0.493588 | − | 0.854919i | 0.866025 | + | 0.500000i | − | 2.88148i | −0.0212161 | + | 0.0367474i | 1.75051i | 0.110234 | + | 0.190931i | 1.72834 | |||||
11.13 | 2.05130 | − | 1.18432i | −1.07393 | + | 1.86010i | 1.80523 | − | 3.12676i | 0.866025 | + | 0.500000i | 5.08750i | 0.824280 | − | 1.42769i | − | 3.81462i | −0.806637 | − | 1.39714i | 2.36864 | |||||
11.14 | 2.29684 | − | 1.32608i | −0.0638062 | + | 0.110516i | 2.51697 | − | 4.35953i | −0.866025 | − | 0.500000i | 0.338448i | −1.72659 | + | 2.99054i | − | 8.04652i | 1.49186 | + | 2.58397i | −2.65216 | |||||
101.1 | −2.32618 | − | 1.34302i | 1.52962 | + | 2.64937i | 2.60740 | + | 4.51616i | 0.866025 | − | 0.500000i | − | 8.21722i | 0.284485 | + | 0.492742i | − | 8.63511i | −3.17945 | + | 5.50697i | −2.68604 | ||||
101.2 | −2.20795 | − | 1.27476i | −1.58363 | − | 2.74293i | 2.25003 | + | 3.89716i | −0.866025 | + | 0.500000i | 8.07501i | 2.10035 | + | 3.63792i | − | 6.37394i | −3.51579 | + | 6.08952i | 2.54952 | |||||
101.3 | −1.91807 | − | 1.10740i | 0.262986 | + | 0.455505i | 1.45267 | + | 2.51610i | −0.866025 | + | 0.500000i | − | 1.16492i | −0.973099 | − | 1.68546i | − | 2.00515i | 1.36168 | − | 2.35849i | 2.21480 | ||||
101.4 | −1.86389 | − | 1.07612i | −0.823223 | − | 1.42586i | 1.31605 | + | 2.27946i | 0.866025 | − | 0.500000i | 3.54353i | −2.34537 | − | 4.06229i | − | 1.36041i | 0.144607 | − | 0.250467i | −2.15223 | |||||
101.5 | −1.61472 | − | 0.932256i | −0.00733364 | − | 0.0127022i | 0.738203 | + | 1.27861i | 0.866025 | − | 0.500000i | 0.0273473i | 2.28706 | + | 3.96130i | 0.976246i | 1.49989 | − | 2.59789i | −1.86451 | ||||||
101.6 | −0.754635 | − | 0.435689i | 0.996238 | + | 1.72553i | −0.620350 | − | 1.07448i | −0.866025 | + | 0.500000i | − | 1.73620i | 1.67414 | + | 2.89970i | 2.82387i | −0.484979 | + | 0.840008i | 0.871378 | |||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.m.a | ✓ | 28 |
5.b | even | 2 | 1 | 925.2.n.d | 28 | ||
5.c | odd | 4 | 1 | 925.2.m.c | 28 | ||
5.c | odd | 4 | 1 | 925.2.m.d | 28 | ||
37.e | even | 6 | 1 | inner | 185.2.m.a | ✓ | 28 |
37.g | odd | 12 | 1 | 6845.2.a.n | 14 | ||
37.g | odd | 12 | 1 | 6845.2.a.o | 14 | ||
185.l | even | 6 | 1 | 925.2.n.d | 28 | ||
185.r | odd | 12 | 1 | 925.2.m.c | 28 | ||
185.r | odd | 12 | 1 | 925.2.m.d | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.m.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
185.2.m.a | ✓ | 28 | 37.e | even | 6 | 1 | inner |
925.2.m.c | 28 | 5.c | odd | 4 | 1 | ||
925.2.m.c | 28 | 185.r | odd | 12 | 1 | ||
925.2.m.d | 28 | 5.c | odd | 4 | 1 | ||
925.2.m.d | 28 | 185.r | odd | 12 | 1 | ||
925.2.n.d | 28 | 5.b | even | 2 | 1 | ||
925.2.n.d | 28 | 185.l | even | 6 | 1 | ||
6845.2.a.n | 14 | 37.g | odd | 12 | 1 | ||
6845.2.a.o | 14 | 37.g | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).