Properties

Label 6845.2.a.k.1.6
Level $6845$
Weight $2$
Character 6845.1
Self dual yes
Analytic conductor $54.658$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,2,8,-7,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 11x^{5} - x^{4} + 35x^{3} + 7x^{2} - 27x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.97176\) of defining polynomial
Character \(\chi\) \(=\) 6845.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.97176 q^{2} -2.64931 q^{3} +1.88784 q^{4} -1.00000 q^{5} -5.22380 q^{6} +0.783600 q^{7} -0.221160 q^{8} +4.01883 q^{9} -1.97176 q^{10} -0.568551 q^{11} -5.00146 q^{12} +0.00611121 q^{13} +1.54507 q^{14} +2.64931 q^{15} -4.21175 q^{16} -2.96565 q^{17} +7.92416 q^{18} -1.03553 q^{19} -1.88784 q^{20} -2.07600 q^{21} -1.12105 q^{22} +8.65194 q^{23} +0.585920 q^{24} +1.00000 q^{25} +0.0120498 q^{26} -2.69919 q^{27} +1.47931 q^{28} +4.06655 q^{29} +5.22380 q^{30} +9.38666 q^{31} -7.86223 q^{32} +1.50627 q^{33} -5.84755 q^{34} -0.783600 q^{35} +7.58689 q^{36} -2.04182 q^{38} -0.0161905 q^{39} +0.221160 q^{40} -4.13168 q^{41} -4.09337 q^{42} -7.06722 q^{43} -1.07333 q^{44} -4.01883 q^{45} +17.0596 q^{46} +5.52310 q^{47} +11.1582 q^{48} -6.38597 q^{49} +1.97176 q^{50} +7.85691 q^{51} +0.0115370 q^{52} -9.14251 q^{53} -5.32215 q^{54} +0.568551 q^{55} -0.173301 q^{56} +2.74344 q^{57} +8.01827 q^{58} -9.24422 q^{59} +5.00146 q^{60} +9.98328 q^{61} +18.5082 q^{62} +3.14915 q^{63} -7.07894 q^{64} -0.00611121 q^{65} +2.96999 q^{66} -11.3571 q^{67} -5.59866 q^{68} -22.9217 q^{69} -1.54507 q^{70} +3.92800 q^{71} -0.888803 q^{72} +16.5499 q^{73} -2.64931 q^{75} -1.95491 q^{76} -0.445516 q^{77} -0.0319237 q^{78} -10.9033 q^{79} +4.21175 q^{80} -4.90551 q^{81} -8.14668 q^{82} +0.861082 q^{83} -3.91914 q^{84} +2.96565 q^{85} -13.9349 q^{86} -10.7735 q^{87} +0.125741 q^{88} +0.287249 q^{89} -7.92416 q^{90} +0.00478874 q^{91} +16.3335 q^{92} -24.8681 q^{93} +10.8902 q^{94} +1.03553 q^{95} +20.8295 q^{96} +4.33052 q^{97} -12.5916 q^{98} -2.28491 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{3} + 8 q^{4} - 7 q^{5} + 2 q^{6} - 3 q^{8} + 13 q^{9} - q^{11} - 6 q^{12} + 4 q^{13} - 10 q^{14} - 2 q^{15} - 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} - q^{21} + 7 q^{22} + 15 q^{24}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97176 1.39424 0.697122 0.716952i \(-0.254463\pi\)
0.697122 + 0.716952i \(0.254463\pi\)
\(3\) −2.64931 −1.52958 −0.764789 0.644281i \(-0.777157\pi\)
−0.764789 + 0.644281i \(0.777157\pi\)
\(4\) 1.88784 0.943918
\(5\) −1.00000 −0.447214
\(6\) −5.22380 −2.13261
\(7\) 0.783600 0.296173 0.148086 0.988974i \(-0.452689\pi\)
0.148086 + 0.988974i \(0.452689\pi\)
\(8\) −0.221160 −0.0781918
\(9\) 4.01883 1.33961
\(10\) −1.97176 −0.623525
\(11\) −0.568551 −0.171425 −0.0857123 0.996320i \(-0.527317\pi\)
−0.0857123 + 0.996320i \(0.527317\pi\)
\(12\) −5.00146 −1.44380
\(13\) 0.00611121 0.00169494 0.000847472 1.00000i \(-0.499730\pi\)
0.000847472 1.00000i \(0.499730\pi\)
\(14\) 1.54507 0.412937
\(15\) 2.64931 0.684048
\(16\) −4.21175 −1.05294
\(17\) −2.96565 −0.719275 −0.359638 0.933092i \(-0.617100\pi\)
−0.359638 + 0.933092i \(0.617100\pi\)
\(18\) 7.92416 1.86774
\(19\) −1.03553 −0.237567 −0.118783 0.992920i \(-0.537899\pi\)
−0.118783 + 0.992920i \(0.537899\pi\)
\(20\) −1.88784 −0.422133
\(21\) −2.07600 −0.453020
\(22\) −1.12105 −0.239008
\(23\) 8.65194 1.80405 0.902027 0.431679i \(-0.142079\pi\)
0.902027 + 0.431679i \(0.142079\pi\)
\(24\) 0.585920 0.119601
\(25\) 1.00000 0.200000
\(26\) 0.0120498 0.00236317
\(27\) −2.69919 −0.519459
\(28\) 1.47931 0.279563
\(29\) 4.06655 0.755140 0.377570 0.925981i \(-0.376760\pi\)
0.377570 + 0.925981i \(0.376760\pi\)
\(30\) 5.22380 0.953730
\(31\) 9.38666 1.68589 0.842947 0.537997i \(-0.180819\pi\)
0.842947 + 0.537997i \(0.180819\pi\)
\(32\) −7.86223 −1.38986
\(33\) 1.50627 0.262207
\(34\) −5.84755 −1.00285
\(35\) −0.783600 −0.132453
\(36\) 7.58689 1.26448
\(37\) 0 0
\(38\) −2.04182 −0.331227
\(39\) −0.0161905 −0.00259255
\(40\) 0.221160 0.0349685
\(41\) −4.13168 −0.645260 −0.322630 0.946525i \(-0.604567\pi\)
−0.322630 + 0.946525i \(0.604567\pi\)
\(42\) −4.09337 −0.631620
\(43\) −7.06722 −1.07774 −0.538870 0.842389i \(-0.681149\pi\)
−0.538870 + 0.842389i \(0.681149\pi\)
\(44\) −1.07333 −0.161811
\(45\) −4.01883 −0.599091
\(46\) 17.0596 2.51529
\(47\) 5.52310 0.805628 0.402814 0.915282i \(-0.368032\pi\)
0.402814 + 0.915282i \(0.368032\pi\)
\(48\) 11.1582 1.61055
\(49\) −6.38597 −0.912282
\(50\) 1.97176 0.278849
\(51\) 7.85691 1.10019
\(52\) 0.0115370 0.00159989
\(53\) −9.14251 −1.25582 −0.627910 0.778286i \(-0.716089\pi\)
−0.627910 + 0.778286i \(0.716089\pi\)
\(54\) −5.32215 −0.724252
\(55\) 0.568551 0.0766634
\(56\) −0.173301 −0.0231583
\(57\) 2.74344 0.363377
\(58\) 8.01827 1.05285
\(59\) −9.24422 −1.20349 −0.601747 0.798687i \(-0.705529\pi\)
−0.601747 + 0.798687i \(0.705529\pi\)
\(60\) 5.00146 0.645685
\(61\) 9.98328 1.27823 0.639114 0.769112i \(-0.279301\pi\)
0.639114 + 0.769112i \(0.279301\pi\)
\(62\) 18.5082 2.35055
\(63\) 3.14915 0.396756
\(64\) −7.07894 −0.884867
\(65\) −0.00611121 −0.000758002 0
\(66\) 2.96999 0.365581
\(67\) −11.3571 −1.38749 −0.693743 0.720222i \(-0.744040\pi\)
−0.693743 + 0.720222i \(0.744040\pi\)
\(68\) −5.59866 −0.678937
\(69\) −22.9217 −2.75944
\(70\) −1.54507 −0.184671
\(71\) 3.92800 0.466167 0.233084 0.972457i \(-0.425118\pi\)
0.233084 + 0.972457i \(0.425118\pi\)
\(72\) −0.888803 −0.104746
\(73\) 16.5499 1.93701 0.968507 0.248987i \(-0.0800975\pi\)
0.968507 + 0.248987i \(0.0800975\pi\)
\(74\) 0 0
\(75\) −2.64931 −0.305916
\(76\) −1.95491 −0.224244
\(77\) −0.445516 −0.0507713
\(78\) −0.0319237 −0.00361465
\(79\) −10.9033 −1.22672 −0.613361 0.789803i \(-0.710183\pi\)
−0.613361 + 0.789803i \(0.710183\pi\)
\(80\) 4.21175 0.470888
\(81\) −4.90551 −0.545057
\(82\) −8.14668 −0.899650
\(83\) 0.861082 0.0945160 0.0472580 0.998883i \(-0.484952\pi\)
0.0472580 + 0.998883i \(0.484952\pi\)
\(84\) −3.91914 −0.427613
\(85\) 2.96565 0.321670
\(86\) −13.9349 −1.50263
\(87\) −10.7735 −1.15505
\(88\) 0.125741 0.0134040
\(89\) 0.287249 0.0304484 0.0152242 0.999884i \(-0.495154\pi\)
0.0152242 + 0.999884i \(0.495154\pi\)
\(90\) −7.92416 −0.835280
\(91\) 0.00478874 0.000501997 0
\(92\) 16.3335 1.70288
\(93\) −24.8681 −2.57871
\(94\) 10.8902 1.12324
\(95\) 1.03553 0.106243
\(96\) 20.8295 2.12590
\(97\) 4.33052 0.439697 0.219849 0.975534i \(-0.429444\pi\)
0.219849 + 0.975534i \(0.429444\pi\)
\(98\) −12.5916 −1.27194
\(99\) −2.28491 −0.229642
\(100\) 1.88784 0.188784
\(101\) −5.40523 −0.537840 −0.268920 0.963163i \(-0.586667\pi\)
−0.268920 + 0.963163i \(0.586667\pi\)
\(102\) 15.4919 1.53393
\(103\) −12.2753 −1.20952 −0.604759 0.796409i \(-0.706731\pi\)
−0.604759 + 0.796409i \(0.706731\pi\)
\(104\) −0.00135155 −0.000132531 0
\(105\) 2.07600 0.202596
\(106\) −18.0268 −1.75092
\(107\) 13.6927 1.32372 0.661860 0.749627i \(-0.269767\pi\)
0.661860 + 0.749627i \(0.269767\pi\)
\(108\) −5.09562 −0.490326
\(109\) −7.32473 −0.701582 −0.350791 0.936454i \(-0.614087\pi\)
−0.350791 + 0.936454i \(0.614087\pi\)
\(110\) 1.12105 0.106888
\(111\) 0 0
\(112\) −3.30032 −0.311851
\(113\) 4.37525 0.411589 0.205794 0.978595i \(-0.434022\pi\)
0.205794 + 0.978595i \(0.434022\pi\)
\(114\) 5.40940 0.506637
\(115\) −8.65194 −0.806798
\(116\) 7.67699 0.712790
\(117\) 0.0245599 0.00227056
\(118\) −18.2274 −1.67797
\(119\) −2.32388 −0.213030
\(120\) −0.585920 −0.0534870
\(121\) −10.6767 −0.970614
\(122\) 19.6846 1.78216
\(123\) 10.9461 0.986975
\(124\) 17.7205 1.59135
\(125\) −1.00000 −0.0894427
\(126\) 6.20937 0.553175
\(127\) 19.5518 1.73494 0.867471 0.497488i \(-0.165744\pi\)
0.867471 + 0.497488i \(0.165744\pi\)
\(128\) 1.76650 0.156138
\(129\) 18.7232 1.64849
\(130\) −0.0120498 −0.00105684
\(131\) −9.55395 −0.834733 −0.417366 0.908738i \(-0.637047\pi\)
−0.417366 + 0.908738i \(0.637047\pi\)
\(132\) 2.84358 0.247502
\(133\) −0.811441 −0.0703609
\(134\) −22.3934 −1.93450
\(135\) 2.69919 0.232309
\(136\) 0.655883 0.0562415
\(137\) −5.12953 −0.438245 −0.219123 0.975697i \(-0.570319\pi\)
−0.219123 + 0.975697i \(0.570319\pi\)
\(138\) −45.1960 −3.84734
\(139\) −10.3410 −0.877115 −0.438557 0.898703i \(-0.644510\pi\)
−0.438557 + 0.898703i \(0.644510\pi\)
\(140\) −1.47931 −0.125024
\(141\) −14.6324 −1.23227
\(142\) 7.74506 0.649951
\(143\) −0.00347454 −0.000290555 0
\(144\) −16.9263 −1.41052
\(145\) −4.06655 −0.337709
\(146\) 32.6323 2.70067
\(147\) 16.9184 1.39541
\(148\) 0 0
\(149\) −10.8779 −0.891149 −0.445575 0.895245i \(-0.647001\pi\)
−0.445575 + 0.895245i \(0.647001\pi\)
\(150\) −5.22380 −0.426521
\(151\) 0.0154190 0.00125478 0.000627392 1.00000i \(-0.499800\pi\)
0.000627392 1.00000i \(0.499800\pi\)
\(152\) 0.229018 0.0185758
\(153\) −11.9184 −0.963548
\(154\) −0.878451 −0.0707876
\(155\) −9.38666 −0.753955
\(156\) −0.0305650 −0.00244716
\(157\) −14.1321 −1.12786 −0.563930 0.825822i \(-0.690711\pi\)
−0.563930 + 0.825822i \(0.690711\pi\)
\(158\) −21.4988 −1.71035
\(159\) 24.2213 1.92088
\(160\) 7.86223 0.621564
\(161\) 6.77966 0.534312
\(162\) −9.67249 −0.759942
\(163\) −21.2937 −1.66785 −0.833926 0.551876i \(-0.813912\pi\)
−0.833926 + 0.551876i \(0.813912\pi\)
\(164\) −7.79993 −0.609073
\(165\) −1.50627 −0.117263
\(166\) 1.69785 0.131778
\(167\) 7.97136 0.616842 0.308421 0.951250i \(-0.400199\pi\)
0.308421 + 0.951250i \(0.400199\pi\)
\(168\) 0.459127 0.0354224
\(169\) −13.0000 −0.999997
\(170\) 5.84755 0.448486
\(171\) −4.16162 −0.318247
\(172\) −13.3418 −1.01730
\(173\) −14.9134 −1.13385 −0.566923 0.823771i \(-0.691866\pi\)
−0.566923 + 0.823771i \(0.691866\pi\)
\(174\) −21.2429 −1.61042
\(175\) 0.783600 0.0592346
\(176\) 2.39459 0.180499
\(177\) 24.4908 1.84084
\(178\) 0.566387 0.0424525
\(179\) 7.73854 0.578406 0.289203 0.957268i \(-0.406610\pi\)
0.289203 + 0.957268i \(0.406610\pi\)
\(180\) −7.58689 −0.565493
\(181\) 13.1559 0.977869 0.488935 0.872320i \(-0.337386\pi\)
0.488935 + 0.872320i \(0.337386\pi\)
\(182\) 0.00944225 0.000699906 0
\(183\) −26.4488 −1.95515
\(184\) −1.91346 −0.141062
\(185\) 0 0
\(186\) −49.0340 −3.59535
\(187\) 1.68612 0.123301
\(188\) 10.4267 0.760447
\(189\) −2.11508 −0.153850
\(190\) 2.04182 0.148129
\(191\) −23.2461 −1.68203 −0.841014 0.541013i \(-0.818041\pi\)
−0.841014 + 0.541013i \(0.818041\pi\)
\(192\) 18.7543 1.35347
\(193\) −5.38208 −0.387411 −0.193705 0.981060i \(-0.562051\pi\)
−0.193705 + 0.981060i \(0.562051\pi\)
\(194\) 8.53874 0.613045
\(195\) 0.0161905 0.00115942
\(196\) −12.0557 −0.861119
\(197\) −0.737219 −0.0525246 −0.0262623 0.999655i \(-0.508361\pi\)
−0.0262623 + 0.999655i \(0.508361\pi\)
\(198\) −4.50529 −0.320177
\(199\) −3.52332 −0.249762 −0.124881 0.992172i \(-0.539855\pi\)
−0.124881 + 0.992172i \(0.539855\pi\)
\(200\) −0.221160 −0.0156384
\(201\) 30.0884 2.12227
\(202\) −10.6578 −0.749881
\(203\) 3.18655 0.223652
\(204\) 14.8326 1.03849
\(205\) 4.13168 0.288569
\(206\) −24.2039 −1.68636
\(207\) 34.7707 2.41673
\(208\) −0.0257389 −0.00178467
\(209\) 0.588752 0.0407248
\(210\) 4.09337 0.282469
\(211\) −14.6000 −1.00511 −0.502554 0.864546i \(-0.667606\pi\)
−0.502554 + 0.864546i \(0.667606\pi\)
\(212\) −17.2596 −1.18539
\(213\) −10.4065 −0.713039
\(214\) 26.9987 1.84559
\(215\) 7.06722 0.481980
\(216\) 0.596952 0.0406174
\(217\) 7.35538 0.499316
\(218\) −14.4426 −0.978177
\(219\) −43.8456 −2.96281
\(220\) 1.07333 0.0723640
\(221\) −0.0181237 −0.00121913
\(222\) 0 0
\(223\) 15.9258 1.06647 0.533236 0.845967i \(-0.320976\pi\)
0.533236 + 0.845967i \(0.320976\pi\)
\(224\) −6.16084 −0.411639
\(225\) 4.01883 0.267922
\(226\) 8.62694 0.573855
\(227\) −14.9021 −0.989085 −0.494543 0.869153i \(-0.664664\pi\)
−0.494543 + 0.869153i \(0.664664\pi\)
\(228\) 5.17916 0.342998
\(229\) −6.39246 −0.422426 −0.211213 0.977440i \(-0.567741\pi\)
−0.211213 + 0.977440i \(0.567741\pi\)
\(230\) −17.0596 −1.12487
\(231\) 1.18031 0.0776587
\(232\) −0.899359 −0.0590458
\(233\) −11.8008 −0.773094 −0.386547 0.922270i \(-0.626332\pi\)
−0.386547 + 0.922270i \(0.626332\pi\)
\(234\) 0.0484262 0.00316572
\(235\) −5.52310 −0.360288
\(236\) −17.4516 −1.13600
\(237\) 28.8863 1.87637
\(238\) −4.58214 −0.297016
\(239\) 3.82917 0.247688 0.123844 0.992302i \(-0.460478\pi\)
0.123844 + 0.992302i \(0.460478\pi\)
\(240\) −11.1582 −0.720259
\(241\) 19.3203 1.24453 0.622266 0.782806i \(-0.286212\pi\)
0.622266 + 0.782806i \(0.286212\pi\)
\(242\) −21.0520 −1.35327
\(243\) 21.0938 1.35317
\(244\) 18.8468 1.20654
\(245\) 6.38597 0.407985
\(246\) 21.5831 1.37609
\(247\) −0.00632834 −0.000402663 0
\(248\) −2.07595 −0.131823
\(249\) −2.28127 −0.144570
\(250\) −1.97176 −0.124705
\(251\) 0.889477 0.0561433 0.0280716 0.999606i \(-0.491063\pi\)
0.0280716 + 0.999606i \(0.491063\pi\)
\(252\) 5.94508 0.374505
\(253\) −4.91907 −0.309259
\(254\) 38.5515 2.41893
\(255\) −7.85691 −0.492019
\(256\) 17.6410 1.10256
\(257\) −14.2509 −0.888947 −0.444474 0.895792i \(-0.646609\pi\)
−0.444474 + 0.895792i \(0.646609\pi\)
\(258\) 36.9177 2.29840
\(259\) 0 0
\(260\) −0.0115370 −0.000715492 0
\(261\) 16.3428 1.01159
\(262\) −18.8381 −1.16382
\(263\) −24.7839 −1.52824 −0.764120 0.645074i \(-0.776826\pi\)
−0.764120 + 0.645074i \(0.776826\pi\)
\(264\) −0.333126 −0.0205025
\(265\) 9.14251 0.561620
\(266\) −1.59997 −0.0981003
\(267\) −0.761012 −0.0465732
\(268\) −21.4403 −1.30967
\(269\) −9.55497 −0.582577 −0.291289 0.956635i \(-0.594084\pi\)
−0.291289 + 0.956635i \(0.594084\pi\)
\(270\) 5.32215 0.323895
\(271\) 8.47437 0.514781 0.257391 0.966307i \(-0.417137\pi\)
0.257391 + 0.966307i \(0.417137\pi\)
\(272\) 12.4906 0.757351
\(273\) −0.0126868 −0.000767843 0
\(274\) −10.1142 −0.611021
\(275\) −0.568551 −0.0342849
\(276\) −43.2723 −2.60469
\(277\) −29.2731 −1.75885 −0.879426 0.476036i \(-0.842073\pi\)
−0.879426 + 0.476036i \(0.842073\pi\)
\(278\) −20.3900 −1.22291
\(279\) 37.7234 2.25844
\(280\) 0.173301 0.0103567
\(281\) 14.5887 0.870287 0.435143 0.900361i \(-0.356698\pi\)
0.435143 + 0.900361i \(0.356698\pi\)
\(282\) −28.8516 −1.71809
\(283\) −18.5933 −1.10525 −0.552627 0.833429i \(-0.686375\pi\)
−0.552627 + 0.833429i \(0.686375\pi\)
\(284\) 7.41541 0.440024
\(285\) −2.74344 −0.162507
\(286\) −0.00685095 −0.000405105 0
\(287\) −3.23758 −0.191108
\(288\) −31.5970 −1.86187
\(289\) −8.20493 −0.482643
\(290\) −8.01827 −0.470849
\(291\) −11.4729 −0.672551
\(292\) 31.2434 1.82838
\(293\) 5.80288 0.339008 0.169504 0.985530i \(-0.445783\pi\)
0.169504 + 0.985530i \(0.445783\pi\)
\(294\) 33.3590 1.94554
\(295\) 9.24422 0.538219
\(296\) 0 0
\(297\) 1.53462 0.0890480
\(298\) −21.4485 −1.24248
\(299\) 0.0528738 0.00305777
\(300\) −5.00146 −0.288759
\(301\) −5.53787 −0.319198
\(302\) 0.0304027 0.00174948
\(303\) 14.3201 0.822668
\(304\) 4.36139 0.250143
\(305\) −9.98328 −0.571641
\(306\) −23.5003 −1.34342
\(307\) −21.6882 −1.23781 −0.618907 0.785464i \(-0.712424\pi\)
−0.618907 + 0.785464i \(0.712424\pi\)
\(308\) −0.841062 −0.0479240
\(309\) 32.5209 1.85005
\(310\) −18.5082 −1.05120
\(311\) −7.02589 −0.398402 −0.199201 0.979959i \(-0.563835\pi\)
−0.199201 + 0.979959i \(0.563835\pi\)
\(312\) 0.00358068 0.000202716 0
\(313\) 23.7710 1.34362 0.671808 0.740725i \(-0.265518\pi\)
0.671808 + 0.740725i \(0.265518\pi\)
\(314\) −27.8650 −1.57251
\(315\) −3.14915 −0.177435
\(316\) −20.5837 −1.15792
\(317\) 23.1107 1.29802 0.649012 0.760778i \(-0.275182\pi\)
0.649012 + 0.760778i \(0.275182\pi\)
\(318\) 47.7586 2.67817
\(319\) −2.31204 −0.129450
\(320\) 7.07894 0.395725
\(321\) −36.2761 −2.02473
\(322\) 13.3679 0.744962
\(323\) 3.07102 0.170876
\(324\) −9.26080 −0.514489
\(325\) 0.00611121 0.000338989 0
\(326\) −41.9861 −2.32539
\(327\) 19.4055 1.07312
\(328\) 0.913762 0.0504541
\(329\) 4.32790 0.238605
\(330\) −2.96999 −0.163493
\(331\) 10.4669 0.575314 0.287657 0.957734i \(-0.407124\pi\)
0.287657 + 0.957734i \(0.407124\pi\)
\(332\) 1.62558 0.0892154
\(333\) 0 0
\(334\) 15.7176 0.860029
\(335\) 11.3571 0.620503
\(336\) 8.74357 0.477001
\(337\) −10.5341 −0.573831 −0.286915 0.957956i \(-0.592630\pi\)
−0.286915 + 0.957956i \(0.592630\pi\)
\(338\) −25.6328 −1.39424
\(339\) −11.5914 −0.629557
\(340\) 5.59866 0.303630
\(341\) −5.33680 −0.289004
\(342\) −8.20571 −0.443714
\(343\) −10.4892 −0.566366
\(344\) 1.56299 0.0842705
\(345\) 22.9217 1.23406
\(346\) −29.4057 −1.58086
\(347\) 21.5633 1.15758 0.578789 0.815478i \(-0.303526\pi\)
0.578789 + 0.815478i \(0.303526\pi\)
\(348\) −20.3387 −1.09027
\(349\) 10.5797 0.566320 0.283160 0.959073i \(-0.408617\pi\)
0.283160 + 0.959073i \(0.408617\pi\)
\(350\) 1.54507 0.0825875
\(351\) −0.0164953 −0.000880454 0
\(352\) 4.47008 0.238256
\(353\) −10.9952 −0.585216 −0.292608 0.956233i \(-0.594523\pi\)
−0.292608 + 0.956233i \(0.594523\pi\)
\(354\) 48.2899 2.56658
\(355\) −3.92800 −0.208476
\(356\) 0.542280 0.0287408
\(357\) 6.15668 0.325846
\(358\) 15.2585 0.806439
\(359\) −34.6984 −1.83131 −0.915657 0.401961i \(-0.868329\pi\)
−0.915657 + 0.401961i \(0.868329\pi\)
\(360\) 0.888803 0.0468441
\(361\) −17.9277 −0.943562
\(362\) 25.9402 1.36339
\(363\) 28.2860 1.48463
\(364\) 0.00904036 0.000473844 0
\(365\) −16.5499 −0.866259
\(366\) −52.1506 −2.72596
\(367\) −11.5572 −0.603279 −0.301639 0.953422i \(-0.597534\pi\)
−0.301639 + 0.953422i \(0.597534\pi\)
\(368\) −36.4398 −1.89956
\(369\) −16.6045 −0.864396
\(370\) 0 0
\(371\) −7.16407 −0.371940
\(372\) −46.9470 −2.43409
\(373\) 10.2547 0.530970 0.265485 0.964115i \(-0.414468\pi\)
0.265485 + 0.964115i \(0.414468\pi\)
\(374\) 3.32463 0.171912
\(375\) 2.64931 0.136810
\(376\) −1.22149 −0.0629935
\(377\) 0.0248516 0.00127992
\(378\) −4.17043 −0.214504
\(379\) 5.35858 0.275252 0.137626 0.990484i \(-0.456053\pi\)
0.137626 + 0.990484i \(0.456053\pi\)
\(380\) 1.95491 0.100285
\(381\) −51.7987 −2.65373
\(382\) −45.8357 −2.34516
\(383\) 23.2604 1.18855 0.594276 0.804261i \(-0.297439\pi\)
0.594276 + 0.804261i \(0.297439\pi\)
\(384\) −4.67999 −0.238825
\(385\) 0.445516 0.0227056
\(386\) −10.6122 −0.540145
\(387\) −28.4019 −1.44375
\(388\) 8.17530 0.415038
\(389\) −17.2275 −0.873471 −0.436735 0.899590i \(-0.643865\pi\)
−0.436735 + 0.899590i \(0.643865\pi\)
\(390\) 0.0319237 0.00161652
\(391\) −25.6586 −1.29761
\(392\) 1.41232 0.0713330
\(393\) 25.3114 1.27679
\(394\) −1.45362 −0.0732322
\(395\) 10.9033 0.548606
\(396\) −4.31353 −0.216763
\(397\) 30.2268 1.51704 0.758520 0.651650i \(-0.225923\pi\)
0.758520 + 0.651650i \(0.225923\pi\)
\(398\) −6.94714 −0.348229
\(399\) 2.14976 0.107622
\(400\) −4.21175 −0.210587
\(401\) −12.0733 −0.602909 −0.301455 0.953480i \(-0.597472\pi\)
−0.301455 + 0.953480i \(0.597472\pi\)
\(402\) 59.3270 2.95896
\(403\) 0.0573639 0.00285750
\(404\) −10.2042 −0.507677
\(405\) 4.90551 0.243757
\(406\) 6.28311 0.311826
\(407\) 0 0
\(408\) −1.73763 −0.0860257
\(409\) −0.909485 −0.0449711 −0.0224856 0.999747i \(-0.507158\pi\)
−0.0224856 + 0.999747i \(0.507158\pi\)
\(410\) 8.14668 0.402336
\(411\) 13.5897 0.670330
\(412\) −23.1737 −1.14169
\(413\) −7.24377 −0.356442
\(414\) 68.5594 3.36951
\(415\) −0.861082 −0.0422688
\(416\) −0.0480478 −0.00235574
\(417\) 27.3966 1.34162
\(418\) 1.16088 0.0567804
\(419\) 5.44038 0.265780 0.132890 0.991131i \(-0.457574\pi\)
0.132890 + 0.991131i \(0.457574\pi\)
\(420\) 3.91914 0.191234
\(421\) −32.1650 −1.56762 −0.783812 0.620998i \(-0.786727\pi\)
−0.783812 + 0.620998i \(0.786727\pi\)
\(422\) −28.7878 −1.40137
\(423\) 22.1964 1.07923
\(424\) 2.02196 0.0981949
\(425\) −2.96565 −0.143855
\(426\) −20.5190 −0.994151
\(427\) 7.82289 0.378576
\(428\) 25.8495 1.24948
\(429\) 0.00920511 0.000444427 0
\(430\) 13.9349 0.671999
\(431\) −2.57507 −0.124037 −0.0620184 0.998075i \(-0.519754\pi\)
−0.0620184 + 0.998075i \(0.519754\pi\)
\(432\) 11.3683 0.546957
\(433\) 32.5699 1.56521 0.782605 0.622519i \(-0.213891\pi\)
0.782605 + 0.622519i \(0.213891\pi\)
\(434\) 14.5031 0.696169
\(435\) 10.7735 0.516552
\(436\) −13.8279 −0.662236
\(437\) −8.95935 −0.428584
\(438\) −86.4531 −4.13089
\(439\) −38.0631 −1.81665 −0.908326 0.418262i \(-0.862639\pi\)
−0.908326 + 0.418262i \(0.862639\pi\)
\(440\) −0.125741 −0.00599445
\(441\) −25.6641 −1.22210
\(442\) −0.0357356 −0.00169977
\(443\) −9.79268 −0.465264 −0.232632 0.972565i \(-0.574734\pi\)
−0.232632 + 0.972565i \(0.574734\pi\)
\(444\) 0 0
\(445\) −0.287249 −0.0136169
\(446\) 31.4019 1.48692
\(447\) 28.8188 1.36308
\(448\) −5.54706 −0.262074
\(449\) −12.2877 −0.579891 −0.289945 0.957043i \(-0.593637\pi\)
−0.289945 + 0.957043i \(0.593637\pi\)
\(450\) 7.92416 0.373549
\(451\) 2.34907 0.110613
\(452\) 8.25975 0.388506
\(453\) −0.0408498 −0.00191929
\(454\) −29.3833 −1.37903
\(455\) −0.00478874 −0.000224500 0
\(456\) −0.606739 −0.0284131
\(457\) 11.2094 0.524356 0.262178 0.965020i \(-0.415559\pi\)
0.262178 + 0.965020i \(0.415559\pi\)
\(458\) −12.6044 −0.588965
\(459\) 8.00484 0.373634
\(460\) −16.3335 −0.761551
\(461\) −22.0191 −1.02553 −0.512767 0.858528i \(-0.671379\pi\)
−0.512767 + 0.858528i \(0.671379\pi\)
\(462\) 2.32729 0.108275
\(463\) −20.9473 −0.973504 −0.486752 0.873540i \(-0.661818\pi\)
−0.486752 + 0.873540i \(0.661818\pi\)
\(464\) −17.1273 −0.795115
\(465\) 24.8681 1.15323
\(466\) −23.2683 −1.07788
\(467\) 1.71804 0.0795016 0.0397508 0.999210i \(-0.487344\pi\)
0.0397508 + 0.999210i \(0.487344\pi\)
\(468\) 0.0463651 0.00214323
\(469\) −8.89940 −0.410936
\(470\) −10.8902 −0.502329
\(471\) 37.4401 1.72515
\(472\) 2.04445 0.0941034
\(473\) 4.01808 0.184751
\(474\) 56.9568 2.61611
\(475\) −1.03553 −0.0475134
\(476\) −4.38711 −0.201083
\(477\) −36.7422 −1.68231
\(478\) 7.55020 0.345338
\(479\) 33.0337 1.50935 0.754674 0.656100i \(-0.227795\pi\)
0.754674 + 0.656100i \(0.227795\pi\)
\(480\) −20.8295 −0.950731
\(481\) 0 0
\(482\) 38.0951 1.73518
\(483\) −17.9614 −0.817272
\(484\) −20.1560 −0.916180
\(485\) −4.33052 −0.196639
\(486\) 41.5918 1.88664
\(487\) −13.4557 −0.609734 −0.304867 0.952395i \(-0.598612\pi\)
−0.304867 + 0.952395i \(0.598612\pi\)
\(488\) −2.20790 −0.0999470
\(489\) 56.4136 2.55111
\(490\) 12.5916 0.568831
\(491\) 13.8635 0.625650 0.312825 0.949811i \(-0.398725\pi\)
0.312825 + 0.949811i \(0.398725\pi\)
\(492\) 20.6644 0.931624
\(493\) −12.0600 −0.543154
\(494\) −0.0124780 −0.000561411 0
\(495\) 2.28491 0.102699
\(496\) −39.5342 −1.77514
\(497\) 3.07798 0.138066
\(498\) −4.49812 −0.201565
\(499\) −32.2091 −1.44188 −0.720940 0.692998i \(-0.756290\pi\)
−0.720940 + 0.692998i \(0.756290\pi\)
\(500\) −1.88784 −0.0844266
\(501\) −21.1186 −0.943509
\(502\) 1.75383 0.0782775
\(503\) −38.1050 −1.69902 −0.849510 0.527573i \(-0.823102\pi\)
−0.849510 + 0.527573i \(0.823102\pi\)
\(504\) −0.696466 −0.0310231
\(505\) 5.40523 0.240529
\(506\) −9.69923 −0.431183
\(507\) 34.4409 1.52957
\(508\) 36.9106 1.63764
\(509\) 40.4853 1.79448 0.897240 0.441544i \(-0.145569\pi\)
0.897240 + 0.441544i \(0.145569\pi\)
\(510\) −15.4919 −0.685995
\(511\) 12.9685 0.573691
\(512\) 31.2508 1.38110
\(513\) 2.79509 0.123406
\(514\) −28.0994 −1.23941
\(515\) 12.2753 0.540913
\(516\) 35.3464 1.55604
\(517\) −3.14017 −0.138104
\(518\) 0 0
\(519\) 39.5102 1.73431
\(520\) 0.00135155 5.92696e−5 0
\(521\) 1.83900 0.0805683 0.0402841 0.999188i \(-0.487174\pi\)
0.0402841 + 0.999188i \(0.487174\pi\)
\(522\) 32.2240 1.41041
\(523\) −12.2306 −0.534807 −0.267403 0.963585i \(-0.586166\pi\)
−0.267403 + 0.963585i \(0.586166\pi\)
\(524\) −18.0363 −0.787919
\(525\) −2.07600 −0.0906039
\(526\) −48.8679 −2.13074
\(527\) −27.8375 −1.21262
\(528\) −6.34401 −0.276088
\(529\) 51.8561 2.25461
\(530\) 18.0268 0.783036
\(531\) −37.1509 −1.61221
\(532\) −1.53187 −0.0664149
\(533\) −0.0252496 −0.00109368
\(534\) −1.50053 −0.0649344
\(535\) −13.6927 −0.591986
\(536\) 2.51173 0.108490
\(537\) −20.5018 −0.884717
\(538\) −18.8401 −0.812255
\(539\) 3.63075 0.156388
\(540\) 5.09562 0.219281
\(541\) 9.85561 0.423726 0.211863 0.977299i \(-0.432047\pi\)
0.211863 + 0.977299i \(0.432047\pi\)
\(542\) 16.7094 0.717731
\(543\) −34.8540 −1.49573
\(544\) 23.3166 0.999692
\(545\) 7.32473 0.313757
\(546\) −0.0250154 −0.00107056
\(547\) 22.7670 0.973447 0.486723 0.873556i \(-0.338192\pi\)
0.486723 + 0.873556i \(0.338192\pi\)
\(548\) −9.68371 −0.413667
\(549\) 40.1211 1.71233
\(550\) −1.12105 −0.0478016
\(551\) −4.21104 −0.179396
\(552\) 5.06935 0.215766
\(553\) −8.54385 −0.363321
\(554\) −57.7196 −2.45227
\(555\) 0 0
\(556\) −19.5222 −0.827924
\(557\) 43.6643 1.85012 0.925058 0.379825i \(-0.124016\pi\)
0.925058 + 0.379825i \(0.124016\pi\)
\(558\) 74.3814 3.14882
\(559\) −0.0431893 −0.00182671
\(560\) 3.30032 0.139464
\(561\) −4.46706 −0.188599
\(562\) 28.7653 1.21339
\(563\) −24.4057 −1.02858 −0.514288 0.857617i \(-0.671944\pi\)
−0.514288 + 0.857617i \(0.671944\pi\)
\(564\) −27.6236 −1.16316
\(565\) −4.37525 −0.184068
\(566\) −36.6614 −1.54099
\(567\) −3.84396 −0.161431
\(568\) −0.868715 −0.0364505
\(569\) −41.3282 −1.73257 −0.866285 0.499550i \(-0.833499\pi\)
−0.866285 + 0.499550i \(0.833499\pi\)
\(570\) −5.40940 −0.226575
\(571\) 18.3668 0.768625 0.384313 0.923203i \(-0.374438\pi\)
0.384313 + 0.923203i \(0.374438\pi\)
\(572\) −0.00655935 −0.000274260 0
\(573\) 61.5860 2.57279
\(574\) −6.38374 −0.266452
\(575\) 8.65194 0.360811
\(576\) −28.4490 −1.18538
\(577\) −19.7486 −0.822146 −0.411073 0.911602i \(-0.634846\pi\)
−0.411073 + 0.911602i \(0.634846\pi\)
\(578\) −16.1781 −0.672922
\(579\) 14.2588 0.592575
\(580\) −7.67699 −0.318770
\(581\) 0.674744 0.0279931
\(582\) −22.6217 −0.937701
\(583\) 5.19798 0.215278
\(584\) −3.66016 −0.151459
\(585\) −0.0245599 −0.00101543
\(586\) 11.4419 0.472660
\(587\) 32.9271 1.35905 0.679524 0.733654i \(-0.262187\pi\)
0.679524 + 0.733654i \(0.262187\pi\)
\(588\) 31.9392 1.31715
\(589\) −9.72017 −0.400513
\(590\) 18.2274 0.750409
\(591\) 1.95312 0.0803405
\(592\) 0 0
\(593\) 16.7712 0.688712 0.344356 0.938839i \(-0.388097\pi\)
0.344356 + 0.938839i \(0.388097\pi\)
\(594\) 3.02591 0.124155
\(595\) 2.32388 0.0952698
\(596\) −20.5356 −0.841172
\(597\) 9.33436 0.382030
\(598\) 0.104255 0.00426328
\(599\) 11.5132 0.470417 0.235209 0.971945i \(-0.424423\pi\)
0.235209 + 0.971945i \(0.424423\pi\)
\(600\) 0.585920 0.0239201
\(601\) 9.35707 0.381683 0.190841 0.981621i \(-0.438878\pi\)
0.190841 + 0.981621i \(0.438878\pi\)
\(602\) −10.9194 −0.445040
\(603\) −45.6421 −1.85869
\(604\) 0.0291086 0.00118441
\(605\) 10.6767 0.434072
\(606\) 28.2358 1.14700
\(607\) −8.05240 −0.326837 −0.163418 0.986557i \(-0.552252\pi\)
−0.163418 + 0.986557i \(0.552252\pi\)
\(608\) 8.14158 0.330185
\(609\) −8.44215 −0.342093
\(610\) −19.6846 −0.797007
\(611\) 0.0337529 0.00136549
\(612\) −22.5000 −0.909510
\(613\) 3.42028 0.138144 0.0690720 0.997612i \(-0.477996\pi\)
0.0690720 + 0.997612i \(0.477996\pi\)
\(614\) −42.7640 −1.72581
\(615\) −10.9461 −0.441389
\(616\) 0.0985304 0.00396990
\(617\) −17.8938 −0.720376 −0.360188 0.932880i \(-0.617287\pi\)
−0.360188 + 0.932880i \(0.617287\pi\)
\(618\) 64.1235 2.57943
\(619\) 1.02595 0.0412363 0.0206182 0.999787i \(-0.493437\pi\)
0.0206182 + 0.999787i \(0.493437\pi\)
\(620\) −17.7205 −0.711671
\(621\) −23.3532 −0.937132
\(622\) −13.8534 −0.555469
\(623\) 0.225089 0.00901798
\(624\) 0.0681902 0.00272979
\(625\) 1.00000 0.0400000
\(626\) 46.8707 1.87333
\(627\) −1.55978 −0.0622918
\(628\) −26.6790 −1.06461
\(629\) 0 0
\(630\) −6.20937 −0.247387
\(631\) −45.6234 −1.81624 −0.908119 0.418711i \(-0.862482\pi\)
−0.908119 + 0.418711i \(0.862482\pi\)
\(632\) 2.41138 0.0959196
\(633\) 38.6800 1.53739
\(634\) 45.5687 1.80976
\(635\) −19.5518 −0.775890
\(636\) 45.7259 1.81315
\(637\) −0.0390260 −0.00154627
\(638\) −4.55879 −0.180484
\(639\) 15.7859 0.624482
\(640\) −1.76650 −0.0698269
\(641\) 7.98108 0.315234 0.157617 0.987500i \(-0.449619\pi\)
0.157617 + 0.987500i \(0.449619\pi\)
\(642\) −71.5278 −2.82298
\(643\) 11.7007 0.461432 0.230716 0.973021i \(-0.425893\pi\)
0.230716 + 0.973021i \(0.425893\pi\)
\(644\) 12.7989 0.504347
\(645\) −18.7232 −0.737227
\(646\) 6.05531 0.238243
\(647\) −2.01865 −0.0793615 −0.0396807 0.999212i \(-0.512634\pi\)
−0.0396807 + 0.999212i \(0.512634\pi\)
\(648\) 1.08490 0.0426190
\(649\) 5.25581 0.206309
\(650\) 0.0120498 0.000472634 0
\(651\) −19.4867 −0.763743
\(652\) −40.1991 −1.57432
\(653\) 31.0085 1.21346 0.606728 0.794910i \(-0.292482\pi\)
0.606728 + 0.794910i \(0.292482\pi\)
\(654\) 38.2629 1.49620
\(655\) 9.55395 0.373304
\(656\) 17.4016 0.679418
\(657\) 66.5110 2.59484
\(658\) 8.53359 0.332674
\(659\) −12.9866 −0.505885 −0.252943 0.967481i \(-0.581398\pi\)
−0.252943 + 0.967481i \(0.581398\pi\)
\(660\) −2.84358 −0.110686
\(661\) 3.27374 0.127334 0.0636668 0.997971i \(-0.479720\pi\)
0.0636668 + 0.997971i \(0.479720\pi\)
\(662\) 20.6383 0.802128
\(663\) 0.0480152 0.00186476
\(664\) −0.190437 −0.00739038
\(665\) 0.811441 0.0314663
\(666\) 0 0
\(667\) 35.1836 1.36231
\(668\) 15.0486 0.582249
\(669\) −42.1924 −1.63125
\(670\) 22.3934 0.865133
\(671\) −5.67600 −0.219120
\(672\) 16.3220 0.629633
\(673\) 23.3594 0.900441 0.450220 0.892918i \(-0.351345\pi\)
0.450220 + 0.892918i \(0.351345\pi\)
\(674\) −20.7708 −0.800060
\(675\) −2.69919 −0.103892
\(676\) −24.5418 −0.943915
\(677\) −15.6182 −0.600255 −0.300127 0.953899i \(-0.597029\pi\)
−0.300127 + 0.953899i \(0.597029\pi\)
\(678\) −22.8554 −0.877756
\(679\) 3.39339 0.130226
\(680\) −0.655883 −0.0251519
\(681\) 39.4802 1.51288
\(682\) −10.5229 −0.402942
\(683\) 20.2355 0.774290 0.387145 0.922019i \(-0.373461\pi\)
0.387145 + 0.922019i \(0.373461\pi\)
\(684\) −7.85645 −0.300399
\(685\) 5.12953 0.195989
\(686\) −20.6823 −0.789653
\(687\) 16.9356 0.646133
\(688\) 29.7653 1.13479
\(689\) −0.0558718 −0.00212855
\(690\) 45.1960 1.72058
\(691\) −6.61621 −0.251693 −0.125846 0.992050i \(-0.540165\pi\)
−0.125846 + 0.992050i \(0.540165\pi\)
\(692\) −28.1541 −1.07026
\(693\) −1.79045 −0.0680137
\(694\) 42.5176 1.61395
\(695\) 10.3410 0.392258
\(696\) 2.38268 0.0903151
\(697\) 12.2531 0.464120
\(698\) 20.8607 0.789588
\(699\) 31.2638 1.18251
\(700\) 1.47931 0.0559126
\(701\) 36.0667 1.36222 0.681111 0.732180i \(-0.261497\pi\)
0.681111 + 0.732180i \(0.261497\pi\)
\(702\) −0.0325248 −0.00122757
\(703\) 0 0
\(704\) 4.02474 0.151688
\(705\) 14.6324 0.551088
\(706\) −21.6799 −0.815934
\(707\) −4.23553 −0.159294
\(708\) 46.2346 1.73760
\(709\) 12.5403 0.470960 0.235480 0.971879i \(-0.424334\pi\)
0.235480 + 0.971879i \(0.424334\pi\)
\(710\) −7.74506 −0.290667
\(711\) −43.8186 −1.64333
\(712\) −0.0635281 −0.00238081
\(713\) 81.2129 3.04145
\(714\) 12.1395 0.454309
\(715\) 0.00347454 0.000129940 0
\(716\) 14.6091 0.545968
\(717\) −10.1446 −0.378859
\(718\) −68.4170 −2.55330
\(719\) −16.9908 −0.633651 −0.316825 0.948484i \(-0.602617\pi\)
−0.316825 + 0.948484i \(0.602617\pi\)
\(720\) 16.9263 0.630805
\(721\) −9.61889 −0.358226
\(722\) −35.3491 −1.31556
\(723\) −51.1855 −1.90361
\(724\) 24.8362 0.923028
\(725\) 4.06655 0.151028
\(726\) 55.7732 2.06994
\(727\) −22.9726 −0.852008 −0.426004 0.904721i \(-0.640079\pi\)
−0.426004 + 0.904721i \(0.640079\pi\)
\(728\) −0.00105908 −3.92520e−5 0
\(729\) −41.1673 −1.52472
\(730\) −32.6323 −1.20778
\(731\) 20.9589 0.775193
\(732\) −49.9309 −1.84550
\(733\) 6.20870 0.229323 0.114662 0.993405i \(-0.463422\pi\)
0.114662 + 0.993405i \(0.463422\pi\)
\(734\) −22.7879 −0.841118
\(735\) −16.9184 −0.624045
\(736\) −68.0236 −2.50738
\(737\) 6.45707 0.237849
\(738\) −32.7401 −1.20518
\(739\) −9.96051 −0.366403 −0.183202 0.983075i \(-0.558646\pi\)
−0.183202 + 0.983075i \(0.558646\pi\)
\(740\) 0 0
\(741\) 0.0167657 0.000615904 0
\(742\) −14.1258 −0.518575
\(743\) 35.1785 1.29057 0.645287 0.763941i \(-0.276738\pi\)
0.645287 + 0.763941i \(0.276738\pi\)
\(744\) 5.49984 0.201634
\(745\) 10.8779 0.398534
\(746\) 20.2199 0.740302
\(747\) 3.46054 0.126615
\(748\) 3.18312 0.116387
\(749\) 10.7296 0.392050
\(750\) 5.22380 0.190746
\(751\) −37.7381 −1.37708 −0.688542 0.725197i \(-0.741749\pi\)
−0.688542 + 0.725197i \(0.741749\pi\)
\(752\) −23.2619 −0.848275
\(753\) −2.35650 −0.0858755
\(754\) 0.0490013 0.00178452
\(755\) −0.0154190 −0.000561157 0
\(756\) −3.99293 −0.145221
\(757\) −2.38524 −0.0866930 −0.0433465 0.999060i \(-0.513802\pi\)
−0.0433465 + 0.999060i \(0.513802\pi\)
\(758\) 10.5658 0.383769
\(759\) 13.0321 0.473036
\(760\) −0.229018 −0.00830735
\(761\) 0.479949 0.0173981 0.00869907 0.999962i \(-0.497231\pi\)
0.00869907 + 0.999962i \(0.497231\pi\)
\(762\) −102.135 −3.69995
\(763\) −5.73966 −0.207790
\(764\) −43.8848 −1.58770
\(765\) 11.9184 0.430912
\(766\) 45.8640 1.65713
\(767\) −0.0564933 −0.00203986
\(768\) −46.7364 −1.68645
\(769\) 45.6865 1.64750 0.823748 0.566956i \(-0.191879\pi\)
0.823748 + 0.566956i \(0.191879\pi\)
\(770\) 0.878451 0.0316572
\(771\) 37.7550 1.35971
\(772\) −10.1605 −0.365684
\(773\) 15.0962 0.542974 0.271487 0.962442i \(-0.412485\pi\)
0.271487 + 0.962442i \(0.412485\pi\)
\(774\) −56.0018 −2.01294
\(775\) 9.38666 0.337179
\(776\) −0.957736 −0.0343807
\(777\) 0 0
\(778\) −33.9686 −1.21783
\(779\) 4.27848 0.153292
\(780\) 0.0305650 0.00109440
\(781\) −2.23327 −0.0799125
\(782\) −50.5926 −1.80919
\(783\) −10.9764 −0.392264
\(784\) 26.8961 0.960575
\(785\) 14.1321 0.504395
\(786\) 49.9079 1.78016
\(787\) 20.9934 0.748334 0.374167 0.927361i \(-0.377929\pi\)
0.374167 + 0.927361i \(0.377929\pi\)
\(788\) −1.39175 −0.0495790
\(789\) 65.6601 2.33756
\(790\) 21.4988 0.764891
\(791\) 3.42844 0.121901
\(792\) 0.505330 0.0179561
\(793\) 0.0610099 0.00216653
\(794\) 59.6000 2.11512
\(795\) −24.2213 −0.859042
\(796\) −6.65145 −0.235755
\(797\) 20.9652 0.742627 0.371314 0.928508i \(-0.378907\pi\)
0.371314 + 0.928508i \(0.378907\pi\)
\(798\) 4.23880 0.150052
\(799\) −16.3796 −0.579468
\(800\) −7.86223 −0.277972
\(801\) 1.15441 0.0407889
\(802\) −23.8056 −0.840603
\(803\) −9.40944 −0.332052
\(804\) 56.8019 2.00325
\(805\) −6.77966 −0.238952
\(806\) 0.113108 0.00398405
\(807\) 25.3141 0.891097
\(808\) 1.19542 0.0420547
\(809\) 8.19866 0.288249 0.144125 0.989560i \(-0.453963\pi\)
0.144125 + 0.989560i \(0.453963\pi\)
\(810\) 9.67249 0.339857
\(811\) 27.5998 0.969158 0.484579 0.874747i \(-0.338973\pi\)
0.484579 + 0.874747i \(0.338973\pi\)
\(812\) 6.01569 0.211109
\(813\) −22.4512 −0.787398
\(814\) 0 0
\(815\) 21.2937 0.745886
\(816\) −33.0913 −1.15843
\(817\) 7.31832 0.256036
\(818\) −1.79329 −0.0627008
\(819\) 0.0192451 0.000672479 0
\(820\) 7.79993 0.272386
\(821\) −10.2184 −0.356626 −0.178313 0.983974i \(-0.557064\pi\)
−0.178313 + 0.983974i \(0.557064\pi\)
\(822\) 26.7956 0.934604
\(823\) 22.3010 0.777363 0.388681 0.921372i \(-0.372931\pi\)
0.388681 + 0.921372i \(0.372931\pi\)
\(824\) 2.71480 0.0945744
\(825\) 1.50627 0.0524415
\(826\) −14.2830 −0.496968
\(827\) 42.7428 1.48631 0.743157 0.669117i \(-0.233328\pi\)
0.743157 + 0.669117i \(0.233328\pi\)
\(828\) 65.6413 2.28119
\(829\) 9.55795 0.331961 0.165981 0.986129i \(-0.446921\pi\)
0.165981 + 0.986129i \(0.446921\pi\)
\(830\) −1.69785 −0.0589331
\(831\) 77.5535 2.69030
\(832\) −0.0432609 −0.00149980
\(833\) 18.9385 0.656182
\(834\) 54.0194 1.87054
\(835\) −7.97136 −0.275860
\(836\) 1.11147 0.0384409
\(837\) −25.3363 −0.875752
\(838\) 10.7271 0.370562
\(839\) 32.9053 1.13602 0.568009 0.823022i \(-0.307714\pi\)
0.568009 + 0.823022i \(0.307714\pi\)
\(840\) −0.459127 −0.0158414
\(841\) −12.4631 −0.429763
\(842\) −63.4216 −2.18565
\(843\) −38.6498 −1.33117
\(844\) −27.5625 −0.948740
\(845\) 13.0000 0.447212
\(846\) 43.7660 1.50471
\(847\) −8.36630 −0.287469
\(848\) 38.5059 1.32230
\(849\) 49.2592 1.69057
\(850\) −5.84755 −0.200569
\(851\) 0 0
\(852\) −19.6457 −0.673051
\(853\) −24.1424 −0.826621 −0.413310 0.910590i \(-0.635628\pi\)
−0.413310 + 0.910590i \(0.635628\pi\)
\(854\) 15.4249 0.527828
\(855\) 4.16162 0.142324
\(856\) −3.02827 −0.103504
\(857\) 42.5290 1.45276 0.726382 0.687292i \(-0.241200\pi\)
0.726382 + 0.687292i \(0.241200\pi\)
\(858\) 0.0181503 0.000619640 0
\(859\) −51.3470 −1.75194 −0.875968 0.482370i \(-0.839776\pi\)
−0.875968 + 0.482370i \(0.839776\pi\)
\(860\) 13.3418 0.454950
\(861\) 8.57735 0.292315
\(862\) −5.07742 −0.172938
\(863\) −49.5747 −1.68754 −0.843772 0.536702i \(-0.819670\pi\)
−0.843772 + 0.536702i \(0.819670\pi\)
\(864\) 21.2216 0.721974
\(865\) 14.9134 0.507072
\(866\) 64.2200 2.18228
\(867\) 21.7374 0.738240
\(868\) 13.8858 0.471313
\(869\) 6.19910 0.210290
\(870\) 21.2429 0.720200
\(871\) −0.0694054 −0.00235171
\(872\) 1.61994 0.0548580
\(873\) 17.4036 0.589022
\(874\) −17.6657 −0.597551
\(875\) −0.783600 −0.0264905
\(876\) −82.7734 −2.79665
\(877\) 27.7964 0.938618 0.469309 0.883034i \(-0.344503\pi\)
0.469309 + 0.883034i \(0.344503\pi\)
\(878\) −75.0513 −2.53286
\(879\) −15.3736 −0.518539
\(880\) −2.39459 −0.0807217
\(881\) 49.8350 1.67898 0.839492 0.543372i \(-0.182853\pi\)
0.839492 + 0.543372i \(0.182853\pi\)
\(882\) −50.6035 −1.70391
\(883\) −37.0770 −1.24774 −0.623870 0.781528i \(-0.714440\pi\)
−0.623870 + 0.781528i \(0.714440\pi\)
\(884\) −0.0342146 −0.00115076
\(885\) −24.4908 −0.823248
\(886\) −19.3088 −0.648692
\(887\) 37.5487 1.26076 0.630380 0.776286i \(-0.282899\pi\)
0.630380 + 0.776286i \(0.282899\pi\)
\(888\) 0 0
\(889\) 15.3208 0.513843
\(890\) −0.566387 −0.0189853
\(891\) 2.78903 0.0934361
\(892\) 30.0653 1.00666
\(893\) −5.71934 −0.191391
\(894\) 56.8237 1.90047
\(895\) −7.73854 −0.258671
\(896\) 1.38423 0.0462438
\(897\) −0.140079 −0.00467710
\(898\) −24.2283 −0.808510
\(899\) 38.1714 1.27309
\(900\) 7.58689 0.252896
\(901\) 27.1135 0.903281
\(902\) 4.63180 0.154222
\(903\) 14.6715 0.488238
\(904\) −0.967629 −0.0321829
\(905\) −13.1559 −0.437316
\(906\) −0.0805460 −0.00267596
\(907\) 32.0705 1.06488 0.532441 0.846467i \(-0.321275\pi\)
0.532441 + 0.846467i \(0.321275\pi\)
\(908\) −28.1327 −0.933616
\(909\) −21.7227 −0.720495
\(910\) −0.00944225 −0.000313008 0
\(911\) −26.0546 −0.863229 −0.431614 0.902058i \(-0.642056\pi\)
−0.431614 + 0.902058i \(0.642056\pi\)
\(912\) −11.5547 −0.382613
\(913\) −0.489569 −0.0162024
\(914\) 22.1023 0.731080
\(915\) 26.4488 0.874369
\(916\) −12.0679 −0.398735
\(917\) −7.48647 −0.247225
\(918\) 15.7836 0.520937
\(919\) 5.23024 0.172530 0.0862648 0.996272i \(-0.472507\pi\)
0.0862648 + 0.996272i \(0.472507\pi\)
\(920\) 1.91346 0.0630850
\(921\) 57.4588 1.89333
\(922\) −43.4165 −1.42985
\(923\) 0.0240048 0.000790128 0
\(924\) 2.22823 0.0733034
\(925\) 0 0
\(926\) −41.3031 −1.35730
\(927\) −49.3322 −1.62028
\(928\) −31.9722 −1.04954
\(929\) −3.18876 −0.104620 −0.0523099 0.998631i \(-0.516658\pi\)
−0.0523099 + 0.998631i \(0.516658\pi\)
\(930\) 49.0340 1.60789
\(931\) 6.61287 0.216728
\(932\) −22.2779 −0.729737
\(933\) 18.6137 0.609386
\(934\) 3.38757 0.110845
\(935\) −1.68612 −0.0551421
\(936\) −0.00543166 −0.000177540 0
\(937\) 54.4768 1.77968 0.889840 0.456273i \(-0.150816\pi\)
0.889840 + 0.456273i \(0.150816\pi\)
\(938\) −17.5475 −0.572945
\(939\) −62.9767 −2.05517
\(940\) −10.4267 −0.340082
\(941\) −44.2180 −1.44147 −0.720733 0.693213i \(-0.756194\pi\)
−0.720733 + 0.693213i \(0.756194\pi\)
\(942\) 73.8230 2.40528
\(943\) −35.7471 −1.16408
\(944\) 38.9343 1.26720
\(945\) 2.11508 0.0688036
\(946\) 7.92268 0.257589
\(947\) −11.0647 −0.359553 −0.179777 0.983707i \(-0.557537\pi\)
−0.179777 + 0.983707i \(0.557537\pi\)
\(948\) 54.5326 1.77114
\(949\) 0.101140 0.00328313
\(950\) −2.04182 −0.0662453
\(951\) −61.2272 −1.98543
\(952\) 0.513949 0.0166572
\(953\) 43.7259 1.41642 0.708210 0.706002i \(-0.249503\pi\)
0.708210 + 0.706002i \(0.249503\pi\)
\(954\) −72.4467 −2.34555
\(955\) 23.2461 0.752226
\(956\) 7.22884 0.233798
\(957\) 6.12531 0.198003
\(958\) 65.1345 2.10440
\(959\) −4.01950 −0.129796
\(960\) −18.7543 −0.605292
\(961\) 57.1094 1.84224
\(962\) 0 0
\(963\) 55.0285 1.77327
\(964\) 36.4736 1.17474
\(965\) 5.38208 0.173255
\(966\) −35.4156 −1.13948
\(967\) 29.0347 0.933692 0.466846 0.884339i \(-0.345390\pi\)
0.466846 + 0.884339i \(0.345390\pi\)
\(968\) 2.36127 0.0758941
\(969\) −8.13607 −0.261368
\(970\) −8.53874 −0.274162
\(971\) 16.3088 0.523374 0.261687 0.965153i \(-0.415721\pi\)
0.261687 + 0.965153i \(0.415721\pi\)
\(972\) 39.8216 1.27728
\(973\) −8.10323 −0.259778
\(974\) −26.5313 −0.850118
\(975\) −0.0161905 −0.000518510 0
\(976\) −42.0470 −1.34589
\(977\) 19.6114 0.627425 0.313712 0.949518i \(-0.398427\pi\)
0.313712 + 0.949518i \(0.398427\pi\)
\(978\) 111.234 3.55687
\(979\) −0.163316 −0.00521960
\(980\) 12.0557 0.385104
\(981\) −29.4368 −0.939846
\(982\) 27.3354 0.872309
\(983\) −53.4039 −1.70332 −0.851660 0.524095i \(-0.824404\pi\)
−0.851660 + 0.524095i \(0.824404\pi\)
\(984\) −2.42084 −0.0771734
\(985\) 0.737219 0.0234897
\(986\) −23.7794 −0.757289
\(987\) −11.4659 −0.364965
\(988\) −0.0119469 −0.000380081 0
\(989\) −61.1452 −1.94430
\(990\) 4.50529 0.143188
\(991\) −47.7930 −1.51820 −0.759098 0.650976i \(-0.774360\pi\)
−0.759098 + 0.650976i \(0.774360\pi\)
\(992\) −73.8001 −2.34316
\(993\) −27.7301 −0.879988
\(994\) 6.06903 0.192498
\(995\) 3.52332 0.111697
\(996\) −4.30666 −0.136462
\(997\) −56.6250 −1.79333 −0.896667 0.442707i \(-0.854018\pi\)
−0.896667 + 0.442707i \(0.854018\pi\)
\(998\) −63.5087 −2.01033
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6845.2.a.k.1.6 7
37.11 even 6 185.2.e.a.121.6 yes 14
37.27 even 6 185.2.e.a.26.6 14
37.36 even 2 6845.2.a.l.1.2 7
185.27 odd 12 925.2.o.b.174.4 28
185.48 odd 12 925.2.o.b.824.4 28
185.64 even 6 925.2.e.c.26.2 14
185.122 odd 12 925.2.o.b.824.11 28
185.138 odd 12 925.2.o.b.174.11 28
185.159 even 6 925.2.e.c.676.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.6 14 37.27 even 6
185.2.e.a.121.6 yes 14 37.11 even 6
925.2.e.c.26.2 14 185.64 even 6
925.2.e.c.676.2 14 185.159 even 6
925.2.o.b.174.4 28 185.27 odd 12
925.2.o.b.174.11 28 185.138 odd 12
925.2.o.b.824.4 28 185.48 odd 12
925.2.o.b.824.11 28 185.122 odd 12
6845.2.a.k.1.6 7 1.1 even 1 trivial
6845.2.a.l.1.2 7 37.36 even 2