Properties

Label 925.2.e.c.26.2
Level $925$
Weight $2$
Character 925.26
Analytic conductor $7.386$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(26,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.2
Root \(0.985880 - 1.70759i\) of defining polynomial
Character \(\chi\) \(=\) 925.26
Dual form 925.2.e.c.676.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.985880 - 1.70759i) q^{2} +(-1.32465 + 2.29437i) q^{3} +(-0.943918 + 1.63491i) q^{4} +5.22380 q^{6} +(0.391800 - 0.678617i) q^{7} -0.221160 q^{8} +(-2.00941 - 3.48041i) q^{9} -0.568551 q^{11} +(-2.50073 - 4.33139i) q^{12} +(-0.00305561 + 0.00529246i) q^{13} -1.54507 q^{14} +(2.10587 + 3.64748i) q^{16} +(1.48282 + 2.56833i) q^{17} +(-3.96208 + 6.86253i) q^{18} +(-0.517765 + 0.896796i) q^{19} +(1.03800 + 1.79787i) q^{21} +(0.560523 + 0.970854i) q^{22} +8.65194 q^{23} +(0.292960 - 0.507422i) q^{24} +0.0120498 q^{26} +2.69919 q^{27} +(0.739654 + 1.28112i) q^{28} -4.06655 q^{29} -9.38666 q^{31} +(3.93112 - 6.80889i) q^{32} +(0.753133 - 1.30446i) q^{33} +(2.92377 - 5.06412i) q^{34} +7.58689 q^{36} +(-5.80482 - 1.81772i) q^{37} +2.04182 q^{38} +(-0.00809524 - 0.0140214i) q^{39} +(2.06584 - 3.57814i) q^{41} +(2.04668 - 3.54496i) q^{42} -7.06722 q^{43} +(0.536666 - 0.929532i) q^{44} +(-8.52978 - 14.7740i) q^{46} -5.52310 q^{47} -11.1582 q^{48} +(3.19299 + 5.53041i) q^{49} -7.85691 q^{51} +(-0.00576848 - 0.00999130i) q^{52} +(-4.57125 - 7.91765i) q^{53} +(-2.66107 - 4.60911i) q^{54} +(-0.0866504 + 0.150083i) q^{56} +(-1.37172 - 2.37589i) q^{57} +(4.00913 + 6.94402i) q^{58} +(-4.62211 - 8.00573i) q^{59} +(4.99164 - 8.64577i) q^{61} +(9.25412 + 16.0286i) q^{62} -3.14915 q^{63} -7.07894 q^{64} -2.96999 q^{66} +(-5.67853 + 9.83551i) q^{67} -5.59866 q^{68} +(-11.4608 + 19.8507i) q^{69} +(-1.96400 + 3.40174i) q^{71} +(0.444402 + 0.769726i) q^{72} -16.5499 q^{73} +(2.61893 + 11.7043i) q^{74} +(-0.977456 - 1.69300i) q^{76} +(-0.222758 + 0.385829i) q^{77} +(-0.0159619 + 0.0276468i) q^{78} +(-5.45167 + 9.44257i) q^{79} +(2.45275 - 4.24830i) q^{81} -8.14668 q^{82} +(0.430541 + 0.745719i) q^{83} -3.91914 q^{84} +(6.96743 + 12.0679i) q^{86} +(5.38677 - 9.33017i) q^{87} +0.125741 q^{88} +(0.143625 + 0.248765i) q^{89} +(0.00239437 + 0.00414717i) q^{91} +(-8.16673 + 14.1452i) q^{92} +(12.4341 - 21.5364i) q^{93} +(5.44512 + 9.43122i) q^{94} +(10.4147 + 18.0388i) q^{96} +4.33052 q^{97} +(6.29580 - 10.9046i) q^{98} +(1.14245 + 1.97879i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{3} - 8 q^{4} - 4 q^{6} - 6 q^{8} - 13 q^{9} - 2 q^{11} - 6 q^{12} - 4 q^{13} + 20 q^{14} + 2 q^{16} + 3 q^{17} + 6 q^{18} - 14 q^{19} + q^{21} - 7 q^{22} + 15 q^{24} - 22 q^{26} + 14 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.985880 1.70759i −0.697122 1.20745i −0.969460 0.245250i \(-0.921130\pi\)
0.272338 0.962202i \(-0.412203\pi\)
\(3\) −1.32465 + 2.29437i −0.764789 + 1.32465i 0.175569 + 0.984467i \(0.443823\pi\)
−0.940358 + 0.340186i \(0.889510\pi\)
\(4\) −0.943918 + 1.63491i −0.471959 + 0.817457i
\(5\) 0 0
\(6\) 5.22380 2.13261
\(7\) 0.391800 0.678617i 0.148086 0.256493i −0.782434 0.622734i \(-0.786022\pi\)
0.930520 + 0.366241i \(0.119355\pi\)
\(8\) −0.221160 −0.0781918
\(9\) −2.00941 3.48041i −0.669805 1.16014i
\(10\) 0 0
\(11\) −0.568551 −0.171425 −0.0857123 0.996320i \(-0.527317\pi\)
−0.0857123 + 0.996320i \(0.527317\pi\)
\(12\) −2.50073 4.33139i −0.721898 1.25036i
\(13\) −0.00305561 + 0.00529246i −0.000847472 + 0.00146787i −0.866449 0.499266i \(-0.833603\pi\)
0.865601 + 0.500734i \(0.166936\pi\)
\(14\) −1.54507 −0.412937
\(15\) 0 0
\(16\) 2.10587 + 3.64748i 0.526468 + 0.911870i
\(17\) 1.48282 + 2.56833i 0.359638 + 0.622911i 0.987900 0.155091i \(-0.0495670\pi\)
−0.628263 + 0.778001i \(0.716234\pi\)
\(18\) −3.96208 + 6.86253i −0.933871 + 1.61751i
\(19\) −0.517765 + 0.896796i −0.118783 + 0.205739i −0.919286 0.393591i \(-0.871233\pi\)
0.800502 + 0.599330i \(0.204566\pi\)
\(20\) 0 0
\(21\) 1.03800 + 1.79787i 0.226510 + 0.392326i
\(22\) 0.560523 + 0.970854i 0.119504 + 0.206987i
\(23\) 8.65194 1.80405 0.902027 0.431679i \(-0.142079\pi\)
0.902027 + 0.431679i \(0.142079\pi\)
\(24\) 0.292960 0.507422i 0.0598003 0.103577i
\(25\) 0 0
\(26\) 0.0120498 0.00236317
\(27\) 2.69919 0.519459
\(28\) 0.739654 + 1.28112i 0.139781 + 0.242109i
\(29\) −4.06655 −0.755140 −0.377570 0.925981i \(-0.623240\pi\)
−0.377570 + 0.925981i \(0.623240\pi\)
\(30\) 0 0
\(31\) −9.38666 −1.68589 −0.842947 0.537997i \(-0.819181\pi\)
−0.842947 + 0.537997i \(0.819181\pi\)
\(32\) 3.93112 6.80889i 0.694930 1.20365i
\(33\) 0.753133 1.30446i 0.131104 0.227078i
\(34\) 2.92377 5.06412i 0.501423 0.868490i
\(35\) 0 0
\(36\) 7.58689 1.26448
\(37\) −5.80482 1.81772i −0.954306 0.298831i
\(38\) 2.04182 0.331227
\(39\) −0.00809524 0.0140214i −0.00129628 0.00224521i
\(40\) 0 0
\(41\) 2.06584 3.57814i 0.322630 0.558811i −0.658400 0.752668i \(-0.728766\pi\)
0.981030 + 0.193857i \(0.0620997\pi\)
\(42\) 2.04668 3.54496i 0.315810 0.546999i
\(43\) −7.06722 −1.07774 −0.538870 0.842389i \(-0.681149\pi\)
−0.538870 + 0.842389i \(0.681149\pi\)
\(44\) 0.536666 0.929532i 0.0809054 0.140132i
\(45\) 0 0
\(46\) −8.52978 14.7740i −1.25765 2.17831i
\(47\) −5.52310 −0.805628 −0.402814 0.915282i \(-0.631968\pi\)
−0.402814 + 0.915282i \(0.631968\pi\)
\(48\) −11.1582 −1.61055
\(49\) 3.19299 + 5.53041i 0.456141 + 0.790059i
\(50\) 0 0
\(51\) −7.85691 −1.10019
\(52\) −0.00576848 0.00999130i −0.000799945 0.00138554i
\(53\) −4.57125 7.91765i −0.627910 1.08757i −0.987970 0.154643i \(-0.950577\pi\)
0.360060 0.932929i \(-0.382756\pi\)
\(54\) −2.66107 4.60911i −0.362126 0.627221i
\(55\) 0 0
\(56\) −0.0866504 + 0.150083i −0.0115792 + 0.0200557i
\(57\) −1.37172 2.37589i −0.181689 0.314694i
\(58\) 4.00913 + 6.94402i 0.526425 + 0.911795i
\(59\) −4.62211 8.00573i −0.601747 1.04226i −0.992556 0.121785i \(-0.961138\pi\)
0.390809 0.920472i \(-0.372195\pi\)
\(60\) 0 0
\(61\) 4.99164 8.64577i 0.639114 1.10698i −0.346514 0.938045i \(-0.612635\pi\)
0.985628 0.168933i \(-0.0540321\pi\)
\(62\) 9.25412 + 16.0286i 1.17527 + 2.03563i
\(63\) −3.14915 −0.396756
\(64\) −7.07894 −0.884867
\(65\) 0 0
\(66\) −2.96999 −0.365581
\(67\) −5.67853 + 9.83551i −0.693743 + 1.20160i 0.276859 + 0.960911i \(0.410706\pi\)
−0.970602 + 0.240688i \(0.922627\pi\)
\(68\) −5.59866 −0.678937
\(69\) −11.4608 + 19.8507i −1.37972 + 2.38975i
\(70\) 0 0
\(71\) −1.96400 + 3.40174i −0.233084 + 0.403713i −0.958714 0.284372i \(-0.908215\pi\)
0.725630 + 0.688085i \(0.241548\pi\)
\(72\) 0.444402 + 0.769726i 0.0523732 + 0.0907131i
\(73\) −16.5499 −1.93701 −0.968507 0.248987i \(-0.919902\pi\)
−0.968507 + 0.248987i \(0.919902\pi\)
\(74\) 2.61893 + 11.7043i 0.304445 + 1.36060i
\(75\) 0 0
\(76\) −0.977456 1.69300i −0.112122 0.194201i
\(77\) −0.222758 + 0.385829i −0.0253857 + 0.0439692i
\(78\) −0.0159619 + 0.0276468i −0.00180732 + 0.00313038i
\(79\) −5.45167 + 9.44257i −0.613361 + 1.06237i 0.377309 + 0.926087i \(0.376849\pi\)
−0.990670 + 0.136284i \(0.956484\pi\)
\(80\) 0 0
\(81\) 2.45275 4.24830i 0.272528 0.472033i
\(82\) −8.14668 −0.899650
\(83\) 0.430541 + 0.745719i 0.0472580 + 0.0818533i 0.888687 0.458515i \(-0.151618\pi\)
−0.841429 + 0.540368i \(0.818285\pi\)
\(84\) −3.91914 −0.427613
\(85\) 0 0
\(86\) 6.96743 + 12.0679i 0.751317 + 1.30132i
\(87\) 5.38677 9.33017i 0.577523 1.00030i
\(88\) 0.125741 0.0134040
\(89\) 0.143625 + 0.248765i 0.0152242 + 0.0263691i 0.873537 0.486758i \(-0.161820\pi\)
−0.858313 + 0.513127i \(0.828487\pi\)
\(90\) 0 0
\(91\) 0.00239437 + 0.00414717i 0.000250998 + 0.000434742i
\(92\) −8.16673 + 14.1452i −0.851440 + 1.47474i
\(93\) 12.4341 21.5364i 1.28935 2.23323i
\(94\) 5.44512 + 9.43122i 0.561621 + 0.972756i
\(95\) 0 0
\(96\) 10.4147 + 18.0388i 1.06295 + 1.84108i
\(97\) 4.33052 0.439697 0.219849 0.975534i \(-0.429444\pi\)
0.219849 + 0.975534i \(0.429444\pi\)
\(98\) 6.29580 10.9046i 0.635972 1.10154i
\(99\) 1.14245 + 1.97879i 0.114821 + 0.198876i
\(100\) 0 0
\(101\) −5.40523 −0.537840 −0.268920 0.963163i \(-0.586667\pi\)
−0.268920 + 0.963163i \(0.586667\pi\)
\(102\) 7.74597 + 13.4164i 0.766966 + 1.32842i
\(103\) −12.2753 −1.20952 −0.604759 0.796409i \(-0.706731\pi\)
−0.604759 + 0.796409i \(0.706731\pi\)
\(104\) 0.000675777 0.00117048i 6.62654e−5 0.000114775i
\(105\) 0 0
\(106\) −9.01342 + 15.6117i −0.875460 + 1.51634i
\(107\) 6.84634 11.8582i 0.661860 1.14638i −0.318266 0.948002i \(-0.603100\pi\)
0.980126 0.198374i \(-0.0635662\pi\)
\(108\) −2.54781 + 4.41294i −0.245163 + 0.424635i
\(109\) −3.66237 6.34340i −0.350791 0.607588i 0.635597 0.772021i \(-0.280754\pi\)
−0.986388 + 0.164433i \(0.947421\pi\)
\(110\) 0 0
\(111\) 11.8599 10.9105i 1.12569 1.03558i
\(112\) 3.30032 0.311851
\(113\) −2.18762 3.78908i −0.205794 0.356446i 0.744591 0.667521i \(-0.232644\pi\)
−0.950386 + 0.311075i \(0.899311\pi\)
\(114\) −2.70470 + 4.68468i −0.253318 + 0.438760i
\(115\) 0 0
\(116\) 3.83849 6.64847i 0.356395 0.617295i
\(117\) 0.0245599 0.00227056
\(118\) −9.11369 + 15.7854i −0.838983 + 1.45316i
\(119\) 2.32388 0.213030
\(120\) 0 0
\(121\) −10.6767 −0.970614
\(122\) −19.6846 −1.78216
\(123\) 5.47304 + 9.47959i 0.493488 + 0.854746i
\(124\) 8.86024 15.3464i 0.795673 1.37815i
\(125\) 0 0
\(126\) 3.10469 + 5.37747i 0.276587 + 0.479063i
\(127\) 9.77590 + 16.9324i 0.867471 + 1.50250i 0.864573 + 0.502508i \(0.167589\pi\)
0.00289830 + 0.999996i \(0.499077\pi\)
\(128\) −0.883248 1.52983i −0.0780689 0.135219i
\(129\) 9.36162 16.2148i 0.824244 1.42763i
\(130\) 0 0
\(131\) −4.77698 8.27397i −0.417366 0.722900i 0.578307 0.815819i \(-0.303713\pi\)
−0.995674 + 0.0929193i \(0.970380\pi\)
\(132\) 1.42179 + 2.46262i 0.123751 + 0.214343i
\(133\) 0.405721 + 0.702729i 0.0351804 + 0.0609343i
\(134\) 22.3934 1.93450
\(135\) 0 0
\(136\) −0.327941 0.568011i −0.0281207 0.0487065i
\(137\) 5.12953 0.438245 0.219123 0.975697i \(-0.429681\pi\)
0.219123 + 0.975697i \(0.429681\pi\)
\(138\) 45.1960 3.84734
\(139\) 5.17051 + 8.95559i 0.438557 + 0.759603i 0.997578 0.0695499i \(-0.0221563\pi\)
−0.559021 + 0.829153i \(0.688823\pi\)
\(140\) 0 0
\(141\) 7.31620 12.6720i 0.616135 1.06718i
\(142\) 7.74506 0.649951
\(143\) 0.00173727 0.00300904i 0.000145278 0.000251628i
\(144\) 8.46314 14.6586i 0.705262 1.22155i
\(145\) 0 0
\(146\) 16.3162 + 28.2604i 1.35034 + 2.33885i
\(147\) −16.9184 −1.39541
\(148\) 8.45108 7.77460i 0.694675 0.639069i
\(149\) −10.8779 −0.891149 −0.445575 0.895245i \(-0.647001\pi\)
−0.445575 + 0.895245i \(0.647001\pi\)
\(150\) 0 0
\(151\) −0.00770952 + 0.0133533i −0.000627392 + 0.00108667i −0.866339 0.499457i \(-0.833533\pi\)
0.865712 + 0.500543i \(0.166866\pi\)
\(152\) 0.114509 0.198335i 0.00928790 0.0160871i
\(153\) 5.95921 10.3217i 0.481774 0.834457i
\(154\) 0.878451 0.0707876
\(155\) 0 0
\(156\) 0.0305650 0.00244716
\(157\) −7.06603 12.2387i −0.563930 0.976756i −0.997148 0.0754667i \(-0.975955\pi\)
0.433218 0.901289i \(-0.357378\pi\)
\(158\) 21.4988 1.71035
\(159\) 24.2213 1.92088
\(160\) 0 0
\(161\) 3.38983 5.87136i 0.267156 0.462728i
\(162\) −9.67249 −0.759942
\(163\) 10.6469 + 18.4409i 0.833926 + 1.44440i 0.894902 + 0.446264i \(0.147246\pi\)
−0.0609751 + 0.998139i \(0.519421\pi\)
\(164\) 3.89997 + 6.75494i 0.304536 + 0.527472i
\(165\) 0 0
\(166\) 0.848923 1.47038i 0.0658892 0.114123i
\(167\) −3.98568 + 6.90340i −0.308421 + 0.534201i −0.978017 0.208524i \(-0.933134\pi\)
0.669596 + 0.742726i \(0.266467\pi\)
\(168\) −0.229564 0.397616i −0.0177112 0.0306767i
\(169\) 6.49998 + 11.2583i 0.499999 + 0.866023i
\(170\) 0 0
\(171\) 4.16162 0.318247
\(172\) 6.67088 11.5543i 0.508650 0.881007i
\(173\) −7.45671 12.9154i −0.566923 0.981940i −0.996868 0.0790846i \(-0.974800\pi\)
0.429945 0.902855i \(-0.358533\pi\)
\(174\) −21.2429 −1.61042
\(175\) 0 0
\(176\) −1.19730 2.07378i −0.0902496 0.156317i
\(177\) 24.4908 1.84084
\(178\) 0.283193 0.490505i 0.0212262 0.0367649i
\(179\) −7.73854 −0.578406 −0.289203 0.957268i \(-0.593390\pi\)
−0.289203 + 0.957268i \(0.593390\pi\)
\(180\) 0 0
\(181\) −6.57794 + 11.3933i −0.488935 + 0.846859i −0.999919 0.0127305i \(-0.995948\pi\)
0.510984 + 0.859590i \(0.329281\pi\)
\(182\) 0.00472113 0.00817723i 0.000349953 0.000606137i
\(183\) 13.2244 + 22.9053i 0.977575 + 1.69321i
\(184\) −1.91346 −0.141062
\(185\) 0 0
\(186\) −49.0340 −3.59535
\(187\) −0.843061 1.46022i −0.0616507 0.106782i
\(188\) 5.21336 9.02980i 0.380223 0.658566i
\(189\) 1.05754 1.83171i 0.0769248 0.133238i
\(190\) 0 0
\(191\) 23.2461 1.68203 0.841014 0.541013i \(-0.181959\pi\)
0.841014 + 0.541013i \(0.181959\pi\)
\(192\) 9.37714 16.2417i 0.676737 1.17214i
\(193\) −5.38208 −0.387411 −0.193705 0.981060i \(-0.562051\pi\)
−0.193705 + 0.981060i \(0.562051\pi\)
\(194\) −4.26937 7.39476i −0.306523 0.530913i
\(195\) 0 0
\(196\) −12.0557 −0.861119
\(197\) −0.368609 0.638450i −0.0262623 0.0454877i 0.852596 0.522571i \(-0.175027\pi\)
−0.878858 + 0.477084i \(0.841694\pi\)
\(198\) 2.25265 3.90170i 0.160089 0.277281i
\(199\) 3.52332 0.249762 0.124881 0.992172i \(-0.460145\pi\)
0.124881 + 0.992172i \(0.460145\pi\)
\(200\) 0 0
\(201\) −15.0442 26.0573i −1.06113 1.83794i
\(202\) 5.32890 + 9.22993i 0.374940 + 0.649416i
\(203\) −1.59328 + 2.75963i −0.111826 + 0.193688i
\(204\) 7.41628 12.8454i 0.519244 0.899356i
\(205\) 0 0
\(206\) 12.1019 + 20.9612i 0.843182 + 1.46043i
\(207\) −17.3853 30.1123i −1.20836 2.09295i
\(208\) −0.0257389 −0.00178467
\(209\) 0.294376 0.509874i 0.0203624 0.0352687i
\(210\) 0 0
\(211\) −14.6000 −1.00511 −0.502554 0.864546i \(-0.667606\pi\)
−0.502554 + 0.864546i \(0.667606\pi\)
\(212\) 17.2596 1.18539
\(213\) −5.20323 9.01226i −0.356520 0.617510i
\(214\) −26.9987 −1.84559
\(215\) 0 0
\(216\) −0.596952 −0.0406174
\(217\) −3.67769 + 6.36995i −0.249658 + 0.432420i
\(218\) −7.22130 + 12.5077i −0.489088 + 0.847126i
\(219\) 21.9228 37.9714i 1.48141 2.56587i
\(220\) 0 0
\(221\) −0.0181237 −0.00121913
\(222\) −30.3232 9.49538i −2.03516 0.637288i
\(223\) −15.9258 −1.06647 −0.533236 0.845967i \(-0.679024\pi\)
−0.533236 + 0.845967i \(0.679024\pi\)
\(224\) −3.08042 5.33545i −0.205819 0.356490i
\(225\) 0 0
\(226\) −4.31347 + 7.47115i −0.286928 + 0.496973i
\(227\) 7.45104 12.9056i 0.494543 0.856573i −0.505438 0.862863i \(-0.668669\pi\)
0.999980 + 0.00629015i \(0.00200223\pi\)
\(228\) 5.17916 0.342998
\(229\) 3.19623 5.53604i 0.211213 0.365832i −0.740881 0.671636i \(-0.765592\pi\)
0.952094 + 0.305804i \(0.0989253\pi\)
\(230\) 0 0
\(231\) −0.590155 1.02218i −0.0388293 0.0672544i
\(232\) 0.899359 0.0590458
\(233\) 11.8008 0.773094 0.386547 0.922270i \(-0.373668\pi\)
0.386547 + 0.922270i \(0.373668\pi\)
\(234\) −0.0242131 0.0419383i −0.00158286 0.00274159i
\(235\) 0 0
\(236\) 17.4516 1.13600
\(237\) −14.4431 25.0163i −0.938183 1.62498i
\(238\) −2.29107 3.96825i −0.148508 0.257223i
\(239\) 1.91458 + 3.31616i 0.123844 + 0.214504i 0.921281 0.388899i \(-0.127144\pi\)
−0.797436 + 0.603403i \(0.793811\pi\)
\(240\) 0 0
\(241\) 9.66017 16.7319i 0.622266 1.07780i −0.366797 0.930301i \(-0.619545\pi\)
0.989063 0.147495i \(-0.0471212\pi\)
\(242\) 10.5260 + 18.2316i 0.676636 + 1.17197i
\(243\) 10.5469 + 18.2677i 0.676583 + 1.17188i
\(244\) 9.42340 + 16.3218i 0.603271 + 1.04490i
\(245\) 0 0
\(246\) 10.7915 18.6915i 0.688043 1.19172i
\(247\) −0.00316417 0.00548051i −0.000201331 0.000348716i
\(248\) 2.07595 0.131823
\(249\) −2.28127 −0.144570
\(250\) 0 0
\(251\) −0.889477 −0.0561433 −0.0280716 0.999606i \(-0.508937\pi\)
−0.0280716 + 0.999606i \(0.508937\pi\)
\(252\) 2.97254 5.14859i 0.187253 0.324331i
\(253\) −4.91907 −0.309259
\(254\) 19.2757 33.3865i 1.20947 2.09486i
\(255\) 0 0
\(256\) −8.82049 + 15.2775i −0.551281 + 0.954846i
\(257\) 7.12546 + 12.3417i 0.444474 + 0.769851i 0.998015 0.0629705i \(-0.0200574\pi\)
−0.553542 + 0.832821i \(0.686724\pi\)
\(258\) −36.9177 −2.29840
\(259\) −3.50786 + 3.22707i −0.217968 + 0.200520i
\(260\) 0 0
\(261\) 8.17139 + 14.1533i 0.505796 + 0.876065i
\(262\) −9.41905 + 16.3143i −0.581911 + 1.00790i
\(263\) −12.3919 + 21.4635i −0.764120 + 1.32349i 0.176591 + 0.984284i \(0.443493\pi\)
−0.940711 + 0.339210i \(0.889840\pi\)
\(264\) −0.166563 + 0.288495i −0.0102512 + 0.0177557i
\(265\) 0 0
\(266\) 0.799984 1.38561i 0.0490502 0.0849574i
\(267\) −0.761012 −0.0465732
\(268\) −10.7201 18.5678i −0.654837 1.13421i
\(269\) −9.55497 −0.582577 −0.291289 0.956635i \(-0.594084\pi\)
−0.291289 + 0.956635i \(0.594084\pi\)
\(270\) 0 0
\(271\) −4.23718 7.33902i −0.257391 0.445814i 0.708151 0.706061i \(-0.249529\pi\)
−0.965542 + 0.260247i \(0.916196\pi\)
\(272\) −6.24528 + 10.8171i −0.378676 + 0.655886i
\(273\) −0.0126868 −0.000767843
\(274\) −5.05710 8.75915i −0.305510 0.529160i
\(275\) 0 0
\(276\) −21.6362 37.4749i −1.30234 2.25573i
\(277\) 14.6366 25.3513i 0.879426 1.52321i 0.0274542 0.999623i \(-0.491260\pi\)
0.851972 0.523588i \(-0.175407\pi\)
\(278\) 10.1950 17.6583i 0.611456 1.05907i
\(279\) 18.8617 + 32.6694i 1.12922 + 1.95587i
\(280\) 0 0
\(281\) 7.29433 + 12.6342i 0.435143 + 0.753690i 0.997307 0.0733354i \(-0.0233644\pi\)
−0.562164 + 0.827026i \(0.690031\pi\)
\(282\) −28.8516 −1.71809
\(283\) 9.29663 16.1022i 0.552627 0.957178i −0.445457 0.895303i \(-0.646959\pi\)
0.998084 0.0618747i \(-0.0197079\pi\)
\(284\) −3.70771 6.42193i −0.220012 0.381072i
\(285\) 0 0
\(286\) −0.00685095 −0.000405105
\(287\) −1.61879 2.80383i −0.0955542 0.165505i
\(288\) −31.5970 −1.86187
\(289\) 4.10246 7.10568i 0.241321 0.417981i
\(290\) 0 0
\(291\) −5.73643 + 9.93579i −0.336276 + 0.582446i
\(292\) 15.6217 27.0576i 0.914191 1.58343i
\(293\) 2.90144 5.02544i 0.169504 0.293589i −0.768742 0.639559i \(-0.779117\pi\)
0.938246 + 0.345970i \(0.112450\pi\)
\(294\) 16.6795 + 28.8898i 0.972769 + 1.68488i
\(295\) 0 0
\(296\) 1.28379 + 0.402006i 0.0746190 + 0.0233661i
\(297\) −1.53462 −0.0890480
\(298\) 10.7243 + 18.5750i 0.621240 + 1.07602i
\(299\) −0.0264369 + 0.0457901i −0.00152889 + 0.00264811i
\(300\) 0 0
\(301\) −2.76894 + 4.79594i −0.159599 + 0.276433i
\(302\) 0.0304027 0.00174948
\(303\) 7.16005 12.4016i 0.411334 0.712452i
\(304\) −4.36139 −0.250143
\(305\) 0 0
\(306\) −23.5003 −1.34342
\(307\) 21.6882 1.23781 0.618907 0.785464i \(-0.287576\pi\)
0.618907 + 0.785464i \(0.287576\pi\)
\(308\) −0.420531 0.728381i −0.0239620 0.0415034i
\(309\) 16.2605 28.1640i 0.925026 1.60219i
\(310\) 0 0
\(311\) −3.51294 6.08460i −0.199201 0.345026i 0.749069 0.662492i \(-0.230501\pi\)
−0.948270 + 0.317466i \(0.897168\pi\)
\(312\) 0.00179034 + 0.00310096i 0.000101358 + 0.000175557i
\(313\) −11.8855 20.5863i −0.671808 1.16361i −0.977391 0.211440i \(-0.932185\pi\)
0.305583 0.952165i \(-0.401149\pi\)
\(314\) −13.9325 + 24.1318i −0.786257 + 1.36184i
\(315\) 0 0
\(316\) −10.2919 17.8260i −0.578962 1.00279i
\(317\) 11.5553 + 20.0144i 0.649012 + 1.12412i 0.983359 + 0.181672i \(0.0581509\pi\)
−0.334347 + 0.942450i \(0.608516\pi\)
\(318\) −23.8793 41.3602i −1.33908 2.31936i
\(319\) 2.31204 0.129450
\(320\) 0 0
\(321\) 18.1381 + 31.4160i 1.01237 + 1.75347i
\(322\) −13.3679 −0.744962
\(323\) −3.07102 −0.170876
\(324\) 4.63040 + 8.02009i 0.257244 + 0.445560i
\(325\) 0 0
\(326\) 20.9930 36.3610i 1.16270 2.01385i
\(327\) 19.4055 1.07312
\(328\) −0.456881 + 0.791341i −0.0252270 + 0.0436945i
\(329\) −2.16395 + 3.74807i −0.119303 + 0.206638i
\(330\) 0 0
\(331\) 5.23346 + 9.06462i 0.287657 + 0.498237i 0.973250 0.229748i \(-0.0737904\pi\)
−0.685593 + 0.727985i \(0.740457\pi\)
\(332\) −1.62558 −0.0892154
\(333\) 5.33789 + 23.8557i 0.292515 + 1.30728i
\(334\) 15.7176 0.860029
\(335\) 0 0
\(336\) −4.37179 + 7.57215i −0.238500 + 0.413095i
\(337\) −5.26707 + 9.12282i −0.286915 + 0.496952i −0.973072 0.230502i \(-0.925963\pi\)
0.686157 + 0.727454i \(0.259297\pi\)
\(338\) 12.8164 22.1987i 0.697120 1.20745i
\(339\) 11.5914 0.629557
\(340\) 0 0
\(341\) 5.33680 0.289004
\(342\) −4.10286 7.10635i −0.221857 0.384268i
\(343\) 10.4892 0.566366
\(344\) 1.56299 0.0842705
\(345\) 0 0
\(346\) −14.7028 + 25.4661i −0.790430 + 1.36906i
\(347\) 21.5633 1.15758 0.578789 0.815478i \(-0.303526\pi\)
0.578789 + 0.815478i \(0.303526\pi\)
\(348\) 10.1693 + 17.6138i 0.545134 + 0.944200i
\(349\) −5.28986 9.16231i −0.283160 0.490447i 0.689001 0.724760i \(-0.258049\pi\)
−0.972161 + 0.234313i \(0.924716\pi\)
\(350\) 0 0
\(351\) −0.00824765 + 0.0142853i −0.000440227 + 0.000762495i
\(352\) −2.23504 + 3.87120i −0.119128 + 0.206336i
\(353\) 5.49760 + 9.52213i 0.292608 + 0.506812i 0.974426 0.224710i \(-0.0721436\pi\)
−0.681818 + 0.731522i \(0.738810\pi\)
\(354\) −24.1450 41.8203i −1.28329 2.22272i
\(355\) 0 0
\(356\) −0.542280 −0.0287408
\(357\) −3.07834 + 5.33184i −0.162923 + 0.282191i
\(358\) 7.62927 + 13.2143i 0.403220 + 0.698397i
\(359\) −34.6984 −1.83131 −0.915657 0.401961i \(-0.868329\pi\)
−0.915657 + 0.401961i \(0.868329\pi\)
\(360\) 0 0
\(361\) 8.96384 + 15.5258i 0.471781 + 0.817149i
\(362\) 25.9402 1.36339
\(363\) 14.1430 24.4964i 0.742315 1.28573i
\(364\) −0.00904036 −0.000473844
\(365\) 0 0
\(366\) 26.0753 45.1638i 1.36298 2.36075i
\(367\) −5.77858 + 10.0088i −0.301639 + 0.522455i −0.976507 0.215484i \(-0.930867\pi\)
0.674868 + 0.737938i \(0.264201\pi\)
\(368\) 18.2199 + 31.5578i 0.949778 + 1.64506i
\(369\) −16.6045 −0.864396
\(370\) 0 0
\(371\) −7.16407 −0.371940
\(372\) 23.4735 + 40.6573i 1.21704 + 2.10798i
\(373\) 5.12736 8.88085i 0.265485 0.459833i −0.702206 0.711974i \(-0.747801\pi\)
0.967691 + 0.252141i \(0.0811347\pi\)
\(374\) −1.66231 + 2.87921i −0.0859562 + 0.148881i
\(375\) 0 0
\(376\) 1.22149 0.0629935
\(377\) 0.0124258 0.0215221i 0.000639960 0.00110844i
\(378\) −4.17043 −0.214504
\(379\) −2.67929 4.64067i −0.137626 0.238375i 0.788972 0.614430i \(-0.210614\pi\)
−0.926598 + 0.376055i \(0.877281\pi\)
\(380\) 0 0
\(381\) −51.7987 −2.65373
\(382\) −22.9179 39.6949i −1.17258 2.03097i
\(383\) −11.6302 + 20.1441i −0.594276 + 1.02932i 0.399372 + 0.916789i \(0.369228\pi\)
−0.993649 + 0.112528i \(0.964105\pi\)
\(384\) 4.67999 0.238825
\(385\) 0 0
\(386\) 5.30609 + 9.19041i 0.270073 + 0.467780i
\(387\) 14.2010 + 24.5968i 0.721876 + 1.25033i
\(388\) −4.08765 + 7.08002i −0.207519 + 0.359434i
\(389\) −8.61377 + 14.9195i −0.436735 + 0.756448i −0.997435 0.0715711i \(-0.977199\pi\)
0.560700 + 0.828019i \(0.310532\pi\)
\(390\) 0 0
\(391\) 12.8293 + 22.2210i 0.648806 + 1.12377i
\(392\) −0.706160 1.22311i −0.0356665 0.0617762i
\(393\) 25.3114 1.27679
\(394\) −0.726809 + 1.25887i −0.0366161 + 0.0634210i
\(395\) 0 0
\(396\) −4.31353 −0.216763
\(397\) −30.2268 −1.51704 −0.758520 0.651650i \(-0.774077\pi\)
−0.758520 + 0.651650i \(0.774077\pi\)
\(398\) −3.47357 6.01640i −0.174114 0.301575i
\(399\) −2.14976 −0.107622
\(400\) 0 0
\(401\) 12.0733 0.602909 0.301455 0.953480i \(-0.402528\pi\)
0.301455 + 0.953480i \(0.402528\pi\)
\(402\) −29.6635 + 51.3787i −1.47948 + 2.56254i
\(403\) 0.0286819 0.0496786i 0.00142875 0.00247467i
\(404\) 5.10209 8.83708i 0.253839 0.439661i
\(405\) 0 0
\(406\) 6.28311 0.311826
\(407\) 3.30034 + 1.03346i 0.163592 + 0.0512269i
\(408\) 1.73763 0.0860257
\(409\) −0.454742 0.787637i −0.0224856 0.0389461i 0.854564 0.519347i \(-0.173825\pi\)
−0.877049 + 0.480401i \(0.840491\pi\)
\(410\) 0 0
\(411\) −6.79485 + 11.7690i −0.335165 + 0.580523i
\(412\) 11.5868 20.0690i 0.570843 0.988729i
\(413\) −7.24377 −0.356442
\(414\) −34.2797 + 59.3742i −1.68476 + 2.91808i
\(415\) 0 0
\(416\) 0.0240239 + 0.0416106i 0.00117787 + 0.00204013i
\(417\) −27.3966 −1.34162
\(418\) −1.16088 −0.0567804
\(419\) −2.72019 4.71151i −0.132890 0.230172i 0.791899 0.610652i \(-0.209092\pi\)
−0.924789 + 0.380479i \(0.875759\pi\)
\(420\) 0 0
\(421\) 32.1650 1.56762 0.783812 0.620998i \(-0.213273\pi\)
0.783812 + 0.620998i \(0.213273\pi\)
\(422\) 14.3939 + 24.9310i 0.700684 + 1.21362i
\(423\) 11.0982 + 19.2226i 0.539613 + 0.934637i
\(424\) 1.01098 + 1.75107i 0.0490974 + 0.0850393i
\(425\) 0 0
\(426\) −10.2595 + 17.7700i −0.497076 + 0.860960i
\(427\) −3.91145 6.77483i −0.189288 0.327857i
\(428\) 12.9248 + 22.3864i 0.624742 + 1.08209i
\(429\) 0.00460255 + 0.00797186i 0.000222213 + 0.000384885i
\(430\) 0 0
\(431\) −1.28753 + 2.23008i −0.0620184 + 0.107419i −0.895367 0.445328i \(-0.853087\pi\)
0.833349 + 0.552747i \(0.186420\pi\)
\(432\) 5.68414 + 9.84523i 0.273478 + 0.473679i
\(433\) −32.5699 −1.56521 −0.782605 0.622519i \(-0.786109\pi\)
−0.782605 + 0.622519i \(0.786109\pi\)
\(434\) 14.5031 0.696169
\(435\) 0 0
\(436\) 13.8279 0.662236
\(437\) −4.47968 + 7.75903i −0.214292 + 0.371165i
\(438\) −86.4531 −4.13089
\(439\) −19.0316 + 32.9636i −0.908326 + 1.57327i −0.0919376 + 0.995765i \(0.529306\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(440\) 0 0
\(441\) 12.8321 22.2258i 0.611050 1.05837i
\(442\) 0.0178678 + 0.0309479i 0.000849884 + 0.00147204i
\(443\) 9.79268 0.465264 0.232632 0.972565i \(-0.425266\pi\)
0.232632 + 0.972565i \(0.425266\pi\)
\(444\) 6.64304 + 29.6885i 0.315265 + 1.40896i
\(445\) 0 0
\(446\) 15.7009 + 27.1948i 0.743461 + 1.28771i
\(447\) 14.4094 24.9578i 0.681541 1.18046i
\(448\) −2.77353 + 4.80389i −0.131037 + 0.226963i
\(449\) −6.14383 + 10.6414i −0.289945 + 0.502200i −0.973796 0.227422i \(-0.926970\pi\)
0.683851 + 0.729622i \(0.260304\pi\)
\(450\) 0 0
\(451\) −1.17454 + 2.03435i −0.0553067 + 0.0957940i
\(452\) 8.25975 0.388506
\(453\) −0.0204249 0.0353770i −0.000959645 0.00166215i
\(454\) −29.3833 −1.37903
\(455\) 0 0
\(456\) 0.303369 + 0.525451i 0.0142066 + 0.0246065i
\(457\) −5.60472 + 9.70766i −0.262178 + 0.454105i −0.966820 0.255457i \(-0.917774\pi\)
0.704643 + 0.709562i \(0.251107\pi\)
\(458\) −12.6044 −0.588965
\(459\) 4.00242 + 6.93239i 0.186817 + 0.323576i
\(460\) 0 0
\(461\) −11.0096 19.0691i −0.512767 0.888138i −0.999890 0.0148053i \(-0.995287\pi\)
0.487123 0.873333i \(-0.338046\pi\)
\(462\) −1.16364 + 2.01549i −0.0541376 + 0.0937691i
\(463\) 10.4737 18.1409i 0.486752 0.843079i −0.513132 0.858310i \(-0.671515\pi\)
0.999884 + 0.0152306i \(0.00484823\pi\)
\(464\) −8.56365 14.8327i −0.397557 0.688590i
\(465\) 0 0
\(466\) −11.6341 20.1509i −0.538941 0.933473i
\(467\) 1.71804 0.0795016 0.0397508 0.999210i \(-0.487344\pi\)
0.0397508 + 0.999210i \(0.487344\pi\)
\(468\) −0.0231825 + 0.0401533i −0.00107161 + 0.00185609i
\(469\) 4.44970 + 7.70710i 0.205468 + 0.355881i
\(470\) 0 0
\(471\) 37.4401 1.72515
\(472\) 1.02222 + 1.77055i 0.0470517 + 0.0814960i
\(473\) 4.01808 0.184751
\(474\) −28.4784 + 49.3260i −1.30806 + 2.26562i
\(475\) 0 0
\(476\) −2.19355 + 3.79935i −0.100541 + 0.174143i
\(477\) −18.3711 + 31.8196i −0.841154 + 1.45692i
\(478\) 3.77510 6.53867i 0.172669 0.299072i
\(479\) 16.5168 + 28.6080i 0.754674 + 1.30713i 0.945536 + 0.325517i \(0.105538\pi\)
−0.190863 + 0.981617i \(0.561128\pi\)
\(480\) 0 0
\(481\) 0.0273574 0.0251676i 0.00124739 0.00114754i
\(482\) −38.0951 −1.73518
\(483\) 8.98070 + 15.5550i 0.408636 + 0.707778i
\(484\) 10.0780 17.4556i 0.458090 0.793435i
\(485\) 0 0
\(486\) 20.7959 36.0196i 0.943322 1.63388i
\(487\) −13.4557 −0.609734 −0.304867 0.952395i \(-0.598612\pi\)
−0.304867 + 0.952395i \(0.598612\pi\)
\(488\) −1.10395 + 1.91210i −0.0499735 + 0.0865566i
\(489\) −56.4136 −2.55111
\(490\) 0 0
\(491\) 13.8635 0.625650 0.312825 0.949811i \(-0.398725\pi\)
0.312825 + 0.949811i \(0.398725\pi\)
\(492\) −20.6644 −0.931624
\(493\) −6.02998 10.4442i −0.271577 0.470385i
\(494\) −0.00623899 + 0.0108062i −0.000280705 + 0.000486196i
\(495\) 0 0
\(496\) −19.7671 34.2377i −0.887570 1.53732i
\(497\) 1.53899 + 2.66561i 0.0690330 + 0.119569i
\(498\) 2.24906 + 3.89548i 0.100783 + 0.174561i
\(499\) −16.1046 + 27.8939i −0.720940 + 1.24870i 0.239684 + 0.970851i \(0.422956\pi\)
−0.960624 + 0.277853i \(0.910377\pi\)
\(500\) 0 0
\(501\) −10.5593 18.2892i −0.471754 0.817102i
\(502\) 0.876917 + 1.51887i 0.0391387 + 0.0677903i
\(503\) 19.0525 + 32.9999i 0.849510 + 1.47139i 0.881646 + 0.471911i \(0.156436\pi\)
−0.0321365 + 0.999483i \(0.510231\pi\)
\(504\) 0.696466 0.0310231
\(505\) 0 0
\(506\) 4.84961 + 8.39978i 0.215592 + 0.373416i
\(507\) −34.4409 −1.52957
\(508\) −36.9106 −1.63764
\(509\) −20.2427 35.0613i −0.897240 1.55406i −0.831008 0.556261i \(-0.812236\pi\)
−0.0662319 0.997804i \(-0.521098\pi\)
\(510\) 0 0
\(511\) −6.48423 + 11.2310i −0.286845 + 0.496831i
\(512\) 31.2508 1.38110
\(513\) −1.39754 + 2.42062i −0.0617031 + 0.106873i
\(514\) 14.0497 24.3348i 0.619705 1.07336i
\(515\) 0 0
\(516\) 17.6732 + 30.6109i 0.778019 + 1.34757i
\(517\) 3.14017 0.138104
\(518\) 8.96885 + 2.80850i 0.394069 + 0.123398i
\(519\) 39.5102 1.73431
\(520\) 0 0
\(521\) −0.919502 + 1.59262i −0.0402841 + 0.0697742i −0.885464 0.464707i \(-0.846160\pi\)
0.845180 + 0.534481i \(0.179493\pi\)
\(522\) 16.1120 27.9068i 0.705204 1.22145i
\(523\) 6.11530 10.5920i 0.267403 0.463156i −0.700787 0.713370i \(-0.747168\pi\)
0.968190 + 0.250214i \(0.0805011\pi\)
\(524\) 18.0363 0.787919
\(525\) 0 0
\(526\) 48.8679 2.13074
\(527\) −13.9188 24.1080i −0.606311 1.05016i
\(528\) 6.34401 0.276088
\(529\) 51.8561 2.25461
\(530\) 0 0
\(531\) −18.5755 + 32.1736i −0.806106 + 1.39622i
\(532\) −1.53187 −0.0664149
\(533\) 0.0126248 + 0.0218668i 0.000546840 + 0.000947155i
\(534\) 0.750266 + 1.29950i 0.0324672 + 0.0562348i
\(535\) 0 0
\(536\) 1.25586 2.17522i 0.0542451 0.0939552i
\(537\) 10.2509 17.7551i 0.442359 0.766187i
\(538\) 9.42006 + 16.3160i 0.406127 + 0.703433i
\(539\) −1.81538 3.14432i −0.0781938 0.135436i
\(540\) 0 0
\(541\) −9.85561 −0.423726 −0.211863 0.977299i \(-0.567953\pi\)
−0.211863 + 0.977299i \(0.567953\pi\)
\(542\) −8.35471 + 14.4708i −0.358865 + 0.621573i
\(543\) −17.4270 30.1844i −0.747864 1.29534i
\(544\) 23.3166 0.999692
\(545\) 0 0
\(546\) 0.0125077 + 0.0216640i 0.000535281 + 0.000927133i
\(547\) 22.7670 0.973447 0.486723 0.873556i \(-0.338192\pi\)
0.486723 + 0.873556i \(0.338192\pi\)
\(548\) −4.84185 + 8.38634i −0.206834 + 0.358247i
\(549\) −40.1211 −1.71233
\(550\) 0 0
\(551\) 2.10552 3.64687i 0.0896982 0.155362i
\(552\) 2.53468 4.39019i 0.107883 0.186859i
\(553\) 4.27193 + 7.39919i 0.181661 + 0.314646i
\(554\) −57.7196 −2.45227
\(555\) 0 0
\(556\) −19.5222 −0.827924
\(557\) −21.8322 37.8144i −0.925058 1.60225i −0.791467 0.611211i \(-0.790683\pi\)
−0.133591 0.991037i \(-0.542651\pi\)
\(558\) 37.1907 64.4162i 1.57441 2.72695i
\(559\) 0.0215946 0.0374030i 0.000913356 0.00158198i
\(560\) 0 0
\(561\) 4.46706 0.188599
\(562\) 14.3827 24.9115i 0.606696 1.05083i
\(563\) −24.4057 −1.02858 −0.514288 0.857617i \(-0.671944\pi\)
−0.514288 + 0.857617i \(0.671944\pi\)
\(564\) 13.8118 + 23.9227i 0.581581 + 1.00733i
\(565\) 0 0
\(566\) −36.6614 −1.54099
\(567\) −1.92198 3.32896i −0.0807155 0.139803i
\(568\) 0.434358 0.752329i 0.0182252 0.0315670i
\(569\) 41.3282 1.73257 0.866285 0.499550i \(-0.166501\pi\)
0.866285 + 0.499550i \(0.166501\pi\)
\(570\) 0 0
\(571\) −9.18338 15.9061i −0.384313 0.665649i 0.607361 0.794426i \(-0.292228\pi\)
−0.991674 + 0.128777i \(0.958895\pi\)
\(572\) 0.00327968 + 0.00568057i 0.000137130 + 0.000237516i
\(573\) −30.7930 + 53.3351i −1.28640 + 2.22810i
\(574\) −3.19187 + 5.52848i −0.133226 + 0.230754i
\(575\) 0 0
\(576\) 14.2245 + 24.6376i 0.592688 + 1.02657i
\(577\) 9.87431 + 17.1028i 0.411073 + 0.711999i 0.995007 0.0998015i \(-0.0318208\pi\)
−0.583934 + 0.811801i \(0.698487\pi\)
\(578\) −16.1781 −0.672922
\(579\) 7.12939 12.3485i 0.296288 0.513185i
\(580\) 0 0
\(581\) 0.674744 0.0279931
\(582\) 22.6217 0.937701
\(583\) 2.59899 + 4.50159i 0.107639 + 0.186437i
\(584\) 3.66016 0.151459
\(585\) 0 0
\(586\) −11.4419 −0.472660
\(587\) −16.4636 + 28.5157i −0.679524 + 1.17697i 0.295601 + 0.955311i \(0.404480\pi\)
−0.975125 + 0.221658i \(0.928853\pi\)
\(588\) 15.9696 27.6601i 0.658575 1.14068i
\(589\) 4.86009 8.41792i 0.200256 0.346854i
\(590\) 0 0
\(591\) 1.95312 0.0803405
\(592\) −5.59413 25.0008i −0.229917 1.02753i
\(593\) −16.7712 −0.688712 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(594\) 1.51296 + 2.62052i 0.0620773 + 0.107521i
\(595\) 0 0
\(596\) 10.2678 17.7844i 0.420586 0.728476i
\(597\) −4.66718 + 8.08379i −0.191015 + 0.330848i
\(598\) 0.104255 0.00426328
\(599\) −5.75661 + 9.97074i −0.235209 + 0.407393i −0.959333 0.282276i \(-0.908911\pi\)
0.724125 + 0.689669i \(0.242244\pi\)
\(600\) 0 0
\(601\) −4.67853 8.10346i −0.190841 0.330547i 0.754688 0.656084i \(-0.227788\pi\)
−0.945529 + 0.325537i \(0.894455\pi\)
\(602\) 10.9194 0.445040
\(603\) 45.6421 1.85869
\(604\) −0.0145543 0.0252088i −0.000592207 0.00102573i
\(605\) 0 0
\(606\) −28.2358 −1.14700
\(607\) 4.02620 + 6.97358i 0.163418 + 0.283049i 0.936092 0.351754i \(-0.114415\pi\)
−0.772674 + 0.634803i \(0.781081\pi\)
\(608\) 4.07079 + 7.05082i 0.165092 + 0.285948i
\(609\) −4.22108 7.31112i −0.171047 0.296261i
\(610\) 0 0
\(611\) 0.0168764 0.0292308i 0.000682747 0.00118255i
\(612\) 11.2500 + 19.4856i 0.454755 + 0.787659i
\(613\) 1.71014 + 2.96205i 0.0690720 + 0.119636i 0.898493 0.438988i \(-0.144663\pi\)
−0.829421 + 0.558624i \(0.811330\pi\)
\(614\) −21.3820 37.0347i −0.862907 1.49460i
\(615\) 0 0
\(616\) 0.0492652 0.0853298i 0.00198495 0.00343804i
\(617\) −8.94688 15.4965i −0.360188 0.623864i 0.627804 0.778372i \(-0.283954\pi\)
−0.987992 + 0.154508i \(0.950621\pi\)
\(618\) −64.1235 −2.57943
\(619\) 1.02595 0.0412363 0.0206182 0.999787i \(-0.493437\pi\)
0.0206182 + 0.999787i \(0.493437\pi\)
\(620\) 0 0
\(621\) 23.3532 0.937132
\(622\) −6.92668 + 11.9974i −0.277735 + 0.481050i
\(623\) 0.225089 0.00901798
\(624\) 0.0340951 0.0590544i 0.00136490 0.00236407i
\(625\) 0 0
\(626\) −23.4353 + 40.5912i −0.936665 + 1.62235i
\(627\) 0.779892 + 1.35081i 0.0311459 + 0.0539463i
\(628\) 26.6790 1.06461
\(629\) −3.93904 17.6040i −0.157060 0.701918i
\(630\) 0 0
\(631\) −22.8117 39.5110i −0.908119 1.57291i −0.816674 0.577099i \(-0.804185\pi\)
−0.0914449 0.995810i \(-0.529149\pi\)
\(632\) 1.20569 2.08832i 0.0479598 0.0830688i
\(633\) 19.3400 33.4979i 0.768696 1.33142i
\(634\) 22.7843 39.4636i 0.904882 1.56730i
\(635\) 0 0
\(636\) −22.8629 + 39.5998i −0.906574 + 1.57023i
\(637\) −0.0390260 −0.00154627
\(638\) −2.27940 3.94803i −0.0902422 0.156304i
\(639\) 15.7859 0.624482
\(640\) 0 0
\(641\) −3.99054 6.91182i −0.157617 0.273000i 0.776392 0.630250i \(-0.217048\pi\)
−0.934009 + 0.357250i \(0.883714\pi\)
\(642\) 35.7639 61.9449i 1.41149 2.44477i
\(643\) 11.7007 0.461432 0.230716 0.973021i \(-0.425893\pi\)
0.230716 + 0.973021i \(0.425893\pi\)
\(644\) 6.39944 + 11.0842i 0.252173 + 0.436777i
\(645\) 0 0
\(646\) 3.02766 + 5.24405i 0.119122 + 0.206325i
\(647\) 1.00933 1.74821i 0.0396807 0.0687291i −0.845503 0.533971i \(-0.820699\pi\)
0.885184 + 0.465242i \(0.154033\pi\)
\(648\) −0.542451 + 0.939553i −0.0213095 + 0.0369091i
\(649\) 2.62790 + 4.55166i 0.103154 + 0.178668i
\(650\) 0 0
\(651\) −9.74334 16.8760i −0.381871 0.661421i
\(652\) −40.1991 −1.57432
\(653\) −15.5042 + 26.8541i −0.606728 + 1.05088i 0.385048 + 0.922896i \(0.374185\pi\)
−0.991776 + 0.127987i \(0.959149\pi\)
\(654\) −19.1315 33.1366i −0.748099 1.29575i
\(655\) 0 0
\(656\) 17.4016 0.679418
\(657\) 33.2555 + 57.6002i 1.29742 + 2.24720i
\(658\) 8.53359 0.332674
\(659\) 6.49329 11.2467i 0.252943 0.438110i −0.711392 0.702795i \(-0.751935\pi\)
0.964335 + 0.264686i \(0.0852683\pi\)
\(660\) 0 0
\(661\) 1.63687 2.83514i 0.0636668 0.110274i −0.832435 0.554123i \(-0.813054\pi\)
0.896102 + 0.443849i \(0.146387\pi\)
\(662\) 10.3191 17.8732i 0.401064 0.694664i
\(663\) 0.0240076 0.0415824i 0.000932379 0.00161493i
\(664\) −0.0952184 0.164923i −0.00369519 0.00640026i
\(665\) 0 0
\(666\) 35.4733 32.6338i 1.37456 1.26453i
\(667\) −35.1836 −1.36231
\(668\) −7.52431 13.0325i −0.291124 0.504242i
\(669\) 21.0962 36.5397i 0.815626 1.41271i
\(670\) 0 0
\(671\) −2.83800 + 4.91556i −0.109560 + 0.189763i
\(672\) 16.3220 0.629633
\(673\) 11.6797 20.2299i 0.450220 0.779804i −0.548179 0.836361i \(-0.684679\pi\)
0.998399 + 0.0565566i \(0.0180121\pi\)
\(674\) 20.7708 0.800060
\(675\) 0 0
\(676\) −24.5418 −0.943915
\(677\) 15.6182 0.600255 0.300127 0.953899i \(-0.402971\pi\)
0.300127 + 0.953899i \(0.402971\pi\)
\(678\) −11.4277 19.7934i −0.438878 0.760159i
\(679\) 1.69670 2.93876i 0.0651132 0.112779i
\(680\) 0 0
\(681\) 19.7401 + 34.1908i 0.756442 + 1.31020i
\(682\) −5.26144 9.11308i −0.201471 0.348958i
\(683\) −10.1178 17.5245i −0.387145 0.670555i 0.604919 0.796287i \(-0.293205\pi\)
−0.992064 + 0.125732i \(0.959872\pi\)
\(684\) −3.92823 + 6.80389i −0.150200 + 0.260153i
\(685\) 0 0
\(686\) −10.3411 17.9114i −0.394826 0.683859i
\(687\) 8.46780 + 14.6667i 0.323067 + 0.559568i
\(688\) −14.8827 25.7775i −0.567396 0.982760i
\(689\) 0.0558718 0.00212855
\(690\) 0 0
\(691\) 3.30811 + 5.72981i 0.125846 + 0.217972i 0.922063 0.387039i \(-0.126502\pi\)
−0.796217 + 0.605011i \(0.793169\pi\)
\(692\) 28.1541 1.07026
\(693\) 1.79045 0.0680137
\(694\) −21.2588 36.8213i −0.806973 1.39772i
\(695\) 0 0
\(696\) −1.19134 + 2.06346i −0.0451576 + 0.0782152i
\(697\) 12.2531 0.464120
\(698\) −10.4303 + 18.0659i −0.394794 + 0.683803i
\(699\) −15.6319 + 27.0753i −0.591253 + 1.02408i
\(700\) 0 0
\(701\) 18.0334 + 31.2347i 0.681111 + 1.17972i 0.974642 + 0.223769i \(0.0718362\pi\)
−0.293531 + 0.955950i \(0.594830\pi\)
\(702\) 0.0325248 0.00122757
\(703\) 4.63565 4.26459i 0.174837 0.160842i
\(704\) 4.02474 0.151688
\(705\) 0 0
\(706\) 10.8400 18.7753i 0.407967 0.706619i
\(707\) −2.11777 + 3.66808i −0.0796468 + 0.137952i
\(708\) −23.1173 + 40.0403i −0.868800 + 1.50481i
\(709\) −12.5403 −0.470960 −0.235480 0.971879i \(-0.575666\pi\)
−0.235480 + 0.971879i \(0.575666\pi\)
\(710\) 0 0
\(711\) 43.8186 1.64333
\(712\) −0.0317640 0.0550169i −0.00119041 0.00206185i
\(713\) −81.2129 −3.04145
\(714\) 12.1395 0.454309
\(715\) 0 0
\(716\) 7.30455 12.6519i 0.272984 0.472822i
\(717\) −10.1446 −0.378859
\(718\) 34.2085 + 59.2508i 1.27665 + 2.21122i
\(719\) 8.49541 + 14.7145i 0.316825 + 0.548758i 0.979824 0.199863i \(-0.0640497\pi\)
−0.662998 + 0.748621i \(0.730716\pi\)
\(720\) 0 0
\(721\) −4.80945 + 8.33021i −0.179113 + 0.310233i
\(722\) 17.6745 30.6132i 0.657778 1.13931i
\(723\) 25.5928 + 44.3279i 0.951805 + 1.64857i
\(724\) −12.4181 21.5087i −0.461514 0.799366i
\(725\) 0 0
\(726\) −55.7732 −2.06994
\(727\) 11.4863 19.8949i 0.426004 0.737860i −0.570510 0.821291i \(-0.693254\pi\)
0.996514 + 0.0834305i \(0.0265876\pi\)
\(728\) −0.000529539 0 0.000917188i −1.96260e−5 0 3.39933e-5i
\(729\) −41.1673 −1.52472
\(730\) 0 0
\(731\) −10.4794 18.1509i −0.387596 0.671336i
\(732\) −49.9309 −1.84550
\(733\) 3.10435 5.37689i 0.114662 0.198600i −0.802983 0.596002i \(-0.796755\pi\)
0.917644 + 0.397402i \(0.130088\pi\)
\(734\) 22.7879 0.841118
\(735\) 0 0
\(736\) 34.0118 58.9102i 1.25369 2.17146i
\(737\) 3.22854 5.59199i 0.118925 0.205984i
\(738\) 16.3700 + 28.3538i 0.602590 + 1.04372i
\(739\) −9.96051 −0.366403 −0.183202 0.983075i \(-0.558646\pi\)
−0.183202 + 0.983075i \(0.558646\pi\)
\(740\) 0 0
\(741\) 0.0167657 0.000615904
\(742\) 7.06291 + 12.2333i 0.259288 + 0.449099i
\(743\) 17.5892 30.4655i 0.645287 1.11767i −0.338949 0.940805i \(-0.610071\pi\)
0.984235 0.176864i \(-0.0565953\pi\)
\(744\) −2.74992 + 4.76300i −0.100817 + 0.174620i
\(745\) 0 0
\(746\) −20.2199 −0.740302
\(747\) 1.73027 2.99692i 0.0633073 0.109651i
\(748\) 3.18312 0.116387
\(749\) −5.36479 9.29209i −0.196025 0.339525i
\(750\) 0 0
\(751\) −37.7381 −1.37708 −0.688542 0.725197i \(-0.741749\pi\)
−0.688542 + 0.725197i \(0.741749\pi\)
\(752\) −11.6310 20.1454i −0.424137 0.734628i
\(753\) 1.17825 2.04079i 0.0429378 0.0743704i
\(754\) −0.0490013 −0.00178452
\(755\) 0 0
\(756\) 1.99646 + 3.45798i 0.0726107 + 0.125765i
\(757\) 1.19262 + 2.06568i 0.0433465 + 0.0750783i 0.886885 0.461991i \(-0.152865\pi\)
−0.843538 + 0.537069i \(0.819531\pi\)
\(758\) −5.28292 + 9.15028i −0.191884 + 0.332353i
\(759\) 6.51607 11.2862i 0.236518 0.409662i
\(760\) 0 0
\(761\) −0.239975 0.415648i −0.00869907 0.0150672i 0.861643 0.507515i \(-0.169436\pi\)
−0.870342 + 0.492447i \(0.836102\pi\)
\(762\) 51.0673 + 88.4512i 1.84997 + 3.20425i
\(763\) −5.73966 −0.207790
\(764\) −21.9424 + 38.0054i −0.793849 + 1.37499i
\(765\) 0 0
\(766\) 45.8640 1.65713
\(767\) 0.0564933 0.00203986
\(768\) −23.3682 40.4749i −0.843227 1.46051i
\(769\) −45.6865 −1.64750 −0.823748 0.566956i \(-0.808121\pi\)
−0.823748 + 0.566956i \(0.808121\pi\)
\(770\) 0 0
\(771\) −37.7550 −1.35971
\(772\) 5.08025 8.79924i 0.182842 0.316692i
\(773\) 7.54812 13.0737i 0.271487 0.470229i −0.697756 0.716336i \(-0.745818\pi\)
0.969243 + 0.246107i \(0.0791513\pi\)
\(774\) 28.0009 48.4990i 1.00647 1.74326i
\(775\) 0 0
\(776\) −0.957736 −0.0343807
\(777\) −2.75738 12.3231i −0.0989205 0.442088i
\(778\) 33.9686 1.21783
\(779\) 2.13924 + 3.70527i 0.0766462 + 0.132755i
\(780\) 0 0
\(781\) 1.11663 1.93406i 0.0399563 0.0692063i
\(782\) 25.2963 43.8145i 0.904595 1.56680i
\(783\) −10.9764 −0.392264
\(784\) −13.4480 + 23.2927i −0.480287 + 0.831882i
\(785\) 0 0
\(786\) −24.9540 43.2215i −0.890078 1.54166i
\(787\) −20.9934 −0.748334 −0.374167 0.927361i \(-0.622071\pi\)
−0.374167 + 0.927361i \(0.622071\pi\)
\(788\) 1.39175 0.0495790
\(789\) −32.8301 56.8633i −1.16878 2.02439i
\(790\) 0 0
\(791\) −3.42844 −0.121901
\(792\) −0.252665 0.437629i −0.00897806 0.0155505i
\(793\) 0.0305050 + 0.0528361i 0.00108326 + 0.00187627i
\(794\) 29.8000 + 51.6151i 1.05756 + 1.83175i
\(795\) 0 0
\(796\) −3.32573 + 5.76033i −0.117877 + 0.204169i
\(797\) −10.4826 18.1564i −0.371314 0.643134i 0.618454 0.785821i \(-0.287759\pi\)
−0.989768 + 0.142687i \(0.954426\pi\)
\(798\) 2.11940 + 3.67091i 0.0750260 + 0.129949i
\(799\) −8.18979 14.1851i −0.289734 0.501834i
\(800\) 0 0
\(801\) 0.577203 0.999745i 0.0203945 0.0353242i
\(802\) −11.9028 20.6162i −0.420302 0.727984i
\(803\) 9.40944 0.332052
\(804\) 56.8019 2.00325
\(805\) 0 0
\(806\) −0.113108 −0.00398405
\(807\) 12.6570 21.9226i 0.445549 0.771713i
\(808\) 1.19542 0.0420547
\(809\) 4.09933 7.10024i 0.144125 0.249631i −0.784921 0.619595i \(-0.787297\pi\)
0.929046 + 0.369964i \(0.120630\pi\)
\(810\) 0 0
\(811\) −13.7999 + 23.9021i −0.484579 + 0.839316i −0.999843 0.0177158i \(-0.994361\pi\)
0.515264 + 0.857032i \(0.327694\pi\)
\(812\) −3.00784 5.20974i −0.105555 0.182826i
\(813\) 22.4512 0.787398
\(814\) −1.48900 6.65450i −0.0521893 0.233240i
\(815\) 0 0
\(816\) −16.5457 28.6579i −0.579214 1.00323i
\(817\) 3.65916 6.33785i 0.128018 0.221733i
\(818\) −0.896643 + 1.55303i −0.0313504 + 0.0543005i
\(819\) 0.00962256 0.0166668i 0.000336240 0.000582384i
\(820\) 0 0
\(821\) 5.10922 8.84943i 0.178313 0.308847i −0.762990 0.646411i \(-0.776269\pi\)
0.941303 + 0.337563i \(0.109603\pi\)
\(822\) 26.7956 0.934604
\(823\) 11.1505 + 19.3132i 0.388681 + 0.673216i 0.992272 0.124078i \(-0.0395974\pi\)
−0.603591 + 0.797294i \(0.706264\pi\)
\(824\) 2.71480 0.0945744
\(825\) 0 0
\(826\) 7.14148 + 12.3694i 0.248484 + 0.430387i
\(827\) −21.3714 + 37.0164i −0.743157 + 1.28719i 0.207894 + 0.978151i \(0.433339\pi\)
−0.951051 + 0.309034i \(0.899994\pi\)
\(828\) 65.6413 2.28119
\(829\) 4.77897 + 8.27742i 0.165981 + 0.287487i 0.937003 0.349321i \(-0.113588\pi\)
−0.771022 + 0.636808i \(0.780254\pi\)
\(830\) 0 0
\(831\) 38.7768 + 67.1633i 1.34515 + 2.32987i
\(832\) 0.0216304 0.0374650i 0.000749901 0.00129887i
\(833\) −9.46927 + 16.4013i −0.328091 + 0.568270i
\(834\) 27.0097 + 46.7822i 0.935270 + 1.61993i
\(835\) 0 0
\(836\) 0.555734 + 0.962559i 0.0192204 + 0.0332908i
\(837\) −25.3363 −0.875752
\(838\) −5.36356 + 9.28996i −0.185281 + 0.320916i
\(839\) −16.4527 28.4968i −0.568009 0.983820i −0.996763 0.0803989i \(-0.974381\pi\)
0.428754 0.903421i \(-0.358953\pi\)
\(840\) 0 0
\(841\) −12.4631 −0.429763
\(842\) −31.7108 54.9247i −1.09283 1.89283i
\(843\) −38.6498 −1.33117
\(844\) 13.7812 23.8698i 0.474370 0.821633i
\(845\) 0 0
\(846\) 21.8830 37.9024i 0.752353 1.30311i
\(847\) −4.18315 + 7.24543i −0.143735 + 0.248956i
\(848\) 19.2530 33.3471i 0.661150 1.14514i
\(849\) 24.6296 + 42.6597i 0.845286 + 1.46408i
\(850\) 0 0
\(851\) −50.2230 15.7268i −1.72162 0.539107i
\(852\) 19.6457 0.673051
\(853\) 12.0712 + 20.9079i 0.413310 + 0.715874i 0.995249 0.0973579i \(-0.0310391\pi\)
−0.581939 + 0.813232i \(0.697706\pi\)
\(854\) −7.71243 + 13.3583i −0.263914 + 0.457113i
\(855\) 0 0
\(856\) −1.51414 + 2.62256i −0.0517521 + 0.0896372i
\(857\) 42.5290 1.45276 0.726382 0.687292i \(-0.241200\pi\)
0.726382 + 0.687292i \(0.241200\pi\)
\(858\) 0.00907513 0.0157186i 0.000309820 0.000536624i
\(859\) 51.3470 1.75194 0.875968 0.482370i \(-0.160224\pi\)
0.875968 + 0.482370i \(0.160224\pi\)
\(860\) 0 0
\(861\) 8.57735 0.292315
\(862\) 5.07742 0.172938
\(863\) −24.7874 42.9330i −0.843772 1.46146i −0.886684 0.462377i \(-0.846997\pi\)
0.0429117 0.999079i \(-0.486337\pi\)
\(864\) 10.6108 18.3785i 0.360987 0.625248i
\(865\) 0 0
\(866\) 32.1100 + 55.6162i 1.09114 + 1.88991i
\(867\) 10.8687 + 18.8251i 0.369120 + 0.639335i
\(868\) −6.94288 12.0254i −0.235657 0.408169i
\(869\) 3.09955 5.36858i 0.105145 0.182117i
\(870\) 0 0
\(871\) −0.0347027 0.0601069i −0.00117586 0.00203664i
\(872\) 0.809968 + 1.40291i 0.0274290 + 0.0475084i
\(873\) −8.70180 15.0720i −0.294511 0.510108i
\(874\) 17.6657 0.597551
\(875\) 0 0
\(876\) 41.3867 + 71.6839i 1.39833 + 2.42197i
\(877\) −27.7964 −0.938618 −0.469309 0.883034i \(-0.655497\pi\)
−0.469309 + 0.883034i \(0.655497\pi\)
\(878\) 75.0513 2.53286
\(879\) 7.68680 + 13.3139i 0.259269 + 0.449068i
\(880\) 0 0
\(881\) −24.9175 + 43.1584i −0.839492 + 1.45404i 0.0508281 + 0.998707i \(0.483814\pi\)
−0.890320 + 0.455335i \(0.849519\pi\)
\(882\) −50.6035 −1.70391
\(883\) 18.5385 32.1096i 0.623870 1.08057i −0.364889 0.931051i \(-0.618893\pi\)
0.988758 0.149523i \(-0.0477738\pi\)
\(884\) 0.0171073 0.0296307i 0.000575380 0.000996588i
\(885\) 0 0
\(886\) −9.65441 16.7219i −0.324346 0.561784i
\(887\) −37.5487 −1.26076 −0.630380 0.776286i \(-0.717101\pi\)
−0.630380 + 0.776286i \(0.717101\pi\)
\(888\) −2.62293 + 2.41297i −0.0880198 + 0.0809741i
\(889\) 15.3208 0.513843
\(890\) 0 0
\(891\) −1.39452 + 2.41537i −0.0467181 + 0.0809180i
\(892\) 15.0327 26.0374i 0.503331 0.871795i
\(893\) 2.85967 4.95310i 0.0956953 0.165749i
\(894\) −56.8237 −1.90047
\(895\) 0 0
\(896\) −1.38423 −0.0462438
\(897\) −0.0700395 0.121312i −0.00233855 0.00405049i
\(898\) 24.2283 0.808510
\(899\) 38.1714 1.27309
\(900\) 0 0
\(901\) 13.5567 23.4810i 0.451640 0.782264i
\(902\) 4.63180 0.154222
\(903\) −7.33576 12.7059i −0.244119 0.422826i
\(904\) 0.483815 + 0.837992i 0.0160914 + 0.0278712i
\(905\) 0 0
\(906\) −0.0402730 + 0.0697548i −0.00133798 + 0.00231745i
\(907\) −16.0352 + 27.7739i −0.532441 + 0.922216i 0.466841 + 0.884341i \(0.345392\pi\)
−0.999283 + 0.0378744i \(0.987941\pi\)
\(908\) 14.0663 + 24.3636i 0.466808 + 0.808535i
\(909\) 10.8613 + 18.8124i 0.360248 + 0.623967i
\(910\) 0 0
\(911\) 26.0546 0.863229 0.431614 0.902058i \(-0.357944\pi\)
0.431614 + 0.902058i \(0.357944\pi\)
\(912\) 5.77733 10.0066i 0.191307 0.331353i
\(913\) −0.244785 0.423979i −0.00810119 0.0140317i
\(914\) 22.1023 0.731080
\(915\) 0 0
\(916\) 6.03396 + 10.4511i 0.199368 + 0.345315i
\(917\) −7.48647 −0.247225
\(918\) 7.89181 13.6690i 0.260468 0.451145i
\(919\) −5.23024 −0.172530 −0.0862648 0.996272i \(-0.527493\pi\)
−0.0862648 + 0.996272i \(0.527493\pi\)
\(920\) 0 0
\(921\) −28.7294 + 49.7608i −0.946666 + 1.63967i
\(922\) −21.7082 + 37.5998i −0.714923 + 1.23828i
\(923\) −0.0120024 0.0207888i −0.000395064 0.000684271i
\(924\) 2.22823 0.0733034
\(925\) 0 0
\(926\) −41.3031 −1.35730
\(927\) 24.6661 + 42.7229i 0.810141 + 1.40320i
\(928\) −15.9861 + 27.6887i −0.524769 + 0.908927i
\(929\) 1.59438 2.76154i 0.0523099 0.0906033i −0.838685 0.544617i \(-0.816675\pi\)
0.890995 + 0.454014i \(0.150008\pi\)
\(930\) 0 0
\(931\) −6.61287 −0.216728
\(932\) −11.1390 + 19.2932i −0.364868 + 0.631971i
\(933\) 18.6137 0.609386
\(934\) −1.69378 2.93372i −0.0554223 0.0959943i
\(935\) 0 0
\(936\) −0.00543166 −0.000177540
\(937\) 27.2384 + 47.1783i 0.889840 + 1.54125i 0.840064 + 0.542488i \(0.182518\pi\)
0.0497763 + 0.998760i \(0.484149\pi\)
\(938\) 8.77373 15.1966i 0.286473 0.496185i
\(939\) 62.9767 2.05517
\(940\) 0 0
\(941\) 22.1090 + 38.2939i 0.720733 + 1.24835i 0.960707 + 0.277566i \(0.0895277\pi\)
−0.239974 + 0.970779i \(0.577139\pi\)
\(942\) −36.9115 63.9326i −1.20264 2.08304i
\(943\) 17.8735 30.9579i 0.582042 1.00813i
\(944\) 19.4671 33.7181i 0.633602 1.09743i
\(945\) 0 0
\(946\) −3.96134 6.86124i −0.128794 0.223078i
\(947\) 5.53233 + 9.58228i 0.179777 + 0.311382i 0.941804 0.336163i \(-0.109129\pi\)
−0.762027 + 0.647545i \(0.775796\pi\)
\(948\) 54.5326 1.77114
\(949\) 0.0505698 0.0875895i 0.00164157 0.00284328i
\(950\) 0 0
\(951\) −61.2272 −1.98543
\(952\) −0.513949 −0.0166572
\(953\) 21.8629 + 37.8677i 0.708210 + 1.22666i 0.965521 + 0.260327i \(0.0838303\pi\)
−0.257311 + 0.966329i \(0.582836\pi\)
\(954\) 72.4467 2.34555
\(955\) 0 0
\(956\) −7.22884 −0.233798
\(957\) −3.06266 + 5.30468i −0.0990016 + 0.171476i
\(958\) 32.5672 56.4081i 1.05220 1.82246i
\(959\) 2.00975 3.48099i 0.0648982 0.112407i
\(960\) 0 0
\(961\) 57.1094 1.84224
\(962\) −0.0699471 0.0219032i −0.00225519 0.000706187i
\(963\) −55.0285 −1.77327
\(964\) 18.2368 + 31.5871i 0.587368 + 1.01735i
\(965\) 0 0
\(966\) 17.7078 30.6708i 0.569739 0.986816i
\(967\) −14.5173 + 25.1448i −0.466846 + 0.808601i −0.999283 0.0378687i \(-0.987943\pi\)
0.532437 + 0.846470i \(0.321276\pi\)
\(968\) 2.36127 0.0758941
\(969\) 4.06804 7.04605i 0.130684 0.226352i
\(970\) 0 0
\(971\) −8.15440 14.1238i −0.261687 0.453255i 0.705003 0.709204i \(-0.250946\pi\)
−0.966690 + 0.255949i \(0.917612\pi\)
\(972\) −39.8216 −1.27728
\(973\) 8.10323 0.259778
\(974\) 13.2657 + 22.9768i 0.425059 + 0.736224i
\(975\) 0 0
\(976\) 42.0470 1.34589
\(977\) −9.80571 16.9840i −0.313712 0.543366i 0.665450 0.746442i \(-0.268239\pi\)
−0.979163 + 0.203076i \(0.934906\pi\)
\(978\) 55.6170 + 96.3315i 1.77844 + 3.08034i
\(979\) −0.0816580 0.141436i −0.00260980 0.00452031i
\(980\) 0 0
\(981\) −14.7184 + 25.4930i −0.469923 + 0.813930i
\(982\) −13.6677 23.6732i −0.436154 0.755442i
\(983\) −26.7020 46.2491i −0.851660 1.47512i −0.879709 0.475512i \(-0.842263\pi\)
0.0280494 0.999607i \(-0.491070\pi\)
\(984\) −1.21042 2.09651i −0.0385867 0.0668341i
\(985\) 0 0
\(986\) −11.8897 + 20.5935i −0.378645 + 0.655832i
\(987\) −5.73297 9.92980i −0.182483 0.316069i
\(988\) 0.0119469 0.000380081
\(989\) −61.1452 −1.94430
\(990\) 0 0
\(991\) 47.7930 1.51820 0.759098 0.650976i \(-0.225640\pi\)
0.759098 + 0.650976i \(0.225640\pi\)
\(992\) −36.9001 + 63.9128i −1.17158 + 2.02923i
\(993\) −27.7301 −0.879988
\(994\) 3.03451 5.25593i 0.0962490 0.166708i
\(995\) 0 0
\(996\) 2.15333 3.72968i 0.0682309 0.118179i
\(997\) 28.3125 + 49.0387i 0.896667 + 1.55307i 0.831728 + 0.555183i \(0.187352\pi\)
0.0649381 + 0.997889i \(0.479315\pi\)
\(998\) 63.5087 2.01033
\(999\) −15.6683 4.90635i −0.495723 0.155230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.e.c.26.2 14
5.2 odd 4 925.2.o.b.174.11 28
5.3 odd 4 925.2.o.b.174.4 28
5.4 even 2 185.2.e.a.26.6 14
37.10 even 3 inner 925.2.e.c.676.2 14
185.47 odd 12 925.2.o.b.824.4 28
185.84 even 6 185.2.e.a.121.6 yes 14
185.158 odd 12 925.2.o.b.824.11 28
185.159 even 6 6845.2.a.k.1.6 7
185.174 even 6 6845.2.a.l.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.6 14 5.4 even 2
185.2.e.a.121.6 yes 14 185.84 even 6
925.2.e.c.26.2 14 1.1 even 1 trivial
925.2.e.c.676.2 14 37.10 even 3 inner
925.2.o.b.174.4 28 5.3 odd 4
925.2.o.b.174.11 28 5.2 odd 4
925.2.o.b.824.4 28 185.47 odd 12
925.2.o.b.824.11 28 185.158 odd 12
6845.2.a.k.1.6 7 185.159 even 6
6845.2.a.l.1.2 7 185.174 even 6