Properties

Label 925.2.d.f.924.3
Level $925$
Weight $2$
Character 925.924
Analytic conductor $7.386$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(924,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.924"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,18,0,0,0,6,-22,0,2,0,20,0,0,30,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 21x^{10} + 162x^{8} + 574x^{6} + 985x^{4} + 765x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 924.3
Root \(-1.36551i\) of defining polynomial
Character \(\chi\) \(=\) 925.924
Dual form 925.2.d.f.924.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.36551 q^{2} -2.79310i q^{3} -0.135372 q^{4} +3.81402i q^{6} -4.67865i q^{7} +2.91588 q^{8} -4.80143 q^{9} -0.186084 q^{11} +0.378109i q^{12} -4.24161 q^{13} +6.38876i q^{14} -3.71093 q^{16} +3.61534 q^{17} +6.55641 q^{18} -7.92848i q^{19} -13.0679 q^{21} +0.254101 q^{22} -3.32146 q^{23} -8.14435i q^{24} +5.79198 q^{26} +5.03157i q^{27} +0.633360i q^{28} +2.01664i q^{29} +2.04293i q^{31} -0.764435 q^{32} +0.519752i q^{33} -4.93680 q^{34} +0.649980 q^{36} +(2.98085 - 5.30231i) q^{37} +10.8264i q^{38} +11.8473i q^{39} +1.03061 q^{41} +17.8445 q^{42} +4.05248 q^{43} +0.0251907 q^{44} +4.53549 q^{46} -2.78341i q^{47} +10.3650i q^{48} -14.8897 q^{49} -10.0980i q^{51} +0.574197 q^{52} -7.67087i q^{53} -6.87067i q^{54} -13.6424i q^{56} -22.1451 q^{57} -2.75376i q^{58} +9.12948i q^{59} +12.5713i q^{61} -2.78965i q^{62} +22.4642i q^{63} +8.46571 q^{64} -0.709729i q^{66} +7.35469i q^{67} -0.489417 q^{68} +9.27717i q^{69} +15.2343 q^{71} -14.0004 q^{72} +0.622606i q^{73} +(-4.07040 + 7.24038i) q^{74} +1.07330i q^{76} +0.870623i q^{77} -16.1776i q^{78} -0.662906i q^{79} -0.350591 q^{81} -1.40732 q^{82} +9.75304i q^{83} +1.76904 q^{84} -5.53372 q^{86} +5.63270 q^{87} -0.542599 q^{88} -6.06313i q^{89} +19.8450i q^{91} +0.449633 q^{92} +5.70612 q^{93} +3.80078i q^{94} +2.13515i q^{96} -10.2018 q^{97} +20.3322 q^{98} +0.893470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 18 q^{4} + 6 q^{8} - 22 q^{9} + 2 q^{11} + 20 q^{13} + 30 q^{16} + 12 q^{17} - 26 q^{18} - 6 q^{21} - 28 q^{22} - 16 q^{23} - 12 q^{26} + 14 q^{32} - 4 q^{34} - 22 q^{36} - 14 q^{37} - 10 q^{41}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36551 −0.965564 −0.482782 0.875741i \(-0.660374\pi\)
−0.482782 + 0.875741i \(0.660374\pi\)
\(3\) 2.79310i 1.61260i −0.591508 0.806299i \(-0.701467\pi\)
0.591508 0.806299i \(-0.298533\pi\)
\(4\) −0.135372 −0.0676862
\(5\) 0 0
\(6\) 3.81402i 1.55707i
\(7\) 4.67865i 1.76836i −0.467144 0.884181i \(-0.654717\pi\)
0.467144 0.884181i \(-0.345283\pi\)
\(8\) 2.91588 1.03092
\(9\) −4.80143 −1.60048
\(10\) 0 0
\(11\) −0.186084 −0.0561065 −0.0280533 0.999606i \(-0.508931\pi\)
−0.0280533 + 0.999606i \(0.508931\pi\)
\(12\) 0.378109i 0.109151i
\(13\) −4.24161 −1.17641 −0.588205 0.808712i \(-0.700165\pi\)
−0.588205 + 0.808712i \(0.700165\pi\)
\(14\) 6.38876i 1.70747i
\(15\) 0 0
\(16\) −3.71093 −0.927732
\(17\) 3.61534 0.876849 0.438424 0.898768i \(-0.355537\pi\)
0.438424 + 0.898768i \(0.355537\pi\)
\(18\) 6.55641 1.54536
\(19\) 7.92848i 1.81892i −0.415795 0.909459i \(-0.636497\pi\)
0.415795 0.909459i \(-0.363503\pi\)
\(20\) 0 0
\(21\) −13.0679 −2.85166
\(22\) 0.254101 0.0541744
\(23\) −3.32146 −0.692572 −0.346286 0.938129i \(-0.612557\pi\)
−0.346286 + 0.938129i \(0.612557\pi\)
\(24\) 8.14435i 1.66246i
\(25\) 0 0
\(26\) 5.79198 1.13590
\(27\) 5.03157i 0.968325i
\(28\) 0.633360i 0.119694i
\(29\) 2.01664i 0.374481i 0.982314 + 0.187241i \(0.0599544\pi\)
−0.982314 + 0.187241i \(0.940046\pi\)
\(30\) 0 0
\(31\) 2.04293i 0.366921i 0.983027 + 0.183461i \(0.0587300\pi\)
−0.983027 + 0.183461i \(0.941270\pi\)
\(32\) −0.764435 −0.135134
\(33\) 0.519752i 0.0904773i
\(34\) −4.93680 −0.846654
\(35\) 0 0
\(36\) 0.649980 0.108330
\(37\) 2.98085 5.30231i 0.490049 0.871695i
\(38\) 10.8264i 1.75628i
\(39\) 11.8473i 1.89708i
\(40\) 0 0
\(41\) 1.03061 0.160955 0.0804774 0.996756i \(-0.474356\pi\)
0.0804774 + 0.996756i \(0.474356\pi\)
\(42\) 17.8445 2.75346
\(43\) 4.05248 0.617998 0.308999 0.951062i \(-0.400006\pi\)
0.308999 + 0.951062i \(0.400006\pi\)
\(44\) 0.0251907 0.00379764
\(45\) 0 0
\(46\) 4.53549 0.668722
\(47\) 2.78341i 0.406002i −0.979179 0.203001i \(-0.934931\pi\)
0.979179 0.203001i \(-0.0650694\pi\)
\(48\) 10.3650i 1.49606i
\(49\) −14.8897 −2.12711
\(50\) 0 0
\(51\) 10.0980i 1.41401i
\(52\) 0.574197 0.0796268
\(53\) 7.67087i 1.05367i −0.849966 0.526837i \(-0.823378\pi\)
0.849966 0.526837i \(-0.176622\pi\)
\(54\) 6.87067i 0.934980i
\(55\) 0 0
\(56\) 13.6424i 1.82304i
\(57\) −22.1451 −2.93318
\(58\) 2.75376i 0.361586i
\(59\) 9.12948i 1.18856i 0.804259 + 0.594279i \(0.202562\pi\)
−0.804259 + 0.594279i \(0.797438\pi\)
\(60\) 0 0
\(61\) 12.5713i 1.60959i 0.593550 + 0.804797i \(0.297726\pi\)
−0.593550 + 0.804797i \(0.702274\pi\)
\(62\) 2.78965i 0.354286i
\(63\) 22.4642i 2.83022i
\(64\) 8.46571 1.05821
\(65\) 0 0
\(66\) 0.709729i 0.0873616i
\(67\) 7.35469i 0.898518i 0.893401 + 0.449259i \(0.148312\pi\)
−0.893401 + 0.449259i \(0.851688\pi\)
\(68\) −0.489417 −0.0593506
\(69\) 9.27717i 1.11684i
\(70\) 0 0
\(71\) 15.2343 1.80798 0.903992 0.427549i \(-0.140623\pi\)
0.903992 + 0.427549i \(0.140623\pi\)
\(72\) −14.0004 −1.64996
\(73\) 0.622606i 0.0728705i 0.999336 + 0.0364352i \(0.0116003\pi\)
−0.999336 + 0.0364352i \(0.988400\pi\)
\(74\) −4.07040 + 7.24038i −0.473174 + 0.841677i
\(75\) 0 0
\(76\) 1.07330i 0.123116i
\(77\) 0.870623i 0.0992167i
\(78\) 16.1776i 1.83175i
\(79\) 0.662906i 0.0745828i −0.999304 0.0372914i \(-0.988127\pi\)
0.999304 0.0372914i \(-0.0118730\pi\)
\(80\) 0 0
\(81\) −0.350591 −0.0389546
\(82\) −1.40732 −0.155412
\(83\) 9.75304i 1.07054i 0.844683 + 0.535268i \(0.179789\pi\)
−0.844683 + 0.535268i \(0.820211\pi\)
\(84\) 1.76904 0.193018
\(85\) 0 0
\(86\) −5.53372 −0.596717
\(87\) 5.63270 0.603888
\(88\) −0.542599 −0.0578413
\(89\) 6.06313i 0.642691i −0.946962 0.321345i \(-0.895865\pi\)
0.946962 0.321345i \(-0.104135\pi\)
\(90\) 0 0
\(91\) 19.8450i 2.08032i
\(92\) 0.449633 0.0468775
\(93\) 5.70612 0.591697
\(94\) 3.80078i 0.392020i
\(95\) 0 0
\(96\) 2.13515i 0.217917i
\(97\) −10.2018 −1.03584 −0.517919 0.855430i \(-0.673293\pi\)
−0.517919 + 0.855430i \(0.673293\pi\)
\(98\) 20.3322 2.05386
\(99\) 0.893470 0.0897971
\(100\) 0 0
\(101\) 5.22165 0.519573 0.259787 0.965666i \(-0.416348\pi\)
0.259787 + 0.965666i \(0.416348\pi\)
\(102\) 13.7890i 1.36531i
\(103\) 13.4563 1.32589 0.662943 0.748670i \(-0.269307\pi\)
0.662943 + 0.748670i \(0.269307\pi\)
\(104\) −12.3680 −1.21278
\(105\) 0 0
\(106\) 10.4747i 1.01739i
\(107\) 3.61849i 0.349812i 0.984585 + 0.174906i \(0.0559622\pi\)
−0.984585 + 0.174906i \(0.944038\pi\)
\(108\) 0.681135i 0.0655423i
\(109\) 15.9453i 1.52728i 0.645642 + 0.763640i \(0.276590\pi\)
−0.645642 + 0.763640i \(0.723410\pi\)
\(110\) 0 0
\(111\) −14.8099 8.32583i −1.40569 0.790253i
\(112\) 17.3621i 1.64057i
\(113\) −7.28167 −0.685002 −0.342501 0.939517i \(-0.611274\pi\)
−0.342501 + 0.939517i \(0.611274\pi\)
\(114\) 30.2394 2.83218
\(115\) 0 0
\(116\) 0.272998i 0.0253472i
\(117\) 20.3658 1.88282
\(118\) 12.4664i 1.14763i
\(119\) 16.9149i 1.55059i
\(120\) 0 0
\(121\) −10.9654 −0.996852
\(122\) 17.1663i 1.55417i
\(123\) 2.87861i 0.259556i
\(124\) 0.276556i 0.0248355i
\(125\) 0 0
\(126\) 30.6751i 2.73276i
\(127\) 12.3627i 1.09701i −0.836148 0.548505i \(-0.815197\pi\)
0.836148 0.548505i \(-0.184803\pi\)
\(128\) −10.0312 −0.886638
\(129\) 11.3190i 0.996583i
\(130\) 0 0
\(131\) 7.80186i 0.681652i −0.940126 0.340826i \(-0.889293\pi\)
0.940126 0.340826i \(-0.110707\pi\)
\(132\) 0.0703601i 0.00612406i
\(133\) −37.0945 −3.21651
\(134\) 10.0429i 0.867577i
\(135\) 0 0
\(136\) 10.5419 0.903961
\(137\) 1.28562i 0.109838i 0.998491 + 0.0549188i \(0.0174900\pi\)
−0.998491 + 0.0549188i \(0.982510\pi\)
\(138\) 12.6681i 1.07838i
\(139\) −3.93652 −0.333891 −0.166946 0.985966i \(-0.553390\pi\)
−0.166946 + 0.985966i \(0.553390\pi\)
\(140\) 0 0
\(141\) −7.77434 −0.654718
\(142\) −20.8027 −1.74572
\(143\) 0.789297 0.0660043
\(144\) 17.8178 1.48481
\(145\) 0 0
\(146\) 0.850177i 0.0703611i
\(147\) 41.5886i 3.43017i
\(148\) −0.403525 + 0.717786i −0.0331696 + 0.0590017i
\(149\) 15.5509 1.27398 0.636988 0.770873i \(-0.280180\pi\)
0.636988 + 0.770873i \(0.280180\pi\)
\(150\) 0 0
\(151\) 15.0928 1.22824 0.614119 0.789213i \(-0.289511\pi\)
0.614119 + 0.789213i \(0.289511\pi\)
\(152\) 23.1185i 1.87516i
\(153\) −17.3588 −1.40337
\(154\) 1.18885i 0.0958000i
\(155\) 0 0
\(156\) 1.60379i 0.128406i
\(157\) 6.89821i 0.550537i −0.961367 0.275269i \(-0.911233\pi\)
0.961367 0.275269i \(-0.0887668\pi\)
\(158\) 0.905208i 0.0720144i
\(159\) −21.4255 −1.69915
\(160\) 0 0
\(161\) 15.5399i 1.22472i
\(162\) 0.478737 0.0376131
\(163\) −4.42444 −0.346549 −0.173275 0.984874i \(-0.555435\pi\)
−0.173275 + 0.984874i \(0.555435\pi\)
\(164\) −0.139517 −0.0108944
\(165\) 0 0
\(166\) 13.3179i 1.03367i
\(167\) −16.1383 −1.24882 −0.624411 0.781096i \(-0.714661\pi\)
−0.624411 + 0.781096i \(0.714661\pi\)
\(168\) −38.1046 −2.93983
\(169\) 4.99126 0.383943
\(170\) 0 0
\(171\) 38.0680i 2.91113i
\(172\) −0.548594 −0.0418299
\(173\) 23.7342i 1.80448i −0.431236 0.902239i \(-0.641922\pi\)
0.431236 0.902239i \(-0.358078\pi\)
\(174\) −7.69152 −0.583093
\(175\) 0 0
\(176\) 0.690545 0.0520518
\(177\) 25.4996 1.91667
\(178\) 8.27929i 0.620559i
\(179\) 7.66128i 0.572631i −0.958135 0.286315i \(-0.907570\pi\)
0.958135 0.286315i \(-0.0924305\pi\)
\(180\) 0 0
\(181\) −13.9590 −1.03756 −0.518781 0.854907i \(-0.673614\pi\)
−0.518781 + 0.854907i \(0.673614\pi\)
\(182\) 27.0986i 2.00868i
\(183\) 35.1130 2.59563
\(184\) −9.68497 −0.713985
\(185\) 0 0
\(186\) −7.79178 −0.571321
\(187\) −0.672758 −0.0491969
\(188\) 0.376796i 0.0274807i
\(189\) 23.5409 1.71235
\(190\) 0 0
\(191\) 20.7490i 1.50134i −0.660675 0.750672i \(-0.729730\pi\)
0.660675 0.750672i \(-0.270270\pi\)
\(192\) 23.6456i 1.70647i
\(193\) −9.18440 −0.661108 −0.330554 0.943787i \(-0.607236\pi\)
−0.330554 + 0.943787i \(0.607236\pi\)
\(194\) 13.9307 1.00017
\(195\) 0 0
\(196\) 2.01566 0.143976
\(197\) 8.62507i 0.614511i −0.951627 0.307255i \(-0.900589\pi\)
0.951627 0.307255i \(-0.0994106\pi\)
\(198\) −1.22004 −0.0867048
\(199\) 1.09459i 0.0775938i 0.999247 + 0.0387969i \(0.0123525\pi\)
−0.999247 + 0.0387969i \(0.987647\pi\)
\(200\) 0 0
\(201\) 20.5424 1.44895
\(202\) −7.13023 −0.501681
\(203\) 9.43517 0.662219
\(204\) 1.36699i 0.0957087i
\(205\) 0 0
\(206\) −18.3747 −1.28023
\(207\) 15.9477 1.10844
\(208\) 15.7403 1.09139
\(209\) 1.47536i 0.102053i
\(210\) 0 0
\(211\) 6.92566 0.476782 0.238391 0.971169i \(-0.423380\pi\)
0.238391 + 0.971169i \(0.423380\pi\)
\(212\) 1.03842i 0.0713192i
\(213\) 42.5511i 2.91555i
\(214\) 4.94109i 0.337766i
\(215\) 0 0
\(216\) 14.6714i 0.998265i
\(217\) 9.55815 0.648850
\(218\) 21.7735i 1.47469i
\(219\) 1.73900 0.117511
\(220\) 0 0
\(221\) −15.3349 −1.03153
\(222\) 20.2231 + 11.3690i 1.35729 + 0.763040i
\(223\) 5.75304i 0.385252i −0.981272 0.192626i \(-0.938300\pi\)
0.981272 0.192626i \(-0.0617004\pi\)
\(224\) 3.57652i 0.238967i
\(225\) 0 0
\(226\) 9.94322 0.661413
\(227\) −7.56947 −0.502404 −0.251202 0.967935i \(-0.580826\pi\)
−0.251202 + 0.967935i \(0.580826\pi\)
\(228\) 2.99783 0.198536
\(229\) 19.8975 1.31487 0.657433 0.753513i \(-0.271642\pi\)
0.657433 + 0.753513i \(0.271642\pi\)
\(230\) 0 0
\(231\) 2.43174 0.159997
\(232\) 5.88029i 0.386060i
\(233\) 17.7494i 1.16280i −0.813616 0.581402i \(-0.802504\pi\)
0.813616 0.581402i \(-0.197496\pi\)
\(234\) −27.8097 −1.81798
\(235\) 0 0
\(236\) 1.23588i 0.0804489i
\(237\) −1.85157 −0.120272
\(238\) 23.0975i 1.49719i
\(239\) 9.34261i 0.604323i −0.953257 0.302162i \(-0.902292\pi\)
0.953257 0.302162i \(-0.0977082\pi\)
\(240\) 0 0
\(241\) 13.0233i 0.838903i −0.907778 0.419452i \(-0.862222\pi\)
0.907778 0.419452i \(-0.137778\pi\)
\(242\) 14.9734 0.962524
\(243\) 16.0739i 1.03114i
\(244\) 1.70181i 0.108947i
\(245\) 0 0
\(246\) 3.93078i 0.250618i
\(247\) 33.6295i 2.13979i
\(248\) 5.95694i 0.378266i
\(249\) 27.2412 1.72634
\(250\) 0 0
\(251\) 7.49230i 0.472910i −0.971642 0.236455i \(-0.924014\pi\)
0.971642 0.236455i \(-0.0759856\pi\)
\(252\) 3.04103i 0.191567i
\(253\) 0.618071 0.0388578
\(254\) 16.8814i 1.05923i
\(255\) 0 0
\(256\) −3.23372 −0.202107
\(257\) −2.57062 −0.160351 −0.0801756 0.996781i \(-0.525548\pi\)
−0.0801756 + 0.996781i \(0.525548\pi\)
\(258\) 15.4563i 0.962265i
\(259\) −24.8076 13.9464i −1.54147 0.866585i
\(260\) 0 0
\(261\) 9.68277i 0.599348i
\(262\) 10.6535i 0.658178i
\(263\) 18.2800i 1.12719i 0.826050 + 0.563597i \(0.190583\pi\)
−0.826050 + 0.563597i \(0.809417\pi\)
\(264\) 1.51554i 0.0932748i
\(265\) 0 0
\(266\) 50.6531 3.10574
\(267\) −16.9350 −1.03640
\(268\) 0.995622i 0.0608173i
\(269\) 2.38487 0.145408 0.0727040 0.997354i \(-0.476837\pi\)
0.0727040 + 0.997354i \(0.476837\pi\)
\(270\) 0 0
\(271\) −8.55124 −0.519451 −0.259725 0.965683i \(-0.583632\pi\)
−0.259725 + 0.965683i \(0.583632\pi\)
\(272\) −13.4163 −0.813481
\(273\) 55.4291 3.35472
\(274\) 1.75553i 0.106055i
\(275\) 0 0
\(276\) 1.25587i 0.0755947i
\(277\) 19.1136 1.14843 0.574214 0.818705i \(-0.305308\pi\)
0.574214 + 0.818705i \(0.305308\pi\)
\(278\) 5.37537 0.322393
\(279\) 9.80898i 0.587248i
\(280\) 0 0
\(281\) 4.61050i 0.275039i −0.990499 0.137520i \(-0.956087\pi\)
0.990499 0.137520i \(-0.0439130\pi\)
\(282\) 10.6160 0.632172
\(283\) −11.3598 −0.675273 −0.337636 0.941277i \(-0.609627\pi\)
−0.337636 + 0.941277i \(0.609627\pi\)
\(284\) −2.06231 −0.122376
\(285\) 0 0
\(286\) −1.07780 −0.0637314
\(287\) 4.82188i 0.284627i
\(288\) 3.67038 0.216279
\(289\) −3.92931 −0.231136
\(290\) 0 0
\(291\) 28.4948i 1.67039i
\(292\) 0.0842836i 0.00493233i
\(293\) 14.0612i 0.821466i 0.911756 + 0.410733i \(0.134727\pi\)
−0.911756 + 0.410733i \(0.865273\pi\)
\(294\) 56.7898i 3.31205i
\(295\) 0 0
\(296\) 8.69182 15.4609i 0.505201 0.898647i
\(297\) 0.936295i 0.0543294i
\(298\) −21.2349 −1.23011
\(299\) 14.0883 0.814749
\(300\) 0 0
\(301\) 18.9601i 1.09284i
\(302\) −20.6095 −1.18594
\(303\) 14.5846i 0.837863i
\(304\) 29.4220i 1.68747i
\(305\) 0 0
\(306\) 23.7037 1.35505
\(307\) 9.03504i 0.515657i −0.966191 0.257829i \(-0.916993\pi\)
0.966191 0.257829i \(-0.0830070\pi\)
\(308\) 0.117858i 0.00671560i
\(309\) 37.5847i 2.13812i
\(310\) 0 0
\(311\) 28.0432i 1.59019i 0.606487 + 0.795093i \(0.292578\pi\)
−0.606487 + 0.795093i \(0.707422\pi\)
\(312\) 34.5452i 1.95574i
\(313\) −15.7374 −0.889528 −0.444764 0.895648i \(-0.646713\pi\)
−0.444764 + 0.895648i \(0.646713\pi\)
\(314\) 9.41961i 0.531579i
\(315\) 0 0
\(316\) 0.0897392i 0.00504822i
\(317\) 32.4811i 1.82432i 0.409836 + 0.912159i \(0.365586\pi\)
−0.409836 + 0.912159i \(0.634414\pi\)
\(318\) 29.2568 1.64064
\(319\) 0.375266i 0.0210108i
\(320\) 0 0
\(321\) 10.1068 0.564107
\(322\) 21.2200i 1.18254i
\(323\) 28.6641i 1.59492i
\(324\) 0.0474604 0.00263669
\(325\) 0 0
\(326\) 6.04164 0.334615
\(327\) 44.5368 2.46289
\(328\) 3.00515 0.165931
\(329\) −13.0226 −0.717958
\(330\) 0 0
\(331\) 23.2086i 1.27566i −0.770177 0.637830i \(-0.779832\pi\)
0.770177 0.637830i \(-0.220168\pi\)
\(332\) 1.32029i 0.0724605i
\(333\) −14.3124 + 25.4587i −0.784312 + 1.39513i
\(334\) 22.0371 1.20582
\(335\) 0 0
\(336\) 48.4942 2.64558
\(337\) 4.46538i 0.243245i −0.992576 0.121622i \(-0.961190\pi\)
0.992576 0.121622i \(-0.0388096\pi\)
\(338\) −6.81563 −0.370721
\(339\) 20.3385i 1.10463i
\(340\) 0 0
\(341\) 0.380157i 0.0205867i
\(342\) 51.9824i 2.81088i
\(343\) 36.9134i 1.99313i
\(344\) 11.8166 0.637106
\(345\) 0 0
\(346\) 32.4094i 1.74234i
\(347\) 9.36350 0.502659 0.251330 0.967902i \(-0.419132\pi\)
0.251330 + 0.967902i \(0.419132\pi\)
\(348\) −0.762511 −0.0408749
\(349\) −15.2015 −0.813720 −0.406860 0.913490i \(-0.633376\pi\)
−0.406860 + 0.913490i \(0.633376\pi\)
\(350\) 0 0
\(351\) 21.3419i 1.13915i
\(352\) 0.142249 0.00758192
\(353\) 4.76686 0.253714 0.126857 0.991921i \(-0.459511\pi\)
0.126857 + 0.991921i \(0.459511\pi\)
\(354\) −34.8200 −1.85066
\(355\) 0 0
\(356\) 0.820781i 0.0435013i
\(357\) −47.2451 −2.50048
\(358\) 10.4616i 0.552911i
\(359\) −4.76777 −0.251633 −0.125817 0.992054i \(-0.540155\pi\)
−0.125817 + 0.992054i \(0.540155\pi\)
\(360\) 0 0
\(361\) −43.8607 −2.30846
\(362\) 19.0612 1.00183
\(363\) 30.6274i 1.60752i
\(364\) 2.68647i 0.140809i
\(365\) 0 0
\(366\) −47.9473 −2.50625
\(367\) 13.5255i 0.706027i −0.935618 0.353014i \(-0.885157\pi\)
0.935618 0.353014i \(-0.114843\pi\)
\(368\) 12.3257 0.642521
\(369\) −4.94842 −0.257604
\(370\) 0 0
\(371\) −35.8893 −1.86328
\(372\) −0.772450 −0.0400497
\(373\) 17.6980i 0.916366i 0.888858 + 0.458183i \(0.151500\pi\)
−0.888858 + 0.458183i \(0.848500\pi\)
\(374\) 0.918660 0.0475028
\(375\) 0 0
\(376\) 8.11608i 0.418555i
\(377\) 8.55382i 0.440544i
\(378\) −32.1455 −1.65338
\(379\) −10.1646 −0.522123 −0.261061 0.965322i \(-0.584073\pi\)
−0.261061 + 0.965322i \(0.584073\pi\)
\(380\) 0 0
\(381\) −34.5302 −1.76904
\(382\) 28.3330i 1.44964i
\(383\) −36.9494 −1.88802 −0.944012 0.329911i \(-0.892981\pi\)
−0.944012 + 0.329911i \(0.892981\pi\)
\(384\) 28.0181i 1.42979i
\(385\) 0 0
\(386\) 12.5414 0.638342
\(387\) −19.4577 −0.989090
\(388\) 1.38105 0.0701120
\(389\) 24.8802i 1.26148i −0.775995 0.630739i \(-0.782752\pi\)
0.775995 0.630739i \(-0.217248\pi\)
\(390\) 0 0
\(391\) −12.0082 −0.607281
\(392\) −43.4167 −2.19288
\(393\) −21.7914 −1.09923
\(394\) 11.7776i 0.593349i
\(395\) 0 0
\(396\) −0.120951 −0.00607802
\(397\) 3.14936i 0.158062i −0.996872 0.0790308i \(-0.974817\pi\)
0.996872 0.0790308i \(-0.0251826\pi\)
\(398\) 1.49468i 0.0749218i
\(399\) 103.609i 5.18693i
\(400\) 0 0
\(401\) 37.0988i 1.85263i −0.376756 0.926313i \(-0.622960\pi\)
0.376756 0.926313i \(-0.377040\pi\)
\(402\) −28.0509 −1.39905
\(403\) 8.66531i 0.431650i
\(404\) −0.706867 −0.0351679
\(405\) 0 0
\(406\) −12.8839 −0.639415
\(407\) −0.554690 + 0.986677i −0.0274950 + 0.0489077i
\(408\) 29.4446i 1.45773i
\(409\) 16.6487i 0.823226i 0.911359 + 0.411613i \(0.135034\pi\)
−0.911359 + 0.411613i \(0.864966\pi\)
\(410\) 0 0
\(411\) 3.59086 0.177124
\(412\) −1.82161 −0.0897441
\(413\) 42.7136 2.10180
\(414\) −21.7768 −1.07027
\(415\) 0 0
\(416\) 3.24244 0.158974
\(417\) 10.9951i 0.538433i
\(418\) 2.01463i 0.0985388i
\(419\) 8.08323 0.394892 0.197446 0.980314i \(-0.436735\pi\)
0.197446 + 0.980314i \(0.436735\pi\)
\(420\) 0 0
\(421\) 14.4462i 0.704067i 0.935987 + 0.352034i \(0.114510\pi\)
−0.935987 + 0.352034i \(0.885490\pi\)
\(422\) −9.45708 −0.460363
\(423\) 13.3643i 0.649795i
\(424\) 22.3673i 1.08625i
\(425\) 0 0
\(426\) 58.1041i 2.81515i
\(427\) 58.8169 2.84635
\(428\) 0.489843i 0.0236775i
\(429\) 2.20459i 0.106438i
\(430\) 0 0
\(431\) 13.8283i 0.666086i −0.942912 0.333043i \(-0.891925\pi\)
0.942912 0.333043i \(-0.108075\pi\)
\(432\) 18.6718i 0.898347i
\(433\) 18.0931i 0.869497i −0.900552 0.434749i \(-0.856837\pi\)
0.900552 0.434749i \(-0.143163\pi\)
\(434\) −13.0518 −0.626506
\(435\) 0 0
\(436\) 2.15855i 0.103376i
\(437\) 26.3341i 1.25973i
\(438\) −2.37463 −0.113464
\(439\) 0.179590i 0.00857135i −0.999991 0.00428567i \(-0.998636\pi\)
0.999991 0.00428567i \(-0.00136418\pi\)
\(440\) 0 0
\(441\) 71.4920 3.40438
\(442\) 20.9400 0.996013
\(443\) 3.43515i 0.163209i −0.996665 0.0816045i \(-0.973996\pi\)
0.996665 0.0816045i \(-0.0260044\pi\)
\(444\) 2.00485 + 1.12709i 0.0951461 + 0.0534892i
\(445\) 0 0
\(446\) 7.85586i 0.371986i
\(447\) 43.4352i 2.05441i
\(448\) 39.6081i 1.87130i
\(449\) 26.3383i 1.24298i 0.783422 + 0.621490i \(0.213472\pi\)
−0.783422 + 0.621490i \(0.786528\pi\)
\(450\) 0 0
\(451\) −0.191781 −0.00903062
\(452\) 0.985737 0.0463652
\(453\) 42.1559i 1.98066i
\(454\) 10.3362 0.485103
\(455\) 0 0
\(456\) −64.5723 −3.02388
\(457\) −9.74641 −0.455918 −0.227959 0.973671i \(-0.573205\pi\)
−0.227959 + 0.973671i \(0.573205\pi\)
\(458\) −27.1704 −1.26959
\(459\) 18.1908i 0.849075i
\(460\) 0 0
\(461\) 17.7513i 0.826763i −0.910558 0.413381i \(-0.864348\pi\)
0.910558 0.413381i \(-0.135652\pi\)
\(462\) −3.32057 −0.154487
\(463\) 32.0881 1.49126 0.745629 0.666361i \(-0.232149\pi\)
0.745629 + 0.666361i \(0.232149\pi\)
\(464\) 7.48362i 0.347419i
\(465\) 0 0
\(466\) 24.2371i 1.12276i
\(467\) −28.3944 −1.31393 −0.656967 0.753919i \(-0.728161\pi\)
−0.656967 + 0.753919i \(0.728161\pi\)
\(468\) −2.75696 −0.127441
\(469\) 34.4100 1.58891
\(470\) 0 0
\(471\) −19.2674 −0.887796
\(472\) 26.6205i 1.22531i
\(473\) −0.754103 −0.0346737
\(474\) 2.52834 0.116130
\(475\) 0 0
\(476\) 2.28981i 0.104953i
\(477\) 36.8311i 1.68638i
\(478\) 12.7575i 0.583513i
\(479\) 1.49825i 0.0684567i 0.999414 + 0.0342283i \(0.0108973\pi\)
−0.999414 + 0.0342283i \(0.989103\pi\)
\(480\) 0 0
\(481\) −12.6436 + 22.4903i −0.576500 + 1.02547i
\(482\) 17.7835i 0.810015i
\(483\) 43.4046 1.97498
\(484\) 1.48441 0.0674731
\(485\) 0 0
\(486\) 21.9492i 0.995635i
\(487\) −31.5505 −1.42969 −0.714844 0.699284i \(-0.753502\pi\)
−0.714844 + 0.699284i \(0.753502\pi\)
\(488\) 36.6565i 1.65936i
\(489\) 12.3579i 0.558845i
\(490\) 0 0
\(491\) 16.9549 0.765166 0.382583 0.923921i \(-0.375035\pi\)
0.382583 + 0.923921i \(0.375035\pi\)
\(492\) 0.389684i 0.0175683i
\(493\) 7.29086i 0.328364i
\(494\) 45.9215i 2.06611i
\(495\) 0 0
\(496\) 7.58117i 0.340405i
\(497\) 71.2761i 3.19717i
\(498\) −37.1983 −1.66690
\(499\) 15.1962i 0.680274i −0.940376 0.340137i \(-0.889527\pi\)
0.940376 0.340137i \(-0.110473\pi\)
\(500\) 0 0
\(501\) 45.0761i 2.01385i
\(502\) 10.2308i 0.456625i
\(503\) −2.02764 −0.0904081 −0.0452040 0.998978i \(-0.514394\pi\)
−0.0452040 + 0.998978i \(0.514394\pi\)
\(504\) 65.5029i 2.91773i
\(505\) 0 0
\(506\) −0.843984 −0.0375197
\(507\) 13.9411i 0.619146i
\(508\) 1.67356i 0.0742524i
\(509\) 4.66055 0.206575 0.103288 0.994652i \(-0.467064\pi\)
0.103288 + 0.994652i \(0.467064\pi\)
\(510\) 0 0
\(511\) 2.91295 0.128861
\(512\) 24.4780 1.08179
\(513\) 39.8927 1.76130
\(514\) 3.51022 0.154829
\(515\) 0 0
\(516\) 1.53228i 0.0674549i
\(517\) 0.517948i 0.0227793i
\(518\) 33.8752 + 19.0440i 1.48839 + 0.836744i
\(519\) −66.2921 −2.90990
\(520\) 0 0
\(521\) 23.5400 1.03130 0.515652 0.856798i \(-0.327550\pi\)
0.515652 + 0.856798i \(0.327550\pi\)
\(522\) 13.2219i 0.578709i
\(523\) −11.4942 −0.502607 −0.251303 0.967908i \(-0.580859\pi\)
−0.251303 + 0.967908i \(0.580859\pi\)
\(524\) 1.05616i 0.0461384i
\(525\) 0 0
\(526\) 24.9616i 1.08838i
\(527\) 7.38589i 0.321734i
\(528\) 1.92876i 0.0839387i
\(529\) −11.9679 −0.520345
\(530\) 0 0
\(531\) 43.8345i 1.90226i
\(532\) 5.02158 0.217713
\(533\) −4.37146 −0.189349
\(534\) 23.1249 1.00071
\(535\) 0 0
\(536\) 21.4454i 0.926300i
\(537\) −21.3987 −0.923423
\(538\) −3.25657 −0.140401
\(539\) 2.77075 0.119345
\(540\) 0 0
\(541\) 27.6299i 1.18790i 0.804500 + 0.593952i \(0.202433\pi\)
−0.804500 + 0.593952i \(0.797567\pi\)
\(542\) 11.6768 0.501563
\(543\) 38.9888i 1.67317i
\(544\) −2.76369 −0.118492
\(545\) 0 0
\(546\) −75.6892 −3.23920
\(547\) −32.6357 −1.39540 −0.697700 0.716390i \(-0.745793\pi\)
−0.697700 + 0.716390i \(0.745793\pi\)
\(548\) 0.174037i 0.00743449i
\(549\) 60.3603i 2.57612i
\(550\) 0 0
\(551\) 15.9889 0.681151
\(552\) 27.0511i 1.15137i
\(553\) −3.10150 −0.131889
\(554\) −26.0999 −1.10888
\(555\) 0 0
\(556\) 0.532896 0.0225998
\(557\) 23.9676 1.01554 0.507771 0.861492i \(-0.330470\pi\)
0.507771 + 0.861492i \(0.330470\pi\)
\(558\) 13.3943i 0.567026i
\(559\) −17.1891 −0.727020
\(560\) 0 0
\(561\) 1.87908i 0.0793349i
\(562\) 6.29570i 0.265568i
\(563\) −15.7977 −0.665792 −0.332896 0.942964i \(-0.608026\pi\)
−0.332896 + 0.942964i \(0.608026\pi\)
\(564\) 1.05243 0.0443153
\(565\) 0 0
\(566\) 15.5120 0.652019
\(567\) 1.64029i 0.0688858i
\(568\) 44.4215 1.86389
\(569\) 24.2188i 1.01530i −0.861562 0.507652i \(-0.830514\pi\)
0.861562 0.507652i \(-0.169486\pi\)
\(570\) 0 0
\(571\) 24.0429 1.00617 0.503083 0.864238i \(-0.332199\pi\)
0.503083 + 0.864238i \(0.332199\pi\)
\(572\) −0.106849 −0.00446758
\(573\) −57.9540 −2.42106
\(574\) 6.58434i 0.274825i
\(575\) 0 0
\(576\) −40.6475 −1.69364
\(577\) −23.8305 −0.992076 −0.496038 0.868301i \(-0.665212\pi\)
−0.496038 + 0.868301i \(0.665212\pi\)
\(578\) 5.36553 0.223176
\(579\) 25.6530i 1.06610i
\(580\) 0 0
\(581\) 45.6310 1.89309
\(582\) 38.9100i 1.61287i
\(583\) 1.42743i 0.0591180i
\(584\) 1.81544i 0.0751236i
\(585\) 0 0
\(586\) 19.2008i 0.793178i
\(587\) 7.16402 0.295691 0.147845 0.989010i \(-0.452766\pi\)
0.147845 + 0.989010i \(0.452766\pi\)
\(588\) 5.62995i 0.232175i
\(589\) 16.1973 0.667399
\(590\) 0 0
\(591\) −24.0907 −0.990959
\(592\) −11.0617 + 19.6765i −0.454635 + 0.808699i
\(593\) 33.0533i 1.35734i 0.734445 + 0.678668i \(0.237442\pi\)
−0.734445 + 0.678668i \(0.762558\pi\)
\(594\) 1.27852i 0.0524585i
\(595\) 0 0
\(596\) −2.10516 −0.0862306
\(597\) 3.05732 0.125128
\(598\) −19.2378 −0.786692
\(599\) 40.2670 1.64527 0.822633 0.568572i \(-0.192504\pi\)
0.822633 + 0.568572i \(0.192504\pi\)
\(600\) 0 0
\(601\) 6.28442 0.256347 0.128173 0.991752i \(-0.459089\pi\)
0.128173 + 0.991752i \(0.459089\pi\)
\(602\) 25.8903i 1.05521i
\(603\) 35.3130i 1.43806i
\(604\) −2.04315 −0.0831348
\(605\) 0 0
\(606\) 19.9155i 0.809010i
\(607\) 26.3428 1.06922 0.534611 0.845098i \(-0.320458\pi\)
0.534611 + 0.845098i \(0.320458\pi\)
\(608\) 6.06081i 0.245798i
\(609\) 26.3534i 1.06789i
\(610\) 0 0
\(611\) 11.8061i 0.477625i
\(612\) 2.34990 0.0949891
\(613\) 29.2189i 1.18014i −0.807352 0.590070i \(-0.799100\pi\)
0.807352 0.590070i \(-0.200900\pi\)
\(614\) 12.3375i 0.497900i
\(615\) 0 0
\(616\) 2.53863i 0.102284i
\(617\) 6.55954i 0.264077i −0.991245 0.132039i \(-0.957848\pi\)
0.991245 0.132039i \(-0.0421523\pi\)
\(618\) 51.3225i 2.06449i
\(619\) −11.6979 −0.470177 −0.235088 0.971974i \(-0.575538\pi\)
−0.235088 + 0.971974i \(0.575538\pi\)
\(620\) 0 0
\(621\) 16.7121i 0.670635i
\(622\) 38.2934i 1.53543i
\(623\) −28.3673 −1.13651
\(624\) 43.9643i 1.75998i
\(625\) 0 0
\(626\) 21.4896 0.858897
\(627\) 4.12084 0.164571
\(628\) 0.933828i 0.0372638i
\(629\) 10.7768 19.1697i 0.429699 0.764345i
\(630\) 0 0
\(631\) 7.02214i 0.279547i 0.990183 + 0.139774i \(0.0446375\pi\)
−0.990183 + 0.139774i \(0.955363\pi\)
\(632\) 1.93296i 0.0768888i
\(633\) 19.3441i 0.768858i
\(634\) 44.3533i 1.76150i
\(635\) 0 0
\(636\) 2.90042 0.115009
\(637\) 63.1565 2.50235
\(638\) 0.512430i 0.0202873i
\(639\) −73.1466 −2.89363
\(640\) 0 0
\(641\) 36.0787 1.42502 0.712511 0.701661i \(-0.247558\pi\)
0.712511 + 0.701661i \(0.247558\pi\)
\(642\) −13.8010 −0.544681
\(643\) 46.9144 1.85012 0.925062 0.379817i \(-0.124013\pi\)
0.925062 + 0.379817i \(0.124013\pi\)
\(644\) 2.10368i 0.0828965i
\(645\) 0 0
\(646\) 39.1413i 1.53999i
\(647\) −6.09043 −0.239439 −0.119720 0.992808i \(-0.538200\pi\)
−0.119720 + 0.992808i \(0.538200\pi\)
\(648\) −1.02228 −0.0401590
\(649\) 1.69885i 0.0666858i
\(650\) 0 0
\(651\) 26.6969i 1.04633i
\(652\) 0.598947 0.0234566
\(653\) 37.3874 1.46308 0.731540 0.681798i \(-0.238802\pi\)
0.731540 + 0.681798i \(0.238802\pi\)
\(654\) −60.8156 −2.37808
\(655\) 0 0
\(656\) −3.82454 −0.149323
\(657\) 2.98940i 0.116627i
\(658\) 17.7825 0.693234
\(659\) −6.06336 −0.236195 −0.118098 0.993002i \(-0.537680\pi\)
−0.118098 + 0.993002i \(0.537680\pi\)
\(660\) 0 0
\(661\) 1.09225i 0.0424835i 0.999774 + 0.0212418i \(0.00676197\pi\)
−0.999774 + 0.0212418i \(0.993238\pi\)
\(662\) 31.6917i 1.23173i
\(663\) 42.8319i 1.66345i
\(664\) 28.4387i 1.10364i
\(665\) 0 0
\(666\) 19.5437 34.7641i 0.757303 1.34708i
\(667\) 6.69820i 0.259355i
\(668\) 2.18469 0.0845280
\(669\) −16.0688 −0.621257
\(670\) 0 0
\(671\) 2.33933i 0.0903087i
\(672\) 9.98960 0.385357
\(673\) 10.6301i 0.409762i 0.978787 + 0.204881i \(0.0656807\pi\)
−0.978787 + 0.204881i \(0.934319\pi\)
\(674\) 6.09753i 0.234868i
\(675\) 0 0
\(676\) −0.675678 −0.0259876
\(677\) 15.3033i 0.588153i 0.955782 + 0.294076i \(0.0950120\pi\)
−0.955782 + 0.294076i \(0.904988\pi\)
\(678\) 27.7724i 1.06659i
\(679\) 47.7308i 1.83174i
\(680\) 0 0
\(681\) 21.1423i 0.810175i
\(682\) 0.519110i 0.0198777i
\(683\) 23.6010 0.903066 0.451533 0.892255i \(-0.350877\pi\)
0.451533 + 0.892255i \(0.350877\pi\)
\(684\) 5.15335i 0.197043i
\(685\) 0 0
\(686\) 50.4057i 1.92450i
\(687\) 55.5759i 2.12035i
\(688\) −15.0385 −0.573337
\(689\) 32.5368i 1.23955i
\(690\) 0 0
\(691\) −32.4523 −1.23454 −0.617271 0.786751i \(-0.711762\pi\)
−0.617271 + 0.786751i \(0.711762\pi\)
\(692\) 3.21296i 0.122138i
\(693\) 4.18023i 0.158794i
\(694\) −12.7860 −0.485350
\(695\) 0 0
\(696\) 16.4243 0.622560
\(697\) 3.72602 0.141133
\(698\) 20.7579 0.785699
\(699\) −49.5760 −1.87514
\(700\) 0 0
\(701\) 29.6756i 1.12083i 0.828211 + 0.560416i \(0.189359\pi\)
−0.828211 + 0.560416i \(0.810641\pi\)
\(702\) 29.1427i 1.09992i
\(703\) −42.0392 23.6336i −1.58554 0.891359i
\(704\) −1.57533 −0.0593727
\(705\) 0 0
\(706\) −6.50921 −0.244977
\(707\) 24.4302i 0.918794i
\(708\) −3.45194 −0.129732
\(709\) 2.33245i 0.0875969i 0.999040 + 0.0437985i \(0.0139459\pi\)
−0.999040 + 0.0437985i \(0.986054\pi\)
\(710\) 0 0
\(711\) 3.18289i 0.119368i
\(712\) 17.6794i 0.662562i
\(713\) 6.78550i 0.254119i
\(714\) 64.5138 2.41437
\(715\) 0 0
\(716\) 1.03713i 0.0387592i
\(717\) −26.0949 −0.974531
\(718\) 6.51045 0.242968
\(719\) 38.0117 1.41760 0.708799 0.705410i \(-0.249237\pi\)
0.708799 + 0.705410i \(0.249237\pi\)
\(720\) 0 0
\(721\) 62.9572i 2.34465i
\(722\) 59.8924 2.22897
\(723\) −36.3754 −1.35281
\(724\) 1.88966 0.0702286
\(725\) 0 0
\(726\) 41.8222i 1.55217i
\(727\) 11.8176 0.438289 0.219145 0.975692i \(-0.429673\pi\)
0.219145 + 0.975692i \(0.429673\pi\)
\(728\) 57.8656i 2.14464i
\(729\) 43.8444 1.62387
\(730\) 0 0
\(731\) 14.6511 0.541891
\(732\) −4.75333 −0.175688
\(733\) 26.8937i 0.993340i −0.867939 0.496670i \(-0.834556\pi\)
0.867939 0.496670i \(-0.165444\pi\)
\(734\) 18.4693i 0.681715i
\(735\) 0 0
\(736\) 2.53904 0.0935902
\(737\) 1.36859i 0.0504127i
\(738\) 6.75713 0.248733
\(739\) 19.0328 0.700134 0.350067 0.936725i \(-0.386159\pi\)
0.350067 + 0.936725i \(0.386159\pi\)
\(740\) 0 0
\(741\) 93.9307 3.45063
\(742\) 49.0073 1.79912
\(743\) 22.1010i 0.810806i −0.914138 0.405403i \(-0.867131\pi\)
0.914138 0.405403i \(-0.132869\pi\)
\(744\) 16.6383 0.609991
\(745\) 0 0
\(746\) 24.1668i 0.884810i
\(747\) 46.8285i 1.71337i
\(748\) 0.0910728 0.00332995
\(749\) 16.9296 0.618595
\(750\) 0 0
\(751\) −35.7157 −1.30328 −0.651641 0.758527i \(-0.725919\pi\)
−0.651641 + 0.758527i \(0.725919\pi\)
\(752\) 10.3290i 0.376661i
\(753\) −20.9268 −0.762614
\(754\) 11.6804i 0.425373i
\(755\) 0 0
\(756\) −3.18679 −0.115902
\(757\) 9.16811 0.333221 0.166610 0.986023i \(-0.446718\pi\)
0.166610 + 0.986023i \(0.446718\pi\)
\(758\) 13.8800 0.504143
\(759\) 1.72634i 0.0626620i
\(760\) 0 0
\(761\) −33.4346 −1.21200 −0.606001 0.795464i \(-0.707227\pi\)
−0.606001 + 0.795464i \(0.707227\pi\)
\(762\) 47.1515 1.70812
\(763\) 74.6023 2.70079
\(764\) 2.80884i 0.101620i
\(765\) 0 0
\(766\) 50.4549 1.82301
\(767\) 38.7237i 1.39823i
\(768\) 9.03210i 0.325918i
\(769\) 33.3999i 1.20443i −0.798333 0.602216i \(-0.794284\pi\)
0.798333 0.602216i \(-0.205716\pi\)
\(770\) 0 0
\(771\) 7.18002i 0.258582i
\(772\) 1.24331 0.0447479
\(773\) 33.6561i 1.21053i 0.796026 + 0.605263i \(0.206932\pi\)
−0.796026 + 0.605263i \(0.793068\pi\)
\(774\) 26.5698 0.955030
\(775\) 0 0
\(776\) −29.7473 −1.06787
\(777\) −38.9537 + 69.2903i −1.39745 + 2.48578i
\(778\) 33.9743i 1.21804i
\(779\) 8.17120i 0.292764i
\(780\) 0 0
\(781\) −2.83487 −0.101440
\(782\) 16.3974 0.586368
\(783\) −10.1469 −0.362620
\(784\) 55.2548 1.97339
\(785\) 0 0
\(786\) 29.7565 1.06138
\(787\) 1.05415i 0.0375764i 0.999823 + 0.0187882i \(0.00598083\pi\)
−0.999823 + 0.0187882i \(0.994019\pi\)
\(788\) 1.16760i 0.0415939i
\(789\) 51.0579 1.81771
\(790\) 0 0
\(791\) 34.0684i 1.21133i
\(792\) 2.60525 0.0925735
\(793\) 53.3227i 1.89354i
\(794\) 4.30049i 0.152619i
\(795\) 0 0
\(796\) 0.148178i 0.00525203i
\(797\) −26.3106 −0.931970 −0.465985 0.884793i \(-0.654300\pi\)
−0.465985 + 0.884793i \(0.654300\pi\)
\(798\) 141.479i 5.00832i
\(799\) 10.0630i 0.356002i
\(800\) 0 0
\(801\) 29.1117i 1.02861i
\(802\) 50.6589i 1.78883i
\(803\) 0.115857i 0.00408851i
\(804\) −2.78087 −0.0980739
\(805\) 0 0
\(806\) 11.8326i 0.416786i
\(807\) 6.66118i 0.234485i
\(808\) 15.2257 0.535638
\(809\) 15.9357i 0.560271i 0.959960 + 0.280136i \(0.0903794\pi\)
−0.959960 + 0.280136i \(0.909621\pi\)
\(810\) 0 0
\(811\) 14.8155 0.520242 0.260121 0.965576i \(-0.416238\pi\)
0.260121 + 0.965576i \(0.416238\pi\)
\(812\) −1.27726 −0.0448231
\(813\) 23.8845i 0.837665i
\(814\) 0.757437 1.34732i 0.0265481 0.0472236i
\(815\) 0 0
\(816\) 37.4730i 1.31182i
\(817\) 32.1300i 1.12409i
\(818\) 22.7340i 0.794877i
\(819\) 95.2843i 3.32950i
\(820\) 0 0
\(821\) −15.9564 −0.556882 −0.278441 0.960453i \(-0.589818\pi\)
−0.278441 + 0.960453i \(0.589818\pi\)
\(822\) −4.90337 −0.171025
\(823\) 10.3719i 0.361542i 0.983525 + 0.180771i \(0.0578592\pi\)
−0.983525 + 0.180771i \(0.942141\pi\)
\(824\) 39.2369 1.36688
\(825\) 0 0
\(826\) −58.3261 −2.02942
\(827\) −54.8138 −1.90606 −0.953032 0.302871i \(-0.902055\pi\)
−0.953032 + 0.302871i \(0.902055\pi\)
\(828\) −2.15888 −0.0750263
\(829\) 18.7538i 0.651347i −0.945482 0.325674i \(-0.894409\pi\)
0.945482 0.325674i \(-0.105591\pi\)
\(830\) 0 0
\(831\) 53.3864i 1.85195i
\(832\) −35.9082 −1.24489
\(833\) −53.8315 −1.86515
\(834\) 15.0140i 0.519891i
\(835\) 0 0
\(836\) 0.199724i 0.00690758i
\(837\) −10.2791 −0.355299
\(838\) −11.0378 −0.381293
\(839\) 27.0261 0.933043 0.466522 0.884510i \(-0.345507\pi\)
0.466522 + 0.884510i \(0.345507\pi\)
\(840\) 0 0
\(841\) 24.9331 0.859764
\(842\) 19.7266i 0.679822i
\(843\) −12.8776 −0.443528
\(844\) −0.937543 −0.0322716
\(845\) 0 0
\(846\) 18.2492i 0.627419i
\(847\) 51.3031i 1.76280i
\(848\) 28.4660i 0.977528i
\(849\) 31.7292i 1.08894i
\(850\) 0 0
\(851\) −9.90078 + 17.6114i −0.339394 + 0.603711i
\(852\) 5.76024i 0.197343i
\(853\) −32.8016 −1.12311 −0.561553 0.827441i \(-0.689796\pi\)
−0.561553 + 0.827441i \(0.689796\pi\)
\(854\) −80.3152 −2.74833
\(855\) 0 0
\(856\) 10.5511i 0.360628i
\(857\) 44.9972 1.53707 0.768537 0.639805i \(-0.220985\pi\)
0.768537 + 0.639805i \(0.220985\pi\)
\(858\) 3.01039i 0.102773i
\(859\) 38.4263i 1.31109i −0.755157 0.655543i \(-0.772440\pi\)
0.755157 0.655543i \(-0.227560\pi\)
\(860\) 0 0
\(861\) −13.4680 −0.458989
\(862\) 18.8827i 0.643149i
\(863\) 11.3362i 0.385890i −0.981210 0.192945i \(-0.938196\pi\)
0.981210 0.192945i \(-0.0618039\pi\)
\(864\) 3.84631i 0.130854i
\(865\) 0 0
\(866\) 24.7063i 0.839555i
\(867\) 10.9750i 0.372729i
\(868\) −1.29391 −0.0439182
\(869\) 0.123356i 0.00418458i
\(870\) 0 0
\(871\) 31.1957i 1.05703i
\(872\) 46.4945i 1.57450i
\(873\) 48.9833 1.65783
\(874\) 35.9596i 1.21635i
\(875\) 0 0
\(876\) −0.235413 −0.00795386
\(877\) 15.7379i 0.531433i −0.964051 0.265716i \(-0.914392\pi\)
0.964051 0.265716i \(-0.0856085\pi\)
\(878\) 0.245232i 0.00827618i
\(879\) 39.2745 1.32469
\(880\) 0 0
\(881\) −19.4357 −0.654804 −0.327402 0.944885i \(-0.606173\pi\)
−0.327402 + 0.944885i \(0.606173\pi\)
\(882\) −97.6233 −3.28715
\(883\) 20.2319 0.680858 0.340429 0.940270i \(-0.389428\pi\)
0.340429 + 0.940270i \(0.389428\pi\)
\(884\) 2.07592 0.0698207
\(885\) 0 0
\(886\) 4.69075i 0.157589i
\(887\) 10.5339i 0.353695i −0.984238 0.176847i \(-0.943410\pi\)
0.984238 0.176847i \(-0.0565899\pi\)
\(888\) −43.1839 24.2771i −1.44916 0.814687i
\(889\) −57.8406 −1.93991
\(890\) 0 0
\(891\) 0.0652395 0.00218561
\(892\) 0.778803i 0.0260762i
\(893\) −22.0682 −0.738483
\(894\) 59.3113i 1.98367i
\(895\) 0 0
\(896\) 46.9323i 1.56790i
\(897\) 39.3501i 1.31386i
\(898\) 35.9653i 1.20018i
\(899\) −4.11986 −0.137405
\(900\) 0 0
\(901\) 27.7328i 0.923914i
\(902\) 0.261880 0.00871964
\(903\) −52.9576 −1.76232
\(904\) −21.2325 −0.706182
\(905\) 0 0
\(906\) 57.5644i 1.91245i
\(907\) 9.71635 0.322626 0.161313 0.986903i \(-0.448427\pi\)
0.161313 + 0.986903i \(0.448427\pi\)
\(908\) 1.02470 0.0340058
\(909\) −25.0713 −0.831564
\(910\) 0 0
\(911\) 9.06312i 0.300274i 0.988665 + 0.150137i \(0.0479715\pi\)
−0.988665 + 0.150137i \(0.952028\pi\)
\(912\) 82.1787 2.72121
\(913\) 1.81489i 0.0600640i
\(914\) 13.3089 0.440218
\(915\) 0 0
\(916\) −2.69358 −0.0889983
\(917\) −36.5022 −1.20541
\(918\) 24.8398i 0.819836i
\(919\) 16.9169i 0.558036i −0.960286 0.279018i \(-0.909991\pi\)
0.960286 0.279018i \(-0.0900089\pi\)
\(920\) 0 0
\(921\) −25.2358 −0.831548
\(922\) 24.2397i 0.798292i
\(923\) −64.6182 −2.12693
\(924\) −0.329190 −0.0108296
\(925\) 0 0
\(926\) −43.8167 −1.43991
\(927\) −64.6093 −2.12205
\(928\) 1.54159i 0.0506053i
\(929\) 22.5222 0.738930 0.369465 0.929245i \(-0.379541\pi\)
0.369465 + 0.929245i \(0.379541\pi\)
\(930\) 0 0
\(931\) 118.053i 3.86903i
\(932\) 2.40278i 0.0787058i
\(933\) 78.3277 2.56433
\(934\) 38.7729 1.26869
\(935\) 0 0
\(936\) 59.3842 1.94103
\(937\) 30.8630i 1.00825i 0.863630 + 0.504126i \(0.168185\pi\)
−0.863630 + 0.504126i \(0.831815\pi\)
\(938\) −46.9873 −1.53419
\(939\) 43.9561i 1.43445i
\(940\) 0 0
\(941\) −54.0573 −1.76222 −0.881108 0.472914i \(-0.843202\pi\)
−0.881108 + 0.472914i \(0.843202\pi\)
\(942\) 26.3099 0.857224
\(943\) −3.42314 −0.111473
\(944\) 33.8789i 1.10266i
\(945\) 0 0
\(946\) 1.02974 0.0334797
\(947\) 53.5495 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(948\) 0.250651 0.00814076
\(949\) 2.64085i 0.0857256i
\(950\) 0 0
\(951\) 90.7230 2.94189
\(952\) 49.3218i 1.59853i
\(953\) 32.2122i 1.04346i −0.853112 0.521728i \(-0.825288\pi\)
0.853112 0.521728i \(-0.174712\pi\)
\(954\) 50.2934i 1.62831i
\(955\) 0 0
\(956\) 1.26473i 0.0409043i
\(957\) −1.04816 −0.0338821
\(958\) 2.04588i 0.0660993i
\(959\) 6.01495 0.194233
\(960\) 0 0
\(961\) 26.8264 0.865369
\(962\) 17.2650 30.7109i 0.556647 0.990158i
\(963\) 17.3739i 0.559866i
\(964\) 1.76299i 0.0567822i
\(965\) 0 0
\(966\) −59.2696 −1.90697
\(967\) −25.9095 −0.833193 −0.416597 0.909091i \(-0.636777\pi\)
−0.416597 + 0.909091i \(0.636777\pi\)
\(968\) −31.9737 −1.02767
\(969\) −80.0619 −2.57196
\(970\) 0 0
\(971\) 7.44649 0.238969 0.119485 0.992836i \(-0.461876\pi\)
0.119485 + 0.992836i \(0.461876\pi\)
\(972\) 2.17597i 0.0697942i
\(973\) 18.4176i 0.590441i
\(974\) 43.0826 1.38046
\(975\) 0 0
\(976\) 46.6513i 1.49327i
\(977\) 5.21832 0.166949 0.0834744 0.996510i \(-0.473398\pi\)
0.0834744 + 0.996510i \(0.473398\pi\)
\(978\) 16.8749i 0.539600i
\(979\) 1.12825i 0.0360591i
\(980\) 0 0
\(981\) 76.5600i 2.44437i
\(982\) −23.1522 −0.738816
\(983\) 30.9100i 0.985874i −0.870065 0.492937i \(-0.835923\pi\)
0.870065 0.492937i \(-0.164077\pi\)
\(984\) 8.39369i 0.267581i
\(985\) 0 0
\(986\) 9.95576i 0.317056i
\(987\) 36.3734i 1.15778i
\(988\) 4.55251i 0.144834i
\(989\) −13.4601 −0.428008
\(990\) 0 0
\(991\) 37.9145i 1.20439i −0.798348 0.602196i \(-0.794292\pi\)
0.798348 0.602196i \(-0.205708\pi\)
\(992\) 1.56169i 0.0495836i
\(993\) −64.8240 −2.05713
\(994\) 97.3285i 3.08707i
\(995\) 0 0
\(996\) −3.68771 −0.116850
\(997\) −43.7248 −1.38478 −0.692389 0.721525i \(-0.743442\pi\)
−0.692389 + 0.721525i \(0.743442\pi\)
\(998\) 20.7506i 0.656848i
\(999\) 26.6789 + 14.9984i 0.844084 + 0.474527i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.d.f.924.3 12
5.2 odd 4 925.2.c.c.776.4 12
5.3 odd 4 185.2.c.b.36.9 yes 12
5.4 even 2 925.2.d.e.924.10 12
15.8 even 4 1665.2.e.e.406.4 12
20.3 even 4 2960.2.p.h.961.3 12
37.36 even 2 925.2.d.e.924.9 12
185.43 even 4 6845.2.a.h.1.5 6
185.68 even 4 6845.2.a.i.1.2 6
185.73 odd 4 185.2.c.b.36.4 12
185.147 odd 4 925.2.c.c.776.9 12
185.184 even 2 inner 925.2.d.f.924.4 12
555.443 even 4 1665.2.e.e.406.9 12
740.443 even 4 2960.2.p.h.961.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.c.b.36.4 12 185.73 odd 4
185.2.c.b.36.9 yes 12 5.3 odd 4
925.2.c.c.776.4 12 5.2 odd 4
925.2.c.c.776.9 12 185.147 odd 4
925.2.d.e.924.9 12 37.36 even 2
925.2.d.e.924.10 12 5.4 even 2
925.2.d.f.924.3 12 1.1 even 1 trivial
925.2.d.f.924.4 12 185.184 even 2 inner
1665.2.e.e.406.4 12 15.8 even 4
1665.2.e.e.406.9 12 555.443 even 4
2960.2.p.h.961.3 12 20.3 even 4
2960.2.p.h.961.4 12 740.443 even 4
6845.2.a.h.1.5 6 185.43 even 4
6845.2.a.i.1.2 6 185.68 even 4