Defining parameters
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(38\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 28 | 12 |
Cusp forms | 32 | 28 | 4 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
185.2.e.a | $14$ | $1.477$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(-2\) | \(-7\) | \(0\) | \(q+(-\beta _{1}+\beta _{4})q^{2}-\beta _{6}q^{3}+(\beta _{2}+\beta _{9}+\cdots)q^{4}+\cdots\) |
185.2.e.b | $14$ | $1.477$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(2\) | \(-2\) | \(7\) | \(2\) | \(q+\beta _{8}q^{2}+\beta _{6}q^{3}+(-1+\beta _{5}-\beta _{7}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(185, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(185, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)