Properties

Label 925.2.e.c.26.5
Level $925$
Weight $2$
Character 925.26
Analytic conductor $7.386$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(26,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.5
Root \(-0.560420 + 0.970676i\) of defining polynomial
Character \(\chi\) \(=\) 925.26
Dual form 925.2.e.c.676.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.560420 + 0.970676i) q^{2} +(1.67000 - 2.89252i) q^{3} +(0.371859 - 0.644078i) q^{4} +3.74360 q^{6} +(0.612087 - 1.06017i) q^{7} +3.07527 q^{8} +(-4.07778 - 7.06292i) q^{9} -3.59983 q^{11} +(-1.24201 - 2.15122i) q^{12} +(0.349805 - 0.605879i) q^{13} +1.37210 q^{14} +(0.979724 + 1.69693i) q^{16} +(0.289385 + 0.501229i) q^{17} +(4.57054 - 7.91640i) q^{18} +(-3.87804 + 6.71697i) q^{19} +(-2.04437 - 3.54094i) q^{21} +(-2.01742 - 3.49427i) q^{22} +4.47887 q^{23} +(5.13569 - 8.89527i) q^{24} +0.784150 q^{26} -17.2195 q^{27} +(-0.455220 - 0.788464i) q^{28} +3.04867 q^{29} +7.98457 q^{31} +(1.97715 - 3.42453i) q^{32} +(-6.01171 + 10.4126i) q^{33} +(-0.324354 + 0.561797i) q^{34} -6.06543 q^{36} +(1.32431 + 5.93685i) q^{37} -8.69333 q^{38} +(-1.16835 - 2.02363i) q^{39} +(-2.79335 + 4.83822i) q^{41} +(2.29141 - 3.96883i) q^{42} -4.02235 q^{43} +(-1.33863 + 2.31857i) q^{44} +(2.51005 + 4.34753i) q^{46} +8.09571 q^{47} +6.54454 q^{48} +(2.75070 + 4.76435i) q^{49} +1.93309 q^{51} +(-0.260156 - 0.450603i) q^{52} +(-4.96979 - 8.60794i) q^{53} +(-9.65017 - 16.7146i) q^{54} +(1.88233 - 3.26029i) q^{56} +(12.9526 + 22.4346i) q^{57} +(1.70853 + 2.95927i) q^{58} +(-0.242678 - 0.420330i) q^{59} +(0.459736 - 0.796287i) q^{61} +(4.47471 + 7.75043i) q^{62} -9.98382 q^{63} +8.35104 q^{64} -13.4763 q^{66} +(5.62845 - 9.74876i) q^{67} +0.430441 q^{68} +(7.47970 - 12.9552i) q^{69} +(0.253677 - 0.439381i) q^{71} +(-12.5403 - 21.7204i) q^{72} +3.55519 q^{73} +(-5.02059 + 4.61261i) q^{74} +(2.88417 + 4.99553i) q^{76} +(-2.20341 + 3.81642i) q^{77} +(1.30953 - 2.26817i) q^{78} +(1.90707 - 3.30314i) q^{79} +(-16.5232 + 28.6191i) q^{81} -6.26179 q^{82} +(-5.80544 - 10.0553i) q^{83} -3.04086 q^{84} +(-2.25421 - 3.90440i) q^{86} +(5.09126 - 8.81833i) q^{87} -11.0705 q^{88} +(-7.19183 - 12.4566i) q^{89} +(-0.428221 - 0.741701i) q^{91} +(1.66551 - 2.88475i) q^{92} +(13.3342 - 23.0955i) q^{93} +(4.53700 + 7.85831i) q^{94} +(-6.60368 - 11.4379i) q^{96} +10.2579 q^{97} +(-3.08309 + 5.34008i) q^{98} +(14.6793 + 25.4253i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{3} - 8 q^{4} - 4 q^{6} - 6 q^{8} - 13 q^{9} - 2 q^{11} - 6 q^{12} - 4 q^{13} + 20 q^{14} + 2 q^{16} + 3 q^{17} + 6 q^{18} - 14 q^{19} + q^{21} - 7 q^{22} + 15 q^{24} - 22 q^{26} + 14 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.560420 + 0.970676i 0.396277 + 0.686372i 0.993263 0.115880i \(-0.0369687\pi\)
−0.596986 + 0.802251i \(0.703635\pi\)
\(3\) 1.67000 2.89252i 0.964173 1.67000i 0.252353 0.967635i \(-0.418796\pi\)
0.711821 0.702361i \(-0.247871\pi\)
\(4\) 0.371859 0.644078i 0.185929 0.322039i
\(5\) 0 0
\(6\) 3.74360 1.52832
\(7\) 0.612087 1.06017i 0.231347 0.400705i −0.726858 0.686788i \(-0.759020\pi\)
0.958205 + 0.286083i \(0.0923534\pi\)
\(8\) 3.07527 1.08727
\(9\) −4.07778 7.06292i −1.35926 2.35431i
\(10\) 0 0
\(11\) −3.59983 −1.08539 −0.542695 0.839930i \(-0.682596\pi\)
−0.542695 + 0.839930i \(0.682596\pi\)
\(12\) −1.24201 2.15122i −0.358536 0.621003i
\(13\) 0.349805 0.605879i 0.0970183 0.168041i −0.813431 0.581662i \(-0.802403\pi\)
0.910449 + 0.413621i \(0.135736\pi\)
\(14\) 1.37210 0.366710
\(15\) 0 0
\(16\) 0.979724 + 1.69693i 0.244931 + 0.424233i
\(17\) 0.289385 + 0.501229i 0.0701861 + 0.121566i 0.898983 0.437984i \(-0.144307\pi\)
−0.828797 + 0.559550i \(0.810974\pi\)
\(18\) 4.57054 7.91640i 1.07729 1.86591i
\(19\) −3.87804 + 6.71697i −0.889684 + 1.54098i −0.0494348 + 0.998777i \(0.515742\pi\)
−0.840249 + 0.542200i \(0.817591\pi\)
\(20\) 0 0
\(21\) −2.04437 3.54094i −0.446117 0.772698i
\(22\) −2.01742 3.49427i −0.430115 0.744981i
\(23\) 4.47887 0.933910 0.466955 0.884281i \(-0.345351\pi\)
0.466955 + 0.884281i \(0.345351\pi\)
\(24\) 5.13569 8.89527i 1.04832 1.81574i
\(25\) 0 0
\(26\) 0.784150 0.153784
\(27\) −17.2195 −3.31390
\(28\) −0.455220 0.788464i −0.0860284 0.149006i
\(29\) 3.04867 0.566123 0.283062 0.959102i \(-0.408650\pi\)
0.283062 + 0.959102i \(0.408650\pi\)
\(30\) 0 0
\(31\) 7.98457 1.43407 0.717035 0.697037i \(-0.245499\pi\)
0.717035 + 0.697037i \(0.245499\pi\)
\(32\) 1.97715 3.42453i 0.349515 0.605377i
\(33\) −6.01171 + 10.4126i −1.04650 + 1.81260i
\(34\) −0.324354 + 0.561797i −0.0556262 + 0.0963474i
\(35\) 0 0
\(36\) −6.06543 −1.01091
\(37\) 1.32431 + 5.93685i 0.217715 + 0.976012i
\(38\) −8.69333 −1.41024
\(39\) −1.16835 2.02363i −0.187085 0.324041i
\(40\) 0 0
\(41\) −2.79335 + 4.83822i −0.436247 + 0.755603i −0.997397 0.0721120i \(-0.977026\pi\)
0.561149 + 0.827715i \(0.310359\pi\)
\(42\) 2.29141 3.96883i 0.353572 0.612404i
\(43\) −4.02235 −0.613403 −0.306701 0.951806i \(-0.599225\pi\)
−0.306701 + 0.951806i \(0.599225\pi\)
\(44\) −1.33863 + 2.31857i −0.201806 + 0.349538i
\(45\) 0 0
\(46\) 2.51005 + 4.34753i 0.370087 + 0.641009i
\(47\) 8.09571 1.18088 0.590440 0.807081i \(-0.298954\pi\)
0.590440 + 0.807081i \(0.298954\pi\)
\(48\) 6.54454 0.944624
\(49\) 2.75070 + 4.76435i 0.392957 + 0.680622i
\(50\) 0 0
\(51\) 1.93309 0.270686
\(52\) −0.260156 0.450603i −0.0360771 0.0624874i
\(53\) −4.96979 8.60794i −0.682654 1.18239i −0.974168 0.225824i \(-0.927492\pi\)
0.291514 0.956566i \(-0.405841\pi\)
\(54\) −9.65017 16.7146i −1.31322 2.27457i
\(55\) 0 0
\(56\) 1.88233 3.26029i 0.251537 0.435675i
\(57\) 12.9526 + 22.4346i 1.71562 + 2.97154i
\(58\) 1.70853 + 2.95927i 0.224341 + 0.388571i
\(59\) −0.242678 0.420330i −0.0315940 0.0547224i 0.849796 0.527112i \(-0.176725\pi\)
−0.881390 + 0.472389i \(0.843392\pi\)
\(60\) 0 0
\(61\) 0.459736 0.796287i 0.0588632 0.101954i −0.835092 0.550110i \(-0.814586\pi\)
0.893955 + 0.448156i \(0.147919\pi\)
\(62\) 4.47471 + 7.75043i 0.568289 + 0.984305i
\(63\) −9.98382 −1.25784
\(64\) 8.35104 1.04388
\(65\) 0 0
\(66\) −13.4763 −1.65882
\(67\) 5.62845 9.74876i 0.687624 1.19100i −0.284980 0.958533i \(-0.591987\pi\)
0.972604 0.232467i \(-0.0746797\pi\)
\(68\) 0.430441 0.0521986
\(69\) 7.47970 12.9552i 0.900451 1.55963i
\(70\) 0 0
\(71\) 0.253677 0.439381i 0.0301059 0.0521450i −0.850580 0.525846i \(-0.823749\pi\)
0.880686 + 0.473701i \(0.157082\pi\)
\(72\) −12.5403 21.7204i −1.47788 2.55977i
\(73\) 3.55519 0.416104 0.208052 0.978118i \(-0.433288\pi\)
0.208052 + 0.978118i \(0.433288\pi\)
\(74\) −5.02059 + 4.61261i −0.583632 + 0.536204i
\(75\) 0 0
\(76\) 2.88417 + 4.99553i 0.330837 + 0.573026i
\(77\) −2.20341 + 3.81642i −0.251102 + 0.434921i
\(78\) 1.30953 2.26817i 0.148275 0.256820i
\(79\) 1.90707 3.30314i 0.214562 0.371633i −0.738575 0.674172i \(-0.764501\pi\)
0.953137 + 0.302539i \(0.0978342\pi\)
\(80\) 0 0
\(81\) −16.5232 + 28.6191i −1.83591 + 3.17989i
\(82\) −6.26179 −0.691499
\(83\) −5.80544 10.0553i −0.637230 1.10371i −0.986038 0.166521i \(-0.946747\pi\)
0.348808 0.937194i \(-0.386587\pi\)
\(84\) −3.04086 −0.331785
\(85\) 0 0
\(86\) −2.25421 3.90440i −0.243077 0.421022i
\(87\) 5.09126 8.81833i 0.545841 0.945424i
\(88\) −11.0705 −1.18011
\(89\) −7.19183 12.4566i −0.762333 1.32040i −0.941645 0.336607i \(-0.890721\pi\)
0.179312 0.983792i \(-0.442613\pi\)
\(90\) 0 0
\(91\) −0.428221 0.741701i −0.0448898 0.0777514i
\(92\) 1.66551 2.88475i 0.173641 0.300756i
\(93\) 13.3342 23.0955i 1.38269 2.39489i
\(94\) 4.53700 + 7.85831i 0.467956 + 0.810523i
\(95\) 0 0
\(96\) −6.60368 11.4379i −0.673986 1.16738i
\(97\) 10.2579 1.04154 0.520768 0.853698i \(-0.325646\pi\)
0.520768 + 0.853698i \(0.325646\pi\)
\(98\) −3.08309 + 5.34008i −0.311440 + 0.539429i
\(99\) 14.6793 + 25.4253i 1.47533 + 2.55534i
\(100\) 0 0
\(101\) −5.50183 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(102\) 1.08334 + 1.87640i 0.107267 + 0.185791i
\(103\) −6.24169 −0.615012 −0.307506 0.951546i \(-0.599494\pi\)
−0.307506 + 0.951546i \(0.599494\pi\)
\(104\) 1.07574 1.86324i 0.105485 0.182706i
\(105\) 0 0
\(106\) 5.57034 9.64812i 0.541040 0.937108i
\(107\) −0.185069 + 0.320549i −0.0178913 + 0.0309886i −0.874832 0.484426i \(-0.839029\pi\)
0.856941 + 0.515414i \(0.172362\pi\)
\(108\) −6.40323 + 11.0907i −0.616151 + 1.06721i
\(109\) −1.55541 2.69404i −0.148981 0.258043i 0.781870 0.623441i \(-0.214266\pi\)
−0.930851 + 0.365399i \(0.880933\pi\)
\(110\) 0 0
\(111\) 19.3840 + 6.08393i 1.83985 + 0.577461i
\(112\) 2.39870 0.226656
\(113\) 5.84618 + 10.1259i 0.549962 + 0.952562i 0.998276 + 0.0586863i \(0.0186912\pi\)
−0.448314 + 0.893876i \(0.647975\pi\)
\(114\) −14.5178 + 25.1456i −1.35972 + 2.35510i
\(115\) 0 0
\(116\) 1.13367 1.96358i 0.105259 0.182314i
\(117\) −5.70570 −0.527492
\(118\) 0.272003 0.471123i 0.0250399 0.0433704i
\(119\) 0.708514 0.0649494
\(120\) 0 0
\(121\) 1.95880 0.178072
\(122\) 1.03058 0.0933045
\(123\) 9.32976 + 16.1596i 0.841236 + 1.45706i
\(124\) 2.96913 5.14269i 0.266636 0.461827i
\(125\) 0 0
\(126\) −5.59513 9.69105i −0.498454 0.863347i
\(127\) 8.87482 + 15.3716i 0.787513 + 1.36401i 0.927486 + 0.373857i \(0.121965\pi\)
−0.139973 + 0.990155i \(0.544702\pi\)
\(128\) 0.725783 + 1.25709i 0.0641508 + 0.111112i
\(129\) −6.71731 + 11.6347i −0.591426 + 1.02438i
\(130\) 0 0
\(131\) 0.575328 + 0.996498i 0.0502667 + 0.0870644i 0.890064 0.455836i \(-0.150660\pi\)
−0.839797 + 0.542900i \(0.817326\pi\)
\(132\) 4.47101 + 7.74402i 0.389152 + 0.674031i
\(133\) 4.74740 + 8.22273i 0.411651 + 0.713001i
\(134\) 12.6172 1.08996
\(135\) 0 0
\(136\) 0.889935 + 1.54141i 0.0763113 + 0.132175i
\(137\) −1.91138 −0.163301 −0.0816503 0.996661i \(-0.526019\pi\)
−0.0816503 + 0.996661i \(0.526019\pi\)
\(138\) 16.7671 1.42731
\(139\) 1.89002 + 3.27360i 0.160309 + 0.277663i 0.934980 0.354702i \(-0.115418\pi\)
−0.774670 + 0.632365i \(0.782084\pi\)
\(140\) 0 0
\(141\) 13.5198 23.4170i 1.13857 1.97207i
\(142\) 0.568663 0.0477211
\(143\) −1.25924 + 2.18106i −0.105303 + 0.182390i
\(144\) 7.99020 13.8394i 0.665850 1.15329i
\(145\) 0 0
\(146\) 1.99240 + 3.45094i 0.164892 + 0.285602i
\(147\) 18.3746 1.51551
\(148\) 4.31625 + 1.35471i 0.354794 + 0.111357i
\(149\) −0.552510 −0.0452633 −0.0226317 0.999744i \(-0.507205\pi\)
−0.0226317 + 0.999744i \(0.507205\pi\)
\(150\) 0 0
\(151\) −4.57907 + 7.93118i −0.372639 + 0.645430i −0.989971 0.141273i \(-0.954880\pi\)
0.617331 + 0.786703i \(0.288214\pi\)
\(152\) −11.9260 + 20.6565i −0.967328 + 1.67546i
\(153\) 2.36009 4.08780i 0.190802 0.330479i
\(154\) −4.93934 −0.398023
\(155\) 0 0
\(156\) −1.73784 −0.139138
\(157\) −1.37082 2.37433i −0.109403 0.189492i 0.806125 0.591745i \(-0.201561\pi\)
−0.915529 + 0.402253i \(0.868227\pi\)
\(158\) 4.27504 0.340104
\(159\) −33.1982 −2.63279
\(160\) 0 0
\(161\) 2.74146 4.74835i 0.216057 0.374222i
\(162\) −37.0398 −2.91012
\(163\) 10.5345 + 18.2462i 0.825123 + 1.42915i 0.901826 + 0.432100i \(0.142227\pi\)
−0.0767030 + 0.997054i \(0.524439\pi\)
\(164\) 2.07746 + 3.59827i 0.162222 + 0.280978i
\(165\) 0 0
\(166\) 6.50697 11.2704i 0.505039 0.874753i
\(167\) −5.01447 + 8.68532i −0.388031 + 0.672090i −0.992185 0.124778i \(-0.960178\pi\)
0.604153 + 0.796868i \(0.293511\pi\)
\(168\) −6.28697 10.8894i −0.485050 0.840132i
\(169\) 6.25527 + 10.8345i 0.481175 + 0.833419i
\(170\) 0 0
\(171\) 63.2552 4.83725
\(172\) −1.49575 + 2.59071i −0.114050 + 0.197540i
\(173\) −6.65162 11.5209i −0.505714 0.875922i −0.999978 0.00661007i \(-0.997896\pi\)
0.494265 0.869312i \(-0.335437\pi\)
\(174\) 11.4130 0.865216
\(175\) 0 0
\(176\) −3.52684 6.10867i −0.265846 0.460458i
\(177\) −1.62109 −0.121848
\(178\) 8.06089 13.9619i 0.604190 1.04649i
\(179\) 9.15637 0.684379 0.342190 0.939631i \(-0.388832\pi\)
0.342190 + 0.939631i \(0.388832\pi\)
\(180\) 0 0
\(181\) −10.5528 + 18.2780i −0.784382 + 1.35859i 0.144986 + 0.989434i \(0.453686\pi\)
−0.929368 + 0.369156i \(0.879647\pi\)
\(182\) 0.479968 0.831328i 0.0355776 0.0616222i
\(183\) −1.53552 2.65959i −0.113509 0.196603i
\(184\) 13.7737 1.01541
\(185\) 0 0
\(186\) 29.8910 2.19172
\(187\) −1.04174 1.80434i −0.0761793 0.131946i
\(188\) 3.01046 5.21427i 0.219561 0.380290i
\(189\) −10.5398 + 18.2555i −0.766661 + 1.32790i
\(190\) 0 0
\(191\) −7.51240 −0.543578 −0.271789 0.962357i \(-0.587615\pi\)
−0.271789 + 0.962357i \(0.587615\pi\)
\(192\) 13.9462 24.1556i 1.00648 1.74328i
\(193\) −16.5435 −1.19083 −0.595415 0.803418i \(-0.703012\pi\)
−0.595415 + 0.803418i \(0.703012\pi\)
\(194\) 5.74876 + 9.95714i 0.412737 + 0.714881i
\(195\) 0 0
\(196\) 4.09149 0.292249
\(197\) 0.873381 + 1.51274i 0.0622259 + 0.107778i 0.895460 0.445142i \(-0.146847\pi\)
−0.833234 + 0.552920i \(0.813513\pi\)
\(198\) −16.4532 + 28.4977i −1.16928 + 2.02525i
\(199\) −14.8223 −1.05073 −0.525364 0.850878i \(-0.676071\pi\)
−0.525364 + 0.850878i \(0.676071\pi\)
\(200\) 0 0
\(201\) −18.7990 32.5608i −1.32598 2.29666i
\(202\) −3.08334 5.34049i −0.216943 0.375756i
\(203\) 1.86605 3.23209i 0.130971 0.226848i
\(204\) 0.718835 1.24506i 0.0503285 0.0871715i
\(205\) 0 0
\(206\) −3.49797 6.05866i −0.243715 0.422127i
\(207\) −18.2639 31.6339i −1.26943 2.19871i
\(208\) 1.37085 0.0950512
\(209\) 13.9603 24.1800i 0.965654 1.67256i
\(210\) 0 0
\(211\) −18.1359 −1.24853 −0.624264 0.781214i \(-0.714601\pi\)
−0.624264 + 0.781214i \(0.714601\pi\)
\(212\) −7.39225 −0.507702
\(213\) −0.847279 1.46753i −0.0580546 0.100554i
\(214\) −0.414866 −0.0283596
\(215\) 0 0
\(216\) −52.9547 −3.60311
\(217\) 4.88725 8.46496i 0.331768 0.574639i
\(218\) 1.74336 3.01959i 0.118075 0.204513i
\(219\) 5.93716 10.2835i 0.401196 0.694892i
\(220\) 0 0
\(221\) 0.404912 0.0272373
\(222\) 4.95768 + 22.2252i 0.332738 + 1.49166i
\(223\) 3.84578 0.257532 0.128766 0.991675i \(-0.458898\pi\)
0.128766 + 0.991675i \(0.458898\pi\)
\(224\) −2.42038 4.19222i −0.161718 0.280105i
\(225\) 0 0
\(226\) −6.55263 + 11.3495i −0.435874 + 0.754957i
\(227\) −6.90676 + 11.9629i −0.458418 + 0.794003i −0.998878 0.0473671i \(-0.984917\pi\)
0.540460 + 0.841370i \(0.318250\pi\)
\(228\) 19.2662 1.27594
\(229\) −0.301499 + 0.522211i −0.0199236 + 0.0345087i −0.875815 0.482646i \(-0.839676\pi\)
0.855892 + 0.517155i \(0.173009\pi\)
\(230\) 0 0
\(231\) 7.35937 + 12.7468i 0.484211 + 0.838679i
\(232\) 9.37547 0.615530
\(233\) −23.3424 −1.52921 −0.764605 0.644499i \(-0.777066\pi\)
−0.764605 + 0.644499i \(0.777066\pi\)
\(234\) −3.19759 5.53839i −0.209033 0.362056i
\(235\) 0 0
\(236\) −0.360968 −0.0234970
\(237\) −6.36961 11.0325i −0.413750 0.716637i
\(238\) 0.397065 + 0.687737i 0.0257379 + 0.0445794i
\(239\) 14.0468 + 24.3297i 0.908610 + 1.57376i 0.815997 + 0.578057i \(0.196189\pi\)
0.0926135 + 0.995702i \(0.470478\pi\)
\(240\) 0 0
\(241\) −0.0182021 + 0.0315270i −0.00117250 + 0.00203084i −0.866611 0.498984i \(-0.833707\pi\)
0.865439 + 0.501015i \(0.167040\pi\)
\(242\) 1.09775 + 1.90136i 0.0705659 + 0.122224i
\(243\) 29.3582 + 50.8498i 1.88333 + 3.26202i
\(244\) −0.341914 0.592213i −0.0218888 0.0379125i
\(245\) 0 0
\(246\) −10.4572 + 18.1123i −0.666725 + 1.15480i
\(247\) 2.71311 + 4.69925i 0.172631 + 0.299006i
\(248\) 24.5547 1.55922
\(249\) −38.7803 −2.45760
\(250\) 0 0
\(251\) −21.4173 −1.35185 −0.675924 0.736971i \(-0.736255\pi\)
−0.675924 + 0.736971i \(0.736255\pi\)
\(252\) −3.71257 + 6.43036i −0.233870 + 0.405075i
\(253\) −16.1232 −1.01366
\(254\) −9.94726 + 17.2292i −0.624146 + 1.08105i
\(255\) 0 0
\(256\) 7.53756 13.0554i 0.471097 0.815965i
\(257\) −0.403879 0.699538i −0.0251933 0.0436360i 0.853154 0.521659i \(-0.174687\pi\)
−0.878347 + 0.478023i \(0.841353\pi\)
\(258\) −15.0581 −0.937474
\(259\) 7.10464 + 2.22988i 0.441461 + 0.138558i
\(260\) 0 0
\(261\) −12.4318 21.5325i −0.769508 1.33283i
\(262\) −0.644851 + 1.11691i −0.0398390 + 0.0690032i
\(263\) 1.21933 2.11194i 0.0751871 0.130228i −0.825981 0.563699i \(-0.809378\pi\)
0.901168 + 0.433471i \(0.142711\pi\)
\(264\) −18.4876 + 32.0215i −1.13783 + 1.97079i
\(265\) 0 0
\(266\) −5.32107 + 9.21637i −0.326256 + 0.565092i
\(267\) −48.0414 −2.94008
\(268\) −4.18598 7.25032i −0.255699 0.442884i
\(269\) 12.1567 0.741208 0.370604 0.928791i \(-0.379151\pi\)
0.370604 + 0.928791i \(0.379151\pi\)
\(270\) 0 0
\(271\) 15.6514 + 27.1090i 0.950755 + 1.64676i 0.743797 + 0.668405i \(0.233023\pi\)
0.206957 + 0.978350i \(0.433644\pi\)
\(272\) −0.567034 + 0.982132i −0.0343815 + 0.0595505i
\(273\) −2.86051 −0.173126
\(274\) −1.07118 1.85533i −0.0647122 0.112085i
\(275\) 0 0
\(276\) −5.56279 9.63503i −0.334841 0.579961i
\(277\) 11.5959 20.0847i 0.696732 1.20678i −0.272861 0.962053i \(-0.587970\pi\)
0.969593 0.244722i \(-0.0786967\pi\)
\(278\) −2.11841 + 3.66919i −0.127053 + 0.220063i
\(279\) −32.5593 56.3944i −1.94927 3.37624i
\(280\) 0 0
\(281\) 10.7114 + 18.5527i 0.638988 + 1.10676i 0.985655 + 0.168771i \(0.0539799\pi\)
−0.346668 + 0.937988i \(0.612687\pi\)
\(282\) 30.3071 1.80476
\(283\) −6.90784 + 11.9647i −0.410628 + 0.711229i −0.994959 0.100287i \(-0.968024\pi\)
0.584330 + 0.811516i \(0.301357\pi\)
\(284\) −0.188664 0.326776i −0.0111952 0.0193906i
\(285\) 0 0
\(286\) −2.82281 −0.166916
\(287\) 3.41954 + 5.92282i 0.201849 + 0.349613i
\(288\) −32.2496 −1.90033
\(289\) 8.33251 14.4323i 0.490148 0.848961i
\(290\) 0 0
\(291\) 17.1307 29.6713i 1.00422 1.73936i
\(292\) 1.32203 2.28982i 0.0773659 0.134002i
\(293\) −3.55370 + 6.15518i −0.207609 + 0.359589i −0.950961 0.309311i \(-0.899902\pi\)
0.743352 + 0.668901i \(0.233235\pi\)
\(294\) 10.2975 + 17.8358i 0.600563 + 1.04021i
\(295\) 0 0
\(296\) 4.07261 + 18.2574i 0.236715 + 1.06119i
\(297\) 61.9874 3.59687
\(298\) −0.309637 0.536308i −0.0179368 0.0310675i
\(299\) 1.56673 2.71366i 0.0906064 0.156935i
\(300\) 0 0
\(301\) −2.46203 + 4.26436i −0.141909 + 0.245793i
\(302\) −10.2648 −0.590673
\(303\) −9.18804 + 15.9141i −0.527839 + 0.914244i
\(304\) −15.1976 −0.871645
\(305\) 0 0
\(306\) 5.29057 0.302442
\(307\) 23.6385 1.34912 0.674560 0.738220i \(-0.264333\pi\)
0.674560 + 0.738220i \(0.264333\pi\)
\(308\) 1.63871 + 2.83834i 0.0933744 + 0.161729i
\(309\) −10.4236 + 18.0542i −0.592978 + 1.02707i
\(310\) 0 0
\(311\) 9.68043 + 16.7670i 0.548927 + 0.950769i 0.998348 + 0.0574494i \(0.0182968\pi\)
−0.449422 + 0.893320i \(0.648370\pi\)
\(312\) −3.59297 6.22321i −0.203412 0.352320i
\(313\) 3.05523 + 5.29181i 0.172692 + 0.299111i 0.939360 0.342932i \(-0.111420\pi\)
−0.766668 + 0.642043i \(0.778087\pi\)
\(314\) 1.53647 2.66124i 0.0867079 0.150183i
\(315\) 0 0
\(316\) −1.41832 2.45661i −0.0797869 0.138195i
\(317\) −16.6203 28.7872i −0.933490 1.61685i −0.777304 0.629125i \(-0.783414\pi\)
−0.156186 0.987728i \(-0.549920\pi\)
\(318\) −18.6049 32.2247i −1.04331 1.80707i
\(319\) −10.9747 −0.614465
\(320\) 0 0
\(321\) 0.618129 + 1.07063i 0.0345006 + 0.0597568i
\(322\) 6.14547 0.342474
\(323\) −4.48898 −0.249774
\(324\) 12.2886 + 21.2845i 0.682701 + 1.18247i
\(325\) 0 0
\(326\) −11.8074 + 20.4511i −0.653954 + 1.13268i
\(327\) −10.3901 −0.574574
\(328\) −8.59029 + 14.8788i −0.474319 + 0.821545i
\(329\) 4.95528 8.58279i 0.273193 0.473185i
\(330\) 0 0
\(331\) −0.693675 1.20148i −0.0381278 0.0660394i 0.846332 0.532656i \(-0.178806\pi\)
−0.884460 + 0.466617i \(0.845473\pi\)
\(332\) −8.63522 −0.473919
\(333\) 36.5313 33.5627i 2.00190 1.83922i
\(334\) −11.2408 −0.615071
\(335\) 0 0
\(336\) 4.00583 6.93830i 0.218536 0.378515i
\(337\) 7.65489 13.2587i 0.416989 0.722245i −0.578646 0.815579i \(-0.696419\pi\)
0.995635 + 0.0933332i \(0.0297522\pi\)
\(338\) −7.01116 + 12.1437i −0.381357 + 0.660529i
\(339\) 39.0524 2.12103
\(340\) 0 0
\(341\) −28.7431 −1.55653
\(342\) 35.4495 + 61.4003i 1.91689 + 3.32015i
\(343\) 15.3039 0.826332
\(344\) −12.3698 −0.666935
\(345\) 0 0
\(346\) 7.45541 12.9131i 0.400805 0.694215i
\(347\) −27.0099 −1.44997 −0.724983 0.688767i \(-0.758152\pi\)
−0.724983 + 0.688767i \(0.758152\pi\)
\(348\) −3.78646 6.55835i −0.202976 0.351564i
\(349\) 10.1591 + 17.5961i 0.543806 + 0.941900i 0.998681 + 0.0513447i \(0.0163507\pi\)
−0.454875 + 0.890555i \(0.650316\pi\)
\(350\) 0 0
\(351\) −6.02347 + 10.4330i −0.321509 + 0.556870i
\(352\) −7.11743 + 12.3277i −0.379360 + 0.657071i
\(353\) −2.23510 3.87131i −0.118962 0.206049i 0.800394 0.599474i \(-0.204623\pi\)
−0.919357 + 0.393425i \(0.871290\pi\)
\(354\) −0.908489 1.57355i −0.0482856 0.0836332i
\(355\) 0 0
\(356\) −10.6974 −0.566960
\(357\) 1.18322 2.04939i 0.0626224 0.108465i
\(358\) 5.13141 + 8.88786i 0.271204 + 0.469738i
\(359\) −31.2742 −1.65059 −0.825295 0.564702i \(-0.808991\pi\)
−0.825295 + 0.564702i \(0.808991\pi\)
\(360\) 0 0
\(361\) −20.5784 35.6429i −1.08308 1.87594i
\(362\) −23.6560 −1.24333
\(363\) 3.27118 5.66585i 0.171693 0.297380i
\(364\) −0.636952 −0.0333853
\(365\) 0 0
\(366\) 1.72107 2.98098i 0.0899617 0.155818i
\(367\) −8.06325 + 13.9660i −0.420898 + 0.729017i −0.996028 0.0890456i \(-0.971618\pi\)
0.575130 + 0.818062i \(0.304952\pi\)
\(368\) 4.38806 + 7.60034i 0.228743 + 0.396195i
\(369\) 45.5626 2.37189
\(370\) 0 0
\(371\) −12.1678 −0.631720
\(372\) −9.91688 17.1765i −0.514166 0.890562i
\(373\) −5.12016 + 8.86838i −0.265112 + 0.459187i −0.967593 0.252515i \(-0.918742\pi\)
0.702481 + 0.711703i \(0.252076\pi\)
\(374\) 1.16762 2.02238i 0.0603762 0.104575i
\(375\) 0 0
\(376\) 24.8965 1.28394
\(377\) 1.06644 1.84712i 0.0549243 0.0951317i
\(378\) −23.6270 −1.21524
\(379\) −8.28107 14.3432i −0.425370 0.736763i 0.571085 0.820891i \(-0.306523\pi\)
−0.996455 + 0.0841283i \(0.973189\pi\)
\(380\) 0 0
\(381\) 59.2837 3.03720
\(382\) −4.21010 7.29211i −0.215408 0.373097i
\(383\) 9.15069 15.8495i 0.467578 0.809869i −0.531735 0.846911i \(-0.678460\pi\)
0.999314 + 0.0370411i \(0.0117933\pi\)
\(384\) 4.84822 0.247410
\(385\) 0 0
\(386\) −9.27133 16.0584i −0.471898 0.817352i
\(387\) 16.4023 + 28.4095i 0.833773 + 1.44414i
\(388\) 3.81451 6.60692i 0.193652 0.335416i
\(389\) 7.33608 12.7065i 0.371954 0.644243i −0.617912 0.786247i \(-0.712021\pi\)
0.989866 + 0.142004i \(0.0453546\pi\)
\(390\) 0 0
\(391\) 1.29612 + 2.24494i 0.0655474 + 0.113532i
\(392\) 8.45914 + 14.6517i 0.427251 + 0.740021i
\(393\) 3.84319 0.193863
\(394\) −0.978921 + 1.69554i −0.0493173 + 0.0854201i
\(395\) 0 0
\(396\) 21.8345 1.09723
\(397\) 2.00229 0.100492 0.0502460 0.998737i \(-0.483999\pi\)
0.0502460 + 0.998737i \(0.483999\pi\)
\(398\) −8.30673 14.3877i −0.416379 0.721189i
\(399\) 31.7125 1.58761
\(400\) 0 0
\(401\) −22.8854 −1.14284 −0.571422 0.820656i \(-0.693608\pi\)
−0.571422 + 0.820656i \(0.693608\pi\)
\(402\) 21.0706 36.4954i 1.05091 1.82023i
\(403\) 2.79304 4.83768i 0.139131 0.240982i
\(404\) −2.04590 + 3.54361i −0.101788 + 0.176301i
\(405\) 0 0
\(406\) 4.18308 0.207603
\(407\) −4.76729 21.3717i −0.236306 1.05935i
\(408\) 5.94476 0.294309
\(409\) −4.55814 7.89494i −0.225386 0.390380i 0.731049 0.682325i \(-0.239031\pi\)
−0.956435 + 0.291945i \(0.905698\pi\)
\(410\) 0 0
\(411\) −3.19200 + 5.52871i −0.157450 + 0.272711i
\(412\) −2.32103 + 4.02014i −0.114349 + 0.198058i
\(413\) −0.594160 −0.0292367
\(414\) 20.4709 35.4566i 1.00609 1.74259i
\(415\) 0 0
\(416\) −1.38324 2.39583i −0.0678187 0.117465i
\(417\) 12.6253 0.618263
\(418\) 31.2945 1.53067
\(419\) 4.25529 + 7.37039i 0.207885 + 0.360067i 0.951048 0.309043i \(-0.100009\pi\)
−0.743163 + 0.669110i \(0.766675\pi\)
\(420\) 0 0
\(421\) −8.83588 −0.430635 −0.215317 0.976544i \(-0.569079\pi\)
−0.215317 + 0.976544i \(0.569079\pi\)
\(422\) −10.1637 17.6041i −0.494762 0.856953i
\(423\) −33.0125 57.1794i −1.60512 2.78016i
\(424\) −15.2834 26.4717i −0.742230 1.28558i
\(425\) 0 0
\(426\) 0.949665 1.64487i 0.0460114 0.0796941i
\(427\) −0.562797 0.974793i −0.0272357 0.0471735i
\(428\) 0.137639 + 0.238398i 0.00665304 + 0.0115234i
\(429\) 4.20585 + 7.28474i 0.203060 + 0.351711i
\(430\) 0 0
\(431\) −0.755326 + 1.30826i −0.0363828 + 0.0630168i −0.883643 0.468161i \(-0.844917\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(432\) −16.8704 29.2204i −0.811677 1.40587i
\(433\) −6.85824 −0.329586 −0.164793 0.986328i \(-0.552696\pi\)
−0.164793 + 0.986328i \(0.552696\pi\)
\(434\) 10.9556 0.525888
\(435\) 0 0
\(436\) −2.31357 −0.110800
\(437\) −17.3693 + 30.0844i −0.830884 + 1.43913i
\(438\) 13.3092 0.635938
\(439\) −9.56891 + 16.5738i −0.456699 + 0.791026i −0.998784 0.0492976i \(-0.984302\pi\)
0.542085 + 0.840324i \(0.317635\pi\)
\(440\) 0 0
\(441\) 22.4335 38.8559i 1.06826 1.85028i
\(442\) 0.226921 + 0.393039i 0.0107935 + 0.0186949i
\(443\) 2.25690 0.107229 0.0536144 0.998562i \(-0.482926\pi\)
0.0536144 + 0.998562i \(0.482926\pi\)
\(444\) 11.1267 10.2225i 0.528048 0.485138i
\(445\) 0 0
\(446\) 2.15525 + 3.73300i 0.102054 + 0.176763i
\(447\) −0.922689 + 1.59814i −0.0436417 + 0.0755896i
\(448\) 5.11156 8.85349i 0.241499 0.418288i
\(449\) 12.1889 21.1119i 0.575232 0.996330i −0.420785 0.907160i \(-0.638245\pi\)
0.996016 0.0891698i \(-0.0284214\pi\)
\(450\) 0 0
\(451\) 10.0556 17.4168i 0.473499 0.820124i
\(452\) 8.69581 0.409017
\(453\) 15.2941 + 26.4901i 0.718578 + 1.24461i
\(454\) −15.4827 −0.726641
\(455\) 0 0
\(456\) 39.8328 + 68.9925i 1.86534 + 3.23087i
\(457\) −7.02629 + 12.1699i −0.328676 + 0.569283i −0.982249 0.187580i \(-0.939936\pi\)
0.653574 + 0.756863i \(0.273269\pi\)
\(458\) −0.675864 −0.0315810
\(459\) −4.98307 8.63092i −0.232590 0.402857i
\(460\) 0 0
\(461\) 13.2088 + 22.8783i 0.615195 + 1.06555i 0.990350 + 0.138587i \(0.0442559\pi\)
−0.375156 + 0.926962i \(0.622411\pi\)
\(462\) −8.24868 + 14.2871i −0.383763 + 0.664698i
\(463\) 12.5712 21.7739i 0.584233 1.01192i −0.410738 0.911753i \(-0.634729\pi\)
0.994971 0.100167i \(-0.0319378\pi\)
\(464\) 2.98685 + 5.17338i 0.138661 + 0.240168i
\(465\) 0 0
\(466\) −13.0815 22.6579i −0.605991 1.04961i
\(467\) 14.0309 0.649271 0.324635 0.945839i \(-0.394758\pi\)
0.324635 + 0.945839i \(0.394758\pi\)
\(468\) −2.12172 + 3.67492i −0.0980764 + 0.169873i
\(469\) −6.89019 11.9342i −0.318160 0.551069i
\(470\) 0 0
\(471\) −9.15705 −0.421935
\(472\) −0.746300 1.29263i −0.0343512 0.0594981i
\(473\) 14.4798 0.665781
\(474\) 7.13931 12.3656i 0.327919 0.567973i
\(475\) 0 0
\(476\) 0.263467 0.456339i 0.0120760 0.0209162i
\(477\) −40.5314 + 70.2025i −1.85581 + 3.21435i
\(478\) −15.7442 + 27.2697i −0.720122 + 1.24729i
\(479\) 3.34106 + 5.78689i 0.152657 + 0.264410i 0.932203 0.361935i \(-0.117884\pi\)
−0.779546 + 0.626344i \(0.784550\pi\)
\(480\) 0 0
\(481\) 4.06026 + 1.27437i 0.185132 + 0.0581061i
\(482\) −0.0408034 −0.00185854
\(483\) −9.15645 15.8594i −0.416633 0.721630i
\(484\) 0.728396 1.26162i 0.0331089 0.0573463i
\(485\) 0 0
\(486\) −32.9058 + 56.9945i −1.49264 + 2.58532i
\(487\) 7.26544 0.329229 0.164614 0.986358i \(-0.447362\pi\)
0.164614 + 0.986358i \(0.447362\pi\)
\(488\) 1.41381 2.44880i 0.0640003 0.110852i
\(489\) 70.3701 3.18224
\(490\) 0 0
\(491\) 0.446623 0.0201558 0.0100779 0.999949i \(-0.496792\pi\)
0.0100779 + 0.999949i \(0.496792\pi\)
\(492\) 13.8774 0.625642
\(493\) 0.882237 + 1.52808i 0.0397340 + 0.0688212i
\(494\) −3.04097 + 5.26711i −0.136820 + 0.236978i
\(495\) 0 0
\(496\) 7.82267 + 13.5493i 0.351248 + 0.608380i
\(497\) −0.310545 0.537879i −0.0139298 0.0241272i
\(498\) −21.7332 37.6431i −0.973890 1.68683i
\(499\) 5.30225 9.18376i 0.237361 0.411122i −0.722595 0.691272i \(-0.757051\pi\)
0.959956 + 0.280150i \(0.0903842\pi\)
\(500\) 0 0
\(501\) 16.7483 + 29.0089i 0.748259 + 1.29602i
\(502\) −12.0027 20.7893i −0.535706 0.927870i
\(503\) 6.98478 + 12.0980i 0.311436 + 0.539423i 0.978673 0.205422i \(-0.0658567\pi\)
−0.667237 + 0.744845i \(0.732523\pi\)
\(504\) −30.7029 −1.36762
\(505\) 0 0
\(506\) −9.03576 15.6504i −0.401689 0.695745i
\(507\) 41.7851 1.85574
\(508\) 13.2007 0.585687
\(509\) −19.8167 34.3235i −0.878360 1.52136i −0.853140 0.521682i \(-0.825305\pi\)
−0.0252198 0.999682i \(-0.508029\pi\)
\(510\) 0 0
\(511\) 2.17609 3.76909i 0.0962643 0.166735i
\(512\) 19.7999 0.875041
\(513\) 66.7781 115.663i 2.94832 5.10665i
\(514\) 0.452683 0.784070i 0.0199670 0.0345839i
\(515\) 0 0
\(516\) 4.99578 + 8.65295i 0.219927 + 0.380925i
\(517\) −29.1432 −1.28172
\(518\) 1.81709 + 8.14597i 0.0798383 + 0.357913i
\(519\) −44.4328 −1.95038
\(520\) 0 0
\(521\) 15.7148 27.2188i 0.688477 1.19248i −0.283854 0.958868i \(-0.591613\pi\)
0.972331 0.233609i \(-0.0750537\pi\)
\(522\) 13.9340 24.1345i 0.609877 1.05634i
\(523\) 7.17472 12.4270i 0.313729 0.543394i −0.665438 0.746453i \(-0.731755\pi\)
0.979166 + 0.203059i \(0.0650884\pi\)
\(524\) 0.855764 0.0373842
\(525\) 0 0
\(526\) 2.73335 0.119180
\(527\) 2.31061 + 4.00210i 0.100652 + 0.174334i
\(528\) −23.5593 −1.02529
\(529\) −2.93969 −0.127813
\(530\) 0 0
\(531\) −1.97917 + 3.42803i −0.0858888 + 0.148764i
\(532\) 7.06145 0.306153
\(533\) 1.95425 + 3.38486i 0.0846480 + 0.146615i
\(534\) −26.9233 46.6326i −1.16509 2.01799i
\(535\) 0 0
\(536\) 17.3090 29.9800i 0.747634 1.29494i
\(537\) 15.2911 26.4850i 0.659860 1.14291i
\(538\) 6.81287 + 11.8002i 0.293723 + 0.508744i
\(539\) −9.90206 17.1509i −0.426512 0.738740i
\(540\) 0 0
\(541\) 14.4219 0.620046 0.310023 0.950729i \(-0.399663\pi\)
0.310023 + 0.950729i \(0.399663\pi\)
\(542\) −17.5427 + 30.3849i −0.753524 + 1.30514i
\(543\) 35.2462 + 61.0482i 1.51256 + 2.61983i
\(544\) 2.28863 0.0981243
\(545\) 0 0
\(546\) −1.60309 2.77663i −0.0686059 0.118829i
\(547\) −4.85582 −0.207620 −0.103810 0.994597i \(-0.533103\pi\)
−0.103810 + 0.994597i \(0.533103\pi\)
\(548\) −0.710765 + 1.23108i −0.0303624 + 0.0525892i
\(549\) −7.49881 −0.320041
\(550\) 0 0
\(551\) −11.8229 + 20.4778i −0.503671 + 0.872383i
\(552\) 23.0021 39.8408i 0.979034 1.69574i
\(553\) −2.33459 4.04362i −0.0992767 0.171952i
\(554\) 25.9944 1.10439
\(555\) 0 0
\(556\) 2.81128 0.119225
\(557\) −2.37410 4.11206i −0.100594 0.174233i 0.811336 0.584581i \(-0.198741\pi\)
−0.911929 + 0.410347i \(0.865408\pi\)
\(558\) 36.4938 63.2091i 1.54490 2.67585i
\(559\) −1.40704 + 2.43706i −0.0595113 + 0.103077i
\(560\) 0 0
\(561\) −6.95878 −0.293800
\(562\) −12.0057 + 20.7946i −0.506432 + 0.877166i
\(563\) −12.4349 −0.524069 −0.262035 0.965058i \(-0.584393\pi\)
−0.262035 + 0.965058i \(0.584393\pi\)
\(564\) −10.0549 17.4156i −0.423389 0.733331i
\(565\) 0 0
\(566\) −15.4852 −0.650890
\(567\) 20.2273 + 35.0347i 0.849466 + 1.47132i
\(568\) 0.780125 1.35122i 0.0327333 0.0566958i
\(569\) 11.9189 0.499666 0.249833 0.968289i \(-0.419624\pi\)
0.249833 + 0.968289i \(0.419624\pi\)
\(570\) 0 0
\(571\) 13.7047 + 23.7372i 0.573522 + 0.993369i 0.996201 + 0.0870894i \(0.0277566\pi\)
−0.422679 + 0.906280i \(0.638910\pi\)
\(572\) 0.936518 + 1.62210i 0.0391578 + 0.0678232i
\(573\) −12.5457 + 21.7298i −0.524104 + 0.907774i
\(574\) −3.83276 + 6.63853i −0.159976 + 0.277087i
\(575\) 0 0
\(576\) −34.0537 58.9828i −1.41890 2.45761i
\(577\) −3.23957 5.61111i −0.134865 0.233593i 0.790681 0.612229i \(-0.209727\pi\)
−0.925546 + 0.378635i \(0.876393\pi\)
\(578\) 18.6788 0.776937
\(579\) −27.6277 + 47.8525i −1.14817 + 1.98868i
\(580\) 0 0
\(581\) −14.2137 −0.589685
\(582\) 38.4016 1.59180
\(583\) 17.8904 + 30.9871i 0.740946 + 1.28336i
\(584\) 10.9332 0.452418
\(585\) 0 0
\(586\) −7.96625 −0.329083
\(587\) 19.4315 33.6563i 0.802022 1.38914i −0.116261 0.993219i \(-0.537091\pi\)
0.918283 0.395924i \(-0.129576\pi\)
\(588\) 6.83277 11.8347i 0.281779 0.488055i
\(589\) −30.9645 + 53.6321i −1.27587 + 2.20987i
\(590\) 0 0
\(591\) 5.83418 0.239986
\(592\) −8.77698 + 8.06374i −0.360731 + 0.331418i
\(593\) −35.6076 −1.46223 −0.731115 0.682254i \(-0.761000\pi\)
−0.731115 + 0.682254i \(0.761000\pi\)
\(594\) 34.7390 + 60.1697i 1.42536 + 2.46879i
\(595\) 0 0
\(596\) −0.205456 + 0.355859i −0.00841579 + 0.0145766i
\(597\) −24.7532 + 42.8739i −1.01308 + 1.75471i
\(598\) 3.51211 0.143621
\(599\) −8.46167 + 14.6560i −0.345735 + 0.598830i −0.985487 0.169751i \(-0.945704\pi\)
0.639752 + 0.768581i \(0.279037\pi\)
\(600\) 0 0
\(601\) 6.62845 + 11.4808i 0.270380 + 0.468312i 0.968959 0.247221i \(-0.0795173\pi\)
−0.698579 + 0.715533i \(0.746184\pi\)
\(602\) −5.51908 −0.224941
\(603\) −91.8062 −3.73864
\(604\) 3.40553 + 5.89856i 0.138569 + 0.240009i
\(605\) 0 0
\(606\) −20.5966 −0.836681
\(607\) −2.88086 4.98980i −0.116931 0.202530i 0.801619 0.597835i \(-0.203972\pi\)
−0.918550 + 0.395305i \(0.870639\pi\)
\(608\) 15.3350 + 26.5610i 0.621916 + 1.07719i
\(609\) −6.23259 10.7952i −0.252557 0.437442i
\(610\) 0 0
\(611\) 2.83192 4.90502i 0.114567 0.198436i
\(612\) −1.75524 3.04017i −0.0709515 0.122892i
\(613\) −16.6927 28.9125i −0.674210 1.16777i −0.976699 0.214613i \(-0.931151\pi\)
0.302489 0.953153i \(-0.402182\pi\)
\(614\) 13.2475 + 22.9453i 0.534625 + 0.925998i
\(615\) 0 0
\(616\) −6.77608 + 11.7365i −0.273016 + 0.472877i
\(617\) −16.8377 29.1637i −0.677860 1.17409i −0.975624 0.219448i \(-0.929574\pi\)
0.297765 0.954639i \(-0.403759\pi\)
\(618\) −23.3664 −0.939934
\(619\) 28.0530 1.12755 0.563774 0.825929i \(-0.309349\pi\)
0.563774 + 0.825929i \(0.309349\pi\)
\(620\) 0 0
\(621\) −77.1241 −3.09488
\(622\) −10.8502 + 18.7931i −0.435054 + 0.753535i
\(623\) −17.6081 −0.705454
\(624\) 2.28931 3.96520i 0.0916458 0.158735i
\(625\) 0 0
\(626\) −3.42442 + 5.93127i −0.136867 + 0.237061i
\(627\) −46.6273 80.7609i −1.86212 3.22528i
\(628\) −2.03900 −0.0813652
\(629\) −2.59249 + 2.38182i −0.103369 + 0.0949692i
\(630\) 0 0
\(631\) −15.8300 27.4183i −0.630181 1.09151i −0.987514 0.157528i \(-0.949647\pi\)
0.357334 0.933977i \(-0.383686\pi\)
\(632\) 5.86476 10.1581i 0.233288 0.404066i
\(633\) −30.2869 + 52.4585i −1.20380 + 2.08504i
\(634\) 18.6287 32.2659i 0.739841 1.28144i
\(635\) 0 0
\(636\) −12.3450 + 21.3822i −0.489512 + 0.847860i
\(637\) 3.84883 0.152496
\(638\) −6.15044 10.6529i −0.243498 0.421751i
\(639\) −4.13775 −0.163687
\(640\) 0 0
\(641\) 1.04348 + 1.80736i 0.0412149 + 0.0713864i 0.885897 0.463882i \(-0.153544\pi\)
−0.844682 + 0.535268i \(0.820210\pi\)
\(642\) −0.692824 + 1.20001i −0.0273436 + 0.0473605i
\(643\) −1.07099 −0.0422359 −0.0211179 0.999777i \(-0.506723\pi\)
−0.0211179 + 0.999777i \(0.506723\pi\)
\(644\) −2.03887 3.53143i −0.0803428 0.139158i
\(645\) 0 0
\(646\) −2.51572 4.35735i −0.0989795 0.171438i
\(647\) −17.4463 + 30.2179i −0.685886 + 1.18799i 0.287271 + 0.957849i \(0.407252\pi\)
−0.973157 + 0.230141i \(0.926081\pi\)
\(648\) −50.8133 + 88.0113i −1.99614 + 3.45741i
\(649\) 0.873600 + 1.51312i 0.0342918 + 0.0593951i
\(650\) 0 0
\(651\) −16.3234 28.2729i −0.639764 1.10810i
\(652\) 15.6693 0.613658
\(653\) −0.981744 + 1.70043i −0.0384186 + 0.0665430i −0.884595 0.466359i \(-0.845565\pi\)
0.846177 + 0.532902i \(0.178899\pi\)
\(654\) −5.82282 10.0854i −0.227690 0.394371i
\(655\) 0 0
\(656\) −10.9468 −0.427402
\(657\) −14.4973 25.1100i −0.565593 0.979635i
\(658\) 11.1081 0.433041
\(659\) −9.77811 + 16.9362i −0.380901 + 0.659740i −0.991191 0.132438i \(-0.957720\pi\)
0.610290 + 0.792178i \(0.291053\pi\)
\(660\) 0 0
\(661\) −0.987098 + 1.70970i −0.0383937 + 0.0664998i −0.884584 0.466381i \(-0.845557\pi\)
0.846190 + 0.532881i \(0.178891\pi\)
\(662\) 0.777499 1.34667i 0.0302184 0.0523397i
\(663\) 0.676202 1.17122i 0.0262615 0.0454863i
\(664\) −17.8533 30.9228i −0.692842 1.20004i
\(665\) 0 0
\(666\) 53.0513 + 16.6508i 2.05570 + 0.645207i
\(667\) 13.6546 0.528708
\(668\) 3.72935 + 6.45942i 0.144293 + 0.249923i
\(669\) 6.42244 11.1240i 0.248306 0.430078i
\(670\) 0 0
\(671\) −1.65497 + 2.86650i −0.0638896 + 0.110660i
\(672\) −16.1681 −0.623698
\(673\) 10.3326 17.8966i 0.398292 0.689861i −0.595224 0.803560i \(-0.702937\pi\)
0.993515 + 0.113699i \(0.0362698\pi\)
\(674\) 17.1598 0.660971
\(675\) 0 0
\(676\) 9.30432 0.357858
\(677\) 10.7458 0.412994 0.206497 0.978447i \(-0.433794\pi\)
0.206497 + 0.978447i \(0.433794\pi\)
\(678\) 21.8857 + 37.9072i 0.840517 + 1.45582i
\(679\) 6.27875 10.8751i 0.240956 0.417349i
\(680\) 0 0
\(681\) 23.0685 + 39.9559i 0.883988 + 1.53111i
\(682\) −16.1082 27.9002i −0.616815 1.06836i
\(683\) 6.02617 + 10.4376i 0.230585 + 0.399385i 0.957980 0.286834i \(-0.0926027\pi\)
−0.727396 + 0.686218i \(0.759269\pi\)
\(684\) 23.5220 40.7413i 0.899386 1.55778i
\(685\) 0 0
\(686\) 8.57660 + 14.8551i 0.327456 + 0.567171i
\(687\) 1.00700 + 1.74418i 0.0384196 + 0.0665447i
\(688\) −3.94079 6.82565i −0.150241 0.260226i
\(689\) −6.95383 −0.264920
\(690\) 0 0
\(691\) −5.15674 8.93174i −0.196172 0.339779i 0.751112 0.660175i \(-0.229518\pi\)
−0.947284 + 0.320395i \(0.896184\pi\)
\(692\) −9.89386 −0.376108
\(693\) 35.9401 1.36525
\(694\) −15.1369 26.2178i −0.574587 0.995215i
\(695\) 0 0
\(696\) 15.6570 27.1187i 0.593477 1.02793i
\(697\) −3.23341 −0.122474
\(698\) −11.3868 + 19.7225i −0.430996 + 0.746506i
\(699\) −38.9817 + 67.5183i −1.47442 + 2.55378i
\(700\) 0 0
\(701\) −17.7577 30.7573i −0.670699 1.16169i −0.977706 0.209978i \(-0.932661\pi\)
0.307007 0.951707i \(-0.400673\pi\)
\(702\) −13.5027 −0.509626
\(703\) −45.0134 14.1280i −1.69771 0.532848i
\(704\) −30.0624 −1.13302
\(705\) 0 0
\(706\) 2.50519 4.33912i 0.0942841 0.163305i
\(707\) −3.36760 + 5.83285i −0.126652 + 0.219367i
\(708\) −0.602815 + 1.04411i −0.0226552 + 0.0392399i
\(709\) −32.6695 −1.22693 −0.613465 0.789722i \(-0.710225\pi\)
−0.613465 + 0.789722i \(0.710225\pi\)
\(710\) 0 0
\(711\) −31.1065 −1.16658
\(712\) −22.1168 38.3075i −0.828863 1.43563i
\(713\) 35.7619 1.33929
\(714\) 2.65239 0.0992632
\(715\) 0 0
\(716\) 3.40488 5.89742i 0.127246 0.220397i
\(717\) 93.8323 3.50423
\(718\) −17.5267 30.3571i −0.654090 1.13292i
\(719\) −16.3243 28.2746i −0.608794 1.05446i −0.991439 0.130567i \(-0.958320\pi\)
0.382645 0.923895i \(-0.375013\pi\)
\(720\) 0 0
\(721\) −3.82046 + 6.61723i −0.142281 + 0.246438i
\(722\) 23.0651 39.9500i 0.858395 1.48678i
\(723\) 0.0607951 + 0.105300i 0.00226099 + 0.00391615i
\(724\) 7.84829 + 13.5936i 0.291679 + 0.505204i
\(725\) 0 0
\(726\) 7.33294 0.272151
\(727\) −7.09098 + 12.2819i −0.262990 + 0.455512i −0.967035 0.254643i \(-0.918042\pi\)
0.704045 + 0.710155i \(0.251375\pi\)
\(728\) −1.31690 2.28093i −0.0488074 0.0845369i
\(729\) 96.9728 3.59158
\(730\) 0 0
\(731\) −1.16401 2.01612i −0.0430523 0.0745688i
\(732\) −2.28398 −0.0844184
\(733\) 9.72667 16.8471i 0.359263 0.622261i −0.628575 0.777749i \(-0.716362\pi\)
0.987838 + 0.155488i \(0.0496948\pi\)
\(734\) −18.0752 −0.667168
\(735\) 0 0
\(736\) 8.85542 15.3380i 0.326415 0.565368i
\(737\) −20.2615 + 35.0939i −0.746341 + 1.29270i
\(738\) 25.5342 + 44.2265i 0.939926 + 1.62800i
\(739\) −52.1774 −1.91938 −0.959689 0.281063i \(-0.909313\pi\)
−0.959689 + 0.281063i \(0.909313\pi\)
\(740\) 0 0
\(741\) 18.1236 0.665786
\(742\) −6.81907 11.8110i −0.250336 0.433594i
\(743\) 6.68363 11.5764i 0.245198 0.424696i −0.716989 0.697085i \(-0.754480\pi\)
0.962187 + 0.272388i \(0.0878135\pi\)
\(744\) 41.0063 71.0249i 1.50336 2.60390i
\(745\) 0 0
\(746\) −11.4778 −0.420231
\(747\) −47.3466 + 82.0067i −1.73232 + 3.00047i
\(748\) −1.54952 −0.0566559
\(749\) 0.226557 + 0.392408i 0.00827820 + 0.0143383i
\(750\) 0 0
\(751\) 16.7410 0.610887 0.305443 0.952210i \(-0.401195\pi\)
0.305443 + 0.952210i \(0.401195\pi\)
\(752\) 7.93156 + 13.7379i 0.289234 + 0.500969i
\(753\) −35.7668 + 61.9500i −1.30342 + 2.25758i
\(754\) 2.39061 0.0870609
\(755\) 0 0
\(756\) 7.83867 + 13.5770i 0.285090 + 0.493790i
\(757\) −5.63936 9.76765i −0.204966 0.355011i 0.745156 0.666890i \(-0.232375\pi\)
−0.950122 + 0.311879i \(0.899042\pi\)
\(758\) 9.28176 16.0765i 0.337129 0.583924i
\(759\) −26.9257 + 46.6367i −0.977340 + 1.69280i
\(760\) 0 0
\(761\) 23.3731 + 40.4834i 0.847275 + 1.46752i 0.883631 + 0.468184i \(0.155092\pi\)
−0.0363559 + 0.999339i \(0.511575\pi\)
\(762\) 33.2238 + 57.5453i 1.20357 + 2.08464i
\(763\) −3.80818 −0.137865
\(764\) −2.79355 + 4.83858i −0.101067 + 0.175054i
\(765\) 0 0
\(766\) 20.5129 0.741162
\(767\) −0.339559 −0.0122608
\(768\) −25.1754 43.6051i −0.908439 1.57346i
\(769\) 37.8487 1.36486 0.682430 0.730951i \(-0.260923\pi\)
0.682430 + 0.730951i \(0.260923\pi\)
\(770\) 0 0
\(771\) −2.69790 −0.0971626
\(772\) −6.15186 + 10.6553i −0.221410 + 0.383494i
\(773\) −2.07440 + 3.59297i −0.0746110 + 0.129230i −0.900917 0.433991i \(-0.857105\pi\)
0.826306 + 0.563221i \(0.190438\pi\)
\(774\) −18.3843 + 31.8425i −0.660810 + 1.14456i
\(775\) 0 0
\(776\) 31.5459 1.13243
\(777\) 18.3147 16.8264i 0.657036 0.603644i
\(778\) 16.4451 0.589587
\(779\) −21.6654 37.5256i −0.776245 1.34450i
\(780\) 0 0
\(781\) −0.913195 + 1.58170i −0.0326767 + 0.0565977i
\(782\) −1.45274 + 2.51622i −0.0519499 + 0.0899798i
\(783\) −52.4966 −1.87608
\(784\) −5.38985 + 9.33550i −0.192495 + 0.333411i
\(785\) 0 0
\(786\) 2.15380 + 3.73049i 0.0768234 + 0.133062i
\(787\) 42.8205 1.52639 0.763193 0.646170i \(-0.223630\pi\)
0.763193 + 0.646170i \(0.223630\pi\)
\(788\) 1.29910 0.0462785
\(789\) −4.07256 7.05387i −0.144987 0.251125i
\(790\) 0 0
\(791\) 14.3135 0.508928
\(792\) 45.1429 + 78.1897i 1.60408 + 2.77835i
\(793\) −0.321636 0.557089i −0.0114216 0.0197828i
\(794\) 1.12212 + 1.94357i 0.0398226 + 0.0689748i
\(795\) 0 0
\(796\) −5.51182 + 9.54674i −0.195361 + 0.338375i
\(797\) −18.8156 32.5896i −0.666482 1.15438i −0.978881 0.204430i \(-0.934466\pi\)
0.312399 0.949951i \(-0.398867\pi\)
\(798\) 17.7723 + 30.7826i 0.629134 + 1.08969i
\(799\) 2.34277 + 4.05780i 0.0828814 + 0.143555i
\(800\) 0 0
\(801\) −58.6534 + 101.591i −2.07242 + 3.58953i
\(802\) −12.8255 22.2143i −0.452883 0.784416i
\(803\) −12.7981 −0.451635
\(804\) −27.9623 −0.986153
\(805\) 0 0
\(806\) 6.26110 0.220538
\(807\) 20.3017 35.1635i 0.714653 1.23781i
\(808\) −16.9196 −0.595230
\(809\) 11.7837 20.4099i 0.414292 0.717576i −0.581061 0.813860i \(-0.697362\pi\)
0.995354 + 0.0962841i \(0.0306957\pi\)
\(810\) 0 0
\(811\) 24.7159 42.8093i 0.867894 1.50324i 0.00374948 0.999993i \(-0.498807\pi\)
0.864145 0.503244i \(-0.167860\pi\)
\(812\) −1.38781 2.40376i −0.0487027 0.0843555i
\(813\) 104.551 3.66677
\(814\) 18.0733 16.6046i 0.633468 0.581991i
\(815\) 0 0
\(816\) 1.89389 + 3.28031i 0.0662994 + 0.114834i
\(817\) 15.5988 27.0180i 0.545734 0.945240i
\(818\) 5.10895 8.84896i 0.178630 0.309397i
\(819\) −3.49238 + 6.04899i −0.122034 + 0.211369i
\(820\) 0 0
\(821\) −12.6853 + 21.9716i −0.442721 + 0.766815i −0.997890 0.0649222i \(-0.979320\pi\)
0.555169 + 0.831737i \(0.312653\pi\)
\(822\) −7.15545 −0.249575
\(823\) −4.08512 7.07564i −0.142398 0.246641i 0.786001 0.618225i \(-0.212148\pi\)
−0.928399 + 0.371584i \(0.878815\pi\)
\(824\) −19.1949 −0.668686
\(825\) 0 0
\(826\) −0.332979 0.576736i −0.0115858 0.0200672i
\(827\) −0.495060 + 0.857468i −0.0172149 + 0.0298171i −0.874505 0.485017i \(-0.838813\pi\)
0.857290 + 0.514834i \(0.172147\pi\)
\(828\) −27.1663 −0.944094
\(829\) 13.0618 + 22.6237i 0.453654 + 0.785752i 0.998610 0.0527126i \(-0.0167867\pi\)
−0.544955 + 0.838465i \(0.683453\pi\)
\(830\) 0 0
\(831\) −38.7303 67.0829i −1.34354 2.32708i
\(832\) 2.92123 5.05972i 0.101276 0.175414i
\(833\) −1.59202 + 2.75746i −0.0551602 + 0.0955403i
\(834\) 7.07546 + 12.2551i 0.245003 + 0.424358i
\(835\) 0 0
\(836\) −10.3825 17.9831i −0.359087 0.621957i
\(837\) −137.490 −4.75237
\(838\) −4.76950 + 8.26102i −0.164760 + 0.285372i
\(839\) 20.0623 + 34.7490i 0.692629 + 1.19967i 0.970973 + 0.239187i \(0.0768810\pi\)
−0.278344 + 0.960481i \(0.589786\pi\)
\(840\) 0 0
\(841\) −19.7056 −0.679505
\(842\) −4.95181 8.57678i −0.170650 0.295575i
\(843\) 71.5519 2.46438
\(844\) −6.74400 + 11.6809i −0.232138 + 0.402075i
\(845\) 0 0
\(846\) 37.0017 64.0889i 1.27215 2.20342i
\(847\) 1.19895 2.07665i 0.0411965 0.0713544i
\(848\) 9.73805 16.8668i 0.334406 0.579208i
\(849\) 23.0721 + 39.9621i 0.791833 + 1.37150i
\(850\) 0 0
\(851\) 5.93141 + 26.5904i 0.203326 + 0.911507i
\(852\) −1.26027 −0.0431763
\(853\) −16.3382 28.2985i −0.559408 0.968923i −0.997546 0.0700154i \(-0.977695\pi\)
0.438138 0.898908i \(-0.355638\pi\)
\(854\) 0.630805 1.09259i 0.0215857 0.0373876i
\(855\) 0 0
\(856\) −0.569137 + 0.985774i −0.0194527 + 0.0336931i
\(857\) 9.95029 0.339896 0.169948 0.985453i \(-0.445640\pi\)
0.169948 + 0.985453i \(0.445640\pi\)
\(858\) −4.71408 + 8.16503i −0.160936 + 0.278749i
\(859\) 4.53739 0.154814 0.0774068 0.997000i \(-0.475336\pi\)
0.0774068 + 0.997000i \(0.475336\pi\)
\(860\) 0 0
\(861\) 22.8425 0.778470
\(862\) −1.69320 −0.0576706
\(863\) 1.72742 + 2.99198i 0.0588020 + 0.101848i 0.893928 0.448211i \(-0.147939\pi\)
−0.835126 + 0.550059i \(0.814605\pi\)
\(864\) −34.0457 + 58.9688i −1.15826 + 2.00616i
\(865\) 0 0
\(866\) −3.84349 6.65712i −0.130607 0.226218i
\(867\) −27.8305 48.2039i −0.945175 1.63709i
\(868\) −3.63473 6.29554i −0.123371 0.213685i
\(869\) −6.86514 + 11.8908i −0.232884 + 0.403367i
\(870\) 0 0
\(871\) −3.93771 6.82032i −0.133424 0.231098i
\(872\) −4.78330 8.28491i −0.161983 0.280562i
\(873\) −41.8296 72.4510i −1.41572 2.45210i
\(874\) −38.9363 −1.31704
\(875\) 0 0
\(876\) −4.41557 7.64799i −0.149188 0.258402i
\(877\) 23.2726 0.785861 0.392931 0.919568i \(-0.371461\pi\)
0.392931 + 0.919568i \(0.371461\pi\)
\(878\) −21.4504 −0.723917
\(879\) 11.8693 + 20.5583i 0.400342 + 0.693413i
\(880\) 0 0
\(881\) −6.16226 + 10.6733i −0.207612 + 0.359594i −0.950962 0.309309i \(-0.899902\pi\)
0.743350 + 0.668903i \(0.233236\pi\)
\(882\) 50.2887 1.69331
\(883\) 8.82778 15.2902i 0.297078 0.514555i −0.678388 0.734704i \(-0.737321\pi\)
0.975466 + 0.220149i \(0.0706544\pi\)
\(884\) 0.150570 0.260795i 0.00506422 0.00877149i
\(885\) 0 0
\(886\) 1.26481 + 2.19072i 0.0424922 + 0.0735987i
\(887\) −40.8268 −1.37083 −0.685415 0.728153i \(-0.740379\pi\)
−0.685415 + 0.728153i \(0.740379\pi\)
\(888\) 59.6112 + 18.7097i 2.00042 + 0.627857i
\(889\) 21.7286 0.728755
\(890\) 0 0
\(891\) 59.4808 103.024i 1.99268 3.45143i
\(892\) 1.43009 2.47698i 0.0478828 0.0829355i
\(893\) −31.3955 + 54.3786i −1.05061 + 1.81971i
\(894\) −2.06837 −0.0691768
\(895\) 0 0
\(896\) 1.77697 0.0593644
\(897\) −5.23287 9.06360i −0.174720 0.302625i
\(898\) 27.3237 0.911804
\(899\) 24.3423 0.811861
\(900\) 0 0
\(901\) 2.87636 4.98201i 0.0958256 0.165975i
\(902\) 22.5414 0.750546
\(903\) 8.22315 + 14.2429i 0.273649 + 0.473975i
\(904\) 17.9786 + 31.1398i 0.597958 + 1.03569i
\(905\) 0 0
\(906\) −17.1422 + 29.6912i −0.569511 + 0.986422i
\(907\) −28.6551 + 49.6320i −0.951475 + 1.64800i −0.209240 + 0.977864i \(0.567099\pi\)
−0.742235 + 0.670139i \(0.766234\pi\)
\(908\) 5.13668 + 8.89699i 0.170467 + 0.295257i
\(909\) 22.4352 + 38.8590i 0.744130 + 1.28887i
\(910\) 0 0
\(911\) −21.6237 −0.716426 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(912\) −25.3800 + 43.9595i −0.840417 + 1.45564i
\(913\) 20.8986 + 36.1975i 0.691643 + 1.19796i
\(914\) −15.7507 −0.520986
\(915\) 0 0
\(916\) 0.224230 + 0.388378i 0.00740877 + 0.0128324i
\(917\) 1.40860 0.0465162
\(918\) 5.58522 9.67388i 0.184340 0.319286i
\(919\) 30.6901 1.01237 0.506186 0.862424i \(-0.331055\pi\)
0.506186 + 0.862424i \(0.331055\pi\)
\(920\) 0 0
\(921\) 39.4762 68.3748i 1.30079 2.25303i
\(922\) −14.8049 + 25.6429i −0.487575 + 0.844504i
\(923\) −0.177475 0.307395i −0.00584165 0.0101180i
\(924\) 10.9466 0.360117
\(925\) 0 0
\(926\) 28.1806 0.926071
\(927\) 25.4522 + 44.0846i 0.835961 + 1.44793i
\(928\) 6.02768 10.4403i 0.197868 0.342718i
\(929\) 4.44146 7.69284i 0.145720 0.252394i −0.783922 0.620860i \(-0.786784\pi\)
0.929641 + 0.368466i \(0.120117\pi\)
\(930\) 0 0
\(931\) −42.6693 −1.39843
\(932\) −8.68007 + 15.0343i −0.284325 + 0.492466i
\(933\) 64.6652 2.11704
\(934\) 7.86317 + 13.6194i 0.257291 + 0.445641i
\(935\) 0 0
\(936\) −17.5466 −0.573527
\(937\) 0.306294 + 0.530517i 0.0100062 + 0.0173312i 0.870985 0.491309i \(-0.163482\pi\)
−0.860979 + 0.508641i \(0.830148\pi\)
\(938\) 7.72281 13.3763i 0.252159 0.436751i
\(939\) 20.4089 0.666019
\(940\) 0 0
\(941\) −16.6946 28.9159i −0.544229 0.942632i −0.998655 0.0518474i \(-0.983489\pi\)
0.454426 0.890784i \(-0.349844\pi\)
\(942\) −5.13180 8.88853i −0.167203 0.289604i
\(943\) −12.5110 + 21.6698i −0.407416 + 0.705665i
\(944\) 0.475515 0.823616i 0.0154767 0.0268064i
\(945\) 0 0
\(946\) 8.11476 + 14.0552i 0.263834 + 0.456973i
\(947\) −5.18210 8.97566i −0.168396 0.291670i 0.769460 0.638695i \(-0.220525\pi\)
−0.937856 + 0.347025i \(0.887192\pi\)
\(948\) −9.47438 −0.307714
\(949\) 1.24362 2.15402i 0.0403697 0.0699223i
\(950\) 0 0
\(951\) −111.024 −3.60018
\(952\) 2.17887 0.0706176
\(953\) 7.44472 + 12.8946i 0.241158 + 0.417698i 0.961044 0.276394i \(-0.0891394\pi\)
−0.719886 + 0.694092i \(0.755806\pi\)
\(954\) −90.8585 −2.94165
\(955\) 0 0
\(956\) 20.8937 0.675749
\(957\) −18.3277 + 31.7445i −0.592450 + 1.02615i
\(958\) −3.74479 + 6.48617i −0.120989 + 0.209559i
\(959\) −1.16993 + 2.02638i −0.0377791 + 0.0654353i
\(960\) 0 0
\(961\) 32.7533 1.05656
\(962\) 1.03846 + 4.65538i 0.0334812 + 0.150096i
\(963\) 3.01868 0.0972757
\(964\) 0.0135373 + 0.0234472i 0.000436006 + 0.000755184i
\(965\) 0 0
\(966\) 10.2629 17.7759i 0.330204 0.571930i
\(967\) 21.6538 37.5055i 0.696339 1.20609i −0.273389 0.961904i \(-0.588145\pi\)
0.969727 0.244190i \(-0.0785222\pi\)
\(968\) 6.02382 0.193613
\(969\) −7.49659 + 12.9845i −0.240825 + 0.417121i
\(970\) 0 0
\(971\) −4.45691 7.71960i −0.143029 0.247734i 0.785607 0.618726i \(-0.212351\pi\)
−0.928636 + 0.370992i \(0.879018\pi\)
\(972\) 43.6684 1.40066
\(973\) 4.62741 0.148348
\(974\) 4.07170 + 7.05239i 0.130466 + 0.225973i
\(975\) 0 0
\(976\) 1.80166 0.0576697
\(977\) 6.68632 + 11.5810i 0.213914 + 0.370511i 0.952936 0.303171i \(-0.0980453\pi\)
−0.739022 + 0.673681i \(0.764712\pi\)
\(978\) 39.4368 + 68.3065i 1.26105 + 2.18420i
\(979\) 25.8894 + 44.8418i 0.827429 + 1.43315i
\(980\) 0 0
\(981\) −12.6852 + 21.9714i −0.405008 + 0.701494i
\(982\) 0.250296 + 0.433526i 0.00798728 + 0.0138344i
\(983\) −11.5659 20.0327i −0.368894 0.638944i 0.620499 0.784208i \(-0.286930\pi\)
−0.989393 + 0.145264i \(0.953597\pi\)
\(984\) 28.6915 + 49.6952i 0.914652 + 1.58422i
\(985\) 0 0
\(986\) −0.988847 + 1.71273i −0.0314913 + 0.0545445i
\(987\) −16.5506 28.6665i −0.526811 0.912464i
\(988\) 4.03558 0.128389
\(989\) −18.0156 −0.572863
\(990\) 0 0
\(991\) 14.4144 0.457887 0.228944 0.973440i \(-0.426473\pi\)
0.228944 + 0.973440i \(0.426473\pi\)
\(992\) 15.7867 27.3434i 0.501229 0.868154i
\(993\) −4.63374 −0.147047
\(994\) 0.348071 0.602876i 0.0110401 0.0191221i
\(995\) 0 0
\(996\) −14.4208 + 24.9775i −0.456940 + 0.791444i
\(997\) −0.509477 0.882439i −0.0161353 0.0279471i 0.857845 0.513908i \(-0.171803\pi\)
−0.873980 + 0.485961i \(0.838470\pi\)
\(998\) 11.8859 0.376243
\(999\) −22.8040 102.230i −0.721486 3.23441i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.e.c.26.5 14
5.2 odd 4 925.2.o.b.174.5 28
5.3 odd 4 925.2.o.b.174.10 28
5.4 even 2 185.2.e.a.26.3 14
37.10 even 3 inner 925.2.e.c.676.5 14
185.47 odd 12 925.2.o.b.824.10 28
185.84 even 6 185.2.e.a.121.3 yes 14
185.158 odd 12 925.2.o.b.824.5 28
185.159 even 6 6845.2.a.k.1.3 7
185.174 even 6 6845.2.a.l.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.3 14 5.4 even 2
185.2.e.a.121.3 yes 14 185.84 even 6
925.2.e.c.26.5 14 1.1 even 1 trivial
925.2.e.c.676.5 14 37.10 even 3 inner
925.2.o.b.174.5 28 5.2 odd 4
925.2.o.b.174.10 28 5.3 odd 4
925.2.o.b.824.5 28 185.158 odd 12
925.2.o.b.824.10 28 185.47 odd 12
6845.2.a.k.1.3 7 185.159 even 6
6845.2.a.l.1.5 7 185.174 even 6