Properties

Label 185.2.e.a.121.6
Level $185$
Weight $2$
Character 185.121
Analytic conductor $1.477$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(26,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.6
Root \(0.985880 + 1.70759i\) of defining polynomial
Character \(\chi\) \(=\) 185.121
Dual form 185.2.e.a.26.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.985880 - 1.70759i) q^{2} +(1.32465 + 2.29437i) q^{3} +(-0.943918 - 1.63491i) q^{4} +(-0.500000 - 0.866025i) q^{5} +5.22380 q^{6} +(-0.391800 - 0.678617i) q^{7} +0.221160 q^{8} +(-2.00941 + 3.48041i) q^{9} -1.97176 q^{10} -0.568551 q^{11} +(2.50073 - 4.33139i) q^{12} +(0.00305561 + 0.00529246i) q^{13} -1.54507 q^{14} +(1.32465 - 2.29437i) q^{15} +(2.10587 - 3.64748i) q^{16} +(-1.48282 + 2.56833i) q^{17} +(3.96208 + 6.86253i) q^{18} +(-0.517765 - 0.896796i) q^{19} +(-0.943918 + 1.63491i) q^{20} +(1.03800 - 1.79787i) q^{21} +(-0.560523 + 0.970854i) q^{22} -8.65194 q^{23} +(0.292960 + 0.507422i) q^{24} +(-0.500000 + 0.866025i) q^{25} +0.0120498 q^{26} -2.69919 q^{27} +(-0.739654 + 1.28112i) q^{28} -4.06655 q^{29} +(-2.61190 - 4.52394i) q^{30} -9.38666 q^{31} +(-3.93112 - 6.80889i) q^{32} +(-0.753133 - 1.30446i) q^{33} +(2.92377 + 5.06412i) q^{34} +(-0.391800 + 0.678617i) q^{35} +7.58689 q^{36} +(5.80482 - 1.81772i) q^{37} -2.04182 q^{38} +(-0.00809524 + 0.0140214i) q^{39} +(-0.110580 - 0.191530i) q^{40} +(2.06584 + 3.57814i) q^{41} +(-2.04668 - 3.54496i) q^{42} +7.06722 q^{43} +(0.536666 + 0.929532i) q^{44} +4.01883 q^{45} +(-8.52978 + 14.7740i) q^{46} +5.52310 q^{47} +11.1582 q^{48} +(3.19299 - 5.53041i) q^{49} +(0.985880 + 1.70759i) q^{50} -7.85691 q^{51} +(0.00576848 - 0.00999130i) q^{52} +(4.57125 - 7.91765i) q^{53} +(-2.66107 + 4.60911i) q^{54} +(0.284276 + 0.492380i) q^{55} +(-0.0866504 - 0.150083i) q^{56} +(1.37172 - 2.37589i) q^{57} +(-4.00913 + 6.94402i) q^{58} +(-4.62211 + 8.00573i) q^{59} -5.00146 q^{60} +(4.99164 + 8.64577i) q^{61} +(-9.25412 + 16.0286i) q^{62} +3.14915 q^{63} -7.07894 q^{64} +(0.00305561 - 0.00529246i) q^{65} -2.96999 q^{66} +(5.67853 + 9.83551i) q^{67} +5.59866 q^{68} +(-11.4608 - 19.8507i) q^{69} +(0.772535 + 1.33807i) q^{70} +(-1.96400 - 3.40174i) q^{71} +(-0.444402 + 0.769726i) q^{72} +16.5499 q^{73} +(2.61893 - 11.7043i) q^{74} -2.64931 q^{75} +(-0.977456 + 1.69300i) q^{76} +(0.222758 + 0.385829i) q^{77} +(0.0159619 + 0.0276468i) q^{78} +(-5.45167 - 9.44257i) q^{79} -4.21175 q^{80} +(2.45275 + 4.24830i) q^{81} +8.14668 q^{82} +(-0.430541 + 0.745719i) q^{83} -3.91914 q^{84} +2.96565 q^{85} +(6.96743 - 12.0679i) q^{86} +(-5.38677 - 9.33017i) q^{87} -0.125741 q^{88} +(0.143625 - 0.248765i) q^{89} +(3.96208 - 6.86253i) q^{90} +(0.00239437 - 0.00414717i) q^{91} +(8.16673 + 14.1452i) q^{92} +(-12.4341 - 21.5364i) q^{93} +(5.44512 - 9.43122i) q^{94} +(-0.517765 + 0.896796i) q^{95} +(10.4147 - 18.0388i) q^{96} -4.33052 q^{97} +(-6.29580 - 10.9046i) q^{98} +(1.14245 - 1.97879i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 8 q^{4} - 7 q^{5} - 4 q^{6} + 6 q^{8} - 13 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 20 q^{14} - 2 q^{15} + 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} + q^{21} + 7 q^{22} + 15 q^{24}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.985880 1.70759i 0.697122 1.20745i −0.272338 0.962202i \(-0.587797\pi\)
0.969460 0.245250i \(-0.0788699\pi\)
\(3\) 1.32465 + 2.29437i 0.764789 + 1.32465i 0.940358 + 0.340186i \(0.110490\pi\)
−0.175569 + 0.984467i \(0.556177\pi\)
\(4\) −0.943918 1.63491i −0.471959 0.817457i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 5.22380 2.13261
\(7\) −0.391800 0.678617i −0.148086 0.256493i 0.782434 0.622734i \(-0.213978\pi\)
−0.930520 + 0.366241i \(0.880645\pi\)
\(8\) 0.221160 0.0781918
\(9\) −2.00941 + 3.48041i −0.669805 + 1.16014i
\(10\) −1.97176 −0.623525
\(11\) −0.568551 −0.171425 −0.0857123 0.996320i \(-0.527317\pi\)
−0.0857123 + 0.996320i \(0.527317\pi\)
\(12\) 2.50073 4.33139i 0.721898 1.25036i
\(13\) 0.00305561 + 0.00529246i 0.000847472 + 0.00146787i 0.866449 0.499266i \(-0.166397\pi\)
−0.865601 + 0.500734i \(0.833064\pi\)
\(14\) −1.54507 −0.412937
\(15\) 1.32465 2.29437i 0.342024 0.592403i
\(16\) 2.10587 3.64748i 0.526468 0.911870i
\(17\) −1.48282 + 2.56833i −0.359638 + 0.622911i −0.987900 0.155091i \(-0.950433\pi\)
0.628263 + 0.778001i \(0.283766\pi\)
\(18\) 3.96208 + 6.86253i 0.933871 + 1.61751i
\(19\) −0.517765 0.896796i −0.118783 0.205739i 0.800502 0.599330i \(-0.204566\pi\)
−0.919286 + 0.393591i \(0.871233\pi\)
\(20\) −0.943918 + 1.63491i −0.211067 + 0.365578i
\(21\) 1.03800 1.79787i 0.226510 0.392326i
\(22\) −0.560523 + 0.970854i −0.119504 + 0.206987i
\(23\) −8.65194 −1.80405 −0.902027 0.431679i \(-0.857921\pi\)
−0.902027 + 0.431679i \(0.857921\pi\)
\(24\) 0.292960 + 0.507422i 0.0598003 + 0.103577i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0.0120498 0.00236317
\(27\) −2.69919 −0.519459
\(28\) −0.739654 + 1.28112i −0.139781 + 0.242109i
\(29\) −4.06655 −0.755140 −0.377570 0.925981i \(-0.623240\pi\)
−0.377570 + 0.925981i \(0.623240\pi\)
\(30\) −2.61190 4.52394i −0.476865 0.825955i
\(31\) −9.38666 −1.68589 −0.842947 0.537997i \(-0.819181\pi\)
−0.842947 + 0.537997i \(0.819181\pi\)
\(32\) −3.93112 6.80889i −0.694930 1.20365i
\(33\) −0.753133 1.30446i −0.131104 0.227078i
\(34\) 2.92377 + 5.06412i 0.501423 + 0.868490i
\(35\) −0.391800 + 0.678617i −0.0662263 + 0.114707i
\(36\) 7.58689 1.26448
\(37\) 5.80482 1.81772i 0.954306 0.298831i
\(38\) −2.04182 −0.331227
\(39\) −0.00809524 + 0.0140214i −0.00129628 + 0.00224521i
\(40\) −0.110580 0.191530i −0.0174842 0.0302836i
\(41\) 2.06584 + 3.57814i 0.322630 + 0.558811i 0.981030 0.193857i \(-0.0620997\pi\)
−0.658400 + 0.752668i \(0.728766\pi\)
\(42\) −2.04668 3.54496i −0.315810 0.546999i
\(43\) 7.06722 1.07774 0.538870 0.842389i \(-0.318851\pi\)
0.538870 + 0.842389i \(0.318851\pi\)
\(44\) 0.536666 + 0.929532i 0.0809054 + 0.140132i
\(45\) 4.01883 0.599091
\(46\) −8.52978 + 14.7740i −1.25765 + 2.17831i
\(47\) 5.52310 0.805628 0.402814 0.915282i \(-0.368032\pi\)
0.402814 + 0.915282i \(0.368032\pi\)
\(48\) 11.1582 1.61055
\(49\) 3.19299 5.53041i 0.456141 0.790059i
\(50\) 0.985880 + 1.70759i 0.139424 + 0.241490i
\(51\) −7.85691 −1.10019
\(52\) 0.00576848 0.00999130i 0.000799945 0.00138554i
\(53\) 4.57125 7.91765i 0.627910 1.08757i −0.360060 0.932929i \(-0.617244\pi\)
0.987970 0.154643i \(-0.0494228\pi\)
\(54\) −2.66107 + 4.60911i −0.362126 + 0.627221i
\(55\) 0.284276 + 0.492380i 0.0383317 + 0.0663925i
\(56\) −0.0866504 0.150083i −0.0115792 0.0200557i
\(57\) 1.37172 2.37589i 0.181689 0.314694i
\(58\) −4.00913 + 6.94402i −0.526425 + 0.911795i
\(59\) −4.62211 + 8.00573i −0.601747 + 1.04226i 0.390809 + 0.920472i \(0.372195\pi\)
−0.992556 + 0.121785i \(0.961138\pi\)
\(60\) −5.00146 −0.645685
\(61\) 4.99164 + 8.64577i 0.639114 + 1.10698i 0.985628 + 0.168933i \(0.0540321\pi\)
−0.346514 + 0.938045i \(0.612635\pi\)
\(62\) −9.25412 + 16.0286i −1.17527 + 2.03563i
\(63\) 3.14915 0.396756
\(64\) −7.07894 −0.884867
\(65\) 0.00305561 0.00529246i 0.000379001 0.000656449i
\(66\) −2.96999 −0.365581
\(67\) 5.67853 + 9.83551i 0.693743 + 1.20160i 0.970602 + 0.240688i \(0.0773731\pi\)
−0.276859 + 0.960911i \(0.589294\pi\)
\(68\) 5.59866 0.678937
\(69\) −11.4608 19.8507i −1.37972 2.38975i
\(70\) 0.772535 + 1.33807i 0.0923356 + 0.159930i
\(71\) −1.96400 3.40174i −0.233084 0.403713i 0.725630 0.688085i \(-0.241548\pi\)
−0.958714 + 0.284372i \(0.908215\pi\)
\(72\) −0.444402 + 0.769726i −0.0523732 + 0.0907131i
\(73\) 16.5499 1.93701 0.968507 0.248987i \(-0.0800975\pi\)
0.968507 + 0.248987i \(0.0800975\pi\)
\(74\) 2.61893 11.7043i 0.304445 1.36060i
\(75\) −2.64931 −0.305916
\(76\) −0.977456 + 1.69300i −0.112122 + 0.194201i
\(77\) 0.222758 + 0.385829i 0.0253857 + 0.0439692i
\(78\) 0.0159619 + 0.0276468i 0.00180732 + 0.00313038i
\(79\) −5.45167 9.44257i −0.613361 1.06237i −0.990670 0.136284i \(-0.956484\pi\)
0.377309 0.926087i \(-0.376849\pi\)
\(80\) −4.21175 −0.470888
\(81\) 2.45275 + 4.24830i 0.272528 + 0.472033i
\(82\) 8.14668 0.899650
\(83\) −0.430541 + 0.745719i −0.0472580 + 0.0818533i −0.888687 0.458515i \(-0.848382\pi\)
0.841429 + 0.540368i \(0.181715\pi\)
\(84\) −3.91914 −0.427613
\(85\) 2.96565 0.321670
\(86\) 6.96743 12.0679i 0.751317 1.30132i
\(87\) −5.38677 9.33017i −0.577523 1.00030i
\(88\) −0.125741 −0.0134040
\(89\) 0.143625 0.248765i 0.0152242 0.0263691i −0.858313 0.513127i \(-0.828487\pi\)
0.873537 + 0.486758i \(0.161820\pi\)
\(90\) 3.96208 6.86253i 0.417640 0.723374i
\(91\) 0.00239437 0.00414717i 0.000250998 0.000434742i
\(92\) 8.16673 + 14.1452i 0.851440 + 1.47474i
\(93\) −12.4341 21.5364i −1.28935 2.23323i
\(94\) 5.44512 9.43122i 0.561621 0.972756i
\(95\) −0.517765 + 0.896796i −0.0531216 + 0.0920093i
\(96\) 10.4147 18.0388i 1.06295 1.84108i
\(97\) −4.33052 −0.439697 −0.219849 0.975534i \(-0.570556\pi\)
−0.219849 + 0.975534i \(0.570556\pi\)
\(98\) −6.29580 10.9046i −0.635972 1.10154i
\(99\) 1.14245 1.97879i 0.114821 0.198876i
\(100\) 1.88784 0.188784
\(101\) −5.40523 −0.537840 −0.268920 0.963163i \(-0.586667\pi\)
−0.268920 + 0.963163i \(0.586667\pi\)
\(102\) −7.74597 + 13.4164i −0.766966 + 1.32842i
\(103\) 12.2753 1.20952 0.604759 0.796409i \(-0.293269\pi\)
0.604759 + 0.796409i \(0.293269\pi\)
\(104\) 0.000675777 0.00117048i 6.62654e−5 0.000114775i
\(105\) −2.07600 −0.202596
\(106\) −9.01342 15.6117i −0.875460 1.51634i
\(107\) −6.84634 11.8582i −0.661860 1.14638i −0.980126 0.198374i \(-0.936434\pi\)
0.318266 0.948002i \(-0.396900\pi\)
\(108\) 2.54781 + 4.41294i 0.245163 + 0.424635i
\(109\) −3.66237 + 6.34340i −0.350791 + 0.607588i −0.986388 0.164433i \(-0.947421\pi\)
0.635597 + 0.772021i \(0.280754\pi\)
\(110\) 1.12105 0.106888
\(111\) 11.8599 + 10.9105i 1.12569 + 1.03558i
\(112\) −3.30032 −0.311851
\(113\) 2.18762 3.78908i 0.205794 0.356446i −0.744591 0.667521i \(-0.767356\pi\)
0.950386 + 0.311075i \(0.100689\pi\)
\(114\) −2.70470 4.68468i −0.253318 0.438760i
\(115\) 4.32597 + 7.49280i 0.403399 + 0.698707i
\(116\) 3.83849 + 6.64847i 0.356395 + 0.617295i
\(117\) −0.0245599 −0.00227056
\(118\) 9.11369 + 15.7854i 0.838983 + 1.45316i
\(119\) 2.32388 0.213030
\(120\) 0.292960 0.507422i 0.0267435 0.0463211i
\(121\) −10.6767 −0.970614
\(122\) 19.6846 1.78216
\(123\) −5.47304 + 9.47959i −0.493488 + 0.854746i
\(124\) 8.86024 + 15.3464i 0.795673 + 1.37815i
\(125\) 1.00000 0.0894427
\(126\) 3.10469 5.37747i 0.276587 0.479063i
\(127\) −9.77590 + 16.9324i −0.867471 + 1.50250i −0.00289830 + 0.999996i \(0.500923\pi\)
−0.864573 + 0.502508i \(0.832411\pi\)
\(128\) 0.883248 1.52983i 0.0780689 0.135219i
\(129\) 9.36162 + 16.2148i 0.824244 + 1.42763i
\(130\) −0.00602492 0.0104355i −0.000528420 0.000915251i
\(131\) −4.77698 + 8.27397i −0.417366 + 0.722900i −0.995674 0.0929193i \(-0.970380\pi\)
0.578307 + 0.815819i \(0.303713\pi\)
\(132\) −1.42179 + 2.46262i −0.123751 + 0.214343i
\(133\) −0.405721 + 0.702729i −0.0351804 + 0.0609343i
\(134\) 22.3934 1.93450
\(135\) 1.34959 + 2.33756i 0.116154 + 0.201185i
\(136\) −0.327941 + 0.568011i −0.0281207 + 0.0487065i
\(137\) −5.12953 −0.438245 −0.219123 0.975697i \(-0.570319\pi\)
−0.219123 + 0.975697i \(0.570319\pi\)
\(138\) −45.1960 −3.84734
\(139\) 5.17051 8.95559i 0.438557 0.759603i −0.559021 0.829153i \(-0.688823\pi\)
0.997578 + 0.0695499i \(0.0221563\pi\)
\(140\) 1.47931 0.125024
\(141\) 7.31620 + 12.6720i 0.616135 + 1.06718i
\(142\) −7.74506 −0.649951
\(143\) −0.00173727 0.00300904i −0.000145278 0.000251628i
\(144\) 8.46314 + 14.6586i 0.705262 + 1.22155i
\(145\) 2.03328 + 3.52174i 0.168854 + 0.292465i
\(146\) 16.3162 28.2604i 1.35034 2.33885i
\(147\) 16.9184 1.39541
\(148\) −8.45108 7.77460i −0.694675 0.639069i
\(149\) −10.8779 −0.891149 −0.445575 0.895245i \(-0.647001\pi\)
−0.445575 + 0.895245i \(0.647001\pi\)
\(150\) −2.61190 + 4.52394i −0.213261 + 0.369378i
\(151\) −0.00770952 0.0133533i −0.000627392 0.00108667i 0.865712 0.500543i \(-0.166866\pi\)
−0.866339 + 0.499457i \(0.833533\pi\)
\(152\) −0.114509 0.198335i −0.00928790 0.0160871i
\(153\) −5.95921 10.3217i −0.481774 0.834457i
\(154\) 0.878451 0.0707876
\(155\) 4.69333 + 8.12909i 0.376977 + 0.652944i
\(156\) 0.0305650 0.00244716
\(157\) 7.06603 12.2387i 0.563930 0.976756i −0.433218 0.901289i \(-0.642622\pi\)
0.997148 0.0754667i \(-0.0240447\pi\)
\(158\) −21.4988 −1.71035
\(159\) 24.2213 1.92088
\(160\) −3.93112 + 6.80889i −0.310782 + 0.538290i
\(161\) 3.38983 + 5.87136i 0.267156 + 0.462728i
\(162\) 9.67249 0.759942
\(163\) −10.6469 + 18.4409i −0.833926 + 1.44440i 0.0609751 + 0.998139i \(0.480579\pi\)
−0.894902 + 0.446264i \(0.852754\pi\)
\(164\) 3.89997 6.75494i 0.304536 0.527472i
\(165\) −0.753133 + 1.30446i −0.0586313 + 0.101552i
\(166\) 0.848923 + 1.47038i 0.0658892 + 0.114123i
\(167\) 3.98568 + 6.90340i 0.308421 + 0.534201i 0.978017 0.208524i \(-0.0668660\pi\)
−0.669596 + 0.742726i \(0.733533\pi\)
\(168\) 0.229564 0.397616i 0.0177112 0.0306767i
\(169\) 6.49998 11.2583i 0.499999 0.866023i
\(170\) 2.92377 5.06412i 0.224243 0.388401i
\(171\) 4.16162 0.318247
\(172\) −6.67088 11.5543i −0.508650 0.881007i
\(173\) 7.45671 12.9154i 0.566923 0.981940i −0.429945 0.902855i \(-0.641467\pi\)
0.996868 0.0790846i \(-0.0251997\pi\)
\(174\) −21.2429 −1.61042
\(175\) 0.783600 0.0592346
\(176\) −1.19730 + 2.07378i −0.0902496 + 0.156317i
\(177\) −24.4908 −1.84084
\(178\) −0.283193 0.490505i −0.0212262 0.0367649i
\(179\) −7.73854 −0.578406 −0.289203 0.957268i \(-0.593390\pi\)
−0.289203 + 0.957268i \(0.593390\pi\)
\(180\) −3.79344 6.57044i −0.282747 0.489731i
\(181\) −6.57794 11.3933i −0.488935 0.846859i 0.510984 0.859590i \(-0.329281\pi\)
−0.999919 + 0.0127305i \(0.995948\pi\)
\(182\) −0.00472113 0.00817723i −0.000349953 0.000606137i
\(183\) −13.2244 + 22.9053i −0.977575 + 1.69321i
\(184\) −1.91346 −0.141062
\(185\) −4.47660 4.11826i −0.329126 0.302781i
\(186\) −49.0340 −3.59535
\(187\) 0.843061 1.46022i 0.0616507 0.106782i
\(188\) −5.21336 9.02980i −0.380223 0.658566i
\(189\) 1.05754 + 1.83171i 0.0769248 + 0.133238i
\(190\) 1.02091 + 1.76827i 0.0740645 + 0.128283i
\(191\) 23.2461 1.68203 0.841014 0.541013i \(-0.181959\pi\)
0.841014 + 0.541013i \(0.181959\pi\)
\(192\) −9.37714 16.2417i −0.676737 1.17214i
\(193\) 5.38208 0.387411 0.193705 0.981060i \(-0.437949\pi\)
0.193705 + 0.981060i \(0.437949\pi\)
\(194\) −4.26937 + 7.39476i −0.306523 + 0.530913i
\(195\) 0.0161905 0.00115942
\(196\) −12.0557 −0.861119
\(197\) 0.368609 0.638450i 0.0262623 0.0454877i −0.852596 0.522571i \(-0.824973\pi\)
0.878858 + 0.477084i \(0.158306\pi\)
\(198\) −2.25265 3.90170i −0.160089 0.277281i
\(199\) 3.52332 0.249762 0.124881 0.992172i \(-0.460145\pi\)
0.124881 + 0.992172i \(0.460145\pi\)
\(200\) −0.110580 + 0.191530i −0.00781918 + 0.0135432i
\(201\) −15.0442 + 26.0573i −1.06113 + 1.83794i
\(202\) −5.32890 + 9.22993i −0.374940 + 0.649416i
\(203\) 1.59328 + 2.75963i 0.111826 + 0.193688i
\(204\) 7.41628 + 12.8454i 0.519244 + 0.899356i
\(205\) 2.06584 3.57814i 0.144285 0.249908i
\(206\) 12.1019 20.9612i 0.843182 1.46043i
\(207\) 17.3853 30.1123i 1.20836 2.09295i
\(208\) 0.0257389 0.00178467
\(209\) 0.294376 + 0.509874i 0.0203624 + 0.0352687i
\(210\) −2.04668 + 3.54496i −0.141235 + 0.244625i
\(211\) −14.6000 −1.00511 −0.502554 0.864546i \(-0.667606\pi\)
−0.502554 + 0.864546i \(0.667606\pi\)
\(212\) −17.2596 −1.18539
\(213\) 5.20323 9.01226i 0.356520 0.617510i
\(214\) −26.9987 −1.84559
\(215\) −3.53361 6.12039i −0.240990 0.417407i
\(216\) −0.596952 −0.0406174
\(217\) 3.67769 + 6.36995i 0.249658 + 0.432420i
\(218\) 7.22130 + 12.5077i 0.489088 + 0.847126i
\(219\) 21.9228 + 37.9714i 1.48141 + 2.56587i
\(220\) 0.536666 0.929532i 0.0361820 0.0626690i
\(221\) −0.0181237 −0.00121913
\(222\) 30.3232 9.49538i 2.03516 0.637288i
\(223\) 15.9258 1.06647 0.533236 0.845967i \(-0.320976\pi\)
0.533236 + 0.845967i \(0.320976\pi\)
\(224\) −3.08042 + 5.33545i −0.205819 + 0.356490i
\(225\) −2.00941 3.48041i −0.133961 0.232027i
\(226\) −4.31347 7.47115i −0.286928 0.496973i
\(227\) −7.45104 12.9056i −0.494543 0.856573i 0.505438 0.862863i \(-0.331331\pi\)
−0.999980 + 0.00629015i \(0.997998\pi\)
\(228\) −5.17916 −0.342998
\(229\) 3.19623 + 5.53604i 0.211213 + 0.365832i 0.952094 0.305804i \(-0.0989253\pi\)
−0.740881 + 0.671636i \(0.765592\pi\)
\(230\) 17.0596 1.12487
\(231\) −0.590155 + 1.02218i −0.0388293 + 0.0672544i
\(232\) −0.899359 −0.0590458
\(233\) −11.8008 −0.773094 −0.386547 0.922270i \(-0.626332\pi\)
−0.386547 + 0.922270i \(0.626332\pi\)
\(234\) −0.0242131 + 0.0419383i −0.00158286 + 0.00274159i
\(235\) −2.76155 4.78315i −0.180144 0.312018i
\(236\) 17.4516 1.13600
\(237\) 14.4431 25.0163i 0.938183 1.62498i
\(238\) 2.29107 3.96825i 0.148508 0.257223i
\(239\) 1.91458 3.31616i 0.123844 0.214504i −0.797436 0.603403i \(-0.793811\pi\)
0.921281 + 0.388899i \(0.127144\pi\)
\(240\) −5.57910 9.66329i −0.360130 0.623763i
\(241\) 9.66017 + 16.7319i 0.622266 + 1.07780i 0.989063 + 0.147495i \(0.0471212\pi\)
−0.366797 + 0.930301i \(0.619545\pi\)
\(242\) −10.5260 + 18.2316i −0.676636 + 1.17197i
\(243\) −10.5469 + 18.2677i −0.676583 + 1.17188i
\(244\) 9.42340 16.3218i 0.603271 1.04490i
\(245\) −6.38597 −0.407985
\(246\) 10.7915 + 18.6915i 0.688043 + 1.19172i
\(247\) 0.00316417 0.00548051i 0.000201331 0.000348716i
\(248\) −2.07595 −0.131823
\(249\) −2.28127 −0.144570
\(250\) 0.985880 1.70759i 0.0623525 0.107998i
\(251\) −0.889477 −0.0561433 −0.0280716 0.999606i \(-0.508937\pi\)
−0.0280716 + 0.999606i \(0.508937\pi\)
\(252\) −2.97254 5.14859i −0.187253 0.324331i
\(253\) 4.91907 0.309259
\(254\) 19.2757 + 33.3865i 1.20947 + 2.09486i
\(255\) 3.92846 + 6.80429i 0.246009 + 0.426101i
\(256\) −8.82049 15.2775i −0.551281 0.954846i
\(257\) −7.12546 + 12.3417i −0.444474 + 0.769851i −0.998015 0.0629705i \(-0.979943\pi\)
0.553542 + 0.832821i \(0.313276\pi\)
\(258\) 36.9177 2.29840
\(259\) −3.50786 3.22707i −0.217968 0.200520i
\(260\) −0.0115370 −0.000715492
\(261\) 8.17139 14.1533i 0.505796 0.876065i
\(262\) 9.41905 + 16.3143i 0.581911 + 1.00790i
\(263\) 12.3919 + 21.4635i 0.764120 + 1.32349i 0.940711 + 0.339210i \(0.110160\pi\)
−0.176591 + 0.984284i \(0.556507\pi\)
\(264\) −0.166563 0.288495i −0.0102512 0.0177557i
\(265\) −9.14251 −0.561620
\(266\) 0.799984 + 1.38561i 0.0490502 + 0.0849574i
\(267\) 0.761012 0.0465732
\(268\) 10.7201 18.5678i 0.654837 1.13421i
\(269\) −9.55497 −0.582577 −0.291289 0.956635i \(-0.594084\pi\)
−0.291289 + 0.956635i \(0.594084\pi\)
\(270\) 5.32215 0.323895
\(271\) −4.23718 + 7.33902i −0.257391 + 0.445814i −0.965542 0.260247i \(-0.916196\pi\)
0.708151 + 0.706061i \(0.249529\pi\)
\(272\) 6.24528 + 10.8171i 0.378676 + 0.655886i
\(273\) 0.0126868 0.000767843
\(274\) −5.05710 + 8.75915i −0.305510 + 0.529160i
\(275\) 0.284276 0.492380i 0.0171425 0.0296916i
\(276\) −21.6362 + 37.4749i −1.30234 + 2.25573i
\(277\) −14.6366 25.3513i −0.879426 1.52321i −0.851972 0.523588i \(-0.824593\pi\)
−0.0274542 0.999623i \(-0.508740\pi\)
\(278\) −10.1950 17.6583i −0.611456 1.05907i
\(279\) 18.8617 32.6694i 1.12922 1.95587i
\(280\) −0.0866504 + 0.150083i −0.00517835 + 0.00896917i
\(281\) 7.29433 12.6342i 0.435143 0.753690i −0.562164 0.827026i \(-0.690031\pi\)
0.997307 + 0.0733354i \(0.0233644\pi\)
\(282\) 28.8516 1.71809
\(283\) −9.29663 16.1022i −0.552627 0.957178i −0.998084 0.0618747i \(-0.980292\pi\)
0.445457 0.895303i \(-0.353041\pi\)
\(284\) −3.70771 + 6.42193i −0.220012 + 0.381072i
\(285\) −2.74344 −0.162507
\(286\) −0.00685095 −0.000405105
\(287\) 1.61879 2.80383i 0.0955542 0.165505i
\(288\) 31.5970 1.86187
\(289\) 4.10246 + 7.10568i 0.241321 + 0.417981i
\(290\) 8.01827 0.470849
\(291\) −5.73643 9.93579i −0.336276 0.582446i
\(292\) −15.6217 27.0576i −0.914191 1.58343i
\(293\) −2.90144 5.02544i −0.169504 0.293589i 0.768742 0.639559i \(-0.220883\pi\)
−0.938246 + 0.345970i \(0.887550\pi\)
\(294\) 16.6795 28.8898i 0.972769 1.68488i
\(295\) 9.24422 0.538219
\(296\) 1.28379 0.402006i 0.0746190 0.0233661i
\(297\) 1.53462 0.0890480
\(298\) −10.7243 + 18.5750i −0.621240 + 1.07602i
\(299\) −0.0264369 0.0457901i −0.00152889 0.00264811i
\(300\) 2.50073 + 4.33139i 0.144380 + 0.250073i
\(301\) −2.76894 4.79594i −0.159599 0.276433i
\(302\) −0.0304027 −0.00174948
\(303\) −7.16005 12.4016i −0.411334 0.712452i
\(304\) −4.36139 −0.250143
\(305\) 4.99164 8.64577i 0.285820 0.495056i
\(306\) −23.5003 −1.34342
\(307\) −21.6882 −1.23781 −0.618907 0.785464i \(-0.712424\pi\)
−0.618907 + 0.785464i \(0.712424\pi\)
\(308\) 0.420531 0.728381i 0.0239620 0.0415034i
\(309\) 16.2605 + 28.1640i 0.925026 + 1.60219i
\(310\) 18.5082 1.05120
\(311\) −3.51294 + 6.08460i −0.199201 + 0.345026i −0.948270 0.317466i \(-0.897168\pi\)
0.749069 + 0.662492i \(0.230501\pi\)
\(312\) −0.00179034 + 0.00310096i −0.000101358 + 0.000175557i
\(313\) 11.8855 20.5863i 0.671808 1.16361i −0.305583 0.952165i \(-0.598851\pi\)
0.977391 0.211440i \(-0.0678154\pi\)
\(314\) −13.9325 24.1318i −0.786257 1.36184i
\(315\) −1.57458 2.72725i −0.0887173 0.153663i
\(316\) −10.2919 + 17.8260i −0.578962 + 1.00279i
\(317\) −11.5553 + 20.0144i −0.649012 + 1.12412i 0.334347 + 0.942450i \(0.391484\pi\)
−0.983359 + 0.181672i \(0.941849\pi\)
\(318\) 23.8793 41.3602i 1.33908 2.31936i
\(319\) 2.31204 0.129450
\(320\) 3.53947 + 6.13054i 0.197862 + 0.342708i
\(321\) 18.1381 31.4160i 1.01237 1.75347i
\(322\) 13.3679 0.744962
\(323\) 3.07102 0.170876
\(324\) 4.63040 8.02009i 0.257244 0.445560i
\(325\) −0.00611121 −0.000338989
\(326\) 20.9930 + 36.3610i 1.16270 + 2.01385i
\(327\) −19.4055 −1.07312
\(328\) 0.456881 + 0.791341i 0.0252270 + 0.0436945i
\(329\) −2.16395 3.74807i −0.119303 0.206638i
\(330\) 1.48500 + 2.57209i 0.0817464 + 0.141589i
\(331\) 5.23346 9.06462i 0.287657 0.498237i −0.685593 0.727985i \(-0.740457\pi\)
0.973250 + 0.229748i \(0.0737904\pi\)
\(332\) 1.62558 0.0892154
\(333\) −5.33789 + 23.8557i −0.292515 + 1.30728i
\(334\) 15.7176 0.860029
\(335\) 5.67853 9.83551i 0.310251 0.537371i
\(336\) −4.37179 7.57215i −0.238500 0.413095i
\(337\) 5.26707 + 9.12282i 0.286915 + 0.496952i 0.973072 0.230502i \(-0.0740368\pi\)
−0.686157 + 0.727454i \(0.740703\pi\)
\(338\) −12.8164 22.1987i −0.697120 1.20745i
\(339\) 11.5914 0.629557
\(340\) −2.79933 4.84858i −0.151815 0.262951i
\(341\) 5.33680 0.289004
\(342\) 4.10286 7.10635i 0.221857 0.384268i
\(343\) −10.4892 −0.566366
\(344\) 1.56299 0.0842705
\(345\) −11.4608 + 19.8507i −0.617030 + 1.06873i
\(346\) −14.7028 25.4661i −0.790430 1.36906i
\(347\) −21.5633 −1.15758 −0.578789 0.815478i \(-0.696474\pi\)
−0.578789 + 0.815478i \(0.696474\pi\)
\(348\) −10.1693 + 17.6138i −0.545134 + 0.944200i
\(349\) −5.28986 + 9.16231i −0.283160 + 0.490447i −0.972161 0.234313i \(-0.924716\pi\)
0.689001 + 0.724760i \(0.258049\pi\)
\(350\) 0.772535 1.33807i 0.0412937 0.0715229i
\(351\) −0.00824765 0.0142853i −0.000440227 0.000762495i
\(352\) 2.23504 + 3.87120i 0.119128 + 0.206336i
\(353\) −5.49760 + 9.52213i −0.292608 + 0.506812i −0.974426 0.224710i \(-0.927856\pi\)
0.681818 + 0.731522i \(0.261190\pi\)
\(354\) −24.1450 + 41.8203i −1.28329 + 2.22272i
\(355\) −1.96400 + 3.40174i −0.104238 + 0.180546i
\(356\) −0.542280 −0.0287408
\(357\) 3.07834 + 5.33184i 0.162923 + 0.282191i
\(358\) −7.62927 + 13.2143i −0.403220 + 0.698397i
\(359\) −34.6984 −1.83131 −0.915657 0.401961i \(-0.868329\pi\)
−0.915657 + 0.401961i \(0.868329\pi\)
\(360\) 0.888803 0.0468441
\(361\) 8.96384 15.5258i 0.471781 0.817149i
\(362\) −25.9402 −1.36339
\(363\) −14.1430 24.4964i −0.742315 1.28573i
\(364\) −0.00904036 −0.000473844
\(365\) −8.27493 14.3326i −0.433129 0.750202i
\(366\) 26.0753 + 45.1638i 1.36298 + 2.36075i
\(367\) 5.77858 + 10.0088i 0.301639 + 0.522455i 0.976507 0.215484i \(-0.0691328\pi\)
−0.674868 + 0.737938i \(0.735799\pi\)
\(368\) −18.2199 + 31.5578i −0.949778 + 1.64506i
\(369\) −16.6045 −0.864396
\(370\) −11.4457 + 3.58410i −0.595034 + 0.186328i
\(371\) −7.16407 −0.371940
\(372\) −23.4735 + 40.6573i −1.21704 + 2.10798i
\(373\) −5.12736 8.88085i −0.265485 0.459833i 0.702206 0.711974i \(-0.252199\pi\)
−0.967691 + 0.252141i \(0.918865\pi\)
\(374\) −1.66231 2.87921i −0.0859562 0.148881i
\(375\) 1.32465 + 2.29437i 0.0684048 + 0.118481i
\(376\) 1.22149 0.0629935
\(377\) −0.0124258 0.0215221i −0.000639960 0.00110844i
\(378\) 4.17043 0.214504
\(379\) −2.67929 + 4.64067i −0.137626 + 0.238375i −0.926598 0.376055i \(-0.877281\pi\)
0.788972 + 0.614430i \(0.210614\pi\)
\(380\) 1.95491 0.100285
\(381\) −51.7987 −2.65373
\(382\) 22.9179 39.6949i 1.17258 2.03097i
\(383\) 11.6302 + 20.1441i 0.594276 + 1.02932i 0.993649 + 0.112528i \(0.0358948\pi\)
−0.399372 + 0.916789i \(0.630772\pi\)
\(384\) 4.67999 0.238825
\(385\) 0.222758 0.385829i 0.0113528 0.0196636i
\(386\) 5.30609 9.19041i 0.270073 0.467780i
\(387\) −14.2010 + 24.5968i −0.721876 + 1.25033i
\(388\) 4.08765 + 7.08002i 0.207519 + 0.359434i
\(389\) −8.61377 14.9195i −0.436735 0.756448i 0.560700 0.828019i \(-0.310532\pi\)
−0.997435 + 0.0715711i \(0.977199\pi\)
\(390\) 0.0159619 0.0276468i 0.000808260 0.00139995i
\(391\) 12.8293 22.2210i 0.648806 1.12377i
\(392\) 0.706160 1.22311i 0.0356665 0.0617762i
\(393\) −25.3114 −1.27679
\(394\) −0.726809 1.25887i −0.0366161 0.0634210i
\(395\) −5.45167 + 9.44257i −0.274303 + 0.475107i
\(396\) −4.31353 −0.216763
\(397\) 30.2268 1.51704 0.758520 0.651650i \(-0.225923\pi\)
0.758520 + 0.651650i \(0.225923\pi\)
\(398\) 3.47357 6.01640i 0.174114 0.301575i
\(399\) −2.14976 −0.107622
\(400\) 2.10587 + 3.64748i 0.105294 + 0.182374i
\(401\) 12.0733 0.602909 0.301455 0.953480i \(-0.402528\pi\)
0.301455 + 0.953480i \(0.402528\pi\)
\(402\) 29.6635 + 51.3787i 1.47948 + 2.56254i
\(403\) −0.0286819 0.0496786i −0.00142875 0.00247467i
\(404\) 5.10209 + 8.83708i 0.253839 + 0.439661i
\(405\) 2.45275 4.24830i 0.121878 0.211100i
\(406\) 6.28311 0.311826
\(407\) −3.30034 + 1.03346i −0.163592 + 0.0512269i
\(408\) −1.73763 −0.0860257
\(409\) −0.454742 + 0.787637i −0.0224856 + 0.0389461i −0.877049 0.480401i \(-0.840491\pi\)
0.854564 + 0.519347i \(0.173825\pi\)
\(410\) −4.07334 7.05523i −0.201168 0.348433i
\(411\) −6.79485 11.7690i −0.335165 0.580523i
\(412\) −11.5868 20.0690i −0.570843 0.988729i
\(413\) 7.24377 0.356442
\(414\) −34.2797 59.3742i −1.68476 2.91808i
\(415\) 0.861082 0.0422688
\(416\) 0.0240239 0.0416106i 0.00117787 0.00204013i
\(417\) 27.3966 1.34162
\(418\) 1.16088 0.0567804
\(419\) −2.72019 + 4.71151i −0.132890 + 0.230172i −0.924789 0.380479i \(-0.875759\pi\)
0.791899 + 0.610652i \(0.209092\pi\)
\(420\) 1.95957 + 3.39408i 0.0956172 + 0.165614i
\(421\) 32.1650 1.56762 0.783812 0.620998i \(-0.213273\pi\)
0.783812 + 0.620998i \(0.213273\pi\)
\(422\) −14.3939 + 24.9310i −0.700684 + 1.21362i
\(423\) −11.0982 + 19.2226i −0.539613 + 0.934637i
\(424\) 1.01098 1.75107i 0.0490974 0.0850393i
\(425\) −1.48282 2.56833i −0.0719275 0.124582i
\(426\) −10.2595 17.7700i −0.497076 0.860960i
\(427\) 3.91145 6.77483i 0.189288 0.327857i
\(428\) −12.9248 + 22.3864i −0.624742 + 1.08209i
\(429\) 0.00460255 0.00797186i 0.000222213 0.000384885i
\(430\) −13.9349 −0.671999
\(431\) −1.28753 2.23008i −0.0620184 0.107419i 0.833349 0.552747i \(-0.186420\pi\)
−0.895367 + 0.445328i \(0.853087\pi\)
\(432\) −5.68414 + 9.84523i −0.273478 + 0.473679i
\(433\) 32.5699 1.56521 0.782605 0.622519i \(-0.213891\pi\)
0.782605 + 0.622519i \(0.213891\pi\)
\(434\) 14.5031 0.696169
\(435\) −5.38677 + 9.33017i −0.258276 + 0.447347i
\(436\) 13.8279 0.662236
\(437\) 4.47968 + 7.75903i 0.214292 + 0.371165i
\(438\) 86.4531 4.13089
\(439\) −19.0316 32.9636i −0.908326 1.57327i −0.816389 0.577503i \(-0.804027\pi\)
−0.0919376 0.995765i \(-0.529306\pi\)
\(440\) 0.0628703 + 0.108895i 0.00299723 + 0.00519135i
\(441\) 12.8321 + 22.2258i 0.611050 + 1.05837i
\(442\) −0.0178678 + 0.0309479i −0.000849884 + 0.00147204i
\(443\) −9.79268 −0.465264 −0.232632 0.972565i \(-0.574734\pi\)
−0.232632 + 0.972565i \(0.574734\pi\)
\(444\) 6.64304 29.6885i 0.315265 1.40896i
\(445\) −0.287249 −0.0136169
\(446\) 15.7009 27.1948i 0.743461 1.28771i
\(447\) −14.4094 24.9578i −0.681541 1.18046i
\(448\) 2.77353 + 4.80389i 0.131037 + 0.226963i
\(449\) −6.14383 10.6414i −0.289945 0.502200i 0.683851 0.729622i \(-0.260304\pi\)
−0.973796 + 0.227422i \(0.926970\pi\)
\(450\) −7.92416 −0.373549
\(451\) −1.17454 2.03435i −0.0553067 0.0957940i
\(452\) −8.25975 −0.388506
\(453\) 0.0204249 0.0353770i 0.000959645 0.00166215i
\(454\) −29.3833 −1.37903
\(455\) −0.00478874 −0.000224500
\(456\) 0.303369 0.525451i 0.0142066 0.0246065i
\(457\) 5.60472 + 9.70766i 0.262178 + 0.454105i 0.966820 0.255457i \(-0.0822260\pi\)
−0.704643 + 0.709562i \(0.748893\pi\)
\(458\) 12.6044 0.588965
\(459\) 4.00242 6.93239i 0.186817 0.323576i
\(460\) 8.16673 14.1452i 0.380776 0.659523i
\(461\) −11.0096 + 19.0691i −0.512767 + 0.888138i 0.487123 + 0.873333i \(0.338046\pi\)
−0.999890 + 0.0148053i \(0.995287\pi\)
\(462\) 1.16364 + 2.01549i 0.0541376 + 0.0937691i
\(463\) −10.4737 18.1409i −0.486752 0.843079i 0.513132 0.858310i \(-0.328485\pi\)
−0.999884 + 0.0152306i \(0.995152\pi\)
\(464\) −8.56365 + 14.8327i −0.397557 + 0.688590i
\(465\) −12.4341 + 21.5364i −0.576616 + 0.998729i
\(466\) −11.6341 + 20.1509i −0.538941 + 0.933473i
\(467\) −1.71804 −0.0795016 −0.0397508 0.999210i \(-0.512656\pi\)
−0.0397508 + 0.999210i \(0.512656\pi\)
\(468\) 0.0231825 + 0.0401533i 0.00107161 + 0.00185609i
\(469\) 4.44970 7.70710i 0.205468 0.355881i
\(470\) −10.8902 −0.502329
\(471\) 37.4401 1.72515
\(472\) −1.02222 + 1.77055i −0.0470517 + 0.0814960i
\(473\) −4.01808 −0.184751
\(474\) −28.4784 49.3260i −1.30806 2.26562i
\(475\) 1.03553 0.0475134
\(476\) −2.19355 3.79935i −0.100541 0.174143i
\(477\) 18.3711 + 31.8196i 0.841154 + 1.45692i
\(478\) −3.77510 6.53867i −0.172669 0.299072i
\(479\) 16.5168 28.6080i 0.754674 1.30713i −0.190863 0.981617i \(-0.561128\pi\)
0.945536 0.325517i \(-0.105538\pi\)
\(480\) −20.8295 −0.950731
\(481\) 0.0273574 + 0.0251676i 0.00124739 + 0.00114754i
\(482\) 38.0951 1.73518
\(483\) −8.98070 + 15.5550i −0.408636 + 0.707778i
\(484\) 10.0780 + 17.4556i 0.458090 + 0.793435i
\(485\) 2.16526 + 3.75034i 0.0983193 + 0.170294i
\(486\) 20.7959 + 36.0196i 0.943322 + 1.63388i
\(487\) 13.4557 0.609734 0.304867 0.952395i \(-0.401388\pi\)
0.304867 + 0.952395i \(0.401388\pi\)
\(488\) 1.10395 + 1.91210i 0.0499735 + 0.0865566i
\(489\) −56.4136 −2.55111
\(490\) −6.29580 + 10.9046i −0.284415 + 0.492622i
\(491\) 13.8635 0.625650 0.312825 0.949811i \(-0.398725\pi\)
0.312825 + 0.949811i \(0.398725\pi\)
\(492\) 20.6644 0.931624
\(493\) 6.02998 10.4442i 0.271577 0.470385i
\(494\) −0.00623899 0.0108062i −0.000280705 0.000486196i
\(495\) −2.28491 −0.102699
\(496\) −19.7671 + 34.2377i −0.887570 + 1.53732i
\(497\) −1.53899 + 2.66561i −0.0690330 + 0.119569i
\(498\) −2.24906 + 3.89548i −0.100783 + 0.174561i
\(499\) −16.1046 27.8939i −0.720940 1.24870i −0.960624 0.277853i \(-0.910377\pi\)
0.239684 0.970851i \(-0.422956\pi\)
\(500\) −0.943918 1.63491i −0.0422133 0.0731156i
\(501\) −10.5593 + 18.2892i −0.471754 + 0.817102i
\(502\) −0.876917 + 1.51887i −0.0391387 + 0.0677903i
\(503\) −19.0525 + 32.9999i −0.849510 + 1.47139i 0.0321365 + 0.999483i \(0.489769\pi\)
−0.881646 + 0.471911i \(0.843564\pi\)
\(504\) 0.696466 0.0310231
\(505\) 2.70261 + 4.68106i 0.120265 + 0.208305i
\(506\) 4.84961 8.39978i 0.215592 0.373416i
\(507\) 34.4409 1.52957
\(508\) 36.9106 1.63764
\(509\) −20.2427 + 35.0613i −0.897240 + 1.55406i −0.0662319 + 0.997804i \(0.521098\pi\)
−0.831008 + 0.556261i \(0.812236\pi\)
\(510\) 15.4919 0.685995
\(511\) −6.48423 11.2310i −0.286845 0.496831i
\(512\) −31.2508 −1.38110
\(513\) 1.39754 + 2.42062i 0.0617031 + 0.106873i
\(514\) 14.0497 + 24.3348i 0.619705 + 1.07336i
\(515\) −6.13763 10.6307i −0.270456 0.468444i
\(516\) 17.6732 30.6109i 0.778019 1.34757i
\(517\) −3.14017 −0.138104
\(518\) −8.96885 + 2.80850i −0.394069 + 0.123398i
\(519\) 39.5102 1.73431
\(520\) 0.000675777 0.00117048i 2.96348e−5 5.13290e-5i
\(521\) −0.919502 1.59262i −0.0402841 0.0697742i 0.845180 0.534481i \(-0.179493\pi\)
−0.885464 + 0.464707i \(0.846160\pi\)
\(522\) −16.1120 27.9068i −0.705204 1.22145i
\(523\) −6.11530 10.5920i −0.267403 0.463156i 0.700787 0.713370i \(-0.252832\pi\)
−0.968190 + 0.250214i \(0.919499\pi\)
\(524\) 18.0363 0.787919
\(525\) 1.03800 + 1.79787i 0.0453020 + 0.0784653i
\(526\) 48.8679 2.13074
\(527\) 13.9188 24.1080i 0.606311 1.05016i
\(528\) −6.34401 −0.276088
\(529\) 51.8561 2.25461
\(530\) −9.01342 + 15.6117i −0.391518 + 0.678129i
\(531\) −18.5755 32.1736i −0.806106 1.39622i
\(532\) 1.53187 0.0664149
\(533\) −0.0126248 + 0.0218668i −0.000546840 + 0.000947155i
\(534\) 0.750266 1.29950i 0.0324672 0.0562348i
\(535\) −6.84634 + 11.8582i −0.295993 + 0.512675i
\(536\) 1.25586 + 2.17522i 0.0542451 + 0.0939552i
\(537\) −10.2509 17.7551i −0.442359 0.766187i
\(538\) −9.42006 + 16.3160i −0.406127 + 0.703433i
\(539\) −1.81538 + 3.14432i −0.0781938 + 0.135436i
\(540\) 2.54781 4.41294i 0.109640 0.189903i
\(541\) −9.85561 −0.423726 −0.211863 0.977299i \(-0.567953\pi\)
−0.211863 + 0.977299i \(0.567953\pi\)
\(542\) 8.35471 + 14.4708i 0.358865 + 0.621573i
\(543\) 17.4270 30.1844i 0.747864 1.29534i
\(544\) 23.3166 0.999692
\(545\) 7.32473 0.313757
\(546\) 0.0125077 0.0216640i 0.000535281 0.000927133i
\(547\) −22.7670 −0.973447 −0.486723 0.873556i \(-0.661808\pi\)
−0.486723 + 0.873556i \(0.661808\pi\)
\(548\) 4.84185 + 8.38634i 0.206834 + 0.358247i
\(549\) −40.1211 −1.71233
\(550\) −0.560523 0.970854i −0.0239008 0.0413974i
\(551\) 2.10552 + 3.64687i 0.0896982 + 0.155362i
\(552\) −2.53468 4.39019i −0.107883 0.186859i
\(553\) −4.27193 + 7.39919i −0.181661 + 0.314646i
\(554\) −57.7196 −2.45227
\(555\) 3.51887 15.7262i 0.149368 0.667541i
\(556\) −19.5222 −0.827924
\(557\) 21.8322 37.8144i 0.925058 1.60225i 0.133591 0.991037i \(-0.457349\pi\)
0.791467 0.611211i \(-0.209317\pi\)
\(558\) −37.1907 64.4162i −1.57441 2.72695i
\(559\) 0.0215946 + 0.0374030i 0.000913356 + 0.00158198i
\(560\) 1.65016 + 2.85816i 0.0697321 + 0.120779i
\(561\) 4.46706 0.188599
\(562\) −14.3827 24.9115i −0.606696 1.05083i
\(563\) 24.4057 1.02858 0.514288 0.857617i \(-0.328056\pi\)
0.514288 + 0.857617i \(0.328056\pi\)
\(564\) 13.8118 23.9227i 0.581581 1.00733i
\(565\) −4.37525 −0.184068
\(566\) −36.6614 −1.54099
\(567\) 1.92198 3.32896i 0.0807155 0.139803i
\(568\) −0.434358 0.752329i −0.0182252 0.0315670i
\(569\) 41.3282 1.73257 0.866285 0.499550i \(-0.166501\pi\)
0.866285 + 0.499550i \(0.166501\pi\)
\(570\) −2.70470 + 4.68468i −0.113287 + 0.196220i
\(571\) −9.18338 + 15.9061i −0.384313 + 0.665649i −0.991674 0.128777i \(-0.958895\pi\)
0.607361 + 0.794426i \(0.292228\pi\)
\(572\) −0.00327968 + 0.00568057i −0.000137130 + 0.000237516i
\(573\) 30.7930 + 53.3351i 1.28640 + 2.22810i
\(574\) −3.19187 5.52848i −0.133226 0.230754i
\(575\) 4.32597 7.49280i 0.180405 0.312471i
\(576\) 14.2245 24.6376i 0.592688 1.02657i
\(577\) −9.87431 + 17.1028i −0.411073 + 0.711999i −0.995007 0.0998015i \(-0.968179\pi\)
0.583934 + 0.811801i \(0.301513\pi\)
\(578\) 16.1781 0.672922
\(579\) 7.12939 + 12.3485i 0.296288 + 0.513185i
\(580\) 3.83849 6.64847i 0.159385 0.276063i
\(581\) 0.674744 0.0279931
\(582\) −22.6217 −0.937701
\(583\) −2.59899 + 4.50159i −0.107639 + 0.186437i
\(584\) 3.66016 0.151459
\(585\) 0.0122799 + 0.0212695i 0.000507713 + 0.000879385i
\(586\) −11.4419 −0.472660
\(587\) 16.4636 + 28.5157i 0.679524 + 1.17697i 0.975125 + 0.221658i \(0.0711468\pi\)
−0.295601 + 0.955311i \(0.595520\pi\)
\(588\) −15.9696 27.6601i −0.658575 1.14068i
\(589\) 4.86009 + 8.41792i 0.200256 + 0.346854i
\(590\) 9.11369 15.7854i 0.375205 0.649873i
\(591\) 1.95312 0.0803405
\(592\) 5.59413 25.0008i 0.229917 1.02753i
\(593\) 16.7712 0.688712 0.344356 0.938839i \(-0.388097\pi\)
0.344356 + 0.938839i \(0.388097\pi\)
\(594\) 1.51296 2.62052i 0.0620773 0.107521i
\(595\) −1.16194 2.01254i −0.0476349 0.0825061i
\(596\) 10.2678 + 17.7844i 0.420586 + 0.728476i
\(597\) 4.66718 + 8.08379i 0.191015 + 0.330848i
\(598\) −0.104255 −0.00426328
\(599\) −5.75661 9.97074i −0.235209 0.407393i 0.724125 0.689669i \(-0.242244\pi\)
−0.959333 + 0.282276i \(0.908911\pi\)
\(600\) −0.585920 −0.0239201
\(601\) −4.67853 + 8.10346i −0.190841 + 0.330547i −0.945529 0.325537i \(-0.894455\pi\)
0.754688 + 0.656084i \(0.227788\pi\)
\(602\) −10.9194 −0.445040
\(603\) −45.6421 −1.85869
\(604\) −0.0145543 + 0.0252088i −0.000592207 + 0.00102573i
\(605\) 5.33837 + 9.24634i 0.217036 + 0.375917i
\(606\) −28.2358 −1.14700
\(607\) −4.02620 + 6.97358i −0.163418 + 0.283049i −0.936092 0.351754i \(-0.885585\pi\)
0.772674 + 0.634803i \(0.218919\pi\)
\(608\) −4.07079 + 7.05082i −0.165092 + 0.285948i
\(609\) −4.22108 + 7.31112i −0.171047 + 0.296261i
\(610\) −9.84231 17.0474i −0.398504 0.690229i
\(611\) 0.0168764 + 0.0292308i 0.000682747 + 0.00118255i
\(612\) −11.2500 + 19.4856i −0.454755 + 0.787659i
\(613\) −1.71014 + 2.96205i −0.0690720 + 0.119636i −0.898493 0.438988i \(-0.855337\pi\)
0.829421 + 0.558624i \(0.188670\pi\)
\(614\) −21.3820 + 37.0347i −0.862907 + 1.49460i
\(615\) 10.9461 0.441389
\(616\) 0.0492652 + 0.0853298i 0.00198495 + 0.00343804i
\(617\) 8.94688 15.4965i 0.360188 0.623864i −0.627804 0.778372i \(-0.716046\pi\)
0.987992 + 0.154508i \(0.0493792\pi\)
\(618\) 64.1235 2.57943
\(619\) 1.02595 0.0412363 0.0206182 0.999787i \(-0.493437\pi\)
0.0206182 + 0.999787i \(0.493437\pi\)
\(620\) 8.86024 15.3464i 0.355836 0.616326i
\(621\) 23.3532 0.937132
\(622\) 6.92668 + 11.9974i 0.277735 + 0.481050i
\(623\) −0.225089 −0.00901798
\(624\) 0.0340951 + 0.0590544i 0.00136490 + 0.00236407i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −23.4353 40.5912i −0.936665 1.62235i
\(627\) −0.779892 + 1.35081i −0.0311459 + 0.0539463i
\(628\) −26.6790 −1.06461
\(629\) −3.93904 + 17.6040i −0.157060 + 0.701918i
\(630\) −6.20937 −0.247387
\(631\) −22.8117 + 39.5110i −0.908119 + 1.57291i −0.0914449 + 0.995810i \(0.529149\pi\)
−0.816674 + 0.577099i \(0.804185\pi\)
\(632\) −1.20569 2.08832i −0.0479598 0.0830688i
\(633\) −19.3400 33.4979i −0.768696 1.33142i
\(634\) 22.7843 + 39.4636i 0.904882 + 1.56730i
\(635\) 19.5518 0.775890
\(636\) −22.8629 39.5998i −0.906574 1.57023i
\(637\) 0.0390260 0.00154627
\(638\) 2.27940 3.94803i 0.0902422 0.156304i
\(639\) 15.7859 0.624482
\(640\) −1.76650 −0.0698269
\(641\) −3.99054 + 6.91182i −0.157617 + 0.273000i −0.934009 0.357250i \(-0.883714\pi\)
0.776392 + 0.630250i \(0.217048\pi\)
\(642\) −35.7639 61.9449i −1.41149 2.44477i
\(643\) −11.7007 −0.461432 −0.230716 0.973021i \(-0.574107\pi\)
−0.230716 + 0.973021i \(0.574107\pi\)
\(644\) 6.39944 11.0842i 0.252173 0.436777i
\(645\) 9.36162 16.2148i 0.368613 0.638457i
\(646\) 3.02766 5.24405i 0.119122 0.206325i
\(647\) −1.00933 1.74821i −0.0396807 0.0687291i 0.845503 0.533971i \(-0.179301\pi\)
−0.885184 + 0.465242i \(0.845967\pi\)
\(648\) 0.542451 + 0.939553i 0.0213095 + 0.0369091i
\(649\) 2.62790 4.55166i 0.103154 0.178668i
\(650\) −0.00602492 + 0.0104355i −0.000236317 + 0.000409313i
\(651\) −9.74334 + 16.8760i −0.381871 + 0.661421i
\(652\) 40.1991 1.57432
\(653\) 15.5042 + 26.8541i 0.606728 + 1.05088i 0.991776 + 0.127987i \(0.0408514\pi\)
−0.385048 + 0.922896i \(0.625815\pi\)
\(654\) −19.1315 + 33.1366i −0.748099 + 1.29575i
\(655\) 9.55395 0.373304
\(656\) 17.4016 0.679418
\(657\) −33.2555 + 57.6002i −1.29742 + 2.24720i
\(658\) −8.53359 −0.332674
\(659\) 6.49329 + 11.2467i 0.252943 + 0.438110i 0.964335 0.264686i \(-0.0852683\pi\)
−0.711392 + 0.702795i \(0.751935\pi\)
\(660\) 2.84358 0.110686
\(661\) 1.63687 + 2.83514i 0.0636668 + 0.110274i 0.896102 0.443849i \(-0.146387\pi\)
−0.832435 + 0.554123i \(0.813054\pi\)
\(662\) −10.3191 17.8732i −0.401064 0.694664i
\(663\) −0.0240076 0.0415824i −0.000932379 0.00161493i
\(664\) −0.0952184 + 0.164923i −0.00369519 + 0.00640026i
\(665\) 0.811441 0.0314663
\(666\) 35.4733 + 32.6338i 1.37456 + 1.26453i
\(667\) 35.1836 1.36231
\(668\) 7.52431 13.0325i 0.291124 0.504242i
\(669\) 21.0962 + 36.5397i 0.815626 + 1.41271i
\(670\) −11.1967 19.3933i −0.432566 0.749227i
\(671\) −2.83800 4.91556i −0.109560 0.189763i
\(672\) −16.3220 −0.629633
\(673\) −11.6797 20.2299i −0.450220 0.779804i 0.548179 0.836361i \(-0.315321\pi\)
−0.998399 + 0.0565566i \(0.981988\pi\)
\(674\) 20.7708 0.800060
\(675\) 1.34959 2.33756i 0.0519459 0.0899729i
\(676\) −24.5418 −0.943915
\(677\) −15.6182 −0.600255 −0.300127 0.953899i \(-0.597029\pi\)
−0.300127 + 0.953899i \(0.597029\pi\)
\(678\) 11.4277 19.7934i 0.438878 0.760159i
\(679\) 1.69670 + 2.93876i 0.0651132 + 0.112779i
\(680\) 0.655883 0.0251519
\(681\) 19.7401 34.1908i 0.756442 1.31020i
\(682\) 5.26144 9.11308i 0.201471 0.348958i
\(683\) 10.1178 17.5245i 0.387145 0.670555i −0.604919 0.796287i \(-0.706795\pi\)
0.992064 + 0.125732i \(0.0401279\pi\)
\(684\) −3.92823 6.80389i −0.150200 0.260153i
\(685\) 2.56476 + 4.44230i 0.0979946 + 0.169732i
\(686\) −10.3411 + 17.9114i −0.394826 + 0.683859i
\(687\) −8.46780 + 14.6667i −0.323067 + 0.559568i
\(688\) 14.8827 25.7775i 0.567396 0.982760i
\(689\) 0.0558718 0.00212855
\(690\) 22.5980 + 39.1409i 0.860291 + 1.49007i
\(691\) 3.30811 5.72981i 0.125846 0.217972i −0.796217 0.605011i \(-0.793169\pi\)
0.922063 + 0.387039i \(0.126502\pi\)
\(692\) −28.1541 −1.07026
\(693\) −1.79045 −0.0680137
\(694\) −21.2588 + 36.8213i −0.806973 + 1.39772i
\(695\) −10.3410 −0.392258
\(696\) −1.19134 2.06346i −0.0451576 0.0782152i
\(697\) −12.2531 −0.464120
\(698\) 10.4303 + 18.0659i 0.394794 + 0.683803i
\(699\) −15.6319 27.0753i −0.591253 1.02408i
\(700\) −0.739654 1.28112i −0.0279563 0.0484217i
\(701\) 18.0334 31.2347i 0.681111 1.17972i −0.293531 0.955950i \(-0.594830\pi\)
0.974642 0.223769i \(-0.0718362\pi\)
\(702\) −0.0325248 −0.00122757
\(703\) −4.63565 4.26459i −0.174837 0.160842i
\(704\) 4.02474 0.151688
\(705\) 7.31620 12.6720i 0.275544 0.477256i
\(706\) 10.8400 + 18.7753i 0.407967 + 0.706619i
\(707\) 2.11777 + 3.66808i 0.0796468 + 0.137952i
\(708\) 23.1173 + 40.0403i 0.868800 + 1.50481i
\(709\) −12.5403 −0.470960 −0.235480 0.971879i \(-0.575666\pi\)
−0.235480 + 0.971879i \(0.575666\pi\)
\(710\) 3.87253 + 6.70742i 0.145334 + 0.251725i
\(711\) 43.8186 1.64333
\(712\) 0.0317640 0.0550169i 0.00119041 0.00206185i
\(713\) 81.2129 3.04145
\(714\) 12.1395 0.454309
\(715\) −0.00173727 + 0.00300904i −6.49701e−5 + 0.000112532i
\(716\) 7.30455 + 12.6519i 0.272984 + 0.472822i
\(717\) 10.1446 0.378859
\(718\) −34.2085 + 59.2508i −1.27665 + 2.21122i
\(719\) 8.49541 14.7145i 0.316825 0.548758i −0.662998 0.748621i \(-0.730716\pi\)
0.979824 + 0.199863i \(0.0640497\pi\)
\(720\) 8.46314 14.6586i 0.315403 0.546293i
\(721\) −4.80945 8.33021i −0.179113 0.310233i
\(722\) −17.6745 30.6132i −0.657778 1.13931i
\(723\) −25.5928 + 44.3279i −0.951805 + 1.64857i
\(724\) −12.4181 + 21.5087i −0.461514 + 0.799366i
\(725\) 2.03328 3.52174i 0.0755140 0.130794i
\(726\) −55.7732 −2.06994
\(727\) −11.4863 19.8949i −0.426004 0.737860i 0.570510 0.821291i \(-0.306746\pi\)
−0.996514 + 0.0834305i \(0.973412\pi\)
\(728\) 0.000529539 0 0.000917188i 1.96260e−5 0 3.39933e-5i
\(729\) −41.1673 −1.52472
\(730\) −32.6323 −1.20778
\(731\) −10.4794 + 18.1509i −0.387596 + 0.671336i
\(732\) 49.9309 1.84550
\(733\) −3.10435 5.37689i −0.114662 0.198600i 0.802983 0.596002i \(-0.203245\pi\)
−0.917644 + 0.397402i \(0.869912\pi\)
\(734\) 22.7879 0.841118
\(735\) −8.45920 14.6518i −0.312022 0.540438i
\(736\) 34.0118 + 58.9102i 1.25369 + 2.17146i
\(737\) −3.22854 5.59199i −0.118925 0.205984i
\(738\) −16.3700 + 28.3538i −0.602590 + 1.04372i
\(739\) −9.96051 −0.366403 −0.183202 0.983075i \(-0.558646\pi\)
−0.183202 + 0.983075i \(0.558646\pi\)
\(740\) −2.50746 + 11.2062i −0.0921762 + 0.411946i
\(741\) 0.0167657 0.000615904
\(742\) −7.06291 + 12.2333i −0.259288 + 0.449099i
\(743\) −17.5892 30.4655i −0.645287 1.11767i −0.984235 0.176864i \(-0.943405\pi\)
0.338949 0.940805i \(-0.389929\pi\)
\(744\) −2.74992 4.76300i −0.100817 0.174620i
\(745\) 5.43893 + 9.42051i 0.199267 + 0.345141i
\(746\) −20.2199 −0.740302
\(747\) −1.73027 2.99692i −0.0633073 0.109651i
\(748\) −3.18312 −0.116387
\(749\) −5.36479 + 9.29209i −0.196025 + 0.339525i
\(750\) 5.22380 0.190746
\(751\) −37.7381 −1.37708 −0.688542 0.725197i \(-0.741749\pi\)
−0.688542 + 0.725197i \(0.741749\pi\)
\(752\) 11.6310 20.1454i 0.424137 0.734628i
\(753\) −1.17825 2.04079i −0.0429378 0.0743704i
\(754\) −0.0490013 −0.00178452
\(755\) −0.00770952 + 0.0133533i −0.000280578 + 0.000485976i
\(756\) 1.99646 3.45798i 0.0726107 0.125765i
\(757\) −1.19262 + 2.06568i −0.0433465 + 0.0750783i −0.886885 0.461991i \(-0.847135\pi\)
0.843538 + 0.537069i \(0.180469\pi\)
\(758\) 5.28292 + 9.15028i 0.191884 + 0.332353i
\(759\) 6.51607 + 11.2862i 0.236518 + 0.409662i
\(760\) −0.114509 + 0.198335i −0.00415367 + 0.00719438i
\(761\) −0.239975 + 0.415648i −0.00869907 + 0.0150672i −0.870342 0.492447i \(-0.836102\pi\)
0.861643 + 0.507515i \(0.169436\pi\)
\(762\) −51.0673 + 88.4512i −1.84997 + 3.20425i
\(763\) 5.73966 0.207790
\(764\) −21.9424 38.0054i −0.793849 1.37499i
\(765\) −5.95921 + 10.3217i −0.215456 + 0.373180i
\(766\) 45.8640 1.65713
\(767\) −0.0564933 −0.00203986
\(768\) 23.3682 40.4749i 0.843227 1.46051i
\(769\) −45.6865 −1.64750 −0.823748 0.566956i \(-0.808121\pi\)
−0.823748 + 0.566956i \(0.808121\pi\)
\(770\) −0.439226 0.760761i −0.0158286 0.0274159i
\(771\) −37.7550 −1.35971
\(772\) −5.08025 8.79924i −0.182842 0.316692i
\(773\) −7.54812 13.0737i −0.271487 0.470229i 0.697756 0.716336i \(-0.254182\pi\)
−0.969243 + 0.246107i \(0.920849\pi\)
\(774\) 28.0009 + 48.4990i 1.00647 + 1.74326i
\(775\) 4.69333 8.12909i 0.168589 0.292005i
\(776\) −0.957736 −0.0343807
\(777\) 2.75738 12.3231i 0.0989205 0.442088i
\(778\) −33.9686 −1.21783
\(779\) 2.13924 3.70527i 0.0766462 0.132755i
\(780\) −0.0152825 0.0264700i −0.000547201 0.000947779i
\(781\) 1.11663 + 1.93406i 0.0399563 + 0.0692063i
\(782\) −25.2963 43.8145i −0.904595 1.56680i
\(783\) 10.9764 0.392264
\(784\) −13.4480 23.2927i −0.480287 0.831882i
\(785\) −14.1321 −0.504395
\(786\) −24.9540 + 43.2215i −0.890078 + 1.54166i
\(787\) 20.9934 0.748334 0.374167 0.927361i \(-0.377929\pi\)
0.374167 + 0.927361i \(0.377929\pi\)
\(788\) −1.39175 −0.0495790
\(789\) −32.8301 + 56.8633i −1.16878 + 2.02439i
\(790\) 10.7494 + 18.6185i 0.382446 + 0.662415i
\(791\) −3.42844 −0.121901
\(792\) 0.252665 0.437629i 0.00897806 0.0155505i
\(793\) −0.0305050 + 0.0528361i −0.00108326 + 0.00187627i
\(794\) 29.8000 51.6151i 1.05756 1.83175i
\(795\) −12.1107 20.9763i −0.429521 0.743952i
\(796\) −3.32573 5.76033i −0.117877 0.204169i
\(797\) 10.4826 18.1564i 0.371314 0.643134i −0.618454 0.785821i \(-0.712241\pi\)
0.989768 + 0.142687i \(0.0455742\pi\)
\(798\) −2.11940 + 3.67091i −0.0750260 + 0.129949i
\(799\) −8.18979 + 14.1851i −0.289734 + 0.501834i
\(800\) 7.86223 0.277972
\(801\) 0.577203 + 0.999745i 0.0203945 + 0.0353242i
\(802\) 11.9028 20.6162i 0.420302 0.727984i
\(803\) −9.40944 −0.332052
\(804\) 56.8019 2.00325
\(805\) 3.38983 5.87136i 0.119476 0.206938i
\(806\) −0.113108 −0.00398405
\(807\) −12.6570 21.9226i −0.445549 0.771713i
\(808\) −1.19542 −0.0420547
\(809\) 4.09933 + 7.10024i 0.144125 + 0.249631i 0.929046 0.369964i \(-0.120630\pi\)
−0.784921 + 0.619595i \(0.787297\pi\)
\(810\) −4.83624 8.37662i −0.169928 0.294324i
\(811\) −13.7999 23.9021i −0.484579 0.839316i 0.515264 0.857032i \(-0.327694\pi\)
−0.999843 + 0.0177158i \(0.994361\pi\)
\(812\) 3.00784 5.20974i 0.105555 0.182826i
\(813\) −22.4512 −0.787398
\(814\) −1.48900 + 6.65450i −0.0521893 + 0.233240i
\(815\) 21.2937 0.745886
\(816\) −16.5457 + 28.6579i −0.579214 + 1.00323i
\(817\) −3.65916 6.33785i −0.128018 0.221733i
\(818\) 0.896643 + 1.55303i 0.0313504 + 0.0543005i
\(819\) 0.00962256 + 0.0166668i 0.000336240 + 0.000582384i
\(820\) −7.79993 −0.272386
\(821\) 5.10922 + 8.84943i 0.178313 + 0.308847i 0.941303 0.337563i \(-0.109603\pi\)
−0.762990 + 0.646411i \(0.776269\pi\)
\(822\) −26.7956 −0.934604
\(823\) −11.1505 + 19.3132i −0.388681 + 0.673216i −0.992272 0.124078i \(-0.960403\pi\)
0.603591 + 0.797294i \(0.293736\pi\)
\(824\) 2.71480 0.0945744
\(825\) 1.50627 0.0524415
\(826\) 7.14148 12.3694i 0.248484 0.430387i
\(827\) 21.3714 + 37.0164i 0.743157 + 1.28719i 0.951051 + 0.309034i \(0.100006\pi\)
−0.207894 + 0.978151i \(0.566661\pi\)
\(828\) −65.6413 −2.28119
\(829\) 4.77897 8.27742i 0.165981 0.287487i −0.771022 0.636808i \(-0.780254\pi\)
0.937003 + 0.349321i \(0.113588\pi\)
\(830\) 0.848923 1.47038i 0.0294666 0.0510376i
\(831\) 38.7768 67.1633i 1.34515 2.32987i
\(832\) −0.0216304 0.0374650i −0.000749901 0.00129887i
\(833\) 9.46927 + 16.4013i 0.328091 + 0.568270i
\(834\) 27.0097 46.7822i 0.935270 1.61993i
\(835\) 3.98568 6.90340i 0.137930 0.238902i
\(836\) 0.555734 0.962559i 0.0192204 0.0332908i
\(837\) 25.3363 0.875752
\(838\) 5.36356 + 9.28996i 0.185281 + 0.320916i
\(839\) −16.4527 + 28.4968i −0.568009 + 0.983820i 0.428754 + 0.903421i \(0.358953\pi\)
−0.996763 + 0.0803989i \(0.974381\pi\)
\(840\) −0.459127 −0.0158414
\(841\) −12.4631 −0.429763
\(842\) 31.7108 54.9247i 1.09283 1.89283i
\(843\) 38.6498 1.33117
\(844\) 13.7812 + 23.8698i 0.474370 + 0.821633i
\(845\) −13.0000 −0.447212
\(846\) 21.8830 + 37.9024i 0.752353 + 1.30311i
\(847\) 4.18315 + 7.24543i 0.143735 + 0.248956i
\(848\) −19.2530 33.3471i −0.661150 1.14514i
\(849\) 24.6296 42.6597i 0.845286 1.46408i
\(850\) −5.84755 −0.200569
\(851\) −50.2230 + 15.7268i −1.72162 + 0.539107i
\(852\) −19.6457 −0.673051
\(853\) −12.0712 + 20.9079i −0.413310 + 0.715874i −0.995249 0.0973579i \(-0.968961\pi\)
0.581939 + 0.813232i \(0.302294\pi\)
\(854\) −7.71243 13.3583i −0.263914 0.457113i
\(855\) −2.08081 3.60407i −0.0711622 0.123256i
\(856\) −1.51414 2.62256i −0.0517521 0.0896372i
\(857\) −42.5290 −1.45276 −0.726382 0.687292i \(-0.758800\pi\)
−0.726382 + 0.687292i \(0.758800\pi\)
\(858\) −0.00907513 0.0157186i −0.000309820 0.000536624i
\(859\) 51.3470 1.75194 0.875968 0.482370i \(-0.160224\pi\)
0.875968 + 0.482370i \(0.160224\pi\)
\(860\) −6.67088 + 11.5543i −0.227475 + 0.393998i
\(861\) 8.57735 0.292315
\(862\) −5.07742 −0.172938
\(863\) 24.7874 42.9330i 0.843772 1.46146i −0.0429117 0.999079i \(-0.513663\pi\)
0.886684 0.462377i \(-0.153003\pi\)
\(864\) 10.6108 + 18.3785i 0.360987 + 0.625248i
\(865\) −14.9134 −0.507072
\(866\) 32.1100 55.6162i 1.09114 1.88991i
\(867\) −10.8687 + 18.8251i −0.369120 + 0.639335i
\(868\) 6.94288 12.0254i 0.235657 0.408169i
\(869\) 3.09955 + 5.36858i 0.105145 + 0.182117i
\(870\) 10.6214 + 18.3968i 0.360100 + 0.623712i
\(871\) −0.0347027 + 0.0601069i −0.00117586 + 0.00203664i
\(872\) −0.809968 + 1.40291i −0.0274290 + 0.0475084i
\(873\) 8.70180 15.0720i 0.294511 0.510108i
\(874\) 17.6657 0.597551
\(875\) −0.391800 0.678617i −0.0132453 0.0229415i
\(876\) 41.3867 71.6839i 1.39833 2.42197i
\(877\) 27.7964 0.938618 0.469309 0.883034i \(-0.344503\pi\)
0.469309 + 0.883034i \(0.344503\pi\)
\(878\) −75.0513 −2.53286
\(879\) 7.68680 13.3139i 0.259269 0.449068i
\(880\) 2.39459 0.0807217
\(881\) −24.9175 43.1584i −0.839492 1.45404i −0.890320 0.455335i \(-0.849519\pi\)
0.0508281 0.998707i \(-0.483814\pi\)
\(882\) 50.6035 1.70391
\(883\) −18.5385 32.1096i −0.623870 1.08057i −0.988758 0.149523i \(-0.952226\pi\)
0.364889 0.931051i \(-0.381107\pi\)
\(884\) 0.0171073 + 0.0296307i 0.000575380 + 0.000996588i
\(885\) 12.2454 + 21.2096i 0.411624 + 0.712954i
\(886\) −9.65441 + 16.7219i −0.324346 + 0.561784i
\(887\) 37.5487 1.26076 0.630380 0.776286i \(-0.282899\pi\)
0.630380 + 0.776286i \(0.282899\pi\)
\(888\) 2.62293 + 2.41297i 0.0880198 + 0.0809741i
\(889\) 15.3208 0.513843
\(890\) −0.283193 + 0.490505i −0.00949267 + 0.0164418i
\(891\) −1.39452 2.41537i −0.0467181 0.0809180i
\(892\) −15.0327 26.0374i −0.503331 0.871795i
\(893\) −2.85967 4.95310i −0.0956953 0.165749i
\(894\) −56.8237 −1.90047
\(895\) 3.86927 + 6.70178i 0.129335 + 0.224016i
\(896\) −1.38423 −0.0462438
\(897\) 0.0700395 0.121312i 0.00233855 0.00405049i
\(898\) −24.2283 −0.808510
\(899\) 38.1714 1.27309
\(900\) −3.79344 + 6.57044i −0.126448 + 0.219015i
\(901\) 13.5567 + 23.4810i 0.451640 + 0.782264i
\(902\) −4.63180 −0.154222
\(903\) 7.33576 12.7059i 0.244119 0.422826i
\(904\) 0.483815 0.837992i 0.0160914 0.0278712i
\(905\) −6.57794 + 11.3933i −0.218658 + 0.378727i
\(906\) −0.0402730 0.0697548i −0.00133798 0.00231745i
\(907\) 16.0352 + 27.7739i 0.532441 + 0.922216i 0.999283 + 0.0378744i \(0.0120587\pi\)
−0.466841 + 0.884341i \(0.654608\pi\)
\(908\) −14.0663 + 24.3636i −0.466808 + 0.808535i
\(909\) 10.8613 18.8124i 0.360248 0.623967i
\(910\) −0.00472113 + 0.00817723i −0.000156504 + 0.000271072i
\(911\) 26.0546 0.863229 0.431614 0.902058i \(-0.357944\pi\)
0.431614 + 0.902058i \(0.357944\pi\)
\(912\) −5.77733 10.0066i −0.191307 0.331353i
\(913\) 0.244785 0.423979i 0.00810119 0.0140317i
\(914\) 22.1023 0.731080
\(915\) 26.4488 0.874369
\(916\) 6.03396 10.4511i 0.199368 0.345315i
\(917\) 7.48647 0.247225
\(918\) −7.89181 13.6690i −0.260468 0.451145i
\(919\) −5.23024 −0.172530 −0.0862648 0.996272i \(-0.527493\pi\)
−0.0862648 + 0.996272i \(0.527493\pi\)
\(920\) 0.956732 + 1.65711i 0.0315425 + 0.0546332i
\(921\) −28.7294 49.7608i −0.946666 1.63967i
\(922\) 21.7082 + 37.5998i 0.714923 + 1.23828i
\(923\) 0.0120024 0.0207888i 0.000395064 0.000684271i
\(924\) 2.22823 0.0733034
\(925\) −1.32822 + 5.93598i −0.0436716 + 0.195174i
\(926\) −41.3031 −1.35730
\(927\) −24.6661 + 42.7229i −0.810141 + 1.40320i
\(928\) 15.9861 + 27.6887i 0.524769 + 0.908927i
\(929\) 1.59438 + 2.76154i 0.0523099 + 0.0906033i 0.890995 0.454014i \(-0.150008\pi\)
−0.838685 + 0.544617i \(0.816675\pi\)
\(930\) 24.5170 + 42.4647i 0.803944 + 1.39247i
\(931\) −6.61287 −0.216728
\(932\) 11.1390 + 19.2932i 0.364868 + 0.631971i
\(933\) −18.6137 −0.609386
\(934\) −1.69378 + 2.93372i −0.0554223 + 0.0959943i
\(935\) −1.68612 −0.0551421
\(936\) −0.00543166 −0.000177540
\(937\) −27.2384 + 47.1783i −0.889840 + 1.54125i −0.0497763 + 0.998760i \(0.515851\pi\)
−0.840064 + 0.542488i \(0.817482\pi\)
\(938\) −8.77373 15.1966i −0.286473 0.496185i
\(939\) 62.9767 2.05517
\(940\) −5.21336 + 9.02980i −0.170041 + 0.294520i
\(941\) 22.1090 38.2939i 0.720733 1.24835i −0.239974 0.970779i \(-0.577139\pi\)
0.960707 0.277566i \(-0.0895277\pi\)
\(942\) 36.9115 63.9326i 1.20264 2.08304i
\(943\) −17.8735 30.9579i −0.582042 1.00813i
\(944\) 19.4671 + 33.7181i 0.633602 + 1.09743i
\(945\) 1.05754 1.83171i 0.0344018 0.0595857i
\(946\) −3.96134 + 6.86124i −0.128794 + 0.223078i
\(947\) −5.53233 + 9.58228i −0.179777 + 0.311382i −0.941804 0.336163i \(-0.890871\pi\)
0.762027 + 0.647545i \(0.224204\pi\)
\(948\) −54.5326 −1.77114
\(949\) 0.0505698 + 0.0875895i 0.00164157 + 0.00284328i
\(950\) 1.02091 1.76827i 0.0331227 0.0573701i
\(951\) −61.2272 −1.98543
\(952\) 0.513949 0.0166572
\(953\) −21.8629 + 37.8677i −0.708210 + 1.22666i 0.257311 + 0.966329i \(0.417164\pi\)
−0.965521 + 0.260327i \(0.916170\pi\)
\(954\) 72.4467 2.34555
\(955\) −11.6230 20.1317i −0.376113 0.651447i
\(956\) −7.22884 −0.233798
\(957\) 3.06266 + 5.30468i 0.0990016 + 0.171476i
\(958\) −32.5672 56.4081i −1.05220 1.82246i
\(959\) 2.00975 + 3.48099i 0.0648982 + 0.112407i
\(960\) −9.37714 + 16.2417i −0.302646 + 0.524198i
\(961\) 57.1094 1.84224
\(962\) 0.0699471 0.0219032i 0.00225519 0.000706187i
\(963\) 55.0285 1.77327
\(964\) 18.2368 31.5871i 0.587368 1.01735i
\(965\) −2.69104 4.66102i −0.0866277 0.150044i
\(966\) 17.7078 + 30.6708i 0.569739 + 0.986816i
\(967\) 14.5173 + 25.1448i 0.466846 + 0.808601i 0.999283 0.0378687i \(-0.0120569\pi\)
−0.532437 + 0.846470i \(0.678724\pi\)
\(968\) −2.36127 −0.0758941
\(969\) 4.06804 + 7.04605i 0.130684 + 0.226352i
\(970\) 8.53874 0.274162
\(971\) −8.15440 + 14.1238i −0.261687 + 0.453255i −0.966690 0.255949i \(-0.917612\pi\)
0.705003 + 0.709204i \(0.250946\pi\)
\(972\) 39.8216 1.27728
\(973\) −8.10323 −0.259778
\(974\) 13.2657 22.9768i 0.425059 0.736224i
\(975\) −0.00809524 0.0140214i −0.000259255 0.000449043i
\(976\) 42.0470 1.34589
\(977\) 9.80571 16.9840i 0.313712 0.543366i −0.665450 0.746442i \(-0.731761\pi\)
0.979163 + 0.203076i \(0.0650939\pi\)
\(978\) −55.6170 + 96.3315i −1.77844 + 3.08034i
\(979\) −0.0816580 + 0.141436i −0.00260980 + 0.00452031i
\(980\) 6.02783 + 10.4405i 0.192552 + 0.333510i
\(981\) −14.7184 25.4930i −0.469923 0.813930i
\(982\) 13.6677 23.6732i 0.436154 0.755442i
\(983\) 26.7020 46.2491i 0.851660 1.47512i −0.0280494 0.999607i \(-0.508930\pi\)
0.879709 0.475512i \(-0.157737\pi\)
\(984\) −1.21042 + 2.09651i −0.0385867 + 0.0668341i
\(985\) −0.737219 −0.0234897
\(986\) −11.8897 20.5935i −0.378645 0.655832i
\(987\) 5.73297 9.92980i 0.182483 0.316069i
\(988\) −0.0119469 −0.000380081
\(989\) −61.1452 −1.94430
\(990\) −2.25265 + 3.90170i −0.0715938 + 0.124004i
\(991\) 47.7930 1.51820 0.759098 0.650976i \(-0.225640\pi\)
0.759098 + 0.650976i \(0.225640\pi\)
\(992\) 36.9001 + 63.9128i 1.17158 + 2.02923i
\(993\) 27.7301 0.879988
\(994\) 3.03451 + 5.25593i 0.0962490 + 0.166708i
\(995\) −1.76166 3.05129i −0.0558484 0.0967323i
\(996\) 2.15333 + 3.72968i 0.0682309 + 0.118179i
\(997\) −28.3125 + 49.0387i −0.896667 + 1.55307i −0.0649381 + 0.997889i \(0.520685\pi\)
−0.831728 + 0.555183i \(0.812648\pi\)
\(998\) −63.5087 −2.01033
\(999\) −15.6683 + 4.90635i −0.495723 + 0.155230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.e.a.121.6 yes 14
5.2 odd 4 925.2.o.b.824.11 28
5.3 odd 4 925.2.o.b.824.4 28
5.4 even 2 925.2.e.c.676.2 14
37.10 even 3 6845.2.a.l.1.2 7
37.26 even 3 inner 185.2.e.a.26.6 14
37.27 even 6 6845.2.a.k.1.6 7
185.63 odd 12 925.2.o.b.174.11 28
185.137 odd 12 925.2.o.b.174.4 28
185.174 even 6 925.2.e.c.26.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.6 14 37.26 even 3 inner
185.2.e.a.121.6 yes 14 1.1 even 1 trivial
925.2.e.c.26.2 14 185.174 even 6
925.2.e.c.676.2 14 5.4 even 2
925.2.o.b.174.4 28 185.137 odd 12
925.2.o.b.174.11 28 185.63 odd 12
925.2.o.b.824.4 28 5.3 odd 4
925.2.o.b.824.11 28 5.2 odd 4
6845.2.a.k.1.6 7 37.27 even 6
6845.2.a.l.1.2 7 37.10 even 3