L(s) = 1 | − 1.36·2-s − 2.79i·3-s − 0.135·4-s + 3.81i·6-s − 4.67i·7-s + 2.91·8-s − 4.80·9-s − 0.186·11-s + 0.378i·12-s − 4.24·13-s + 6.38i·14-s − 3.71·16-s + 3.61·17-s + 6.55·18-s − 7.92i·19-s + ⋯ |
L(s) = 1 | − 0.965·2-s − 1.61i·3-s − 0.0676·4-s + 1.55i·6-s − 1.76i·7-s + 1.03·8-s − 1.60·9-s − 0.0561·11-s + 0.109i·12-s − 1.17·13-s + 1.70i·14-s − 0.927·16-s + 0.876·17-s + 1.54·18-s − 1.81i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 - 0.828i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.560 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.242081 + 0.456162i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.242081 + 0.456162i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (-2.98 + 5.30i)T \) |
good | 2 | \( 1 + 1.36T + 2T^{2} \) |
| 3 | \( 1 + 2.79iT - 3T^{2} \) |
| 7 | \( 1 + 4.67iT - 7T^{2} \) |
| 11 | \( 1 + 0.186T + 11T^{2} \) |
| 13 | \( 1 + 4.24T + 13T^{2} \) |
| 17 | \( 1 - 3.61T + 17T^{2} \) |
| 19 | \( 1 + 7.92iT - 19T^{2} \) |
| 23 | \( 1 + 3.32T + 23T^{2} \) |
| 29 | \( 1 - 2.01iT - 29T^{2} \) |
| 31 | \( 1 - 2.04iT - 31T^{2} \) |
| 41 | \( 1 - 1.03T + 41T^{2} \) |
| 43 | \( 1 - 4.05T + 43T^{2} \) |
| 47 | \( 1 + 2.78iT - 47T^{2} \) |
| 53 | \( 1 + 7.67iT - 53T^{2} \) |
| 59 | \( 1 - 9.12iT - 59T^{2} \) |
| 61 | \( 1 - 12.5iT - 61T^{2} \) |
| 67 | \( 1 - 7.35iT - 67T^{2} \) |
| 71 | \( 1 - 15.2T + 71T^{2} \) |
| 73 | \( 1 - 0.622iT - 73T^{2} \) |
| 79 | \( 1 + 0.662iT - 79T^{2} \) |
| 83 | \( 1 - 9.75iT - 83T^{2} \) |
| 89 | \( 1 + 6.06iT - 89T^{2} \) |
| 97 | \( 1 + 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.509221541416556036463554316984, −8.485754148473105013991303710191, −7.53909178940313152902696658323, −7.36538700522430386500875818372, −6.68442878543735760351702427130, −5.18711913685728908530046049149, −4.09090864170131512098075990427, −2.48759265347357708445538438860, −1.16166101905361229618224704848, −0.39134263138088370214151331239,
2.11782889813845657706558174891, 3.38692685325110031456814818793, 4.53281925782908034623272866431, 5.31009400770580291584891457593, 6.04408423367930018471793028644, 7.86862951966688605738349949146, 8.265214683858826241881874285035, 9.346561697751758947264638512130, 9.632122295360196303704872211132, 10.15864859053361517980049146309