Properties

Label 925.2.o.b.174.5
Level $925$
Weight $2$
Character 925.174
Analytic conductor $7.386$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(174,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.174"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,16,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 174.5
Character \(\chi\) \(=\) 925.174
Dual form 925.2.o.b.824.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.970676 + 0.560420i) q^{2} +(-2.89252 - 1.67000i) q^{3} +(-0.371859 + 0.644078i) q^{4} +3.74360 q^{6} +(1.06017 + 0.612087i) q^{7} -3.07527i q^{8} +(4.07778 + 7.06292i) q^{9} -3.59983 q^{11} +(2.15122 - 1.24201i) q^{12} +(-0.605879 - 0.349805i) q^{13} -1.37210 q^{14} +(0.979724 + 1.69693i) q^{16} +(-0.501229 + 0.289385i) q^{17} +(-7.91640 - 4.57054i) q^{18} +(3.87804 - 6.71697i) q^{19} +(-2.04437 - 3.54094i) q^{21} +(3.49427 - 2.01742i) q^{22} -4.47887i q^{23} +(-5.13569 + 8.89527i) q^{24} +0.784150 q^{26} -17.2195i q^{27} +(-0.788464 + 0.455220i) q^{28} -3.04867 q^{29} +7.98457 q^{31} +(3.42453 + 1.97715i) q^{32} +(10.4126 + 6.01171i) q^{33} +(0.324354 - 0.561797i) q^{34} -6.06543 q^{36} +(-5.93685 + 1.32431i) q^{37} +8.69333i q^{38} +(1.16835 + 2.02363i) q^{39} +(-2.79335 + 4.83822i) q^{41} +(3.96883 + 2.29141i) q^{42} +4.02235i q^{43} +(1.33863 - 2.31857i) q^{44} +(2.51005 + 4.34753i) q^{46} +8.09571i q^{47} -6.54454i q^{48} +(-2.75070 - 4.76435i) q^{49} +1.93309 q^{51} +(0.450603 - 0.260156i) q^{52} +(-8.60794 + 4.96979i) q^{53} +(9.65017 + 16.7146i) q^{54} +(1.88233 - 3.26029i) q^{56} +(-22.4346 + 12.9526i) q^{57} +(2.95927 - 1.70853i) q^{58} +(0.242678 + 0.420330i) q^{59} +(0.459736 - 0.796287i) q^{61} +(-7.75043 + 4.47471i) q^{62} +9.98382i q^{63} -8.35104 q^{64} -13.4763 q^{66} +(9.74876 + 5.62845i) q^{67} -0.430441i q^{68} +(-7.47970 + 12.9552i) q^{69} +(0.253677 - 0.439381i) q^{71} +(21.7204 - 12.5403i) q^{72} -3.55519i q^{73} +(5.02059 - 4.61261i) q^{74} +(2.88417 + 4.99553i) q^{76} +(-3.81642 - 2.20341i) q^{77} +(-2.26817 - 1.30953i) q^{78} +(-1.90707 + 3.30314i) q^{79} +(-16.5232 + 28.6191i) q^{81} -6.26179i q^{82} +(-10.0553 + 5.80544i) q^{83} +3.04086 q^{84} +(-2.25421 - 3.90440i) q^{86} +(8.81833 + 5.09126i) q^{87} +11.0705i q^{88} +(7.19183 + 12.4566i) q^{89} +(-0.428221 - 0.741701i) q^{91} +(2.88475 + 1.66551i) q^{92} +(-23.0955 - 13.3342i) q^{93} +(-4.53700 - 7.85831i) q^{94} +(-6.60368 - 11.4379i) q^{96} +10.2579i q^{97} +(5.34008 + 3.08309i) q^{98} +(-14.6793 - 25.4253i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 16 q^{4} - 8 q^{6} + 26 q^{9} - 4 q^{11} - 40 q^{14} + 4 q^{16} + 28 q^{19} + 2 q^{21} - 30 q^{24} - 44 q^{26} + 24 q^{29} - 66 q^{34} + 80 q^{36} + 50 q^{39} - 14 q^{41} + 38 q^{44} - 28 q^{46}+ \cdots - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.970676 + 0.560420i −0.686372 + 0.396277i −0.802251 0.596986i \(-0.796365\pi\)
0.115880 + 0.993263i \(0.463031\pi\)
\(3\) −2.89252 1.67000i −1.67000 0.964173i −0.967635 0.252353i \(-0.918796\pi\)
−0.702361 0.711821i \(-0.747871\pi\)
\(4\) −0.371859 + 0.644078i −0.185929 + 0.322039i
\(5\) 0 0
\(6\) 3.74360 1.52832
\(7\) 1.06017 + 0.612087i 0.400705 + 0.231347i 0.686788 0.726858i \(-0.259020\pi\)
−0.286083 + 0.958205i \(0.592353\pi\)
\(8\) 3.07527i 1.08727i
\(9\) 4.07778 + 7.06292i 1.35926 + 2.35431i
\(10\) 0 0
\(11\) −3.59983 −1.08539 −0.542695 0.839930i \(-0.682596\pi\)
−0.542695 + 0.839930i \(0.682596\pi\)
\(12\) 2.15122 1.24201i 0.621003 0.358536i
\(13\) −0.605879 0.349805i −0.168041 0.0970183i 0.413621 0.910449i \(-0.364264\pi\)
−0.581662 + 0.813431i \(0.697597\pi\)
\(14\) −1.37210 −0.366710
\(15\) 0 0
\(16\) 0.979724 + 1.69693i 0.244931 + 0.424233i
\(17\) −0.501229 + 0.289385i −0.121566 + 0.0701861i −0.559550 0.828797i \(-0.689026\pi\)
0.437984 + 0.898983i \(0.355693\pi\)
\(18\) −7.91640 4.57054i −1.86591 1.07729i
\(19\) 3.87804 6.71697i 0.889684 1.54098i 0.0494348 0.998777i \(-0.484258\pi\)
0.840249 0.542200i \(-0.182409\pi\)
\(20\) 0 0
\(21\) −2.04437 3.54094i −0.446117 0.772698i
\(22\) 3.49427 2.01742i 0.744981 0.430115i
\(23\) 4.47887i 0.933910i −0.884281 0.466955i \(-0.845351\pi\)
0.884281 0.466955i \(-0.154649\pi\)
\(24\) −5.13569 + 8.89527i −1.04832 + 1.81574i
\(25\) 0 0
\(26\) 0.784150 0.153784
\(27\) 17.2195i 3.31390i
\(28\) −0.788464 + 0.455220i −0.149006 + 0.0860284i
\(29\) −3.04867 −0.566123 −0.283062 0.959102i \(-0.591350\pi\)
−0.283062 + 0.959102i \(0.591350\pi\)
\(30\) 0 0
\(31\) 7.98457 1.43407 0.717035 0.697037i \(-0.245499\pi\)
0.717035 + 0.697037i \(0.245499\pi\)
\(32\) 3.42453 + 1.97715i 0.605377 + 0.349515i
\(33\) 10.4126 + 6.01171i 1.81260 + 1.04650i
\(34\) 0.324354 0.561797i 0.0556262 0.0963474i
\(35\) 0 0
\(36\) −6.06543 −1.01091
\(37\) −5.93685 + 1.32431i −0.976012 + 0.217715i
\(38\) 8.69333i 1.41024i
\(39\) 1.16835 + 2.02363i 0.187085 + 0.324041i
\(40\) 0 0
\(41\) −2.79335 + 4.83822i −0.436247 + 0.755603i −0.997397 0.0721120i \(-0.977026\pi\)
0.561149 + 0.827715i \(0.310359\pi\)
\(42\) 3.96883 + 2.29141i 0.612404 + 0.353572i
\(43\) 4.02235i 0.613403i 0.951806 + 0.306701i \(0.0992253\pi\)
−0.951806 + 0.306701i \(0.900775\pi\)
\(44\) 1.33863 2.31857i 0.201806 0.349538i
\(45\) 0 0
\(46\) 2.51005 + 4.34753i 0.370087 + 0.641009i
\(47\) 8.09571i 1.18088i 0.807081 + 0.590440i \(0.201046\pi\)
−0.807081 + 0.590440i \(0.798954\pi\)
\(48\) 6.54454i 0.944624i
\(49\) −2.75070 4.76435i −0.392957 0.680622i
\(50\) 0 0
\(51\) 1.93309 0.270686
\(52\) 0.450603 0.260156i 0.0624874 0.0360771i
\(53\) −8.60794 + 4.96979i −1.18239 + 0.682654i −0.956566 0.291514i \(-0.905841\pi\)
−0.225824 + 0.974168i \(0.572508\pi\)
\(54\) 9.65017 + 16.7146i 1.31322 + 2.27457i
\(55\) 0 0
\(56\) 1.88233 3.26029i 0.251537 0.435675i
\(57\) −22.4346 + 12.9526i −2.97154 + 1.71562i
\(58\) 2.95927 1.70853i 0.388571 0.224341i
\(59\) 0.242678 + 0.420330i 0.0315940 + 0.0547224i 0.881390 0.472389i \(-0.156608\pi\)
−0.849796 + 0.527112i \(0.823275\pi\)
\(60\) 0 0
\(61\) 0.459736 0.796287i 0.0588632 0.101954i −0.835092 0.550110i \(-0.814586\pi\)
0.893955 + 0.448156i \(0.147919\pi\)
\(62\) −7.75043 + 4.47471i −0.984305 + 0.568289i
\(63\) 9.98382i 1.25784i
\(64\) −8.35104 −1.04388
\(65\) 0 0
\(66\) −13.4763 −1.65882
\(67\) 9.74876 + 5.62845i 1.19100 + 0.687624i 0.958533 0.284980i \(-0.0919870\pi\)
0.232467 + 0.972604i \(0.425320\pi\)
\(68\) 0.430441i 0.0521986i
\(69\) −7.47970 + 12.9552i −0.900451 + 1.55963i
\(70\) 0 0
\(71\) 0.253677 0.439381i 0.0301059 0.0521450i −0.850580 0.525846i \(-0.823749\pi\)
0.880686 + 0.473701i \(0.157082\pi\)
\(72\) 21.7204 12.5403i 2.55977 1.47788i
\(73\) 3.55519i 0.416104i −0.978118 0.208052i \(-0.933288\pi\)
0.978118 0.208052i \(-0.0667123\pi\)
\(74\) 5.02059 4.61261i 0.583632 0.536204i
\(75\) 0 0
\(76\) 2.88417 + 4.99553i 0.330837 + 0.573026i
\(77\) −3.81642 2.20341i −0.434921 0.251102i
\(78\) −2.26817 1.30953i −0.256820 0.148275i
\(79\) −1.90707 + 3.30314i −0.214562 + 0.371633i −0.953137 0.302539i \(-0.902166\pi\)
0.738575 + 0.674172i \(0.235499\pi\)
\(80\) 0 0
\(81\) −16.5232 + 28.6191i −1.83591 + 3.17989i
\(82\) 6.26179i 0.691499i
\(83\) −10.0553 + 5.80544i −1.10371 + 0.637230i −0.937194 0.348808i \(-0.886587\pi\)
−0.166521 + 0.986038i \(0.553253\pi\)
\(84\) 3.04086 0.331785
\(85\) 0 0
\(86\) −2.25421 3.90440i −0.243077 0.421022i
\(87\) 8.81833 + 5.09126i 0.945424 + 0.545841i
\(88\) 11.0705i 1.18011i
\(89\) 7.19183 + 12.4566i 0.762333 + 1.32040i 0.941645 + 0.336607i \(0.109279\pi\)
−0.179312 + 0.983792i \(0.557387\pi\)
\(90\) 0 0
\(91\) −0.428221 0.741701i −0.0448898 0.0777514i
\(92\) 2.88475 + 1.66551i 0.300756 + 0.173641i
\(93\) −23.0955 13.3342i −2.39489 1.38269i
\(94\) −4.53700 7.85831i −0.467956 0.810523i
\(95\) 0 0
\(96\) −6.60368 11.4379i −0.673986 1.16738i
\(97\) 10.2579i 1.04154i 0.853698 + 0.520768i \(0.174354\pi\)
−0.853698 + 0.520768i \(0.825646\pi\)
\(98\) 5.34008 + 3.08309i 0.539429 + 0.311440i
\(99\) −14.6793 25.4253i −1.47533 2.55534i
\(100\) 0 0
\(101\) −5.50183 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(102\) −1.87640 + 1.08334i −0.185791 + 0.107267i
\(103\) 6.24169i 0.615012i 0.951546 + 0.307506i \(0.0994945\pi\)
−0.951546 + 0.307506i \(0.900506\pi\)
\(104\) −1.07574 + 1.86324i −0.105485 + 0.182706i
\(105\) 0 0
\(106\) 5.57034 9.64812i 0.541040 0.937108i
\(107\) −0.320549 0.185069i −0.0309886 0.0178913i 0.484426 0.874832i \(-0.339029\pi\)
−0.515414 + 0.856941i \(0.672362\pi\)
\(108\) 11.0907 + 6.40323i 1.06721 + 0.616151i
\(109\) 1.55541 + 2.69404i 0.148981 + 0.258043i 0.930851 0.365399i \(-0.119067\pi\)
−0.781870 + 0.623441i \(0.785734\pi\)
\(110\) 0 0
\(111\) 19.3840 + 6.08393i 1.83985 + 0.577461i
\(112\) 2.39870i 0.226656i
\(113\) 10.1259 5.84618i 0.952562 0.549962i 0.0586863 0.998276i \(-0.481309\pi\)
0.893876 + 0.448314i \(0.147975\pi\)
\(114\) 14.5178 25.1456i 1.35972 2.35510i
\(115\) 0 0
\(116\) 1.13367 1.96358i 0.105259 0.182314i
\(117\) 5.70570i 0.527492i
\(118\) −0.471123 0.272003i −0.0433704 0.0250399i
\(119\) −0.708514 −0.0649494
\(120\) 0 0
\(121\) 1.95880 0.178072
\(122\) 1.03058i 0.0933045i
\(123\) 16.1596 9.32976i 1.45706 0.841236i
\(124\) −2.96913 + 5.14269i −0.266636 + 0.461827i
\(125\) 0 0
\(126\) −5.59513 9.69105i −0.498454 0.863347i
\(127\) −15.3716 + 8.87482i −1.36401 + 0.787513i −0.990155 0.139973i \(-0.955298\pi\)
−0.373857 + 0.927486i \(0.621965\pi\)
\(128\) 1.25709 0.725783i 0.111112 0.0641508i
\(129\) 6.71731 11.6347i 0.591426 1.02438i
\(130\) 0 0
\(131\) 0.575328 + 0.996498i 0.0502667 + 0.0870644i 0.890064 0.455836i \(-0.150660\pi\)
−0.839797 + 0.542900i \(0.817326\pi\)
\(132\) −7.74402 + 4.47101i −0.674031 + 0.389152i
\(133\) 8.22273 4.74740i 0.713001 0.411651i
\(134\) −12.6172 −1.08996
\(135\) 0 0
\(136\) 0.889935 + 1.54141i 0.0763113 + 0.132175i
\(137\) 1.91138i 0.163301i −0.996661 0.0816503i \(-0.973981\pi\)
0.996661 0.0816503i \(-0.0260191\pi\)
\(138\) 16.7671i 1.42731i
\(139\) −1.89002 3.27360i −0.160309 0.277663i 0.774670 0.632365i \(-0.217916\pi\)
−0.934980 + 0.354702i \(0.884582\pi\)
\(140\) 0 0
\(141\) 13.5198 23.4170i 1.13857 1.97207i
\(142\) 0.568663i 0.0477211i
\(143\) 2.18106 + 1.25924i 0.182390 + 0.105303i
\(144\) −7.99020 + 13.8394i −0.665850 + 1.15329i
\(145\) 0 0
\(146\) 1.99240 + 3.45094i 0.164892 + 0.285602i
\(147\) 18.3746i 1.51551i
\(148\) 1.35471 4.31625i 0.111357 0.354794i
\(149\) 0.552510 0.0452633 0.0226317 0.999744i \(-0.492795\pi\)
0.0226317 + 0.999744i \(0.492795\pi\)
\(150\) 0 0
\(151\) −4.57907 + 7.93118i −0.372639 + 0.645430i −0.989971 0.141273i \(-0.954880\pi\)
0.617331 + 0.786703i \(0.288214\pi\)
\(152\) −20.6565 11.9260i −1.67546 0.967328i
\(153\) −4.08780 2.36009i −0.330479 0.190802i
\(154\) 4.93934 0.398023
\(155\) 0 0
\(156\) −1.73784 −0.139138
\(157\) 2.37433 1.37082i 0.189492 0.109403i −0.402253 0.915529i \(-0.631773\pi\)
0.591745 + 0.806125i \(0.298439\pi\)
\(158\) 4.27504i 0.340104i
\(159\) 33.1982 2.63279
\(160\) 0 0
\(161\) 2.74146 4.74835i 0.216057 0.374222i
\(162\) 37.0398i 2.91012i
\(163\) 18.2462 10.5345i 1.42915 0.825123i 0.432100 0.901826i \(-0.357773\pi\)
0.997054 + 0.0767030i \(0.0244393\pi\)
\(164\) −2.07746 3.59827i −0.162222 0.280978i
\(165\) 0 0
\(166\) 6.50697 11.2704i 0.505039 0.874753i
\(167\) −8.68532 5.01447i −0.672090 0.388031i 0.124778 0.992185i \(-0.460178\pi\)
−0.796868 + 0.604153i \(0.793511\pi\)
\(168\) −10.8894 + 6.28697i −0.840132 + 0.485050i
\(169\) −6.25527 10.8345i −0.481175 0.833419i
\(170\) 0 0
\(171\) 63.2552 4.83725
\(172\) −2.59071 1.49575i −0.197540 0.114050i
\(173\) −11.5209 + 6.65162i −0.875922 + 0.505714i −0.869312 0.494265i \(-0.835437\pi\)
−0.00661007 + 0.999978i \(0.502104\pi\)
\(174\) −11.4130 −0.865216
\(175\) 0 0
\(176\) −3.52684 6.10867i −0.265846 0.460458i
\(177\) 1.62109i 0.121848i
\(178\) −13.9619 8.06089i −1.04649 0.604190i
\(179\) −9.15637 −0.684379 −0.342190 0.939631i \(-0.611168\pi\)
−0.342190 + 0.939631i \(0.611168\pi\)
\(180\) 0 0
\(181\) −10.5528 + 18.2780i −0.784382 + 1.35859i 0.144986 + 0.989434i \(0.453686\pi\)
−0.929368 + 0.369156i \(0.879647\pi\)
\(182\) 0.831328 + 0.479968i 0.0616222 + 0.0355776i
\(183\) −2.65959 + 1.53552i −0.196603 + 0.113509i
\(184\) −13.7737 −1.01541
\(185\) 0 0
\(186\) 29.8910 2.19172
\(187\) 1.80434 1.04174i 0.131946 0.0761793i
\(188\) −5.21427 3.01046i −0.380290 0.219561i
\(189\) 10.5398 18.2555i 0.766661 1.32790i
\(190\) 0 0
\(191\) −7.51240 −0.543578 −0.271789 0.962357i \(-0.587615\pi\)
−0.271789 + 0.962357i \(0.587615\pi\)
\(192\) 24.1556 + 13.9462i 1.74328 + 1.00648i
\(193\) 16.5435i 1.19083i 0.803418 + 0.595415i \(0.203012\pi\)
−0.803418 + 0.595415i \(0.796988\pi\)
\(194\) −5.74876 9.95714i −0.412737 0.714881i
\(195\) 0 0
\(196\) 4.09149 0.292249
\(197\) −1.51274 + 0.873381i −0.107778 + 0.0622259i −0.552920 0.833234i \(-0.686487\pi\)
0.445142 + 0.895460i \(0.353153\pi\)
\(198\) 28.4977 + 16.4532i 2.02525 + 1.16928i
\(199\) 14.8223 1.05073 0.525364 0.850878i \(-0.323929\pi\)
0.525364 + 0.850878i \(0.323929\pi\)
\(200\) 0 0
\(201\) −18.7990 32.5608i −1.32598 2.29666i
\(202\) 5.34049 3.08334i 0.375756 0.216943i
\(203\) −3.23209 1.86605i −0.226848 0.130971i
\(204\) −0.718835 + 1.24506i −0.0503285 + 0.0871715i
\(205\) 0 0
\(206\) −3.49797 6.05866i −0.243715 0.422127i
\(207\) 31.6339 18.2639i 2.19871 1.26943i
\(208\) 1.37085i 0.0950512i
\(209\) −13.9603 + 24.1800i −0.965654 + 1.67256i
\(210\) 0 0
\(211\) −18.1359 −1.24853 −0.624264 0.781214i \(-0.714601\pi\)
−0.624264 + 0.781214i \(0.714601\pi\)
\(212\) 7.39225i 0.507702i
\(213\) −1.46753 + 0.847279i −0.100554 + 0.0580546i
\(214\) 0.414866 0.0283596
\(215\) 0 0
\(216\) −52.9547 −3.60311
\(217\) 8.46496 + 4.88725i 0.574639 + 0.331768i
\(218\) −3.01959 1.74336i −0.204513 0.118075i
\(219\) −5.93716 + 10.2835i −0.401196 + 0.694892i
\(220\) 0 0
\(221\) 0.404912 0.0272373
\(222\) −22.2252 + 4.95768i −1.49166 + 0.332738i
\(223\) 3.84578i 0.257532i −0.991675 0.128766i \(-0.958898\pi\)
0.991675 0.128766i \(-0.0411017\pi\)
\(224\) 2.42038 + 4.19222i 0.161718 + 0.280105i
\(225\) 0 0
\(226\) −6.55263 + 11.3495i −0.435874 + 0.754957i
\(227\) −11.9629 6.90676i −0.794003 0.458418i 0.0473671 0.998878i \(-0.484917\pi\)
−0.841370 + 0.540460i \(0.818250\pi\)
\(228\) 19.2662i 1.27594i
\(229\) 0.301499 0.522211i 0.0199236 0.0345087i −0.855892 0.517155i \(-0.826991\pi\)
0.875815 + 0.482646i \(0.160324\pi\)
\(230\) 0 0
\(231\) 7.35937 + 12.7468i 0.484211 + 0.838679i
\(232\) 9.37547i 0.615530i
\(233\) 23.3424i 1.52921i 0.644499 + 0.764605i \(0.277066\pi\)
−0.644499 + 0.764605i \(0.722934\pi\)
\(234\) 3.19759 + 5.53839i 0.209033 + 0.362056i
\(235\) 0 0
\(236\) −0.360968 −0.0234970
\(237\) 11.0325 6.36961i 0.716637 0.413750i
\(238\) 0.687737 0.397065i 0.0445794 0.0257379i
\(239\) −14.0468 24.3297i −0.908610 1.57376i −0.815997 0.578057i \(-0.803811\pi\)
−0.0926135 0.995702i \(-0.529522\pi\)
\(240\) 0 0
\(241\) −0.0182021 + 0.0315270i −0.00117250 + 0.00203084i −0.866611 0.498984i \(-0.833707\pi\)
0.865439 + 0.501015i \(0.167040\pi\)
\(242\) −1.90136 + 1.09775i −0.122224 + 0.0705659i
\(243\) 50.8498 29.3582i 3.26202 1.88333i
\(244\) 0.341914 + 0.592213i 0.0218888 + 0.0379125i
\(245\) 0 0
\(246\) −10.4572 + 18.1123i −0.666725 + 1.15480i
\(247\) −4.69925 + 2.71311i −0.299006 + 0.172631i
\(248\) 24.5547i 1.55922i
\(249\) 38.7803 2.45760
\(250\) 0 0
\(251\) −21.4173 −1.35185 −0.675924 0.736971i \(-0.736255\pi\)
−0.675924 + 0.736971i \(0.736255\pi\)
\(252\) −6.43036 3.71257i −0.405075 0.233870i
\(253\) 16.1232i 1.01366i
\(254\) 9.94726 17.2292i 0.624146 1.08105i
\(255\) 0 0
\(256\) 7.53756 13.0554i 0.471097 0.815965i
\(257\) 0.699538 0.403879i 0.0436360 0.0251933i −0.478023 0.878347i \(-0.658647\pi\)
0.521659 + 0.853154i \(0.325313\pi\)
\(258\) 15.0581i 0.937474i
\(259\) −7.10464 2.22988i −0.441461 0.138558i
\(260\) 0 0
\(261\) −12.4318 21.5325i −0.769508 1.33283i
\(262\) −1.11691 0.644851i −0.0690032 0.0398390i
\(263\) −2.11194 1.21933i −0.130228 0.0751871i 0.433471 0.901168i \(-0.357289\pi\)
−0.563699 + 0.825981i \(0.690622\pi\)
\(264\) 18.4876 32.0215i 1.13783 1.97079i
\(265\) 0 0
\(266\) −5.32107 + 9.21637i −0.326256 + 0.565092i
\(267\) 48.0414i 2.94008i
\(268\) −7.25032 + 4.18598i −0.442884 + 0.255699i
\(269\) −12.1567 −0.741208 −0.370604 0.928791i \(-0.620849\pi\)
−0.370604 + 0.928791i \(0.620849\pi\)
\(270\) 0 0
\(271\) 15.6514 + 27.1090i 0.950755 + 1.64676i 0.743797 + 0.668405i \(0.233023\pi\)
0.206957 + 0.978350i \(0.433644\pi\)
\(272\) −0.982132 0.567034i −0.0595505 0.0343815i
\(273\) 2.86051i 0.173126i
\(274\) 1.07118 + 1.85533i 0.0647122 + 0.112085i
\(275\) 0 0
\(276\) −5.56279 9.63503i −0.334841 0.579961i
\(277\) 20.0847 + 11.5959i 1.20678 + 0.696732i 0.962053 0.272861i \(-0.0879700\pi\)
0.244722 + 0.969593i \(0.421303\pi\)
\(278\) 3.66919 + 2.11841i 0.220063 + 0.127053i
\(279\) 32.5593 + 56.3944i 1.94927 + 3.37624i
\(280\) 0 0
\(281\) 10.7114 + 18.5527i 0.638988 + 1.10676i 0.985655 + 0.168771i \(0.0539799\pi\)
−0.346668 + 0.937988i \(0.612687\pi\)
\(282\) 30.3071i 1.80476i
\(283\) 11.9647 + 6.90784i 0.711229 + 0.410628i 0.811516 0.584330i \(-0.198643\pi\)
−0.100287 + 0.994959i \(0.531976\pi\)
\(284\) 0.188664 + 0.326776i 0.0111952 + 0.0193906i
\(285\) 0 0
\(286\) −2.82281 −0.166916
\(287\) −5.92282 + 3.41954i −0.349613 + 0.201849i
\(288\) 32.2496i 1.90033i
\(289\) −8.33251 + 14.4323i −0.490148 + 0.848961i
\(290\) 0 0
\(291\) 17.1307 29.6713i 1.00422 1.73936i
\(292\) 2.28982 + 1.32203i 0.134002 + 0.0773659i
\(293\) 6.15518 + 3.55370i 0.359589 + 0.207609i 0.668901 0.743352i \(-0.266765\pi\)
−0.309311 + 0.950961i \(0.600098\pi\)
\(294\) −10.2975 17.8358i −0.600563 1.04021i
\(295\) 0 0
\(296\) 4.07261 + 18.2574i 0.236715 + 1.06119i
\(297\) 61.9874i 3.59687i
\(298\) −0.536308 + 0.309637i −0.0310675 + 0.0179368i
\(299\) −1.56673 + 2.71366i −0.0906064 + 0.156935i
\(300\) 0 0
\(301\) −2.46203 + 4.26436i −0.141909 + 0.245793i
\(302\) 10.2648i 0.590673i
\(303\) 15.9141 + 9.18804i 0.914244 + 0.527839i
\(304\) 15.1976 0.871645
\(305\) 0 0
\(306\) 5.29057 0.302442
\(307\) 23.6385i 1.34912i 0.738220 + 0.674560i \(0.235667\pi\)
−0.738220 + 0.674560i \(0.764333\pi\)
\(308\) 2.83834 1.63871i 0.161729 0.0933744i
\(309\) 10.4236 18.0542i 0.592978 1.02707i
\(310\) 0 0
\(311\) 9.68043 + 16.7670i 0.548927 + 0.950769i 0.998348 + 0.0574494i \(0.0182968\pi\)
−0.449422 + 0.893320i \(0.648370\pi\)
\(312\) 6.22321 3.59297i 0.352320 0.203412i
\(313\) 5.29181 3.05523i 0.299111 0.172692i −0.342932 0.939360i \(-0.611420\pi\)
0.642043 + 0.766668i \(0.278087\pi\)
\(314\) −1.53647 + 2.66124i −0.0867079 + 0.150183i
\(315\) 0 0
\(316\) −1.41832 2.45661i −0.0797869 0.138195i
\(317\) 28.7872 16.6203i 1.61685 0.933490i 0.629125 0.777304i \(-0.283414\pi\)
0.987728 0.156186i \(-0.0499198\pi\)
\(318\) −32.2247 + 18.6049i −1.80707 + 1.04331i
\(319\) 10.9747 0.614465
\(320\) 0 0
\(321\) 0.618129 + 1.07063i 0.0345006 + 0.0597568i
\(322\) 6.14547i 0.342474i
\(323\) 4.48898i 0.249774i
\(324\) −12.2886 21.2845i −0.682701 1.18247i
\(325\) 0 0
\(326\) −11.8074 + 20.4511i −0.653954 + 1.13268i
\(327\) 10.3901i 0.574574i
\(328\) 14.8788 + 8.59029i 0.821545 + 0.474319i
\(329\) −4.95528 + 8.58279i −0.273193 + 0.473185i
\(330\) 0 0
\(331\) −0.693675 1.20148i −0.0381278 0.0660394i 0.846332 0.532656i \(-0.178806\pi\)
−0.884460 + 0.466617i \(0.845473\pi\)
\(332\) 8.63522i 0.473919i
\(333\) −33.5627 36.5313i −1.83922 2.00190i
\(334\) 11.2408 0.615071
\(335\) 0 0
\(336\) 4.00583 6.93830i 0.218536 0.378515i
\(337\) 13.2587 + 7.65489i 0.722245 + 0.416989i 0.815579 0.578646i \(-0.196419\pi\)
−0.0933332 + 0.995635i \(0.529752\pi\)
\(338\) 12.1437 + 7.01116i 0.660529 + 0.381357i
\(339\) −39.0524 −2.12103
\(340\) 0 0
\(341\) −28.7431 −1.55653
\(342\) −61.4003 + 35.4495i −3.32015 + 1.91689i
\(343\) 15.3039i 0.826332i
\(344\) 12.3698 0.666935
\(345\) 0 0
\(346\) 7.45541 12.9131i 0.400805 0.694215i
\(347\) 27.0099i 1.44997i −0.688767 0.724983i \(-0.741848\pi\)
0.688767 0.724983i \(-0.258152\pi\)
\(348\) −6.55835 + 3.78646i −0.351564 + 0.202976i
\(349\) −10.1591 17.5961i −0.543806 0.941900i −0.998681 0.0513447i \(-0.983649\pi\)
0.454875 0.890555i \(-0.349684\pi\)
\(350\) 0 0
\(351\) −6.02347 + 10.4330i −0.321509 + 0.556870i
\(352\) −12.3277 7.11743i −0.657071 0.379360i
\(353\) −3.87131 + 2.23510i −0.206049 + 0.118962i −0.599474 0.800394i \(-0.704623\pi\)
0.393425 + 0.919357i \(0.371290\pi\)
\(354\) 0.908489 + 1.57355i 0.0482856 + 0.0836332i
\(355\) 0 0
\(356\) −10.6974 −0.566960
\(357\) 2.04939 + 1.18322i 0.108465 + 0.0626224i
\(358\) 8.88786 5.13141i 0.469738 0.271204i
\(359\) 31.2742 1.65059 0.825295 0.564702i \(-0.191009\pi\)
0.825295 + 0.564702i \(0.191009\pi\)
\(360\) 0 0
\(361\) −20.5784 35.6429i −1.08308 1.87594i
\(362\) 23.6560i 1.24333i
\(363\) −5.66585 3.27118i −0.297380 0.171693i
\(364\) 0.636952 0.0333853
\(365\) 0 0
\(366\) 1.72107 2.98098i 0.0899617 0.155818i
\(367\) −13.9660 8.06325i −0.729017 0.420898i 0.0890456 0.996028i \(-0.471618\pi\)
−0.818062 + 0.575130i \(0.804952\pi\)
\(368\) 7.60034 4.38806i 0.396195 0.228743i
\(369\) −45.5626 −2.37189
\(370\) 0 0
\(371\) −12.1678 −0.631720
\(372\) 17.1765 9.91688i 0.890562 0.514166i
\(373\) 8.86838 + 5.12016i 0.459187 + 0.265112i 0.711703 0.702481i \(-0.247924\pi\)
−0.252515 + 0.967593i \(0.581258\pi\)
\(374\) −1.16762 + 2.02238i −0.0603762 + 0.104575i
\(375\) 0 0
\(376\) 24.8965 1.28394
\(377\) 1.84712 + 1.06644i 0.0951317 + 0.0549243i
\(378\) 23.6270i 1.21524i
\(379\) 8.28107 + 14.3432i 0.425370 + 0.736763i 0.996455 0.0841283i \(-0.0268106\pi\)
−0.571085 + 0.820891i \(0.693477\pi\)
\(380\) 0 0
\(381\) 59.2837 3.03720
\(382\) 7.29211 4.21010i 0.373097 0.215408i
\(383\) −15.8495 9.15069i −0.809869 0.467578i 0.0370411 0.999314i \(-0.488207\pi\)
−0.846911 + 0.531735i \(0.821540\pi\)
\(384\) −4.84822 −0.247410
\(385\) 0 0
\(386\) −9.27133 16.0584i −0.471898 0.817352i
\(387\) −28.4095 + 16.4023i −1.44414 + 0.833773i
\(388\) −6.60692 3.81451i −0.335416 0.193652i
\(389\) −7.33608 + 12.7065i −0.371954 + 0.644243i −0.989866 0.142004i \(-0.954645\pi\)
0.617912 + 0.786247i \(0.287979\pi\)
\(390\) 0 0
\(391\) 1.29612 + 2.24494i 0.0655474 + 0.113532i
\(392\) −14.6517 + 8.45914i −0.740021 + 0.427251i
\(393\) 3.84319i 0.193863i
\(394\) 0.978921 1.69554i 0.0493173 0.0854201i
\(395\) 0 0
\(396\) 21.8345 1.09723
\(397\) 2.00229i 0.100492i 0.998737 + 0.0502460i \(0.0160005\pi\)
−0.998737 + 0.0502460i \(0.983999\pi\)
\(398\) −14.3877 + 8.30673i −0.721189 + 0.416379i
\(399\) −31.7125 −1.58761
\(400\) 0 0
\(401\) −22.8854 −1.14284 −0.571422 0.820656i \(-0.693608\pi\)
−0.571422 + 0.820656i \(0.693608\pi\)
\(402\) 36.4954 + 21.0706i 1.82023 + 1.05091i
\(403\) −4.83768 2.79304i −0.240982 0.139131i
\(404\) 2.04590 3.54361i 0.101788 0.176301i
\(405\) 0 0
\(406\) 4.18308 0.207603
\(407\) 21.3717 4.76729i 1.05935 0.236306i
\(408\) 5.94476i 0.294309i
\(409\) 4.55814 + 7.89494i 0.225386 + 0.390380i 0.956435 0.291945i \(-0.0943024\pi\)
−0.731049 + 0.682325i \(0.760969\pi\)
\(410\) 0 0
\(411\) −3.19200 + 5.52871i −0.157450 + 0.272711i
\(412\) −4.02014 2.32103i −0.198058 0.114349i
\(413\) 0.594160i 0.0292367i
\(414\) −20.4709 + 35.4566i −1.00609 + 1.74259i
\(415\) 0 0
\(416\) −1.38324 2.39583i −0.0678187 0.117465i
\(417\) 12.6253i 0.618263i
\(418\) 31.2945i 1.53067i
\(419\) −4.25529 7.37039i −0.207885 0.360067i 0.743163 0.669110i \(-0.233325\pi\)
−0.951048 + 0.309043i \(0.899991\pi\)
\(420\) 0 0
\(421\) −8.83588 −0.430635 −0.215317 0.976544i \(-0.569079\pi\)
−0.215317 + 0.976544i \(0.569079\pi\)
\(422\) 17.6041 10.1637i 0.856953 0.494762i
\(423\) −57.1794 + 33.0125i −2.78016 + 1.60512i
\(424\) 15.2834 + 26.4717i 0.742230 + 1.28558i
\(425\) 0 0
\(426\) 0.949665 1.64487i 0.0460114 0.0796941i
\(427\) 0.974793 0.562797i 0.0471735 0.0272357i
\(428\) 0.238398 0.137639i 0.0115234 0.00665304i
\(429\) −4.20585 7.28474i −0.203060 0.351711i
\(430\) 0 0
\(431\) −0.755326 + 1.30826i −0.0363828 + 0.0630168i −0.883643 0.468161i \(-0.844917\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(432\) 29.2204 16.8704i 1.40587 0.811677i
\(433\) 6.85824i 0.329586i 0.986328 + 0.164793i \(0.0526956\pi\)
−0.986328 + 0.164793i \(0.947304\pi\)
\(434\) −10.9556 −0.525888
\(435\) 0 0
\(436\) −2.31357 −0.110800
\(437\) −30.0844 17.3693i −1.43913 0.830884i
\(438\) 13.3092i 0.635938i
\(439\) 9.56891 16.5738i 0.456699 0.791026i −0.542085 0.840324i \(-0.682365\pi\)
0.998784 + 0.0492976i \(0.0156983\pi\)
\(440\) 0 0
\(441\) 22.4335 38.8559i 1.06826 1.85028i
\(442\) −0.393039 + 0.226921i −0.0186949 + 0.0107935i
\(443\) 2.25690i 0.107229i −0.998562 0.0536144i \(-0.982926\pi\)
0.998562 0.0536144i \(-0.0170742\pi\)
\(444\) −11.1267 + 10.2225i −0.528048 + 0.485138i
\(445\) 0 0
\(446\) 2.15525 + 3.73300i 0.102054 + 0.176763i
\(447\) −1.59814 0.922689i −0.0755896 0.0436417i
\(448\) −8.85349 5.11156i −0.418288 0.241499i
\(449\) −12.1889 + 21.1119i −0.575232 + 0.996330i 0.420785 + 0.907160i \(0.361755\pi\)
−0.996016 + 0.0891698i \(0.971579\pi\)
\(450\) 0 0
\(451\) 10.0556 17.4168i 0.473499 0.820124i
\(452\) 8.69581i 0.409017i
\(453\) 26.4901 15.2941i 1.24461 0.718578i
\(454\) 15.4827 0.726641
\(455\) 0 0
\(456\) 39.8328 + 68.9925i 1.86534 + 3.23087i
\(457\) −12.1699 7.02629i −0.569283 0.328676i 0.187580 0.982249i \(-0.439936\pi\)
−0.756863 + 0.653574i \(0.773269\pi\)
\(458\) 0.675864i 0.0315810i
\(459\) 4.98307 + 8.63092i 0.232590 + 0.402857i
\(460\) 0 0
\(461\) 13.2088 + 22.8783i 0.615195 + 1.06555i 0.990350 + 0.138587i \(0.0442559\pi\)
−0.375156 + 0.926962i \(0.622411\pi\)
\(462\) −14.2871 8.24868i −0.664698 0.383763i
\(463\) −21.7739 12.5712i −1.01192 0.584233i −0.100167 0.994971i \(-0.531938\pi\)
−0.911753 + 0.410738i \(0.865271\pi\)
\(464\) −2.98685 5.17338i −0.138661 0.240168i
\(465\) 0 0
\(466\) −13.0815 22.6579i −0.605991 1.04961i
\(467\) 14.0309i 0.649271i 0.945839 + 0.324635i \(0.105242\pi\)
−0.945839 + 0.324635i \(0.894758\pi\)
\(468\) 3.67492 + 2.12172i 0.169873 + 0.0980764i
\(469\) 6.89019 + 11.9342i 0.318160 + 0.551069i
\(470\) 0 0
\(471\) −9.15705 −0.421935
\(472\) 1.29263 0.746300i 0.0594981 0.0343512i
\(473\) 14.4798i 0.665781i
\(474\) −7.13931 + 12.3656i −0.327919 + 0.567973i
\(475\) 0 0
\(476\) 0.263467 0.456339i 0.0120760 0.0209162i
\(477\) −70.2025 40.5314i −3.21435 1.85581i
\(478\) 27.2697 + 15.7442i 1.24729 + 0.720122i
\(479\) −3.34106 5.78689i −0.152657 0.264410i 0.779546 0.626344i \(-0.215450\pi\)
−0.932203 + 0.361935i \(0.882116\pi\)
\(480\) 0 0
\(481\) 4.06026 + 1.27437i 0.185132 + 0.0581061i
\(482\) 0.0408034i 0.00185854i
\(483\) −15.8594 + 9.15645i −0.721630 + 0.416633i
\(484\) −0.728396 + 1.26162i −0.0331089 + 0.0573463i
\(485\) 0 0
\(486\) −32.9058 + 56.9945i −1.49264 + 2.58532i
\(487\) 7.26544i 0.329229i 0.986358 + 0.164614i \(0.0526380\pi\)
−0.986358 + 0.164614i \(0.947362\pi\)
\(488\) −2.44880 1.41381i −0.110852 0.0640003i
\(489\) −70.3701 −3.18224
\(490\) 0 0
\(491\) 0.446623 0.0201558 0.0100779 0.999949i \(-0.496792\pi\)
0.0100779 + 0.999949i \(0.496792\pi\)
\(492\) 13.8774i 0.625642i
\(493\) 1.52808 0.882237i 0.0688212 0.0397340i
\(494\) 3.04097 5.26711i 0.136820 0.236978i
\(495\) 0 0
\(496\) 7.82267 + 13.5493i 0.351248 + 0.608380i
\(497\) 0.537879 0.310545i 0.0241272 0.0139298i
\(498\) −37.6431 + 21.7332i −1.68683 + 0.973890i
\(499\) −5.30225 + 9.18376i −0.237361 + 0.411122i −0.959956 0.280150i \(-0.909616\pi\)
0.722595 + 0.691272i \(0.242949\pi\)
\(500\) 0 0
\(501\) 16.7483 + 29.0089i 0.748259 + 1.29602i
\(502\) 20.7893 12.0027i 0.927870 0.535706i
\(503\) 12.0980 6.98478i 0.539423 0.311436i −0.205422 0.978673i \(-0.565857\pi\)
0.744845 + 0.667237i \(0.232523\pi\)
\(504\) 30.7029 1.36762
\(505\) 0 0
\(506\) −9.03576 15.6504i −0.401689 0.695745i
\(507\) 41.7851i 1.85574i
\(508\) 13.2007i 0.585687i
\(509\) 19.8167 + 34.3235i 0.878360 + 1.52136i 0.853140 + 0.521682i \(0.174695\pi\)
0.0252198 + 0.999682i \(0.491971\pi\)
\(510\) 0 0
\(511\) 2.17609 3.76909i 0.0962643 0.166735i
\(512\) 19.7999i 0.875041i
\(513\) −115.663 66.7781i −5.10665 2.94832i
\(514\) −0.452683 + 0.784070i −0.0199670 + 0.0345839i
\(515\) 0 0
\(516\) 4.99578 + 8.65295i 0.219927 + 0.380925i
\(517\) 29.1432i 1.28172i
\(518\) 8.14597 1.81709i 0.357913 0.0798383i
\(519\) 44.4328 1.95038
\(520\) 0 0
\(521\) 15.7148 27.2188i 0.688477 1.19248i −0.283854 0.958868i \(-0.591613\pi\)
0.972331 0.233609i \(-0.0750537\pi\)
\(522\) 24.1345 + 13.9340i 1.05634 + 0.609877i
\(523\) −12.4270 7.17472i −0.543394 0.313729i 0.203059 0.979166i \(-0.434912\pi\)
−0.746453 + 0.665438i \(0.768245\pi\)
\(524\) −0.855764 −0.0373842
\(525\) 0 0
\(526\) 2.73335 0.119180
\(527\) −4.00210 + 2.31061i −0.174334 + 0.100652i
\(528\) 23.5593i 1.02529i
\(529\) 2.93969 0.127813
\(530\) 0 0
\(531\) −1.97917 + 3.42803i −0.0858888 + 0.148764i
\(532\) 7.06145i 0.306153i
\(533\) 3.38486 1.95425i 0.146615 0.0846480i
\(534\) 26.9233 + 46.6326i 1.16509 + 2.01799i
\(535\) 0 0
\(536\) 17.3090 29.9800i 0.747634 1.29494i
\(537\) 26.4850 + 15.2911i 1.14291 + 0.659860i
\(538\) 11.8002 6.81287i 0.508744 0.293723i
\(539\) 9.90206 + 17.1509i 0.426512 + 0.738740i
\(540\) 0 0
\(541\) 14.4219 0.620046 0.310023 0.950729i \(-0.399663\pi\)
0.310023 + 0.950729i \(0.399663\pi\)
\(542\) −30.3849 17.5427i −1.30514 0.753524i
\(543\) 61.0482 35.2462i 2.61983 1.51256i
\(544\) −2.28863 −0.0981243
\(545\) 0 0
\(546\) −1.60309 2.77663i −0.0686059 0.118829i
\(547\) 4.85582i 0.207620i −0.994597 0.103810i \(-0.966897\pi\)
0.994597 0.103810i \(-0.0331034\pi\)
\(548\) 1.23108 + 0.710765i 0.0525892 + 0.0303624i
\(549\) 7.49881 0.320041
\(550\) 0 0
\(551\) −11.8229 + 20.4778i −0.503671 + 0.872383i
\(552\) 39.8408 + 23.0021i 1.69574 + 0.979034i
\(553\) −4.04362 + 2.33459i −0.171952 + 0.0992767i
\(554\) −25.9944 −1.10439
\(555\) 0 0
\(556\) 2.81128 0.119225
\(557\) 4.11206 2.37410i 0.174233 0.100594i −0.410347 0.911929i \(-0.634592\pi\)
0.584581 + 0.811336i \(0.301259\pi\)
\(558\) −63.2091 36.4938i −2.67585 1.54490i
\(559\) 1.40704 2.43706i 0.0595113 0.103077i
\(560\) 0 0
\(561\) −6.95878 −0.293800
\(562\) −20.7946 12.0057i −0.877166 0.506432i
\(563\) 12.4349i 0.524069i 0.965058 + 0.262035i \(0.0843935\pi\)
−0.965058 + 0.262035i \(0.915607\pi\)
\(564\) 10.0549 + 17.4156i 0.423389 + 0.733331i
\(565\) 0 0
\(566\) −15.4852 −0.650890
\(567\) −35.0347 + 20.2273i −1.47132 + 0.849466i
\(568\) −1.35122 0.780125i −0.0566958 0.0327333i
\(569\) −11.9189 −0.499666 −0.249833 0.968289i \(-0.580376\pi\)
−0.249833 + 0.968289i \(0.580376\pi\)
\(570\) 0 0
\(571\) 13.7047 + 23.7372i 0.573522 + 0.993369i 0.996201 + 0.0870894i \(0.0277566\pi\)
−0.422679 + 0.906280i \(0.638910\pi\)
\(572\) −1.62210 + 0.936518i −0.0678232 + 0.0391578i
\(573\) 21.7298 + 12.5457i 0.907774 + 0.524104i
\(574\) 3.83276 6.63853i 0.159976 0.277087i
\(575\) 0 0
\(576\) −34.0537 58.9828i −1.41890 2.45761i
\(577\) 5.61111 3.23957i 0.233593 0.134865i −0.378635 0.925546i \(-0.623607\pi\)
0.612229 + 0.790681i \(0.290273\pi\)
\(578\) 18.6788i 0.776937i
\(579\) 27.6277 47.8525i 1.14817 1.98868i
\(580\) 0 0
\(581\) −14.2137 −0.589685
\(582\) 38.4016i 1.59180i
\(583\) 30.9871 17.8904i 1.28336 0.740946i
\(584\) −10.9332 −0.452418
\(585\) 0 0
\(586\) −7.96625 −0.329083
\(587\) 33.6563 + 19.4315i 1.38914 + 0.802022i 0.993219 0.116261i \(-0.0370910\pi\)
0.395924 + 0.918283i \(0.370424\pi\)
\(588\) −11.8347 6.83277i −0.488055 0.281779i
\(589\) 30.9645 53.6321i 1.27587 2.20987i
\(590\) 0 0
\(591\) 5.83418 0.239986
\(592\) −8.06374 8.77698i −0.331418 0.360731i
\(593\) 35.6076i 1.46223i 0.682254 + 0.731115i \(0.261000\pi\)
−0.682254 + 0.731115i \(0.739000\pi\)
\(594\) −34.7390 60.1697i −1.42536 2.46879i
\(595\) 0 0
\(596\) −0.205456 + 0.355859i −0.00841579 + 0.0145766i
\(597\) −42.8739 24.7532i −1.75471 1.01308i
\(598\) 3.51211i 0.143621i
\(599\) 8.46167 14.6560i 0.345735 0.598830i −0.639752 0.768581i \(-0.720963\pi\)
0.985487 + 0.169751i \(0.0542964\pi\)
\(600\) 0 0
\(601\) 6.62845 + 11.4808i 0.270380 + 0.468312i 0.968959 0.247221i \(-0.0795173\pi\)
−0.698579 + 0.715533i \(0.746184\pi\)
\(602\) 5.51908i 0.224941i
\(603\) 91.8062i 3.73864i
\(604\) −3.40553 5.89856i −0.138569 0.240009i
\(605\) 0 0
\(606\) −20.5966 −0.836681
\(607\) 4.98980 2.88086i 0.202530 0.116931i −0.395305 0.918550i \(-0.629361\pi\)
0.597835 + 0.801619i \(0.296028\pi\)
\(608\) 26.5610 15.3350i 1.07719 0.621916i
\(609\) 6.23259 + 10.7952i 0.252557 + 0.437442i
\(610\) 0 0
\(611\) 2.83192 4.90502i 0.114567 0.198436i
\(612\) 3.04017 1.75524i 0.122892 0.0709515i
\(613\) −28.9125 + 16.6927i −1.16777 + 0.674210i −0.953153 0.302489i \(-0.902182\pi\)
−0.214613 + 0.976699i \(0.568849\pi\)
\(614\) −13.2475 22.9453i −0.534625 0.925998i
\(615\) 0 0
\(616\) −6.77608 + 11.7365i −0.273016 + 0.472877i
\(617\) 29.1637 16.8377i 1.17409 0.677860i 0.219448 0.975624i \(-0.429574\pi\)
0.954639 + 0.297765i \(0.0962410\pi\)
\(618\) 23.3664i 0.939934i
\(619\) −28.0530 −1.12755 −0.563774 0.825929i \(-0.690651\pi\)
−0.563774 + 0.825929i \(0.690651\pi\)
\(620\) 0 0
\(621\) −77.1241 −3.09488
\(622\) −18.7931 10.8502i −0.753535 0.435054i
\(623\) 17.6081i 0.705454i
\(624\) −2.28931 + 3.96520i −0.0916458 + 0.158735i
\(625\) 0 0
\(626\) −3.42442 + 5.93127i −0.136867 + 0.237061i
\(627\) 80.7609 46.6273i 3.22528 1.86212i
\(628\) 2.03900i 0.0813652i
\(629\) 2.59249 2.38182i 0.103369 0.0949692i
\(630\) 0 0
\(631\) −15.8300 27.4183i −0.630181 1.09151i −0.987514 0.157528i \(-0.949647\pi\)
0.357334 0.933977i \(-0.383686\pi\)
\(632\) 10.1581 + 5.86476i 0.404066 + 0.233288i
\(633\) 52.4585 + 30.2869i 2.08504 + 1.20380i
\(634\) −18.6287 + 32.2659i −0.739841 + 1.28144i
\(635\) 0 0
\(636\) −12.3450 + 21.3822i −0.489512 + 0.847860i
\(637\) 3.84883i 0.152496i
\(638\) −10.6529 + 6.15044i −0.421751 + 0.243498i
\(639\) 4.13775 0.163687
\(640\) 0 0
\(641\) 1.04348 + 1.80736i 0.0412149 + 0.0713864i 0.885897 0.463882i \(-0.153544\pi\)
−0.844682 + 0.535268i \(0.820210\pi\)
\(642\) −1.20001 0.692824i −0.0473605 0.0273436i
\(643\) 1.07099i 0.0422359i 0.999777 + 0.0211179i \(0.00672255\pi\)
−0.999777 + 0.0211179i \(0.993277\pi\)
\(644\) 2.03887 + 3.53143i 0.0803428 + 0.139158i
\(645\) 0 0
\(646\) −2.51572 4.35735i −0.0989795 0.171438i
\(647\) −30.2179 17.4463i −1.18799 0.685886i −0.230141 0.973157i \(-0.573919\pi\)
−0.957849 + 0.287271i \(0.907252\pi\)
\(648\) 88.0113 + 50.8133i 3.45741 + 1.99614i
\(649\) −0.873600 1.51312i −0.0342918 0.0593951i
\(650\) 0 0
\(651\) −16.3234 28.2729i −0.639764 1.10810i
\(652\) 15.6693i 0.613658i
\(653\) 1.70043 + 0.981744i 0.0665430 + 0.0384186i 0.532902 0.846177i \(-0.321101\pi\)
−0.466359 + 0.884595i \(0.654435\pi\)
\(654\) 5.82282 + 10.0854i 0.227690 + 0.394371i
\(655\) 0 0
\(656\) −10.9468 −0.427402
\(657\) 25.1100 14.4973i 0.979635 0.565593i
\(658\) 11.1081i 0.433041i
\(659\) 9.77811 16.9362i 0.380901 0.659740i −0.610290 0.792178i \(-0.708947\pi\)
0.991191 + 0.132438i \(0.0422805\pi\)
\(660\) 0 0
\(661\) −0.987098 + 1.70970i −0.0383937 + 0.0664998i −0.884584 0.466381i \(-0.845557\pi\)
0.846190 + 0.532881i \(0.178891\pi\)
\(662\) 1.34667 + 0.777499i 0.0523397 + 0.0302184i
\(663\) −1.17122 0.676202i −0.0454863 0.0262615i
\(664\) 17.8533 + 30.9228i 0.692842 + 1.20004i
\(665\) 0 0
\(666\) 53.0513 + 16.6508i 2.05570 + 0.645207i
\(667\) 13.6546i 0.528708i
\(668\) 6.45942 3.72935i 0.249923 0.144293i
\(669\) −6.42244 + 11.1240i −0.248306 + 0.430078i
\(670\) 0 0
\(671\) −1.65497 + 2.86650i −0.0638896 + 0.110660i
\(672\) 16.1681i 0.623698i
\(673\) −17.8966 10.3326i −0.689861 0.398292i 0.113699 0.993515i \(-0.463730\pi\)
−0.803560 + 0.595224i \(0.797063\pi\)
\(674\) −17.1598 −0.660971
\(675\) 0 0
\(676\) 9.30432 0.357858
\(677\) 10.7458i 0.412994i 0.978447 + 0.206497i \(0.0662064\pi\)
−0.978447 + 0.206497i \(0.933794\pi\)
\(678\) 37.9072 21.8857i 1.45582 0.840517i
\(679\) −6.27875 + 10.8751i −0.240956 + 0.417349i
\(680\) 0 0
\(681\) 23.0685 + 39.9559i 0.883988 + 1.53111i
\(682\) 27.9002 16.1082i 1.06836 0.616815i
\(683\) 10.4376 6.02617i 0.399385 0.230585i −0.286834 0.957980i \(-0.592603\pi\)
0.686218 + 0.727396i \(0.259269\pi\)
\(684\) −23.5220 + 40.7413i −0.899386 + 1.55778i
\(685\) 0 0
\(686\) 8.57660 + 14.8551i 0.327456 + 0.567171i
\(687\) −1.74418 + 1.00700i −0.0665447 + 0.0384196i
\(688\) −6.82565 + 3.94079i −0.260226 + 0.150241i
\(689\) 6.95383 0.264920
\(690\) 0 0
\(691\) −5.15674 8.93174i −0.196172 0.339779i 0.751112 0.660175i \(-0.229518\pi\)
−0.947284 + 0.320395i \(0.896184\pi\)
\(692\) 9.89386i 0.376108i
\(693\) 35.9401i 1.36525i
\(694\) 15.1369 + 26.2178i 0.574587 + 0.995215i
\(695\) 0 0
\(696\) 15.6570 27.1187i 0.593477 1.02793i
\(697\) 3.23341i 0.122474i
\(698\) 19.7225 + 11.3868i 0.746506 + 0.430996i
\(699\) 38.9817 67.5183i 1.47442 2.55378i
\(700\) 0 0
\(701\) −17.7577 30.7573i −0.670699 1.16169i −0.977706 0.209978i \(-0.932661\pi\)
0.307007 0.951707i \(-0.400673\pi\)
\(702\) 13.5027i 0.509626i
\(703\) −14.1280 + 45.0134i −0.532848 + 1.69771i
\(704\) 30.0624 1.13302
\(705\) 0 0
\(706\) 2.50519 4.33912i 0.0942841 0.163305i
\(707\) −5.83285 3.36760i −0.219367 0.126652i
\(708\) 1.04411 + 0.602815i 0.0392399 + 0.0226552i
\(709\) 32.6695 1.22693 0.613465 0.789722i \(-0.289775\pi\)
0.613465 + 0.789722i \(0.289775\pi\)
\(710\) 0 0
\(711\) −31.1065 −1.16658
\(712\) 38.3075 22.1168i 1.43563 0.828863i
\(713\) 35.7619i 1.33929i
\(714\) −2.65239 −0.0992632
\(715\) 0 0
\(716\) 3.40488 5.89742i 0.127246 0.220397i
\(717\) 93.8323i 3.50423i
\(718\) −30.3571 + 17.5267i −1.13292 + 0.654090i
\(719\) 16.3243 + 28.2746i 0.608794 + 1.05446i 0.991439 + 0.130567i \(0.0416799\pi\)
−0.382645 + 0.923895i \(0.624987\pi\)
\(720\) 0 0
\(721\) −3.82046 + 6.61723i −0.142281 + 0.246438i
\(722\) 39.9500 + 23.0651i 1.48678 + 0.858395i
\(723\) 0.105300 0.0607951i 0.00391615 0.00226099i
\(724\) −7.84829 13.5936i −0.291679 0.505204i
\(725\) 0 0
\(726\) 7.33294 0.272151
\(727\) −12.2819 7.09098i −0.455512 0.262990i 0.254643 0.967035i \(-0.418042\pi\)
−0.710155 + 0.704045i \(0.751375\pi\)
\(728\) −2.28093 + 1.31690i −0.0845369 + 0.0488074i
\(729\) −96.9728 −3.59158
\(730\) 0 0
\(731\) −1.16401 2.01612i −0.0430523 0.0745688i
\(732\) 2.28398i 0.0844184i
\(733\) −16.8471 9.72667i −0.622261 0.359263i 0.155488 0.987838i \(-0.450305\pi\)
−0.777749 + 0.628575i \(0.783638\pi\)
\(734\) 18.0752 0.667168
\(735\) 0 0
\(736\) 8.85542 15.3380i 0.326415 0.565368i
\(737\) −35.0939 20.2615i −1.29270 0.746341i
\(738\) 44.2265 25.5342i 1.62800 0.939926i
\(739\) 52.1774 1.91938 0.959689 0.281063i \(-0.0906871\pi\)
0.959689 + 0.281063i \(0.0906871\pi\)
\(740\) 0 0
\(741\) 18.1236 0.665786
\(742\) 11.8110 6.81907i 0.433594 0.250336i
\(743\) −11.5764 6.68363i −0.424696 0.245198i 0.272388 0.962187i \(-0.412186\pi\)
−0.697085 + 0.716989i \(0.745520\pi\)
\(744\) −41.0063 + 71.0249i −1.50336 + 2.60390i
\(745\) 0 0
\(746\) −11.4778 −0.420231
\(747\) −82.0067 47.3466i −3.00047 1.73232i
\(748\) 1.54952i 0.0566559i
\(749\) −0.226557 0.392408i −0.00827820 0.0143383i
\(750\) 0 0
\(751\) 16.7410 0.610887 0.305443 0.952210i \(-0.401195\pi\)
0.305443 + 0.952210i \(0.401195\pi\)
\(752\) −13.7379 + 7.93156i −0.500969 + 0.289234i
\(753\) 61.9500 + 35.7668i 2.25758 + 1.30342i
\(754\) −2.39061 −0.0870609
\(755\) 0 0
\(756\) 7.83867 + 13.5770i 0.285090 + 0.493790i
\(757\) 9.76765 5.63936i 0.355011 0.204966i −0.311879 0.950122i \(-0.600958\pi\)
0.666890 + 0.745156i \(0.267625\pi\)
\(758\) −16.0765 9.28176i −0.583924 0.337129i
\(759\) 26.9257 46.6367i 0.977340 1.69280i
\(760\) 0 0
\(761\) 23.3731 + 40.4834i 0.847275 + 1.46752i 0.883631 + 0.468184i \(0.155092\pi\)
−0.0363559 + 0.999339i \(0.511575\pi\)
\(762\) −57.5453 + 33.2238i −2.08464 + 1.20357i
\(763\) 3.80818i 0.137865i
\(764\) 2.79355 4.83858i 0.101067 0.175054i
\(765\) 0 0
\(766\) 20.5129 0.741162
\(767\) 0.339559i 0.0122608i
\(768\) −43.6051 + 25.1754i −1.57346 + 0.908439i
\(769\) −37.8487 −1.36486 −0.682430 0.730951i \(-0.739077\pi\)
−0.682430 + 0.730951i \(0.739077\pi\)
\(770\) 0 0
\(771\) −2.69790 −0.0971626
\(772\) −10.6553 6.15186i −0.383494 0.221410i
\(773\) 3.59297 + 2.07440i 0.129230 + 0.0746110i 0.563221 0.826306i \(-0.309562\pi\)
−0.433991 + 0.900917i \(0.642895\pi\)
\(774\) 18.3843 31.8425i 0.660810 1.14456i
\(775\) 0 0
\(776\) 31.5459 1.13243
\(777\) 16.8264 + 18.3147i 0.603644 + 0.657036i
\(778\) 16.4451i 0.589587i
\(779\) 21.6654 + 37.5256i 0.776245 + 1.34450i
\(780\) 0 0
\(781\) −0.913195 + 1.58170i −0.0326767 + 0.0565977i
\(782\) −2.51622 1.45274i −0.0899798 0.0519499i
\(783\) 52.4966i 1.87608i
\(784\) 5.38985 9.33550i 0.192495 0.333411i
\(785\) 0 0
\(786\) 2.15380 + 3.73049i 0.0768234 + 0.133062i
\(787\) 42.8205i 1.52639i 0.646170 + 0.763193i \(0.276370\pi\)
−0.646170 + 0.763193i \(0.723630\pi\)
\(788\) 1.29910i 0.0462785i
\(789\) 4.07256 + 7.05387i 0.144987 + 0.251125i
\(790\) 0 0
\(791\) 14.3135 0.508928
\(792\) −78.1897 + 45.1429i −2.77835 + 1.60408i
\(793\) −0.557089 + 0.321636i −0.0197828 + 0.0114216i
\(794\) −1.12212 1.94357i −0.0398226 0.0689748i
\(795\) 0 0
\(796\) −5.51182 + 9.54674i −0.195361 + 0.338375i
\(797\) 32.5896 18.8156i 1.15438 0.666482i 0.204430 0.978881i \(-0.434466\pi\)
0.949951 + 0.312399i \(0.101133\pi\)
\(798\) 30.7826 17.7723i 1.08969 0.629134i
\(799\) −2.34277 4.05780i −0.0828814 0.143555i
\(800\) 0 0
\(801\) −58.6534 + 101.591i −2.07242 + 3.58953i
\(802\) 22.2143 12.8255i 0.784416 0.452883i
\(803\) 12.7981i 0.451635i
\(804\) 27.9623 0.986153
\(805\) 0 0
\(806\) 6.26110 0.220538
\(807\) 35.1635 + 20.3017i 1.23781 + 0.714653i
\(808\) 16.9196i 0.595230i
\(809\) −11.7837 + 20.4099i −0.414292 + 0.717576i −0.995354 0.0962841i \(-0.969304\pi\)
0.581061 + 0.813860i \(0.302638\pi\)
\(810\) 0 0
\(811\) 24.7159 42.8093i 0.867894 1.50324i 0.00374948 0.999993i \(-0.498807\pi\)
0.864145 0.503244i \(-0.167860\pi\)
\(812\) 2.40376 1.38781i 0.0843555 0.0487027i
\(813\) 104.551i 3.66677i
\(814\) −18.0733 + 16.6046i −0.633468 + 0.581991i
\(815\) 0 0
\(816\) 1.89389 + 3.28031i 0.0662994 + 0.114834i
\(817\) 27.0180 + 15.5988i 0.945240 + 0.545734i
\(818\) −8.84896 5.10895i −0.309397 0.178630i
\(819\) 3.49238 6.04899i 0.122034 0.211369i
\(820\) 0 0
\(821\) −12.6853 + 21.9716i −0.442721 + 0.766815i −0.997890 0.0649222i \(-0.979320\pi\)
0.555169 + 0.831737i \(0.312653\pi\)
\(822\) 7.15545i 0.249575i
\(823\) −7.07564 + 4.08512i −0.246641 + 0.142398i −0.618225 0.786001i \(-0.712148\pi\)
0.371584 + 0.928399i \(0.378815\pi\)
\(824\) 19.1949 0.668686
\(825\) 0 0
\(826\) −0.332979 0.576736i −0.0115858 0.0200672i
\(827\) −0.857468 0.495060i −0.0298171 0.0172149i 0.485017 0.874505i \(-0.338813\pi\)
−0.514834 + 0.857290i \(0.672147\pi\)
\(828\) 27.1663i 0.944094i
\(829\) −13.0618 22.6237i −0.453654 0.785752i 0.544955 0.838465i \(-0.316547\pi\)
−0.998610 + 0.0527126i \(0.983213\pi\)
\(830\) 0 0
\(831\) −38.7303 67.0829i −1.34354 2.32708i
\(832\) 5.05972 + 2.92123i 0.175414 + 0.101276i
\(833\) 2.75746 + 1.59202i 0.0955403 + 0.0551602i
\(834\) −7.07546 12.2551i −0.245003 0.424358i
\(835\) 0 0
\(836\) −10.3825 17.9831i −0.359087 0.621957i
\(837\) 137.490i 4.75237i
\(838\) 8.26102 + 4.76950i 0.285372 + 0.164760i
\(839\) −20.0623 34.7490i −0.692629 1.19967i −0.970973 0.239187i \(-0.923119\pi\)
0.278344 0.960481i \(-0.410214\pi\)
\(840\) 0 0
\(841\) −19.7056 −0.679505
\(842\) 8.57678 4.95181i 0.295575 0.170650i
\(843\) 71.5519i 2.46438i
\(844\) 6.74400 11.6809i 0.232138 0.402075i
\(845\) 0 0
\(846\) 37.0017 64.0889i 1.27215 2.20342i
\(847\) 2.07665 + 1.19895i 0.0713544 + 0.0411965i
\(848\) −16.8668 9.73805i −0.579208 0.334406i
\(849\) −23.0721 39.9621i −0.791833 1.37150i
\(850\) 0 0
\(851\) 5.93141 + 26.5904i 0.203326 + 0.911507i
\(852\) 1.26027i 0.0431763i
\(853\) −28.2985 + 16.3382i −0.968923 + 0.559408i −0.898908 0.438138i \(-0.855638\pi\)
−0.0700154 + 0.997546i \(0.522305\pi\)
\(854\) −0.630805 + 1.09259i −0.0215857 + 0.0373876i
\(855\) 0 0
\(856\) −0.569137 + 0.985774i −0.0194527 + 0.0336931i
\(857\) 9.95029i 0.339896i 0.985453 + 0.169948i \(0.0543599\pi\)
−0.985453 + 0.169948i \(0.945640\pi\)
\(858\) 8.16503 + 4.71408i 0.278749 + 0.160936i
\(859\) −4.53739 −0.154814 −0.0774068 0.997000i \(-0.524664\pi\)
−0.0774068 + 0.997000i \(0.524664\pi\)
\(860\) 0 0
\(861\) 22.8425 0.778470
\(862\) 1.69320i 0.0576706i
\(863\) 2.99198 1.72742i 0.101848 0.0588020i −0.448211 0.893928i \(-0.647939\pi\)
0.550059 + 0.835126i \(0.314605\pi\)
\(864\) 34.0457 58.9688i 1.15826 2.00616i
\(865\) 0 0
\(866\) −3.84349 6.65712i −0.130607 0.226218i
\(867\) 48.2039 27.8305i 1.63709 0.945175i
\(868\) −6.29554 + 3.63473i −0.213685 + 0.123371i
\(869\) 6.86514 11.8908i 0.232884 0.403367i
\(870\) 0 0
\(871\) −3.93771 6.82032i −0.133424 0.231098i
\(872\) 8.28491 4.78330i 0.280562 0.161983i
\(873\) −72.4510 + 41.8296i −2.45210 + 1.41572i
\(874\) 38.9363 1.31704
\(875\) 0 0
\(876\) −4.41557 7.64799i −0.149188 0.258402i
\(877\) 23.2726i 0.785861i 0.919568 + 0.392931i \(0.128539\pi\)
−0.919568 + 0.392931i \(0.871461\pi\)
\(878\) 21.4504i 0.723917i
\(879\) −11.8693 20.5583i −0.400342 0.693413i
\(880\) 0 0
\(881\) −6.16226 + 10.6733i −0.207612 + 0.359594i −0.950962 0.309309i \(-0.899902\pi\)
0.743350 + 0.668903i \(0.233236\pi\)
\(882\) 50.2887i 1.69331i
\(883\) −15.2902 8.82778i −0.514555 0.297078i 0.220149 0.975466i \(-0.429346\pi\)
−0.734704 + 0.678388i \(0.762679\pi\)
\(884\) −0.150570 + 0.260795i −0.00506422 + 0.00877149i
\(885\) 0 0
\(886\) 1.26481 + 2.19072i 0.0424922 + 0.0735987i
\(887\) 40.8268i 1.37083i −0.728153 0.685415i \(-0.759621\pi\)
0.728153 0.685415i \(-0.240379\pi\)
\(888\) 18.7097 59.6112i 0.627857 2.00042i
\(889\) −21.7286 −0.728755
\(890\) 0 0
\(891\) 59.4808 103.024i 1.99268 3.45143i
\(892\) 2.47698 + 1.43009i 0.0829355 + 0.0478828i
\(893\) 54.3786 + 31.3955i 1.81971 + 1.05061i
\(894\) 2.06837 0.0691768
\(895\) 0 0
\(896\) 1.77697 0.0593644
\(897\) 9.06360 5.23287i 0.302625 0.174720i
\(898\) 27.3237i 0.911804i
\(899\) −24.3423 −0.811861
\(900\) 0 0
\(901\) 2.87636 4.98201i 0.0958256 0.165975i
\(902\) 22.5414i 0.750546i
\(903\) 14.2429 8.22315i 0.473975 0.273649i
\(904\) −17.9786 31.1398i −0.597958 1.03569i
\(905\) 0 0
\(906\) −17.1422 + 29.6912i −0.569511 + 0.986422i
\(907\) −49.6320 28.6551i −1.64800 0.951475i −0.977864 0.209240i \(-0.932901\pi\)
−0.670139 0.742235i \(-0.733766\pi\)
\(908\) 8.89699 5.13668i 0.295257 0.170467i
\(909\) −22.4352 38.8590i −0.744130 1.28887i
\(910\) 0 0
\(911\) −21.6237 −0.716426 −0.358213 0.933640i \(-0.616614\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(912\) −43.9595 25.3800i −1.45564 0.840417i
\(913\) 36.1975 20.8986i 1.19796 0.691643i
\(914\) 15.7507 0.520986
\(915\) 0 0
\(916\) 0.224230 + 0.388378i 0.00740877 + 0.0128324i
\(917\) 1.40860i 0.0465162i
\(918\) −9.67388 5.58522i −0.319286 0.184340i
\(919\) −30.6901 −1.01237 −0.506186 0.862424i \(-0.668945\pi\)
−0.506186 + 0.862424i \(0.668945\pi\)
\(920\) 0 0
\(921\) 39.4762 68.3748i 1.30079 2.25303i
\(922\) −25.6429 14.8049i −0.844504 0.487575i
\(923\) −0.307395 + 0.177475i −0.0101180 + 0.00584165i
\(924\) −10.9466 −0.360117
\(925\) 0 0
\(926\) 28.1806 0.926071
\(927\) −44.0846 + 25.4522i −1.44793 + 0.835961i
\(928\) −10.4403 6.02768i −0.342718 0.197868i
\(929\) −4.44146 + 7.69284i −0.145720 + 0.252394i −0.929641 0.368466i \(-0.879883\pi\)
0.783922 + 0.620860i \(0.213216\pi\)
\(930\) 0 0
\(931\) −42.6693 −1.39843
\(932\) −15.0343 8.68007i −0.492466 0.284325i
\(933\) 64.6652i 2.11704i
\(934\) −7.86317 13.6194i −0.257291 0.445641i
\(935\) 0 0
\(936\) −17.5466 −0.573527
\(937\) −0.530517 + 0.306294i −0.0173312 + 0.0100062i −0.508641 0.860979i \(-0.669852\pi\)
0.491309 + 0.870985i \(0.336518\pi\)
\(938\) −13.3763 7.72281i −0.436751 0.252159i
\(939\) −20.4089 −0.666019
\(940\) 0 0
\(941\) −16.6946 28.9159i −0.544229 0.942632i −0.998655 0.0518474i \(-0.983489\pi\)
0.454426 0.890784i \(-0.349844\pi\)
\(942\) 8.88853 5.13180i 0.289604 0.167203i
\(943\) 21.6698 + 12.5110i 0.705665 + 0.407416i
\(944\) −0.475515 + 0.823616i −0.0154767 + 0.0268064i
\(945\) 0 0
\(946\) 8.11476 + 14.0552i 0.263834 + 0.456973i
\(947\) 8.97566 5.18210i 0.291670 0.168396i −0.347025 0.937856i \(-0.612808\pi\)
0.638695 + 0.769460i \(0.279475\pi\)
\(948\) 9.47438i 0.307714i
\(949\) −1.24362 + 2.15402i −0.0403697 + 0.0699223i
\(950\) 0 0
\(951\) −111.024 −3.60018
\(952\) 2.17887i 0.0706176i
\(953\) 12.8946 7.44472i 0.417698 0.241158i −0.276394 0.961044i \(-0.589139\pi\)
0.694092 + 0.719886i \(0.255806\pi\)
\(954\) 90.8585 2.94165
\(955\) 0 0
\(956\) 20.8937 0.675749
\(957\) −31.7445 18.3277i −1.02615 0.592450i
\(958\) 6.48617 + 3.74479i 0.209559 + 0.120989i
\(959\) 1.16993 2.02638i 0.0377791 0.0654353i
\(960\) 0 0
\(961\) 32.7533 1.05656
\(962\) −4.65538 + 1.03846i −0.150096 + 0.0334812i
\(963\) 3.01868i 0.0972757i
\(964\) −0.0135373 0.0234472i −0.000436006 0.000755184i
\(965\) 0 0
\(966\) 10.2629 17.7759i 0.330204 0.571930i
\(967\) 37.5055 + 21.6538i 1.20609 + 0.696339i 0.961904 0.273389i \(-0.0881445\pi\)
0.244190 + 0.969727i \(0.421478\pi\)
\(968\) 6.02382i 0.193613i
\(969\) 7.49659 12.9845i 0.240825 0.417121i
\(970\) 0 0
\(971\) −4.45691 7.71960i −0.143029 0.247734i 0.785607 0.618726i \(-0.212351\pi\)
−0.928636 + 0.370992i \(0.879018\pi\)
\(972\) 43.6684i 1.40066i
\(973\) 4.62741i 0.148348i
\(974\) −4.07170 7.05239i −0.130466 0.225973i
\(975\) 0 0
\(976\) 1.80166 0.0576697
\(977\) −11.5810 + 6.68632i −0.370511 + 0.213914i −0.673681 0.739022i \(-0.735288\pi\)
0.303171 + 0.952936i \(0.401955\pi\)
\(978\) 68.3065 39.4368i 2.18420 1.26105i
\(979\) −25.8894 44.8418i −0.827429 1.43315i
\(980\) 0 0
\(981\) −12.6852 + 21.9714i −0.405008 + 0.701494i
\(982\) −0.433526 + 0.250296i −0.0138344 + 0.00798728i
\(983\) −20.0327 + 11.5659i −0.638944 + 0.368894i −0.784208 0.620499i \(-0.786930\pi\)
0.145264 + 0.989393i \(0.453597\pi\)
\(984\) −28.6915 49.6952i −0.914652 1.58422i
\(985\) 0 0
\(986\) −0.988847 + 1.71273i −0.0314913 + 0.0545445i
\(987\) 28.6665 16.5506i 0.912464 0.526811i
\(988\) 4.03558i 0.128389i
\(989\) 18.0156 0.572863
\(990\) 0 0
\(991\) 14.4144 0.457887 0.228944 0.973440i \(-0.426473\pi\)
0.228944 + 0.973440i \(0.426473\pi\)
\(992\) 27.3434 + 15.7867i 0.868154 + 0.501229i
\(993\) 4.63374i 0.147047i
\(994\) −0.348071 + 0.602876i −0.0110401 + 0.0191221i
\(995\) 0 0
\(996\) −14.4208 + 24.9775i −0.456940 + 0.791444i
\(997\) 0.882439 0.509477i 0.0279471 0.0161353i −0.485961 0.873980i \(-0.661530\pi\)
0.513908 + 0.857845i \(0.328197\pi\)
\(998\) 11.8859i 0.376243i
\(999\) 22.8040 + 102.230i 0.721486 + 3.23441i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.o.b.174.5 28
5.2 odd 4 185.2.e.a.26.3 14
5.3 odd 4 925.2.e.c.26.5 14
5.4 even 2 inner 925.2.o.b.174.10 28
37.10 even 3 inner 925.2.o.b.824.10 28
185.47 odd 12 185.2.e.a.121.3 yes 14
185.84 even 6 inner 925.2.o.b.824.5 28
185.122 odd 12 6845.2.a.k.1.3 7
185.137 odd 12 6845.2.a.l.1.5 7
185.158 odd 12 925.2.e.c.676.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.3 14 5.2 odd 4
185.2.e.a.121.3 yes 14 185.47 odd 12
925.2.e.c.26.5 14 5.3 odd 4
925.2.e.c.676.5 14 185.158 odd 12
925.2.o.b.174.5 28 1.1 even 1 trivial
925.2.o.b.174.10 28 5.4 even 2 inner
925.2.o.b.824.5 28 185.84 even 6 inner
925.2.o.b.824.10 28 37.10 even 3 inner
6845.2.a.k.1.3 7 185.122 odd 12
6845.2.a.l.1.5 7 185.137 odd 12