Properties

Label 185.2.e.a.26.3
Level $185$
Weight $2$
Character 185.26
Analytic conductor $1.477$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(26,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.3
Root \(-0.560420 + 0.970676i\) of defining polynomial
Character \(\chi\) \(=\) 185.26
Dual form 185.2.e.a.121.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.560420 - 0.970676i) q^{2} +(-1.67000 + 2.89252i) q^{3} +(0.371859 - 0.644078i) q^{4} +(-0.500000 + 0.866025i) q^{5} +3.74360 q^{6} +(-0.612087 + 1.06017i) q^{7} -3.07527 q^{8} +(-4.07778 - 7.06292i) q^{9} +1.12084 q^{10} -3.59983 q^{11} +(1.24201 + 2.15122i) q^{12} +(-0.349805 + 0.605879i) q^{13} +1.37210 q^{14} +(-1.67000 - 2.89252i) q^{15} +(0.979724 + 1.69693i) q^{16} +(-0.289385 - 0.501229i) q^{17} +(-4.57054 + 7.91640i) q^{18} +(-3.87804 + 6.71697i) q^{19} +(0.371859 + 0.644078i) q^{20} +(-2.04437 - 3.54094i) q^{21} +(2.01742 + 3.49427i) q^{22} -4.47887 q^{23} +(5.13569 - 8.89527i) q^{24} +(-0.500000 - 0.866025i) q^{25} +0.784150 q^{26} +17.2195 q^{27} +(0.455220 + 0.788464i) q^{28} +3.04867 q^{29} +(-1.87180 + 3.24205i) q^{30} +7.98457 q^{31} +(-1.97715 + 3.42453i) q^{32} +(6.01171 - 10.4126i) q^{33} +(-0.324354 + 0.561797i) q^{34} +(-0.612087 - 1.06017i) q^{35} -6.06543 q^{36} +(-1.32431 - 5.93685i) q^{37} +8.69333 q^{38} +(-1.16835 - 2.02363i) q^{39} +(1.53763 - 2.66326i) q^{40} +(-2.79335 + 4.83822i) q^{41} +(-2.29141 + 3.96883i) q^{42} +4.02235 q^{43} +(-1.33863 + 2.31857i) q^{44} +8.15556 q^{45} +(2.51005 + 4.34753i) q^{46} -8.09571 q^{47} -6.54454 q^{48} +(2.75070 + 4.76435i) q^{49} +(-0.560420 + 0.970676i) q^{50} +1.93309 q^{51} +(0.260156 + 0.450603i) q^{52} +(4.96979 + 8.60794i) q^{53} +(-9.65017 - 16.7146i) q^{54} +(1.79992 - 3.11755i) q^{55} +(1.88233 - 3.26029i) q^{56} +(-12.9526 - 22.4346i) q^{57} +(-1.70853 - 2.95927i) q^{58} +(-0.242678 - 0.420330i) q^{59} -2.48401 q^{60} +(0.459736 - 0.796287i) q^{61} +(-4.47471 - 7.75043i) q^{62} +9.98382 q^{63} +8.35104 q^{64} +(-0.349805 - 0.605879i) q^{65} -13.4763 q^{66} +(-5.62845 + 9.74876i) q^{67} -0.430441 q^{68} +(7.47970 - 12.9552i) q^{69} +(-0.686051 + 1.18828i) q^{70} +(0.253677 - 0.439381i) q^{71} +(12.5403 + 21.7204i) q^{72} -3.55519 q^{73} +(-5.02059 + 4.61261i) q^{74} +3.33999 q^{75} +(2.88417 + 4.99553i) q^{76} +(2.20341 - 3.81642i) q^{77} +(-1.30953 + 2.26817i) q^{78} +(1.90707 - 3.30314i) q^{79} -1.95945 q^{80} +(-16.5232 + 28.6191i) q^{81} +6.26179 q^{82} +(5.80544 + 10.0553i) q^{83} -3.04086 q^{84} +0.578769 q^{85} +(-2.25421 - 3.90440i) q^{86} +(-5.09126 + 8.81833i) q^{87} +11.0705 q^{88} +(-7.19183 - 12.4566i) q^{89} +(-4.57054 - 7.91640i) q^{90} +(-0.428221 - 0.741701i) q^{91} +(-1.66551 + 2.88475i) q^{92} +(-13.3342 + 23.0955i) q^{93} +(4.53700 + 7.85831i) q^{94} +(-3.87804 - 6.71697i) q^{95} +(-6.60368 - 11.4379i) q^{96} -10.2579 q^{97} +(3.08309 - 5.34008i) q^{98} +(14.6793 + 25.4253i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 8 q^{4} - 7 q^{5} - 4 q^{6} + 6 q^{8} - 13 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 20 q^{14} - 2 q^{15} + 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} + q^{21} + 7 q^{22} + 15 q^{24}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.560420 0.970676i −0.396277 0.686372i 0.596986 0.802251i \(-0.296365\pi\)
−0.993263 + 0.115880i \(0.963031\pi\)
\(3\) −1.67000 + 2.89252i −0.964173 + 1.67000i −0.252353 + 0.967635i \(0.581204\pi\)
−0.711821 + 0.702361i \(0.752129\pi\)
\(4\) 0.371859 0.644078i 0.185929 0.322039i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 3.74360 1.52832
\(7\) −0.612087 + 1.06017i −0.231347 + 0.400705i −0.958205 0.286083i \(-0.907647\pi\)
0.726858 + 0.686788i \(0.240980\pi\)
\(8\) −3.07527 −1.08727
\(9\) −4.07778 7.06292i −1.35926 2.35431i
\(10\) 1.12084 0.354441
\(11\) −3.59983 −1.08539 −0.542695 0.839930i \(-0.682596\pi\)
−0.542695 + 0.839930i \(0.682596\pi\)
\(12\) 1.24201 + 2.15122i 0.358536 + 0.621003i
\(13\) −0.349805 + 0.605879i −0.0970183 + 0.168041i −0.910449 0.413621i \(-0.864264\pi\)
0.813431 + 0.581662i \(0.197597\pi\)
\(14\) 1.37210 0.366710
\(15\) −1.67000 2.89252i −0.431191 0.746845i
\(16\) 0.979724 + 1.69693i 0.244931 + 0.424233i
\(17\) −0.289385 0.501229i −0.0701861 0.121566i 0.828797 0.559550i \(-0.189026\pi\)
−0.898983 + 0.437984i \(0.855693\pi\)
\(18\) −4.57054 + 7.91640i −1.07729 + 1.86591i
\(19\) −3.87804 + 6.71697i −0.889684 + 1.54098i −0.0494348 + 0.998777i \(0.515742\pi\)
−0.840249 + 0.542200i \(0.817591\pi\)
\(20\) 0.371859 + 0.644078i 0.0831502 + 0.144020i
\(21\) −2.04437 3.54094i −0.446117 0.772698i
\(22\) 2.01742 + 3.49427i 0.430115 + 0.744981i
\(23\) −4.47887 −0.933910 −0.466955 0.884281i \(-0.654649\pi\)
−0.466955 + 0.884281i \(0.654649\pi\)
\(24\) 5.13569 8.89527i 1.04832 1.81574i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0.784150 0.153784
\(27\) 17.2195 3.31390
\(28\) 0.455220 + 0.788464i 0.0860284 + 0.149006i
\(29\) 3.04867 0.566123 0.283062 0.959102i \(-0.408650\pi\)
0.283062 + 0.959102i \(0.408650\pi\)
\(30\) −1.87180 + 3.24205i −0.341742 + 0.591915i
\(31\) 7.98457 1.43407 0.717035 0.697037i \(-0.245499\pi\)
0.717035 + 0.697037i \(0.245499\pi\)
\(32\) −1.97715 + 3.42453i −0.349515 + 0.605377i
\(33\) 6.01171 10.4126i 1.04650 1.81260i
\(34\) −0.324354 + 0.561797i −0.0556262 + 0.0963474i
\(35\) −0.612087 1.06017i −0.103462 0.179201i
\(36\) −6.06543 −1.01091
\(37\) −1.32431 5.93685i −0.217715 0.976012i
\(38\) 8.69333 1.41024
\(39\) −1.16835 2.02363i −0.187085 0.324041i
\(40\) 1.53763 2.66326i 0.243121 0.421098i
\(41\) −2.79335 + 4.83822i −0.436247 + 0.755603i −0.997397 0.0721120i \(-0.977026\pi\)
0.561149 + 0.827715i \(0.310359\pi\)
\(42\) −2.29141 + 3.96883i −0.353572 + 0.612404i
\(43\) 4.02235 0.613403 0.306701 0.951806i \(-0.400775\pi\)
0.306701 + 0.951806i \(0.400775\pi\)
\(44\) −1.33863 + 2.31857i −0.201806 + 0.349538i
\(45\) 8.15556 1.21576
\(46\) 2.51005 + 4.34753i 0.370087 + 0.641009i
\(47\) −8.09571 −1.18088 −0.590440 0.807081i \(-0.701046\pi\)
−0.590440 + 0.807081i \(0.701046\pi\)
\(48\) −6.54454 −0.944624
\(49\) 2.75070 + 4.76435i 0.392957 + 0.680622i
\(50\) −0.560420 + 0.970676i −0.0792554 + 0.137274i
\(51\) 1.93309 0.270686
\(52\) 0.260156 + 0.450603i 0.0360771 + 0.0624874i
\(53\) 4.96979 + 8.60794i 0.682654 + 1.18239i 0.974168 + 0.225824i \(0.0725075\pi\)
−0.291514 + 0.956566i \(0.594159\pi\)
\(54\) −9.65017 16.7146i −1.31322 2.27457i
\(55\) 1.79992 3.11755i 0.242701 0.420370i
\(56\) 1.88233 3.26029i 0.251537 0.435675i
\(57\) −12.9526 22.4346i −1.71562 2.97154i
\(58\) −1.70853 2.95927i −0.224341 0.388571i
\(59\) −0.242678 0.420330i −0.0315940 0.0547224i 0.849796 0.527112i \(-0.176725\pi\)
−0.881390 + 0.472389i \(0.843392\pi\)
\(60\) −2.48401 −0.320685
\(61\) 0.459736 0.796287i 0.0588632 0.101954i −0.835092 0.550110i \(-0.814586\pi\)
0.893955 + 0.448156i \(0.147919\pi\)
\(62\) −4.47471 7.75043i −0.568289 0.984305i
\(63\) 9.98382 1.25784
\(64\) 8.35104 1.04388
\(65\) −0.349805 0.605879i −0.0433879 0.0751501i
\(66\) −13.4763 −1.65882
\(67\) −5.62845 + 9.74876i −0.687624 + 1.19100i 0.284980 + 0.958533i \(0.408013\pi\)
−0.972604 + 0.232467i \(0.925320\pi\)
\(68\) −0.430441 −0.0521986
\(69\) 7.47970 12.9552i 0.900451 1.55963i
\(70\) −0.686051 + 1.18828i −0.0819988 + 0.142026i
\(71\) 0.253677 0.439381i 0.0301059 0.0521450i −0.850580 0.525846i \(-0.823749\pi\)
0.880686 + 0.473701i \(0.157082\pi\)
\(72\) 12.5403 + 21.7204i 1.47788 + 2.55977i
\(73\) −3.55519 −0.416104 −0.208052 0.978118i \(-0.566712\pi\)
−0.208052 + 0.978118i \(0.566712\pi\)
\(74\) −5.02059 + 4.61261i −0.583632 + 0.536204i
\(75\) 3.33999 0.385669
\(76\) 2.88417 + 4.99553i 0.330837 + 0.573026i
\(77\) 2.20341 3.81642i 0.251102 0.434921i
\(78\) −1.30953 + 2.26817i −0.148275 + 0.256820i
\(79\) 1.90707 3.30314i 0.214562 0.371633i −0.738575 0.674172i \(-0.764501\pi\)
0.953137 + 0.302539i \(0.0978342\pi\)
\(80\) −1.95945 −0.219073
\(81\) −16.5232 + 28.6191i −1.83591 + 3.17989i
\(82\) 6.26179 0.691499
\(83\) 5.80544 + 10.0553i 0.637230 + 1.10371i 0.986038 + 0.166521i \(0.0532532\pi\)
−0.348808 + 0.937194i \(0.613413\pi\)
\(84\) −3.04086 −0.331785
\(85\) 0.578769 0.0627763
\(86\) −2.25421 3.90440i −0.243077 0.421022i
\(87\) −5.09126 + 8.81833i −0.545841 + 0.945424i
\(88\) 11.0705 1.18011
\(89\) −7.19183 12.4566i −0.762333 1.32040i −0.941645 0.336607i \(-0.890721\pi\)
0.179312 0.983792i \(-0.442613\pi\)
\(90\) −4.57054 7.91640i −0.481777 0.834462i
\(91\) −0.428221 0.741701i −0.0448898 0.0777514i
\(92\) −1.66551 + 2.88475i −0.173641 + 0.300756i
\(93\) −13.3342 + 23.0955i −1.38269 + 2.39489i
\(94\) 4.53700 + 7.85831i 0.467956 + 0.810523i
\(95\) −3.87804 6.71697i −0.397879 0.689146i
\(96\) −6.60368 11.4379i −0.673986 1.16738i
\(97\) −10.2579 −1.04154 −0.520768 0.853698i \(-0.674354\pi\)
−0.520768 + 0.853698i \(0.674354\pi\)
\(98\) 3.08309 5.34008i 0.311440 0.539429i
\(99\) 14.6793 + 25.4253i 1.47533 + 2.55534i
\(100\) −0.743718 −0.0743718
\(101\) −5.50183 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(102\) −1.08334 1.87640i −0.107267 0.185791i
\(103\) 6.24169 0.615012 0.307506 0.951546i \(-0.400506\pi\)
0.307506 + 0.951546i \(0.400506\pi\)
\(104\) 1.07574 1.86324i 0.105485 0.182706i
\(105\) 4.08873 0.399019
\(106\) 5.57034 9.64812i 0.541040 0.937108i
\(107\) 0.185069 0.320549i 0.0178913 0.0309886i −0.856941 0.515414i \(-0.827638\pi\)
0.874832 + 0.484426i \(0.160971\pi\)
\(108\) 6.40323 11.0907i 0.616151 1.06721i
\(109\) −1.55541 2.69404i −0.148981 0.258043i 0.781870 0.623441i \(-0.214266\pi\)
−0.930851 + 0.365399i \(0.880933\pi\)
\(110\) −4.03484 −0.384707
\(111\) 19.3840 + 6.08393i 1.83985 + 0.577461i
\(112\) −2.39870 −0.226656
\(113\) −5.84618 10.1259i −0.549962 0.952562i −0.998276 0.0586863i \(-0.981309\pi\)
0.448314 0.893876i \(-0.352025\pi\)
\(114\) −14.5178 + 25.1456i −1.35972 + 2.35510i
\(115\) 2.23944 3.87882i 0.208829 0.361702i
\(116\) 1.13367 1.96358i 0.105259 0.182314i
\(117\) 5.70570 0.527492
\(118\) −0.272003 + 0.471123i −0.0250399 + 0.0433704i
\(119\) 0.708514 0.0649494
\(120\) 5.13569 + 8.89527i 0.468822 + 0.812024i
\(121\) 1.95880 0.178072
\(122\) −1.03058 −0.0933045
\(123\) −9.32976 16.1596i −0.841236 1.45706i
\(124\) 2.96913 5.14269i 0.266636 0.461827i
\(125\) 1.00000 0.0894427
\(126\) −5.59513 9.69105i −0.498454 0.863347i
\(127\) −8.87482 15.3716i −0.787513 1.36401i −0.927486 0.373857i \(-0.878035\pi\)
0.139973 0.990155i \(-0.455298\pi\)
\(128\) −0.725783 1.25709i −0.0641508 0.111112i
\(129\) −6.71731 + 11.6347i −0.591426 + 1.02438i
\(130\) −0.392075 + 0.679094i −0.0343872 + 0.0595605i
\(131\) 0.575328 + 0.996498i 0.0502667 + 0.0870644i 0.890064 0.455836i \(-0.150660\pi\)
−0.839797 + 0.542900i \(0.817326\pi\)
\(132\) −4.47101 7.74402i −0.389152 0.674031i
\(133\) −4.74740 8.22273i −0.411651 0.713001i
\(134\) 12.6172 1.08996
\(135\) −8.60976 + 14.9125i −0.741010 + 1.28347i
\(136\) 0.889935 + 1.54141i 0.0763113 + 0.132175i
\(137\) 1.91138 0.163301 0.0816503 0.996661i \(-0.473981\pi\)
0.0816503 + 0.996661i \(0.473981\pi\)
\(138\) −16.7671 −1.42731
\(139\) 1.89002 + 3.27360i 0.160309 + 0.277663i 0.934980 0.354702i \(-0.115418\pi\)
−0.774670 + 0.632365i \(0.782084\pi\)
\(140\) −0.910439 −0.0769462
\(141\) 13.5198 23.4170i 1.13857 1.97207i
\(142\) −0.568663 −0.0477211
\(143\) 1.25924 2.18106i 0.105303 0.182390i
\(144\) 7.99020 13.8394i 0.665850 1.15329i
\(145\) −1.52433 + 2.64022i −0.126589 + 0.219259i
\(146\) 1.99240 + 3.45094i 0.164892 + 0.285602i
\(147\) −18.3746 −1.51551
\(148\) −4.31625 1.35471i −0.354794 0.111357i
\(149\) −0.552510 −0.0452633 −0.0226317 0.999744i \(-0.507205\pi\)
−0.0226317 + 0.999744i \(0.507205\pi\)
\(150\) −1.87180 3.24205i −0.152832 0.264712i
\(151\) −4.57907 + 7.93118i −0.372639 + 0.645430i −0.989971 0.141273i \(-0.954880\pi\)
0.617331 + 0.786703i \(0.288214\pi\)
\(152\) 11.9260 20.6565i 0.967328 1.67546i
\(153\) −2.36009 + 4.08780i −0.190802 + 0.330479i
\(154\) −4.93934 −0.398023
\(155\) −3.99228 + 6.91484i −0.320668 + 0.555413i
\(156\) −1.73784 −0.139138
\(157\) 1.37082 + 2.37433i 0.109403 + 0.189492i 0.915529 0.402253i \(-0.131773\pi\)
−0.806125 + 0.591745i \(0.798439\pi\)
\(158\) −4.27504 −0.340104
\(159\) −33.1982 −2.63279
\(160\) −1.97715 3.42453i −0.156308 0.270733i
\(161\) 2.74146 4.74835i 0.216057 0.374222i
\(162\) 37.0398 2.91012
\(163\) −10.5345 18.2462i −0.825123 1.42915i −0.901826 0.432100i \(-0.857773\pi\)
0.0767030 0.997054i \(-0.475561\pi\)
\(164\) 2.07746 + 3.59827i 0.162222 + 0.280978i
\(165\) 6.01171 + 10.4126i 0.468011 + 0.810619i
\(166\) 6.50697 11.2704i 0.505039 0.874753i
\(167\) 5.01447 8.68532i 0.388031 0.672090i −0.604153 0.796868i \(-0.706489\pi\)
0.992185 + 0.124778i \(0.0398219\pi\)
\(168\) 6.28697 + 10.8894i 0.485050 + 0.840132i
\(169\) 6.25527 + 10.8345i 0.481175 + 0.833419i
\(170\) −0.324354 0.561797i −0.0248768 0.0430879i
\(171\) 63.2552 4.83725
\(172\) 1.49575 2.59071i 0.114050 0.197540i
\(173\) 6.65162 + 11.5209i 0.505714 + 0.875922i 0.999978 + 0.00661007i \(0.00210407\pi\)
−0.494265 + 0.869312i \(0.664563\pi\)
\(174\) 11.4130 0.865216
\(175\) 1.22417 0.0925388
\(176\) −3.52684 6.10867i −0.265846 0.460458i
\(177\) 1.62109 0.121848
\(178\) −8.06089 + 13.9619i −0.604190 + 1.04649i
\(179\) 9.15637 0.684379 0.342190 0.939631i \(-0.388832\pi\)
0.342190 + 0.939631i \(0.388832\pi\)
\(180\) 3.03272 5.25282i 0.226045 0.391522i
\(181\) −10.5528 + 18.2780i −0.784382 + 1.35859i 0.144986 + 0.989434i \(0.453686\pi\)
−0.929368 + 0.369156i \(0.879647\pi\)
\(182\) −0.479968 + 0.831328i −0.0355776 + 0.0616222i
\(183\) 1.53552 + 2.65959i 0.113509 + 0.196603i
\(184\) 13.7737 1.01541
\(185\) 5.80362 + 1.82154i 0.426691 + 0.133922i
\(186\) 29.8910 2.19172
\(187\) 1.04174 + 1.80434i 0.0761793 + 0.131946i
\(188\) −3.01046 + 5.21427i −0.219561 + 0.380290i
\(189\) −10.5398 + 18.2555i −0.766661 + 1.32790i
\(190\) −4.34667 + 7.52864i −0.315340 + 0.546185i
\(191\) −7.51240 −0.543578 −0.271789 0.962357i \(-0.587615\pi\)
−0.271789 + 0.962357i \(0.587615\pi\)
\(192\) −13.9462 + 24.1556i −1.00648 + 1.74328i
\(193\) 16.5435 1.19083 0.595415 0.803418i \(-0.296988\pi\)
0.595415 + 0.803418i \(0.296988\pi\)
\(194\) 5.74876 + 9.95714i 0.412737 + 0.714881i
\(195\) 2.33669 0.167334
\(196\) 4.09149 0.292249
\(197\) −0.873381 1.51274i −0.0622259 0.107778i 0.833234 0.552920i \(-0.186487\pi\)
−0.895460 + 0.445142i \(0.853153\pi\)
\(198\) 16.4532 28.4977i 1.16928 2.02525i
\(199\) −14.8223 −1.05073 −0.525364 0.850878i \(-0.676071\pi\)
−0.525364 + 0.850878i \(0.676071\pi\)
\(200\) 1.53763 + 2.66326i 0.108727 + 0.188321i
\(201\) −18.7990 32.5608i −1.32598 2.29666i
\(202\) 3.08334 + 5.34049i 0.216943 + 0.375756i
\(203\) −1.86605 + 3.23209i −0.130971 + 0.226848i
\(204\) 0.718835 1.24506i 0.0503285 0.0871715i
\(205\) −2.79335 4.83822i −0.195096 0.337916i
\(206\) −3.49797 6.05866i −0.243715 0.422127i
\(207\) 18.2639 + 31.6339i 1.26943 + 2.19871i
\(208\) −1.37085 −0.0950512
\(209\) 13.9603 24.1800i 0.965654 1.67256i
\(210\) −2.29141 3.96883i −0.158122 0.273875i
\(211\) −18.1359 −1.24853 −0.624264 0.781214i \(-0.714601\pi\)
−0.624264 + 0.781214i \(0.714601\pi\)
\(212\) 7.39225 0.507702
\(213\) 0.847279 + 1.46753i 0.0580546 + 0.100554i
\(214\) −0.414866 −0.0283596
\(215\) −2.01117 + 3.48346i −0.137161 + 0.237570i
\(216\) −52.9547 −3.60311
\(217\) −4.88725 + 8.46496i −0.331768 + 0.574639i
\(218\) −1.74336 + 3.01959i −0.118075 + 0.204513i
\(219\) 5.93716 10.2835i 0.401196 0.694892i
\(220\) −1.33863 2.31857i −0.0902504 0.156318i
\(221\) 0.404912 0.0272373
\(222\) −4.95768 22.2252i −0.332738 1.49166i
\(223\) −3.84578 −0.257532 −0.128766 0.991675i \(-0.541102\pi\)
−0.128766 + 0.991675i \(0.541102\pi\)
\(224\) −2.42038 4.19222i −0.161718 0.280105i
\(225\) −4.07778 + 7.06292i −0.271852 + 0.470861i
\(226\) −6.55263 + 11.3495i −0.435874 + 0.754957i
\(227\) 6.90676 11.9629i 0.458418 0.794003i −0.540460 0.841370i \(-0.681750\pi\)
0.998878 + 0.0473671i \(0.0150831\pi\)
\(228\) −19.2662 −1.27594
\(229\) −0.301499 + 0.522211i −0.0199236 + 0.0345087i −0.875815 0.482646i \(-0.839676\pi\)
0.855892 + 0.517155i \(0.173009\pi\)
\(230\) −5.02010 −0.331016
\(231\) 7.35937 + 12.7468i 0.484211 + 0.838679i
\(232\) −9.37547 −0.615530
\(233\) 23.3424 1.52921 0.764605 0.644499i \(-0.222934\pi\)
0.764605 + 0.644499i \(0.222934\pi\)
\(234\) −3.19759 5.53839i −0.209033 0.362056i
\(235\) 4.04786 7.01109i 0.264053 0.457353i
\(236\) −0.360968 −0.0234970
\(237\) 6.36961 + 11.0325i 0.413750 + 0.716637i
\(238\) −0.397065 0.687737i −0.0257379 0.0445794i
\(239\) 14.0468 + 24.3297i 0.908610 + 1.57376i 0.815997 + 0.578057i \(0.196189\pi\)
0.0926135 + 0.995702i \(0.470478\pi\)
\(240\) 3.27227 5.66774i 0.211224 0.365851i
\(241\) −0.0182021 + 0.0315270i −0.00117250 + 0.00203084i −0.866611 0.498984i \(-0.833707\pi\)
0.865439 + 0.501015i \(0.167040\pi\)
\(242\) −1.09775 1.90136i −0.0705659 0.122224i
\(243\) −29.3582 50.8498i −1.88333 3.26202i
\(244\) −0.341914 0.592213i −0.0218888 0.0379125i
\(245\) −5.50140 −0.351472
\(246\) −10.4572 + 18.1123i −0.666725 + 1.15480i
\(247\) −2.71311 4.69925i −0.172631 0.299006i
\(248\) −24.5547 −1.55922
\(249\) −38.7803 −2.45760
\(250\) −0.560420 0.970676i −0.0354441 0.0613909i
\(251\) −21.4173 −1.35185 −0.675924 0.736971i \(-0.736255\pi\)
−0.675924 + 0.736971i \(0.736255\pi\)
\(252\) 3.71257 6.43036i 0.233870 0.405075i
\(253\) 16.1232 1.01366
\(254\) −9.94726 + 17.2292i −0.624146 + 1.08105i
\(255\) −0.966543 + 1.67410i −0.0605273 + 0.104836i
\(256\) 7.53756 13.0554i 0.471097 0.815965i
\(257\) 0.403879 + 0.699538i 0.0251933 + 0.0436360i 0.878347 0.478023i \(-0.158647\pi\)
−0.853154 + 0.521659i \(0.825313\pi\)
\(258\) 15.0581 0.937474
\(259\) 7.10464 + 2.22988i 0.441461 + 0.138558i
\(260\) −0.520312 −0.0322684
\(261\) −12.4318 21.5325i −0.769508 1.33283i
\(262\) 0.644851 1.11691i 0.0398390 0.0690032i
\(263\) −1.21933 + 2.11194i −0.0751871 + 0.130228i −0.901168 0.433471i \(-0.857289\pi\)
0.825981 + 0.563699i \(0.190622\pi\)
\(264\) −18.4876 + 32.0215i −1.13783 + 1.97079i
\(265\) −9.93959 −0.610584
\(266\) −5.32107 + 9.21637i −0.326256 + 0.565092i
\(267\) 48.0414 2.94008
\(268\) 4.18598 + 7.25032i 0.255699 + 0.442884i
\(269\) 12.1567 0.741208 0.370604 0.928791i \(-0.379151\pi\)
0.370604 + 0.928791i \(0.379151\pi\)
\(270\) 19.3003 1.17458
\(271\) 15.6514 + 27.1090i 0.950755 + 1.64676i 0.743797 + 0.668405i \(0.233023\pi\)
0.206957 + 0.978350i \(0.433644\pi\)
\(272\) 0.567034 0.982132i 0.0343815 0.0595505i
\(273\) 2.86051 0.173126
\(274\) −1.07118 1.85533i −0.0647122 0.112085i
\(275\) 1.79992 + 3.11755i 0.108539 + 0.187995i
\(276\) −5.56279 9.63503i −0.334841 0.579961i
\(277\) −11.5959 + 20.0847i −0.696732 + 1.20678i 0.272861 + 0.962053i \(0.412030\pi\)
−0.969593 + 0.244722i \(0.921303\pi\)
\(278\) 2.11841 3.66919i 0.127053 0.220063i
\(279\) −32.5593 56.3944i −1.94927 3.37624i
\(280\) 1.88233 + 3.26029i 0.112491 + 0.194840i
\(281\) 10.7114 + 18.5527i 0.638988 + 1.10676i 0.985655 + 0.168771i \(0.0539799\pi\)
−0.346668 + 0.937988i \(0.612687\pi\)
\(282\) −30.3071 −1.80476
\(283\) 6.90784 11.9647i 0.410628 0.711229i −0.584330 0.811516i \(-0.698643\pi\)
0.994959 + 0.100287i \(0.0319761\pi\)
\(284\) −0.188664 0.326776i −0.0111952 0.0193906i
\(285\) 25.9053 1.53450
\(286\) −2.82281 −0.166916
\(287\) −3.41954 5.92282i −0.201849 0.349613i
\(288\) 32.2496 1.90033
\(289\) 8.33251 14.4323i 0.490148 0.848961i
\(290\) 3.41707 0.200657
\(291\) 17.1307 29.6713i 1.00422 1.73936i
\(292\) −1.32203 + 2.28982i −0.0773659 + 0.134002i
\(293\) 3.55370 6.15518i 0.207609 0.359589i −0.743352 0.668901i \(-0.766765\pi\)
0.950961 + 0.309311i \(0.100098\pi\)
\(294\) 10.2975 + 17.8358i 0.600563 + 1.04021i
\(295\) 0.485356 0.0282585
\(296\) 4.07261 + 18.2574i 0.236715 + 1.06119i
\(297\) −61.9874 −3.59687
\(298\) 0.309637 + 0.536308i 0.0179368 + 0.0310675i
\(299\) 1.56673 2.71366i 0.0906064 0.156935i
\(300\) 1.24201 2.15122i 0.0717073 0.124201i
\(301\) −2.46203 + 4.26436i −0.141909 + 0.245793i
\(302\) 10.2648 0.590673
\(303\) 9.18804 15.9141i 0.527839 0.914244i
\(304\) −15.1976 −0.871645
\(305\) 0.459736 + 0.796287i 0.0263244 + 0.0455952i
\(306\) 5.29057 0.302442
\(307\) −23.6385 −1.34912 −0.674560 0.738220i \(-0.735667\pi\)
−0.674560 + 0.738220i \(0.735667\pi\)
\(308\) −1.63871 2.83834i −0.0933744 0.161729i
\(309\) −10.4236 + 18.0542i −0.592978 + 1.02707i
\(310\) 8.94942 0.508293
\(311\) 9.68043 + 16.7670i 0.548927 + 0.950769i 0.998348 + 0.0574494i \(0.0182968\pi\)
−0.449422 + 0.893320i \(0.648370\pi\)
\(312\) 3.59297 + 6.22321i 0.203412 + 0.352320i
\(313\) −3.05523 5.29181i −0.172692 0.299111i 0.766668 0.642043i \(-0.221913\pi\)
−0.939360 + 0.342932i \(0.888580\pi\)
\(314\) 1.53647 2.66124i 0.0867079 0.150183i
\(315\) −4.99191 + 8.64624i −0.281262 + 0.487160i
\(316\) −1.41832 2.45661i −0.0797869 0.138195i
\(317\) 16.6203 + 28.7872i 0.933490 + 1.61685i 0.777304 + 0.629125i \(0.216586\pi\)
0.156186 + 0.987728i \(0.450080\pi\)
\(318\) 18.6049 + 32.2247i 1.04331 + 1.80707i
\(319\) −10.9747 −0.614465
\(320\) −4.17552 + 7.23222i −0.233419 + 0.404293i
\(321\) 0.618129 + 1.07063i 0.0345006 + 0.0597568i
\(322\) −6.14547 −0.342474
\(323\) 4.48898 0.249774
\(324\) 12.2886 + 21.2845i 0.682701 + 1.18247i
\(325\) 0.699609 0.0388073
\(326\) −11.8074 + 20.4511i −0.653954 + 1.13268i
\(327\) 10.3901 0.574574
\(328\) 8.59029 14.8788i 0.474319 0.821545i
\(329\) 4.95528 8.58279i 0.273193 0.473185i
\(330\) 6.73816 11.6708i 0.370924 0.642459i
\(331\) −0.693675 1.20148i −0.0381278 0.0660394i 0.846332 0.532656i \(-0.178806\pi\)
−0.884460 + 0.466617i \(0.845473\pi\)
\(332\) 8.63522 0.473919
\(333\) −36.5313 + 33.5627i −2.00190 + 1.83922i
\(334\) −11.2408 −0.615071
\(335\) −5.62845 9.74876i −0.307515 0.532631i
\(336\) 4.00583 6.93830i 0.218536 0.378515i
\(337\) −7.65489 + 13.2587i −0.416989 + 0.722245i −0.995635 0.0933332i \(-0.970248\pi\)
0.578646 + 0.815579i \(0.303581\pi\)
\(338\) 7.01116 12.1437i 0.381357 0.660529i
\(339\) 39.0524 2.12103
\(340\) 0.215220 0.372773i 0.0116720 0.0202164i
\(341\) −28.7431 −1.55653
\(342\) −35.4495 61.4003i −1.91689 3.32015i
\(343\) −15.3039 −0.826332
\(344\) −12.3698 −0.666935
\(345\) 7.47970 + 12.9552i 0.402694 + 0.697486i
\(346\) 7.45541 12.9131i 0.400805 0.694215i
\(347\) 27.0099 1.44997 0.724983 0.688767i \(-0.241848\pi\)
0.724983 + 0.688767i \(0.241848\pi\)
\(348\) 3.78646 + 6.55835i 0.202976 + 0.351564i
\(349\) 10.1591 + 17.5961i 0.543806 + 0.941900i 0.998681 + 0.0513447i \(0.0163507\pi\)
−0.454875 + 0.890555i \(0.650316\pi\)
\(350\) −0.686051 1.18828i −0.0366710 0.0635160i
\(351\) −6.02347 + 10.4330i −0.321509 + 0.556870i
\(352\) 7.11743 12.3277i 0.379360 0.657071i
\(353\) 2.23510 + 3.87131i 0.118962 + 0.206049i 0.919357 0.393425i \(-0.128710\pi\)
−0.800394 + 0.599474i \(0.795377\pi\)
\(354\) −0.908489 1.57355i −0.0482856 0.0836332i
\(355\) 0.253677 + 0.439381i 0.0134638 + 0.0233199i
\(356\) −10.6974 −0.566960
\(357\) −1.18322 + 2.04939i −0.0626224 + 0.108465i
\(358\) −5.13141 8.88786i −0.271204 0.469738i
\(359\) −31.2742 −1.65059 −0.825295 0.564702i \(-0.808991\pi\)
−0.825295 + 0.564702i \(0.808991\pi\)
\(360\) −25.0805 −1.32186
\(361\) −20.5784 35.6429i −1.08308 1.87594i
\(362\) 23.6560 1.24333
\(363\) −3.27118 + 5.66585i −0.171693 + 0.297380i
\(364\) −0.636952 −0.0333853
\(365\) 1.77760 3.07889i 0.0930436 0.161156i
\(366\) 1.72107 2.98098i 0.0899617 0.155818i
\(367\) 8.06325 13.9660i 0.420898 0.729017i −0.575130 0.818062i \(-0.695048\pi\)
0.996028 + 0.0890456i \(0.0283817\pi\)
\(368\) −4.38806 7.60034i −0.228743 0.396195i
\(369\) 45.5626 2.37189
\(370\) −1.48434 6.65426i −0.0771671 0.345939i
\(371\) −12.1678 −0.631720
\(372\) 9.91688 + 17.1765i 0.514166 + 0.890562i
\(373\) 5.12016 8.86838i 0.265112 0.459187i −0.702481 0.711703i \(-0.747924\pi\)
0.967593 + 0.252515i \(0.0812577\pi\)
\(374\) 1.16762 2.02238i 0.0603762 0.104575i
\(375\) −1.67000 + 2.89252i −0.0862383 + 0.149369i
\(376\) 24.8965 1.28394
\(377\) −1.06644 + 1.84712i −0.0549243 + 0.0951317i
\(378\) 23.6270 1.21524
\(379\) −8.28107 14.3432i −0.425370 0.736763i 0.571085 0.820891i \(-0.306523\pi\)
−0.996455 + 0.0841283i \(0.973189\pi\)
\(380\) −5.76834 −0.295910
\(381\) 59.2837 3.03720
\(382\) 4.21010 + 7.29211i 0.215408 + 0.373097i
\(383\) −9.15069 + 15.8495i −0.467578 + 0.809869i −0.999314 0.0370411i \(-0.988207\pi\)
0.531735 + 0.846911i \(0.321540\pi\)
\(384\) 4.84822 0.247410
\(385\) 2.20341 + 3.81642i 0.112296 + 0.194503i
\(386\) −9.27133 16.0584i −0.471898 0.817352i
\(387\) −16.4023 28.4095i −0.833773 1.44414i
\(388\) −3.81451 + 6.60692i −0.193652 + 0.335416i
\(389\) 7.33608 12.7065i 0.371954 0.644243i −0.617912 0.786247i \(-0.712021\pi\)
0.989866 + 0.142004i \(0.0453546\pi\)
\(390\) −1.30953 2.26817i −0.0663105 0.114853i
\(391\) 1.29612 + 2.24494i 0.0655474 + 0.113532i
\(392\) −8.45914 14.6517i −0.427251 0.740021i
\(393\) −3.84319 −0.193863
\(394\) −0.978921 + 1.69554i −0.0493173 + 0.0854201i
\(395\) 1.90707 + 3.30314i 0.0959552 + 0.166199i
\(396\) 21.8345 1.09723
\(397\) −2.00229 −0.100492 −0.0502460 0.998737i \(-0.516001\pi\)
−0.0502460 + 0.998737i \(0.516001\pi\)
\(398\) 8.30673 + 14.3877i 0.416379 + 0.721189i
\(399\) 31.7125 1.58761
\(400\) 0.979724 1.69693i 0.0489862 0.0848466i
\(401\) −22.8854 −1.14284 −0.571422 0.820656i \(-0.693608\pi\)
−0.571422 + 0.820656i \(0.693608\pi\)
\(402\) −21.0706 + 36.4954i −1.05091 + 1.82023i
\(403\) −2.79304 + 4.83768i −0.139131 + 0.240982i
\(404\) −2.04590 + 3.54361i −0.101788 + 0.176301i
\(405\) −16.5232 28.6191i −0.821045 1.42209i
\(406\) 4.18308 0.207603
\(407\) 4.76729 + 21.3717i 0.236306 + 1.05935i
\(408\) −5.94476 −0.294309
\(409\) −4.55814 7.89494i −0.225386 0.390380i 0.731049 0.682325i \(-0.239031\pi\)
−0.956435 + 0.291945i \(0.905698\pi\)
\(410\) −3.13089 + 5.42287i −0.154624 + 0.267816i
\(411\) −3.19200 + 5.52871i −0.157450 + 0.272711i
\(412\) 2.32103 4.02014i 0.114349 0.198058i
\(413\) 0.594160 0.0292367
\(414\) 20.4709 35.4566i 1.00609 1.74259i
\(415\) −11.6109 −0.569956
\(416\) −1.38324 2.39583i −0.0678187 0.117465i
\(417\) −12.6253 −0.618263
\(418\) −31.2945 −1.53067
\(419\) 4.25529 + 7.37039i 0.207885 + 0.360067i 0.951048 0.309043i \(-0.100009\pi\)
−0.743163 + 0.669110i \(0.766675\pi\)
\(420\) 1.52043 2.63346i 0.0741894 0.128500i
\(421\) −8.83588 −0.430635 −0.215317 0.976544i \(-0.569079\pi\)
−0.215317 + 0.976544i \(0.569079\pi\)
\(422\) 10.1637 + 17.6041i 0.494762 + 0.856953i
\(423\) 33.0125 + 57.1794i 1.60512 + 2.78016i
\(424\) −15.2834 26.4717i −0.742230 1.28558i
\(425\) −0.289385 + 0.501229i −0.0140372 + 0.0243132i
\(426\) 0.949665 1.64487i 0.0460114 0.0796941i
\(427\) 0.562797 + 0.974793i 0.0272357 + 0.0471735i
\(428\) −0.137639 0.238398i −0.00665304 0.0115234i
\(429\) 4.20585 + 7.28474i 0.203060 + 0.351711i
\(430\) 4.50841 0.217415
\(431\) −0.755326 + 1.30826i −0.0363828 + 0.0630168i −0.883643 0.468161i \(-0.844917\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(432\) 16.8704 + 29.2204i 0.811677 + 1.40587i
\(433\) 6.85824 0.329586 0.164793 0.986328i \(-0.447304\pi\)
0.164793 + 0.986328i \(0.447304\pi\)
\(434\) 10.9556 0.525888
\(435\) −5.09126 8.81833i −0.244107 0.422806i
\(436\) −2.31357 −0.110800
\(437\) 17.3693 30.0844i 0.830884 1.43913i
\(438\) −13.3092 −0.635938
\(439\) −9.56891 + 16.5738i −0.456699 + 0.791026i −0.998784 0.0492976i \(-0.984302\pi\)
0.542085 + 0.840324i \(0.317635\pi\)
\(440\) −5.53523 + 9.58729i −0.263882 + 0.457056i
\(441\) 22.4335 38.8559i 1.06826 1.85028i
\(442\) −0.226921 0.393039i −0.0107935 0.0186949i
\(443\) −2.25690 −0.107229 −0.0536144 0.998562i \(-0.517074\pi\)
−0.0536144 + 0.998562i \(0.517074\pi\)
\(444\) 11.1267 10.2225i 0.528048 0.485138i
\(445\) 14.3837 0.681851
\(446\) 2.15525 + 3.73300i 0.102054 + 0.176763i
\(447\) 0.922689 1.59814i 0.0436417 0.0755896i
\(448\) −5.11156 + 8.85349i −0.241499 + 0.418288i
\(449\) 12.1889 21.1119i 0.575232 0.996330i −0.420785 0.907160i \(-0.638245\pi\)
0.996016 0.0891698i \(-0.0284214\pi\)
\(450\) 9.14107 0.430914
\(451\) 10.0556 17.4168i 0.473499 0.820124i
\(452\) −8.69581 −0.409017
\(453\) −15.2941 26.4901i −0.718578 1.24461i
\(454\) −15.4827 −0.726641
\(455\) 0.856443 0.0401507
\(456\) 39.8328 + 68.9925i 1.86534 + 3.23087i
\(457\) 7.02629 12.1699i 0.328676 0.569283i −0.653574 0.756863i \(-0.726731\pi\)
0.982249 + 0.187580i \(0.0600643\pi\)
\(458\) 0.675864 0.0315810
\(459\) −4.98307 8.63092i −0.232590 0.402857i
\(460\) −1.66551 2.88475i −0.0776547 0.134502i
\(461\) 13.2088 + 22.8783i 0.615195 + 1.06555i 0.990350 + 0.138587i \(0.0442559\pi\)
−0.375156 + 0.926962i \(0.622411\pi\)
\(462\) 8.24868 14.2871i 0.383763 0.664698i
\(463\) −12.5712 + 21.7739i −0.584233 + 1.01192i 0.410738 + 0.911753i \(0.365271\pi\)
−0.994971 + 0.100167i \(0.968062\pi\)
\(464\) 2.98685 + 5.17338i 0.138661 + 0.240168i
\(465\) −13.3342 23.0955i −0.618359 1.07103i
\(466\) −13.0815 22.6579i −0.605991 1.04961i
\(467\) −14.0309 −0.649271 −0.324635 0.945839i \(-0.605242\pi\)
−0.324635 + 0.945839i \(0.605242\pi\)
\(468\) 2.12172 3.67492i 0.0980764 0.169873i
\(469\) −6.89019 11.9342i −0.318160 0.551069i
\(470\) −9.07400 −0.418552
\(471\) −9.15705 −0.421935
\(472\) 0.746300 + 1.29263i 0.0343512 + 0.0594981i
\(473\) −14.4798 −0.665781
\(474\) 7.13931 12.3656i 0.327919 0.567973i
\(475\) 7.75609 0.355874
\(476\) 0.263467 0.456339i 0.0120760 0.0209162i
\(477\) 40.5314 70.2025i 1.85581 3.21435i
\(478\) 15.7442 27.2697i 0.720122 1.24729i
\(479\) 3.34106 + 5.78689i 0.152657 + 0.264410i 0.932203 0.361935i \(-0.117884\pi\)
−0.779546 + 0.626344i \(0.784550\pi\)
\(480\) 13.2074 0.602831
\(481\) 4.06026 + 1.27437i 0.185132 + 0.0581061i
\(482\) 0.0408034 0.00185854
\(483\) 9.15645 + 15.8594i 0.416633 + 0.721630i
\(484\) 0.728396 1.26162i 0.0331089 0.0573463i
\(485\) 5.12897 8.88364i 0.232895 0.403385i
\(486\) −32.9058 + 56.9945i −1.49264 + 2.58532i
\(487\) −7.26544 −0.329229 −0.164614 0.986358i \(-0.552638\pi\)
−0.164614 + 0.986358i \(0.552638\pi\)
\(488\) −1.41381 + 2.44880i −0.0640003 + 0.110852i
\(489\) 70.3701 3.18224
\(490\) 3.08309 + 5.34008i 0.139280 + 0.241240i
\(491\) 0.446623 0.0201558 0.0100779 0.999949i \(-0.496792\pi\)
0.0100779 + 0.999949i \(0.496792\pi\)
\(492\) −13.8774 −0.625642
\(493\) −0.882237 1.52808i −0.0397340 0.0688212i
\(494\) −3.04097 + 5.26711i −0.136820 + 0.236978i
\(495\) −29.3586 −1.31957
\(496\) 7.82267 + 13.5493i 0.351248 + 0.608380i
\(497\) 0.310545 + 0.537879i 0.0139298 + 0.0241272i
\(498\) 21.7332 + 37.6431i 0.973890 + 1.68683i
\(499\) 5.30225 9.18376i 0.237361 0.411122i −0.722595 0.691272i \(-0.757051\pi\)
0.959956 + 0.280150i \(0.0903842\pi\)
\(500\) 0.371859 0.644078i 0.0166300 0.0288041i
\(501\) 16.7483 + 29.0089i 0.748259 + 1.29602i
\(502\) 12.0027 + 20.7893i 0.535706 + 0.927870i
\(503\) −6.98478 12.0980i −0.311436 0.539423i 0.667237 0.744845i \(-0.267477\pi\)
−0.978673 + 0.205422i \(0.934143\pi\)
\(504\) −30.7029 −1.36762
\(505\) 2.75091 4.76472i 0.122414 0.212027i
\(506\) −9.03576 15.6504i −0.401689 0.695745i
\(507\) −41.7851 −1.85574
\(508\) −13.2007 −0.585687
\(509\) −19.8167 34.3235i −0.878360 1.52136i −0.853140 0.521682i \(-0.825305\pi\)
−0.0252198 0.999682i \(-0.508029\pi\)
\(510\) 2.16668 0.0959422
\(511\) 2.17609 3.76909i 0.0962643 0.166735i
\(512\) −19.7999 −0.875041
\(513\) −66.7781 + 115.663i −2.94832 + 5.10665i
\(514\) 0.452683 0.784070i 0.0199670 0.0345839i
\(515\) −3.12085 + 5.40547i −0.137521 + 0.238193i
\(516\) 4.99578 + 8.65295i 0.219927 + 0.380925i
\(517\) 29.1432 1.28172
\(518\) −1.81709 8.14597i −0.0798383 0.357913i
\(519\) −44.4328 −1.95038
\(520\) 1.07574 + 1.86324i 0.0471745 + 0.0817085i
\(521\) 15.7148 27.2188i 0.688477 1.19248i −0.283854 0.958868i \(-0.591613\pi\)
0.972331 0.233609i \(-0.0750537\pi\)
\(522\) −13.9340 + 24.1345i −0.609877 + 1.05634i
\(523\) −7.17472 + 12.4270i −0.313729 + 0.543394i −0.979166 0.203059i \(-0.934912\pi\)
0.665438 + 0.746453i \(0.268245\pi\)
\(524\) 0.855764 0.0373842
\(525\) −2.04437 + 3.54094i −0.0892234 + 0.154540i
\(526\) 2.73335 0.119180
\(527\) −2.31061 4.00210i −0.100652 0.174334i
\(528\) 23.5593 1.02529
\(529\) −2.93969 −0.127813
\(530\) 5.57034 + 9.64812i 0.241960 + 0.419087i
\(531\) −1.97917 + 3.42803i −0.0858888 + 0.148764i
\(532\) −7.06145 −0.306153
\(533\) −1.95425 3.38486i −0.0846480 0.146615i
\(534\) −26.9233 46.6326i −1.16509 2.01799i
\(535\) 0.185069 + 0.320549i 0.00800123 + 0.0138585i
\(536\) 17.3090 29.9800i 0.747634 1.29494i
\(537\) −15.2911 + 26.4850i −0.659860 + 1.14291i
\(538\) −6.81287 11.8002i −0.293723 0.508744i
\(539\) −9.90206 17.1509i −0.426512 0.738740i
\(540\) 6.40323 + 11.0907i 0.275551 + 0.477269i
\(541\) 14.4219 0.620046 0.310023 0.950729i \(-0.399663\pi\)
0.310023 + 0.950729i \(0.399663\pi\)
\(542\) 17.5427 30.3849i 0.753524 1.30514i
\(543\) −35.2462 61.0482i −1.51256 2.61983i
\(544\) 2.28863 0.0981243
\(545\) 3.11081 0.133253
\(546\) −1.60309 2.77663i −0.0686059 0.118829i
\(547\) 4.85582 0.207620 0.103810 0.994597i \(-0.466897\pi\)
0.103810 + 0.994597i \(0.466897\pi\)
\(548\) 0.710765 1.23108i 0.0303624 0.0525892i
\(549\) −7.49881 −0.320041
\(550\) 2.01742 3.49427i 0.0860230 0.148996i
\(551\) −11.8229 + 20.4778i −0.503671 + 0.872383i
\(552\) −23.0021 + 39.8408i −0.979034 + 1.69574i
\(553\) 2.33459 + 4.04362i 0.0992767 + 0.171952i
\(554\) 25.9944 1.10439
\(555\) −14.9609 + 13.7451i −0.635053 + 0.583448i
\(556\) 2.81128 0.119225
\(557\) 2.37410 + 4.11206i 0.100594 + 0.174233i 0.911929 0.410347i \(-0.134592\pi\)
−0.811336 + 0.584581i \(0.801259\pi\)
\(558\) −36.4938 + 63.2091i −1.54490 + 2.67585i
\(559\) −1.40704 + 2.43706i −0.0595113 + 0.103077i
\(560\) 1.19935 2.07734i 0.0506819 0.0877836i
\(561\) −6.95878 −0.293800
\(562\) 12.0057 20.7946i 0.506432 0.877166i
\(563\) 12.4349 0.524069 0.262035 0.965058i \(-0.415607\pi\)
0.262035 + 0.965058i \(0.415607\pi\)
\(564\) −10.0549 17.4156i −0.423389 0.733331i
\(565\) 11.6924 0.491901
\(566\) −15.4852 −0.650890
\(567\) −20.2273 35.0347i −0.849466 1.47132i
\(568\) −0.780125 + 1.35122i −0.0327333 + 0.0566958i
\(569\) 11.9189 0.499666 0.249833 0.968289i \(-0.419624\pi\)
0.249833 + 0.968289i \(0.419624\pi\)
\(570\) −14.5178 25.1456i −0.608085 1.05323i
\(571\) 13.7047 + 23.7372i 0.573522 + 0.993369i 0.996201 + 0.0870894i \(0.0277566\pi\)
−0.422679 + 0.906280i \(0.638910\pi\)
\(572\) −0.936518 1.62210i −0.0391578 0.0678232i
\(573\) 12.5457 21.7298i 0.524104 0.907774i
\(574\) −3.83276 + 6.63853i −0.159976 + 0.277087i
\(575\) 2.23944 + 3.87882i 0.0933910 + 0.161758i
\(576\) −34.0537 58.9828i −1.41890 2.45761i
\(577\) 3.23957 + 5.61111i 0.134865 + 0.233593i 0.925546 0.378635i \(-0.123607\pi\)
−0.790681 + 0.612229i \(0.790273\pi\)
\(578\) −18.6788 −0.776937
\(579\) −27.6277 + 47.8525i −1.14817 + 1.98868i
\(580\) 1.13367 + 1.96358i 0.0470732 + 0.0815332i
\(581\) −14.2137 −0.589685
\(582\) −38.4016 −1.59180
\(583\) −17.8904 30.9871i −0.740946 1.28336i
\(584\) 10.9332 0.452418
\(585\) −2.85285 + 4.94128i −0.117951 + 0.204297i
\(586\) −7.96625 −0.329083
\(587\) −19.4315 + 33.6563i −0.802022 + 1.38914i 0.116261 + 0.993219i \(0.462909\pi\)
−0.918283 + 0.395924i \(0.870424\pi\)
\(588\) −6.83277 + 11.8347i −0.281779 + 0.488055i
\(589\) −30.9645 + 53.6321i −1.27587 + 2.20987i
\(590\) −0.272003 0.471123i −0.0111982 0.0193958i
\(591\) 5.83418 0.239986
\(592\) 8.77698 8.06374i 0.360731 0.331418i
\(593\) 35.6076 1.46223 0.731115 0.682254i \(-0.239000\pi\)
0.731115 + 0.682254i \(0.239000\pi\)
\(594\) 34.7390 + 60.1697i 1.42536 + 2.46879i
\(595\) −0.354257 + 0.613591i −0.0145231 + 0.0251548i
\(596\) −0.205456 + 0.355859i −0.00841579 + 0.0145766i
\(597\) 24.7532 42.8739i 1.01308 1.75471i
\(598\) −3.51211 −0.143621
\(599\) −8.46167 + 14.6560i −0.345735 + 0.598830i −0.985487 0.169751i \(-0.945704\pi\)
0.639752 + 0.768581i \(0.279037\pi\)
\(600\) −10.2714 −0.419327
\(601\) 6.62845 + 11.4808i 0.270380 + 0.468312i 0.968959 0.247221i \(-0.0795173\pi\)
−0.698579 + 0.715533i \(0.746184\pi\)
\(602\) 5.51908 0.224941
\(603\) 91.8062 3.73864
\(604\) 3.40553 + 5.89856i 0.138569 + 0.240009i
\(605\) −0.979398 + 1.69637i −0.0398182 + 0.0689671i
\(606\) −20.5966 −0.836681
\(607\) 2.88086 + 4.98980i 0.116931 + 0.202530i 0.918550 0.395305i \(-0.129361\pi\)
−0.801619 + 0.597835i \(0.796028\pi\)
\(608\) −15.3350 26.5610i −0.621916 1.07719i
\(609\) −6.23259 10.7952i −0.252557 0.437442i
\(610\) 0.515291 0.892510i 0.0208635 0.0361367i
\(611\) 2.83192 4.90502i 0.114567 0.198436i
\(612\) 1.75524 + 3.04017i 0.0709515 + 0.122892i
\(613\) 16.6927 + 28.9125i 0.674210 + 1.16777i 0.976699 + 0.214613i \(0.0688491\pi\)
−0.302489 + 0.953153i \(0.597818\pi\)
\(614\) 13.2475 + 22.9453i 0.534625 + 0.925998i
\(615\) 18.6595 0.752424
\(616\) −6.77608 + 11.7365i −0.273016 + 0.472877i
\(617\) 16.8377 + 29.1637i 0.677860 + 1.17409i 0.975624 + 0.219448i \(0.0704256\pi\)
−0.297765 + 0.954639i \(0.596241\pi\)
\(618\) 23.3664 0.939934
\(619\) 28.0530 1.12755 0.563774 0.825929i \(-0.309349\pi\)
0.563774 + 0.825929i \(0.309349\pi\)
\(620\) 2.96913 + 5.14269i 0.119243 + 0.206535i
\(621\) −77.1241 −3.09488
\(622\) 10.8502 18.7931i 0.435054 0.753535i
\(623\) 17.6081 0.705454
\(624\) 2.28931 3.96520i 0.0916458 0.158735i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −3.42442 + 5.93127i −0.136867 + 0.237061i
\(627\) 46.6273 + 80.7609i 1.86212 + 3.22528i
\(628\) 2.03900 0.0813652
\(629\) −2.59249 + 2.38182i −0.103369 + 0.0949692i
\(630\) 11.1903 0.445831
\(631\) −15.8300 27.4183i −0.630181 1.09151i −0.987514 0.157528i \(-0.949647\pi\)
0.357334 0.933977i \(-0.383686\pi\)
\(632\) −5.86476 + 10.1581i −0.233288 + 0.404066i
\(633\) 30.2869 52.4585i 1.20380 2.08504i
\(634\) 18.6287 32.2659i 0.739841 1.28144i
\(635\) 17.7496 0.704373
\(636\) −12.3450 + 21.3822i −0.489512 + 0.847860i
\(637\) −3.84883 −0.152496
\(638\) 6.15044 + 10.6529i 0.243498 + 0.421751i
\(639\) −4.13775 −0.163687
\(640\) 1.45157 0.0573782
\(641\) 1.04348 + 1.80736i 0.0412149 + 0.0713864i 0.885897 0.463882i \(-0.153544\pi\)
−0.844682 + 0.535268i \(0.820210\pi\)
\(642\) 0.692824 1.20001i 0.0273436 0.0473605i
\(643\) 1.07099 0.0422359 0.0211179 0.999777i \(-0.493277\pi\)
0.0211179 + 0.999777i \(0.493277\pi\)
\(644\) −2.03887 3.53143i −0.0803428 0.139158i
\(645\) −6.71731 11.6347i −0.264494 0.458117i
\(646\) −2.51572 4.35735i −0.0989795 0.171438i
\(647\) 17.4463 30.2179i 0.685886 1.18799i −0.287271 0.957849i \(-0.592748\pi\)
0.973157 0.230141i \(-0.0739186\pi\)
\(648\) 50.8133 88.0113i 1.99614 3.45741i
\(649\) 0.873600 + 1.51312i 0.0342918 + 0.0593951i
\(650\) −0.392075 0.679094i −0.0153784 0.0266362i
\(651\) −16.3234 28.2729i −0.639764 1.10810i
\(652\) −15.6693 −0.613658
\(653\) 0.981744 1.70043i 0.0384186 0.0665430i −0.846177 0.532902i \(-0.821101\pi\)
0.884595 + 0.466359i \(0.154435\pi\)
\(654\) −5.82282 10.0854i −0.227690 0.394371i
\(655\) −1.15066 −0.0449599
\(656\) −10.9468 −0.427402
\(657\) 14.4973 + 25.1100i 0.565593 + 0.979635i
\(658\) −11.1081 −0.433041
\(659\) −9.77811 + 16.9362i −0.380901 + 0.659740i −0.991191 0.132438i \(-0.957720\pi\)
0.610290 + 0.792178i \(0.291053\pi\)
\(660\) 8.94203 0.348068
\(661\) −0.987098 + 1.70970i −0.0383937 + 0.0664998i −0.884584 0.466381i \(-0.845557\pi\)
0.846190 + 0.532881i \(0.178891\pi\)
\(662\) −0.777499 + 1.34667i −0.0302184 + 0.0523397i
\(663\) −0.676202 + 1.17122i −0.0262615 + 0.0454863i
\(664\) −17.8533 30.9228i −0.692842 1.20004i
\(665\) 9.49479 0.368192
\(666\) 53.0513 + 16.6508i 2.05570 + 0.645207i
\(667\) −13.6546 −0.528708
\(668\) −3.72935 6.45942i −0.144293 0.249923i
\(669\) 6.42244 11.1240i 0.248306 0.430078i
\(670\) −6.30859 + 10.9268i −0.243722 + 0.422139i
\(671\) −1.65497 + 2.86650i −0.0638896 + 0.110660i
\(672\) 16.1681 0.623698
\(673\) −10.3326 + 17.8966i −0.398292 + 0.689861i −0.993515 0.113699i \(-0.963730\pi\)
0.595224 + 0.803560i \(0.297063\pi\)
\(674\) 17.1598 0.660971
\(675\) −8.60976 14.9125i −0.331390 0.573984i
\(676\) 9.30432 0.357858
\(677\) −10.7458 −0.412994 −0.206497 0.978447i \(-0.566206\pi\)
−0.206497 + 0.978447i \(0.566206\pi\)
\(678\) −21.8857 37.9072i −0.840517 1.45582i
\(679\) 6.27875 10.8751i 0.240956 0.417349i
\(680\) −1.77987 −0.0682549
\(681\) 23.0685 + 39.9559i 0.883988 + 1.53111i
\(682\) 16.1082 + 27.9002i 0.616815 + 1.06836i
\(683\) −6.02617 10.4376i −0.230585 0.399385i 0.727396 0.686218i \(-0.240731\pi\)
−0.957980 + 0.286834i \(0.907397\pi\)
\(684\) 23.5220 40.7413i 0.899386 1.55778i
\(685\) −0.955692 + 1.65531i −0.0365151 + 0.0632460i
\(686\) 8.57660 + 14.8551i 0.327456 + 0.567171i
\(687\) −1.00700 1.74418i −0.0384196 0.0665447i
\(688\) 3.94079 + 6.82565i 0.150241 + 0.260226i
\(689\) −6.95383 −0.264920
\(690\) 8.38355 14.5207i 0.319156 0.552795i
\(691\) −5.15674 8.93174i −0.196172 0.339779i 0.751112 0.660175i \(-0.229518\pi\)
−0.947284 + 0.320395i \(0.896184\pi\)
\(692\) 9.89386 0.376108
\(693\) −35.9401 −1.36525
\(694\) −15.1369 26.2178i −0.574587 0.995215i
\(695\) −3.78003 −0.143385
\(696\) 15.6570 27.1187i 0.593477 1.02793i
\(697\) 3.23341 0.122474
\(698\) 11.3868 19.7225i 0.430996 0.746506i
\(699\) −38.9817 + 67.5183i −1.47442 + 2.55378i
\(700\) 0.455220 0.788464i 0.0172057 0.0298011i
\(701\) −17.7577 30.7573i −0.670699 1.16169i −0.977706 0.209978i \(-0.932661\pi\)
0.307007 0.951707i \(-0.400673\pi\)
\(702\) 13.5027 0.509626
\(703\) 45.0134 + 14.1280i 1.69771 + 0.532848i
\(704\) −30.0624 −1.13302
\(705\) 13.5198 + 23.4170i 0.509186 + 0.881935i
\(706\) 2.50519 4.33912i 0.0942841 0.163305i
\(707\) 3.36760 5.83285i 0.126652 0.219367i
\(708\) 0.602815 1.04411i 0.0226552 0.0392399i
\(709\) −32.6695 −1.22693 −0.613465 0.789722i \(-0.710225\pi\)
−0.613465 + 0.789722i \(0.710225\pi\)
\(710\) 0.284331 0.492476i 0.0106708 0.0184823i
\(711\) −31.1065 −1.16658
\(712\) 22.1168 + 38.3075i 0.828863 + 1.43563i
\(713\) −35.7619 −1.33929
\(714\) 2.65239 0.0992632
\(715\) 1.25924 + 2.18106i 0.0470928 + 0.0815672i
\(716\) 3.40488 5.89742i 0.127246 0.220397i
\(717\) −93.8323 −3.50423
\(718\) 17.5267 + 30.3571i 0.654090 + 1.13292i
\(719\) −16.3243 28.2746i −0.608794 1.05446i −0.991439 0.130567i \(-0.958320\pi\)
0.382645 0.923895i \(-0.375013\pi\)
\(720\) 7.99020 + 13.8394i 0.297777 + 0.515765i
\(721\) −3.82046 + 6.61723i −0.142281 + 0.246438i
\(722\) −23.0651 + 39.9500i −0.858395 + 1.48678i
\(723\) −0.0607951 0.105300i −0.00226099 0.00391615i
\(724\) 7.84829 + 13.5936i 0.291679 + 0.505204i
\(725\) −1.52433 2.64022i −0.0566123 0.0980554i
\(726\) 7.33294 0.272151
\(727\) 7.09098 12.2819i 0.262990 0.455512i −0.704045 0.710155i \(-0.748625\pi\)
0.967035 + 0.254643i \(0.0819581\pi\)
\(728\) 1.31690 + 2.28093i 0.0488074 + 0.0845369i
\(729\) 96.9728 3.59158
\(730\) −3.98480 −0.147484
\(731\) −1.16401 2.01612i −0.0430523 0.0745688i
\(732\) 2.28398 0.0844184
\(733\) −9.72667 + 16.8471i −0.359263 + 0.622261i −0.987838 0.155488i \(-0.950305\pi\)
0.628575 + 0.777749i \(0.283638\pi\)
\(734\) −18.0752 −0.667168
\(735\) 9.18732 15.9129i 0.338879 0.586956i
\(736\) 8.85542 15.3380i 0.326415 0.565368i
\(737\) 20.2615 35.0939i 0.746341 1.29270i
\(738\) −25.5342 44.2265i −0.939926 1.62800i
\(739\) −52.1774 −1.91938 −0.959689 0.281063i \(-0.909313\pi\)
−0.959689 + 0.281063i \(0.909313\pi\)
\(740\) 3.33134 3.06063i 0.122463 0.112511i
\(741\) 18.1236 0.665786
\(742\) 6.81907 + 11.8110i 0.250336 + 0.433594i
\(743\) −6.68363 + 11.5764i −0.245198 + 0.424696i −0.962187 0.272388i \(-0.912186\pi\)
0.716989 + 0.697085i \(0.245520\pi\)
\(744\) 41.0063 71.0249i 1.50336 2.60390i
\(745\) 0.276255 0.478487i 0.0101212 0.0175304i
\(746\) −11.4778 −0.420231
\(747\) 47.3466 82.0067i 1.73232 3.00047i
\(748\) 1.54952 0.0566559
\(749\) 0.226557 + 0.392408i 0.00827820 + 0.0143383i
\(750\) 3.74360 0.136697
\(751\) 16.7410 0.610887 0.305443 0.952210i \(-0.401195\pi\)
0.305443 + 0.952210i \(0.401195\pi\)
\(752\) −7.93156 13.7379i −0.289234 0.500969i
\(753\) 35.7668 61.9500i 1.30342 2.25758i
\(754\) 2.39061 0.0870609
\(755\) −4.57907 7.93118i −0.166649 0.288645i
\(756\) 7.83867 + 13.5770i 0.285090 + 0.493790i
\(757\) 5.63936 + 9.76765i 0.204966 + 0.355011i 0.950122 0.311879i \(-0.100958\pi\)
−0.745156 + 0.666890i \(0.767625\pi\)
\(758\) −9.28176 + 16.0765i −0.337129 + 0.583924i
\(759\) −26.9257 + 46.6367i −0.977340 + 1.69280i
\(760\) 11.9260 + 20.6565i 0.432602 + 0.749289i
\(761\) 23.3731 + 40.4834i 0.847275 + 1.46752i 0.883631 + 0.468184i \(0.155092\pi\)
−0.0363559 + 0.999339i \(0.511575\pi\)
\(762\) −33.2238 57.5453i −1.20357 2.08464i
\(763\) 3.80818 0.137865
\(764\) −2.79355 + 4.83858i −0.101067 + 0.175054i
\(765\) −2.36009 4.08780i −0.0853293 0.147795i
\(766\) 20.5129 0.741162
\(767\) 0.339559 0.0122608
\(768\) 25.1754 + 43.6051i 0.908439 + 1.57346i
\(769\) 37.8487 1.36486 0.682430 0.730951i \(-0.260923\pi\)
0.682430 + 0.730951i \(0.260923\pi\)
\(770\) 2.46967 4.27759i 0.0890007 0.154154i
\(771\) −2.69790 −0.0971626
\(772\) 6.15186 10.6553i 0.221410 0.383494i
\(773\) 2.07440 3.59297i 0.0746110 0.129230i −0.826306 0.563221i \(-0.809562\pi\)
0.900917 + 0.433991i \(0.142895\pi\)
\(774\) −18.3843 + 31.8425i −0.660810 + 1.14456i
\(775\) −3.99228 6.91484i −0.143407 0.248388i
\(776\) 31.5459 1.13243
\(777\) −18.3147 + 16.8264i −0.657036 + 0.603644i
\(778\) −16.4451 −0.589587
\(779\) −21.6654 37.5256i −0.776245 1.34450i
\(780\) 0.868919 1.50501i 0.0311123 0.0538881i
\(781\) −0.913195 + 1.58170i −0.0326767 + 0.0565977i
\(782\) 1.45274 2.51622i 0.0519499 0.0899798i
\(783\) 52.4966 1.87608
\(784\) −5.38985 + 9.33550i −0.192495 + 0.333411i
\(785\) −2.74164 −0.0978533
\(786\) 2.15380 + 3.73049i 0.0768234 + 0.133062i
\(787\) −42.8205 −1.52639 −0.763193 0.646170i \(-0.776370\pi\)
−0.763193 + 0.646170i \(0.776370\pi\)
\(788\) −1.29910 −0.0462785
\(789\) −4.07256 7.05387i −0.144987 0.251125i
\(790\) 2.13752 3.70230i 0.0760496 0.131722i
\(791\) 14.3135 0.508928
\(792\) −45.1429 78.1897i −1.60408 2.77835i
\(793\) 0.321636 + 0.557089i 0.0114216 + 0.0197828i
\(794\) 1.12212 + 1.94357i 0.0398226 + 0.0689748i
\(795\) 16.5991 28.7504i 0.588709 1.01967i
\(796\) −5.51182 + 9.54674i −0.195361 + 0.338375i
\(797\) 18.8156 + 32.5896i 0.666482 + 1.15438i 0.978881 + 0.204430i \(0.0655341\pi\)
−0.312399 + 0.949951i \(0.601133\pi\)
\(798\) −17.7723 30.7826i −0.629134 1.08969i
\(799\) 2.34277 + 4.05780i 0.0828814 + 0.143555i
\(800\) 3.95431 0.139806
\(801\) −58.6534 + 101.591i −2.07242 + 3.58953i
\(802\) 12.8255 + 22.2143i 0.452883 + 0.784416i
\(803\) 12.7981 0.451635
\(804\) −27.9623 −0.986153
\(805\) 2.74146 + 4.74835i 0.0966237 + 0.167357i
\(806\) 6.26110 0.220538
\(807\) −20.3017 + 35.1635i −0.714653 + 1.23781i
\(808\) 16.9196 0.595230
\(809\) 11.7837 20.4099i 0.414292 0.717576i −0.581061 0.813860i \(-0.697362\pi\)
0.995354 + 0.0962841i \(0.0306957\pi\)
\(810\) −18.5199 + 32.0774i −0.650722 + 1.12708i
\(811\) 24.7159 42.8093i 0.867894 1.50324i 0.00374948 0.999993i \(-0.498807\pi\)
0.864145 0.503244i \(-0.167860\pi\)
\(812\) 1.38781 + 2.40376i 0.0487027 + 0.0843555i
\(813\) −104.551 −3.66677
\(814\) 18.0733 16.6046i 0.633468 0.581991i
\(815\) 21.0689 0.738012
\(816\) 1.89389 + 3.28031i 0.0662994 + 0.114834i
\(817\) −15.5988 + 27.0180i −0.545734 + 0.945240i
\(818\) −5.10895 + 8.84896i −0.178630 + 0.309397i
\(819\) −3.49238 + 6.04899i −0.122034 + 0.211369i
\(820\) −4.15492 −0.145096
\(821\) −12.6853 + 21.9716i −0.442721 + 0.766815i −0.997890 0.0649222i \(-0.979320\pi\)
0.555169 + 0.831737i \(0.312653\pi\)
\(822\) 7.15545 0.249575
\(823\) 4.08512 + 7.07564i 0.142398 + 0.246641i 0.928399 0.371584i \(-0.121185\pi\)
−0.786001 + 0.618225i \(0.787852\pi\)
\(824\) −19.1949 −0.668686
\(825\) −12.0234 −0.418602
\(826\) −0.332979 0.576736i −0.0115858 0.0200672i
\(827\) 0.495060 0.857468i 0.0172149 0.0298171i −0.857290 0.514834i \(-0.827853\pi\)
0.874505 + 0.485017i \(0.161187\pi\)
\(828\) 27.1663 0.944094
\(829\) 13.0618 + 22.6237i 0.453654 + 0.785752i 0.998610 0.0527126i \(-0.0167867\pi\)
−0.544955 + 0.838465i \(0.683453\pi\)
\(830\) 6.50697 + 11.2704i 0.225860 + 0.391201i
\(831\) −38.7303 67.0829i −1.34354 2.32708i
\(832\) −2.92123 + 5.05972i −0.101276 + 0.175414i
\(833\) 1.59202 2.75746i 0.0551602 0.0955403i
\(834\) 7.07546 + 12.2551i 0.245003 + 0.424358i
\(835\) 5.01447 + 8.68532i 0.173533 + 0.300568i
\(836\) −10.3825 17.9831i −0.359087 0.621957i
\(837\) 137.490 4.75237
\(838\) 4.76950 8.26102i 0.164760 0.285372i
\(839\) 20.0623 + 34.7490i 0.692629 + 1.19967i 0.970973 + 0.239187i \(0.0768810\pi\)
−0.278344 + 0.960481i \(0.589786\pi\)
\(840\) −12.5739 −0.433842
\(841\) −19.7056 −0.679505
\(842\) 4.95181 + 8.57678i 0.170650 + 0.295575i
\(843\) −71.5519 −2.46438
\(844\) −6.74400 + 11.6809i −0.232138 + 0.402075i
\(845\) −12.5105 −0.430376
\(846\) 37.0017 64.0889i 1.27215 2.20342i
\(847\) −1.19895 + 2.07665i −0.0411965 + 0.0713544i
\(848\) −9.73805 + 16.8668i −0.334406 + 0.579208i
\(849\) 23.0721 + 39.9621i 0.791833 + 1.37150i
\(850\) 0.648708 0.0222505
\(851\) 5.93141 + 26.5904i 0.203326 + 0.911507i
\(852\) 1.26027 0.0431763
\(853\) 16.3382 + 28.2985i 0.559408 + 0.968923i 0.997546 + 0.0700154i \(0.0223048\pi\)
−0.438138 + 0.898908i \(0.644362\pi\)
\(854\) 0.630805 1.09259i 0.0215857 0.0373876i
\(855\) −31.6276 + 54.7806i −1.08164 + 1.87346i
\(856\) −0.569137 + 0.985774i −0.0194527 + 0.0336931i
\(857\) −9.95029 −0.339896 −0.169948 0.985453i \(-0.554360\pi\)
−0.169948 + 0.985453i \(0.554360\pi\)
\(858\) 4.71408 8.16503i 0.160936 0.278749i
\(859\) 4.53739 0.154814 0.0774068 0.997000i \(-0.475336\pi\)
0.0774068 + 0.997000i \(0.475336\pi\)
\(860\) 1.49575 + 2.59071i 0.0510045 + 0.0883424i
\(861\) 22.8425 0.778470
\(862\) 1.69320 0.0576706
\(863\) −1.72742 2.99198i −0.0588020 0.101848i 0.835126 0.550059i \(-0.185395\pi\)
−0.893928 + 0.448211i \(0.852061\pi\)
\(864\) −34.0457 + 58.9688i −1.15826 + 2.00616i
\(865\) −13.3032 −0.452324
\(866\) −3.84349 6.65712i −0.130607 0.226218i
\(867\) 27.8305 + 48.2039i 0.945175 + 1.63709i
\(868\) 3.63473 + 6.29554i 0.123371 + 0.213685i
\(869\) −6.86514 + 11.8908i −0.232884 + 0.403367i
\(870\) −5.70649 + 9.88393i −0.193468 + 0.335097i
\(871\) −3.93771 6.82032i −0.133424 0.231098i
\(872\) 4.78330 + 8.28491i 0.161983 + 0.280562i
\(873\) 41.8296 + 72.4510i 1.41572 + 2.45210i
\(874\) −38.9363 −1.31704
\(875\) −0.612087 + 1.06017i −0.0206923 + 0.0358401i
\(876\) −4.41557 7.64799i −0.149188 0.258402i
\(877\) −23.2726 −0.785861 −0.392931 0.919568i \(-0.628539\pi\)
−0.392931 + 0.919568i \(0.628539\pi\)
\(878\) 21.4504 0.723917
\(879\) 11.8693 + 20.5583i 0.400342 + 0.693413i
\(880\) 7.05369 0.237780
\(881\) −6.16226 + 10.6733i −0.207612 + 0.359594i −0.950962 0.309309i \(-0.899902\pi\)
0.743350 + 0.668903i \(0.233236\pi\)
\(882\) −50.2887 −1.69331
\(883\) −8.82778 + 15.2902i −0.297078 + 0.514555i −0.975466 0.220149i \(-0.929346\pi\)
0.678388 + 0.734704i \(0.262679\pi\)
\(884\) 0.150570 0.260795i 0.00506422 0.00877149i
\(885\) −0.810543 + 1.40390i −0.0272461 + 0.0471916i
\(886\) 1.26481 + 2.19072i 0.0424922 + 0.0735987i
\(887\) 40.8268 1.37083 0.685415 0.728153i \(-0.259621\pi\)
0.685415 + 0.728153i \(0.259621\pi\)
\(888\) −59.6112 18.7097i −2.00042 0.627857i
\(889\) 21.7286 0.728755
\(890\) −8.06089 13.9619i −0.270202 0.468003i
\(891\) 59.4808 103.024i 1.99268 3.45143i
\(892\) −1.43009 + 2.47698i −0.0478828 + 0.0829355i
\(893\) 31.3955 54.3786i 1.05061 1.81971i
\(894\) −2.06837 −0.0691768
\(895\) −4.57818 + 7.92965i −0.153032 + 0.265059i
\(896\) 1.77697 0.0593644
\(897\) 5.23287 + 9.06360i 0.174720 + 0.302625i
\(898\) −27.3237 −0.911804
\(899\) 24.3423 0.811861
\(900\) 3.03272 + 5.25282i 0.101091 + 0.175094i
\(901\) 2.87636 4.98201i 0.0958256 0.165975i
\(902\) −22.5414 −0.750546
\(903\) −8.22315 14.2429i −0.273649 0.473975i
\(904\) 17.9786 + 31.1398i 0.597958 + 1.03569i
\(905\) −10.5528 18.2780i −0.350786 0.607580i
\(906\) −17.1422 + 29.6912i −0.569511 + 0.986422i
\(907\) 28.6551 49.6320i 0.951475 1.64800i 0.209240 0.977864i \(-0.432901\pi\)
0.742235 0.670139i \(-0.233766\pi\)
\(908\) −5.13668 8.89699i −0.170467 0.295257i
\(909\) 22.4352 + 38.8590i 0.744130 + 1.28887i
\(910\) −0.479968 0.831328i −0.0159108 0.0275583i
\(911\) −21.6237 −0.716426 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(912\) 25.3800 43.9595i 0.840417 1.45564i
\(913\) −20.8986 36.1975i −0.691643 1.19796i
\(914\) −15.7507 −0.520986
\(915\) −3.07103 −0.101525
\(916\) 0.224230 + 0.388378i 0.00740877 + 0.0128324i
\(917\) −1.40860 −0.0465162
\(918\) −5.58522 + 9.67388i −0.184340 + 0.319286i
\(919\) 30.6901 1.01237 0.506186 0.862424i \(-0.331055\pi\)
0.506186 + 0.862424i \(0.331055\pi\)
\(920\) −6.88687 + 11.9284i −0.227053 + 0.393268i
\(921\) 39.4762 68.3748i 1.30079 2.25303i
\(922\) 14.8049 25.6429i 0.487575 0.844504i
\(923\) 0.177475 + 0.307395i 0.00584165 + 0.0101180i
\(924\) 10.9466 0.360117
\(925\) −4.47931 + 4.11531i −0.147279 + 0.135311i
\(926\) 28.1806 0.926071
\(927\) −25.4522 44.0846i −0.835961 1.44793i
\(928\) −6.02768 + 10.4403i −0.197868 + 0.342718i
\(929\) 4.44146 7.69284i 0.145720 0.252394i −0.783922 0.620860i \(-0.786784\pi\)
0.929641 + 0.368466i \(0.120117\pi\)
\(930\) −14.9455 + 25.8864i −0.490083 + 0.848848i
\(931\) −42.6693 −1.39843
\(932\) 8.68007 15.0343i 0.284325 0.492466i
\(933\) −64.6652 −2.11704
\(934\) 7.86317 + 13.6194i 0.257291 + 0.445641i
\(935\) −2.08347 −0.0681368
\(936\) −17.5466 −0.573527
\(937\) −0.306294 0.530517i −0.0100062 0.0173312i 0.860979 0.508641i \(-0.169852\pi\)
−0.870985 + 0.491309i \(0.836518\pi\)
\(938\) −7.72281 + 13.3763i −0.252159 + 0.436751i
\(939\) 20.4089 0.666019
\(940\) −3.01046 5.21427i −0.0981904 0.170071i
\(941\) −16.6946 28.9159i −0.544229 0.942632i −0.998655 0.0518474i \(-0.983489\pi\)
0.454426 0.890784i \(-0.349844\pi\)
\(942\) 5.13180 + 8.88853i 0.167203 + 0.289604i
\(943\) 12.5110 21.6698i 0.407416 0.705665i
\(944\) 0.475515 0.823616i 0.0154767 0.0268064i
\(945\) −10.5398 18.2555i −0.342861 0.593853i
\(946\) 8.11476 + 14.0552i 0.263834 + 0.456973i
\(947\) 5.18210 + 8.97566i 0.168396 + 0.291670i 0.937856 0.347025i \(-0.112808\pi\)
−0.769460 + 0.638695i \(0.779475\pi\)
\(948\) 9.47438 0.307714
\(949\) 1.24362 2.15402i 0.0403697 0.0699223i
\(950\) −4.34667 7.52864i −0.141024 0.244261i
\(951\) −111.024 −3.60018
\(952\) −2.17887 −0.0706176
\(953\) −7.44472 12.8946i −0.241158 0.417698i 0.719886 0.694092i \(-0.244194\pi\)
−0.961044 + 0.276394i \(0.910861\pi\)
\(954\) −90.8585 −2.94165
\(955\) 3.75620 6.50593i 0.121548 0.210527i
\(956\) 20.8937 0.675749
\(957\) 18.3277 31.7445i 0.592450 1.02615i
\(958\) 3.74479 6.48617i 0.120989 0.209559i
\(959\) −1.16993 + 2.02638i −0.0377791 + 0.0654353i
\(960\) −13.9462 24.1556i −0.450112 0.779617i
\(961\) 32.7533 1.05656
\(962\) −1.03846 4.65538i −0.0334812 0.150096i
\(963\) −3.01868 −0.0972757
\(964\) 0.0135373 + 0.0234472i 0.000436006 + 0.000755184i
\(965\) −8.27177 + 14.3271i −0.266278 + 0.461206i
\(966\) 10.2629 17.7759i 0.330204 0.571930i
\(967\) −21.6538 + 37.5055i −0.696339 + 1.20609i 0.273389 + 0.961904i \(0.411855\pi\)
−0.969727 + 0.244190i \(0.921478\pi\)
\(968\) −6.02382 −0.193613
\(969\) −7.49659 + 12.9845i −0.240825 + 0.417121i
\(970\) −11.4975 −0.369163
\(971\) −4.45691 7.71960i −0.143029 0.247734i 0.785607 0.618726i \(-0.212351\pi\)
−0.928636 + 0.370992i \(0.879018\pi\)
\(972\) −43.6684 −1.40066
\(973\) −4.62741 −0.148348
\(974\) 4.07170 + 7.05239i 0.130466 + 0.225973i
\(975\) −1.16835 + 2.02363i −0.0374170 + 0.0648081i
\(976\) 1.80166 0.0576697
\(977\) −6.68632 11.5810i −0.213914 0.370511i 0.739022 0.673681i \(-0.235288\pi\)
−0.952936 + 0.303171i \(0.901955\pi\)
\(978\) −39.4368 68.3065i −1.26105 2.18420i
\(979\) 25.8894 + 44.8418i 0.827429 + 1.43315i
\(980\) −2.04574 + 3.54333i −0.0653489 + 0.113188i
\(981\) −12.6852 + 21.9714i −0.405008 + 0.701494i
\(982\) −0.250296 0.433526i −0.00798728 0.0138344i
\(983\) 11.5659 + 20.0327i 0.368894 + 0.638944i 0.989393 0.145264i \(-0.0464031\pi\)
−0.620499 + 0.784208i \(0.713070\pi\)
\(984\) 28.6915 + 49.6952i 0.914652 + 1.58422i
\(985\) 1.74676 0.0556565
\(986\) −0.988847 + 1.71273i −0.0314913 + 0.0545445i
\(987\) 16.5506 + 28.6665i 0.526811 + 0.912464i
\(988\) −4.03558 −0.128389
\(989\) −18.0156 −0.572863
\(990\) 16.4532 + 28.4977i 0.522916 + 0.905717i
\(991\) 14.4144 0.457887 0.228944 0.973440i \(-0.426473\pi\)
0.228944 + 0.973440i \(0.426473\pi\)
\(992\) −15.7867 + 27.3434i −0.501229 + 0.868154i
\(993\) 4.63374 0.147047
\(994\) 0.348071 0.602876i 0.0110401 0.0191221i
\(995\) 7.41117 12.8365i 0.234950 0.406945i
\(996\) −14.4208 + 24.9775i −0.456940 + 0.791444i
\(997\) 0.509477 + 0.882439i 0.0161353 + 0.0279471i 0.873980 0.485961i \(-0.161530\pi\)
−0.857845 + 0.513908i \(0.828197\pi\)
\(998\) −11.8859 −0.376243
\(999\) −22.8040 102.230i −0.721486 3.23441i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.e.a.26.3 14
5.2 odd 4 925.2.o.b.174.10 28
5.3 odd 4 925.2.o.b.174.5 28
5.4 even 2 925.2.e.c.26.5 14
37.10 even 3 inner 185.2.e.a.121.3 yes 14
37.11 even 6 6845.2.a.k.1.3 7
37.26 even 3 6845.2.a.l.1.5 7
185.47 odd 12 925.2.o.b.824.5 28
185.84 even 6 925.2.e.c.676.5 14
185.158 odd 12 925.2.o.b.824.10 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.3 14 1.1 even 1 trivial
185.2.e.a.121.3 yes 14 37.10 even 3 inner
925.2.e.c.26.5 14 5.4 even 2
925.2.e.c.676.5 14 185.84 even 6
925.2.o.b.174.5 28 5.3 odd 4
925.2.o.b.174.10 28 5.2 odd 4
925.2.o.b.824.5 28 185.47 odd 12
925.2.o.b.824.10 28 185.158 odd 12
6845.2.a.k.1.3 7 37.11 even 6
6845.2.a.l.1.5 7 37.26 even 3