Properties

Label 185.2.e
Level $185$
Weight $2$
Character orbit 185.e
Rep. character $\chi_{185}(26,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $28$
Newform subspaces $2$
Sturm bound $38$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(38\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 40 28 12
Cusp forms 32 28 4
Eisenstein series 8 0 8

Trace form

\( 28 q + 2 q^{2} - 4 q^{3} - 16 q^{4} + 2 q^{7} - 18 q^{9} + 4 q^{10} - 12 q^{11} - 2 q^{12} + 10 q^{13} - 16 q^{14} - 12 q^{16} - 4 q^{17} - 10 q^{18} - 8 q^{19} + 14 q^{21} + 6 q^{22} + 12 q^{23} - 6 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.e.a 185.e 37.c $14$ $1.477$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 185.2.e.a \(0\) \(-2\) \(-7\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{4})q^{2}-\beta _{6}q^{3}+(\beta _{2}+\beta _{9}+\cdots)q^{4}+\cdots\)
185.2.e.b 185.e 37.c $14$ $1.477$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 185.2.e.b \(2\) \(-2\) \(7\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{8}q^{2}+\beta _{6}q^{3}+(-1+\beta _{5}-\beta _{7}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(185, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(185, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)