Properties

Label 6845.2.a.o
Level $6845$
Weight $2$
Character orbit 6845.a
Self dual yes
Analytic conductor $54.658$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,2,-4,20,-14,12,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 22 x^{12} + 42 x^{11} + 187 x^{10} - 336 x^{9} - 771 x^{8} + 1264 x^{7} + 1599 x^{6} + \cdots - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{10} q^{3} + (\beta_{2} + 1) q^{4} - q^{5} + (\beta_{13} + \beta_{6} + \beta_{2} + \cdots + 1) q^{6} + ( - \beta_{6} + \beta_1) q^{7} + (\beta_{10} + \beta_{9} + \beta_1 + 1) q^{8}+ \cdots + ( - \beta_{12} + \beta_{11} - \beta_{7} + \cdots - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{2} - 4 q^{3} + 20 q^{4} - 14 q^{5} + 12 q^{6} + 2 q^{7} + 6 q^{8} + 18 q^{9} - 2 q^{10} - 2 q^{11} - 2 q^{12} + 2 q^{13} + 28 q^{14} + 4 q^{15} + 20 q^{16} + 6 q^{17} + 2 q^{18} + 20 q^{19}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - 2 x^{13} - 22 x^{12} + 42 x^{11} + 187 x^{10} - 336 x^{9} - 771 x^{8} + 1264 x^{7} + 1599 x^{6} + \cdots - 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 502 \nu^{13} - 203 \nu^{12} - 12898 \nu^{11} + 5196 \nu^{10} + 122158 \nu^{9} - 49647 \nu^{8} + \cdots - 97947 ) / 51207 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 2001 \nu^{13} + 14988 \nu^{12} + 31827 \nu^{11} - 301568 \nu^{10} - 135280 \nu^{9} + \cdots - 466530 ) / 187759 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 267 \nu^{13} - 618 \nu^{12} - 5296 \nu^{11} + 9428 \nu^{10} + 39675 \nu^{9} - 45617 \nu^{8} + \cdots + 4518 ) / 17069 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 4540 \nu^{13} + 3604 \nu^{12} + 95294 \nu^{11} - 68957 \nu^{10} - 720077 \nu^{9} + 504218 \nu^{8} + \cdots - 163894 ) / 187759 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 7269 \nu^{13} + 12222 \nu^{12} + 168539 \nu^{11} - 237496 \nu^{10} - 1485961 \nu^{9} + \cdots - 431394 ) / 187759 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 1996 \nu^{13} - 3022 \nu^{12} + 47533 \nu^{11} + 76905 \nu^{10} - 445600 \nu^{9} - 725439 \nu^{8} + \cdots - 213597 ) / 43329 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 9554 \nu^{13} - 4161 \nu^{12} + 226840 \nu^{11} + 116343 \nu^{10} - 2077701 \nu^{9} + \cdots - 420003 ) / 187759 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 9554 \nu^{13} + 4161 \nu^{12} - 226840 \nu^{11} - 116343 \nu^{10} + 2077701 \nu^{9} + 1212211 \nu^{8} + \cdots + 232244 ) / 187759 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 1055 \nu^{13} + 1601 \nu^{12} + 22367 \nu^{11} - 31342 \nu^{10} - 180358 \nu^{9} + 228228 \nu^{8} + \cdots + 55794 ) / 14443 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 70039 \nu^{13} + 19040 \nu^{12} + 1629994 \nu^{11} - 187170 \nu^{10} - 14697745 \nu^{9} + \cdots - 2509632 ) / 563277 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 27809 \nu^{13} - 20256 \nu^{12} - 612905 \nu^{11} + 360060 \nu^{10} + 5142432 \nu^{9} + \cdots + 797370 ) / 187759 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{10} + \beta_{9} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} + \beta_{11} + \beta_{9} + \beta_{6} + 7\beta_{2} + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{13} + \beta_{11} + 9 \beta_{10} + 9 \beta_{9} + \beta_{8} + \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 11 \beta_{13} + \beta_{12} + 10 \beta_{11} + \beta_{10} + 11 \beta_{9} + 12 \beta_{6} + \beta_{5} + \cdots + 97 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 13 \beta_{13} + 13 \beta_{11} + 68 \beta_{10} + 67 \beta_{9} + 13 \beta_{8} + 2 \beta_{7} + 14 \beta_{6} + \cdots + 88 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 94 \beta_{13} + 15 \beta_{12} + 80 \beta_{11} + 17 \beta_{10} + 94 \beta_{9} + \beta_{8} - 2 \beta_{7} + \cdots + 623 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 124 \beta_{13} - \beta_{12} + 123 \beta_{11} + 487 \beta_{10} + 475 \beta_{9} + 122 \beta_{8} + \cdots + 725 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 734 \beta_{13} + 153 \beta_{12} + 595 \beta_{11} + 195 \beta_{10} + 741 \beta_{9} + 19 \beta_{8} + \cdots + 4130 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 1053 \beta_{13} - 12 \beta_{12} + 1028 \beta_{11} + 3415 \beta_{10} + 3319 \beta_{9} + 1006 \beta_{8} + \cdots + 5723 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 5498 \beta_{13} + 1333 \beta_{12} + 4296 \beta_{11} + 1888 \beta_{10} + 5633 \beta_{9} + 240 \beta_{8} + \cdots + 27911 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 8456 \beta_{13} - 70 \beta_{12} + 8069 \beta_{11} + 23735 \beta_{10} + 23113 \beta_{9} + 7766 \beta_{8} + \cdots + 43925 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.54952
−2.36864
−2.21480
−1.72834
−0.871378
−0.688539
−0.125387
0.251643
1.41812
1.52191
1.86451
2.15223
2.65216
2.68604
−2.54952 −3.16727 4.50005 −1.00000 8.07501 −4.20071 −6.37394 7.03157 2.54952
1.2 −2.36864 −2.14785 3.61047 −1.00000 5.08750 −1.64856 −3.81462 1.61327 2.36864
1.3 −2.21480 0.525972 2.90534 −1.00000 −1.16492 1.94620 −2.00515 −2.72335 2.21480
1.4 −1.72834 1.66719 0.987175 −1.00000 −2.88148 0.0424322 1.75051 −0.220468 1.72834
1.5 −0.871378 1.99248 −1.24070 −1.00000 −1.73620 −3.34828 2.82387 0.969958 0.871378
1.6 −0.688539 −1.24487 −1.52591 −1.00000 0.857138 0.546116 2.42773 −1.45031 0.688539
1.7 −0.125387 0.313489 −1.98428 −1.00000 −0.0393076 1.58176 0.499578 −2.90172 0.125387
1.8 0.251643 −3.23095 −1.93668 −1.00000 −0.813045 −0.255338 −0.990637 7.43902 −0.251643
1.9 1.41812 −2.64977 0.0110645 −1.00000 −3.75769 2.94183 −2.82055 4.02127 −1.41812
1.10 1.52191 2.67106 0.316204 −1.00000 4.06511 1.39372 −2.56258 4.13458 −1.52191
1.11 1.86451 −0.0146673 1.47641 −1.00000 −0.0273473 −4.57411 −0.976246 −2.99978 −1.86451
1.12 2.15223 −1.64645 2.63209 −1.00000 −3.54353 4.69073 1.36041 −0.289214 −2.15223
1.13 2.65216 −0.127612 5.03395 −1.00000 −0.338448 3.45318 8.04652 −2.98372 −2.65216
1.14 2.68604 3.05923 5.21481 −1.00000 8.21722 −0.568970 8.63511 6.35890 −2.68604
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.14
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6845.2.a.o 14
37.b even 2 1 6845.2.a.n 14
37.g odd 12 2 185.2.m.a 28
185.p even 12 2 925.2.m.c 28
185.q odd 12 2 925.2.n.d 28
185.u even 12 2 925.2.m.d 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.m.a 28 37.g odd 12 2
925.2.m.c 28 185.p even 12 2
925.2.m.d 28 185.u even 12 2
925.2.n.d 28 185.q odd 12 2
6845.2.a.n 14 37.b even 2 1
6845.2.a.o 14 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6845))\):

\( T_{2}^{14} - 2 T_{2}^{13} - 22 T_{2}^{12} + 42 T_{2}^{11} + 187 T_{2}^{10} - 336 T_{2}^{9} - 771 T_{2}^{8} + \cdots - 27 \) Copy content Toggle raw display
\( T_{7}^{14} - 2 T_{7}^{13} - 50 T_{7}^{12} + 112 T_{7}^{11} + 828 T_{7}^{10} - 2154 T_{7}^{9} - 4810 T_{7}^{8} + \cdots + 73 \) Copy content Toggle raw display
\( T_{17}^{14} - 6 T_{17}^{13} - 119 T_{17}^{12} + 704 T_{17}^{11} + 5265 T_{17}^{10} - 30528 T_{17}^{9} + \cdots - 7050123 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} - 2 T^{13} + \cdots - 27 \) Copy content Toggle raw display
$3$ \( T^{14} + 4 T^{13} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{14} \) Copy content Toggle raw display
$7$ \( T^{14} - 2 T^{13} + \cdots + 73 \) Copy content Toggle raw display
$11$ \( T^{14} + 2 T^{13} + \cdots + 283293 \) Copy content Toggle raw display
$13$ \( T^{14} - 2 T^{13} + \cdots + 2432733 \) Copy content Toggle raw display
$17$ \( T^{14} - 6 T^{13} + \cdots - 7050123 \) Copy content Toggle raw display
$19$ \( T^{14} - 20 T^{13} + \cdots - 207567 \) Copy content Toggle raw display
$23$ \( T^{14} - 14 T^{13} + \cdots - 90787923 \) Copy content Toggle raw display
$29$ \( T^{14} + 8 T^{13} + \cdots + 33587577 \) Copy content Toggle raw display
$31$ \( T^{14} - 20 T^{13} + \cdots - 8709663 \) Copy content Toggle raw display
$37$ \( T^{14} \) Copy content Toggle raw display
$41$ \( T^{14} + \cdots - 3313087371 \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots + 7664902197 \) Copy content Toggle raw display
$47$ \( T^{14} + 22 T^{13} + \cdots + 17909541 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots - 9606711699 \) Copy content Toggle raw display
$59$ \( T^{14} - 44 T^{13} + \cdots + 2439081 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 241817517 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 241193754217 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots + 240406215057 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 13235662453 \) Copy content Toggle raw display
$79$ \( T^{14} - 465 T^{12} + \cdots - 7438251 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 923860953 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 4888385073 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots - 92493285159 \) Copy content Toggle raw display
show more
show less