Properties

Label 185.2.c.b.36.4
Level $185$
Weight $2$
Character 185.36
Analytic conductor $1.477$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(36,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.36"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 21x^{10} + 162x^{8} + 574x^{6} + 985x^{4} + 765x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 36.4
Root \(-1.36551i\) of defining polynomial
Character \(\chi\) \(=\) 185.36
Dual form 185.2.c.b.36.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.36551i q^{2} +2.79310 q^{3} +0.135372 q^{4} +1.00000i q^{5} -3.81402i q^{6} -4.67865 q^{7} -2.91588i q^{8} +4.80143 q^{9} +1.36551 q^{10} -0.186084 q^{11} +0.378109 q^{12} +4.24161i q^{13} +6.38876i q^{14} +2.79310i q^{15} -3.71093 q^{16} +3.61534i q^{17} -6.55641i q^{18} -7.92848i q^{19} +0.135372i q^{20} -13.0679 q^{21} +0.254101i q^{22} +3.32146i q^{23} -8.14435i q^{24} -1.00000 q^{25} +5.79198 q^{26} +5.03157 q^{27} -0.633360 q^{28} +2.01664i q^{29} +3.81402 q^{30} -2.04293i q^{31} -0.764435i q^{32} -0.519752 q^{33} +4.93680 q^{34} -4.67865i q^{35} +0.649980 q^{36} +(-5.30231 + 2.98085i) q^{37} -10.8264 q^{38} +11.8473i q^{39} +2.91588 q^{40} +1.03061 q^{41} +17.8445i q^{42} -4.05248i q^{43} -0.0251907 q^{44} +4.80143i q^{45} +4.53549 q^{46} -2.78341 q^{47} -10.3650 q^{48} +14.8897 q^{49} +1.36551i q^{50} +10.0980i q^{51} +0.574197i q^{52} +7.67087 q^{53} -6.87067i q^{54} -0.186084i q^{55} +13.6424i q^{56} -22.1451i q^{57} +2.75376 q^{58} +9.12948i q^{59} +0.378109i q^{60} -12.5713i q^{61} -2.78965 q^{62} -22.4642 q^{63} -8.46571 q^{64} -4.24161 q^{65} +0.709729i q^{66} +7.35469 q^{67} +0.489417i q^{68} +9.27717i q^{69} -6.38876 q^{70} +15.2343 q^{71} -14.0004i q^{72} -0.622606 q^{73} +(4.07040 + 7.24038i) q^{74} -2.79310 q^{75} -1.07330i q^{76} +0.870623 q^{77} +16.1776 q^{78} -0.662906i q^{79} -3.71093i q^{80} -0.350591 q^{81} -1.40732i q^{82} -9.75304 q^{83} -1.76904 q^{84} -3.61534 q^{85} -5.53372 q^{86} +5.63270i q^{87} +0.542599i q^{88} -6.06313i q^{89} +6.55641 q^{90} -19.8450i q^{91} +0.449633i q^{92} -5.70612i q^{93} +3.80078i q^{94} +7.92848 q^{95} -2.13515i q^{96} -10.2018i q^{97} -20.3322i q^{98} -0.893470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} - 18 q^{4} - 18 q^{7} + 22 q^{9} - 2 q^{10} + 2 q^{11} - 36 q^{12} + 30 q^{16} - 6 q^{21} - 12 q^{25} - 12 q^{26} + 26 q^{27} + 24 q^{28} - 12 q^{30} - 18 q^{33} + 4 q^{34} - 22 q^{36} + 10 q^{37}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36551i 0.965564i −0.875741 0.482782i \(-0.839626\pi\)
0.875741 0.482782i \(-0.160374\pi\)
\(3\) 2.79310 1.61260 0.806299 0.591508i \(-0.201467\pi\)
0.806299 + 0.591508i \(0.201467\pi\)
\(4\) 0.135372 0.0676862
\(5\) 1.00000i 0.447214i
\(6\) 3.81402i 1.55707i
\(7\) −4.67865 −1.76836 −0.884181 0.467144i \(-0.845283\pi\)
−0.884181 + 0.467144i \(0.845283\pi\)
\(8\) 2.91588i 1.03092i
\(9\) 4.80143 1.60048
\(10\) 1.36551 0.431813
\(11\) −0.186084 −0.0561065 −0.0280533 0.999606i \(-0.508931\pi\)
−0.0280533 + 0.999606i \(0.508931\pi\)
\(12\) 0.378109 0.109151
\(13\) 4.24161i 1.17641i 0.808712 + 0.588205i \(0.200165\pi\)
−0.808712 + 0.588205i \(0.799835\pi\)
\(14\) 6.38876i 1.70747i
\(15\) 2.79310i 0.721176i
\(16\) −3.71093 −0.927732
\(17\) 3.61534i 0.876849i 0.898768 + 0.438424i \(0.144463\pi\)
−0.898768 + 0.438424i \(0.855537\pi\)
\(18\) 6.55641i 1.54536i
\(19\) 7.92848i 1.81892i −0.415795 0.909459i \(-0.636497\pi\)
0.415795 0.909459i \(-0.363503\pi\)
\(20\) 0.135372i 0.0302702i
\(21\) −13.0679 −2.85166
\(22\) 0.254101i 0.0541744i
\(23\) 3.32146i 0.692572i 0.938129 + 0.346286i \(0.112557\pi\)
−0.938129 + 0.346286i \(0.887443\pi\)
\(24\) 8.14435i 1.66246i
\(25\) −1.00000 −0.200000
\(26\) 5.79198 1.13590
\(27\) 5.03157 0.968325
\(28\) −0.633360 −0.119694
\(29\) 2.01664i 0.374481i 0.982314 + 0.187241i \(0.0599544\pi\)
−0.982314 + 0.187241i \(0.940046\pi\)
\(30\) 3.81402 0.696342
\(31\) 2.04293i 0.366921i −0.983027 0.183461i \(-0.941270\pi\)
0.983027 0.183461i \(-0.0587300\pi\)
\(32\) 0.764435i 0.135134i
\(33\) −0.519752 −0.0904773
\(34\) 4.93680 0.846654
\(35\) 4.67865i 0.790836i
\(36\) 0.649980 0.108330
\(37\) −5.30231 + 2.98085i −0.871695 + 0.490049i
\(38\) −10.8264 −1.75628
\(39\) 11.8473i 1.89708i
\(40\) 2.91588 0.461041
\(41\) 1.03061 0.160955 0.0804774 0.996756i \(-0.474356\pi\)
0.0804774 + 0.996756i \(0.474356\pi\)
\(42\) 17.8445i 2.75346i
\(43\) 4.05248i 0.617998i −0.951062 0.308999i \(-0.900006\pi\)
0.951062 0.308999i \(-0.0999940\pi\)
\(44\) −0.0251907 −0.00379764
\(45\) 4.80143i 0.715754i
\(46\) 4.53549 0.668722
\(47\) −2.78341 −0.406002 −0.203001 0.979179i \(-0.565069\pi\)
−0.203001 + 0.979179i \(0.565069\pi\)
\(48\) −10.3650 −1.49606
\(49\) 14.8897 2.12711
\(50\) 1.36551i 0.193113i
\(51\) 10.0980i 1.41401i
\(52\) 0.574197i 0.0796268i
\(53\) 7.67087 1.05367 0.526837 0.849966i \(-0.323378\pi\)
0.526837 + 0.849966i \(0.323378\pi\)
\(54\) 6.87067i 0.934980i
\(55\) 0.186084i 0.0250916i
\(56\) 13.6424i 1.82304i
\(57\) 22.1451i 2.93318i
\(58\) 2.75376 0.361586
\(59\) 9.12948i 1.18856i 0.804259 + 0.594279i \(0.202562\pi\)
−0.804259 + 0.594279i \(0.797438\pi\)
\(60\) 0.378109i 0.0488137i
\(61\) 12.5713i 1.60959i −0.593550 0.804797i \(-0.702274\pi\)
0.593550 0.804797i \(-0.297726\pi\)
\(62\) −2.78965 −0.354286
\(63\) −22.4642 −2.83022
\(64\) −8.46571 −1.05821
\(65\) −4.24161 −0.526107
\(66\) 0.709729i 0.0873616i
\(67\) 7.35469 0.898518 0.449259 0.893401i \(-0.351688\pi\)
0.449259 + 0.893401i \(0.351688\pi\)
\(68\) 0.489417i 0.0593506i
\(69\) 9.27717i 1.11684i
\(70\) −6.38876 −0.763603
\(71\) 15.2343 1.80798 0.903992 0.427549i \(-0.140623\pi\)
0.903992 + 0.427549i \(0.140623\pi\)
\(72\) 14.0004i 1.64996i
\(73\) −0.622606 −0.0728705 −0.0364352 0.999336i \(-0.511600\pi\)
−0.0364352 + 0.999336i \(0.511600\pi\)
\(74\) 4.07040 + 7.24038i 0.473174 + 0.841677i
\(75\) −2.79310 −0.322520
\(76\) 1.07330i 0.123116i
\(77\) 0.870623 0.0992167
\(78\) 16.1776 1.83175
\(79\) 0.662906i 0.0745828i −0.999304 0.0372914i \(-0.988127\pi\)
0.999304 0.0372914i \(-0.0118730\pi\)
\(80\) 3.71093i 0.414895i
\(81\) −0.350591 −0.0389546
\(82\) 1.40732i 0.155412i
\(83\) −9.75304 −1.07054 −0.535268 0.844683i \(-0.679789\pi\)
−0.535268 + 0.844683i \(0.679789\pi\)
\(84\) −1.76904 −0.193018
\(85\) −3.61534 −0.392139
\(86\) −5.53372 −0.596717
\(87\) 5.63270i 0.603888i
\(88\) 0.542599i 0.0578413i
\(89\) 6.06313i 0.642691i −0.946962 0.321345i \(-0.895865\pi\)
0.946962 0.321345i \(-0.104135\pi\)
\(90\) 6.55641 0.691106
\(91\) 19.8450i 2.08032i
\(92\) 0.449633i 0.0468775i
\(93\) 5.70612i 0.591697i
\(94\) 3.80078i 0.392020i
\(95\) 7.92848 0.813444
\(96\) 2.13515i 0.217917i
\(97\) 10.2018i 1.03584i −0.855430 0.517919i \(-0.826707\pi\)
0.855430 0.517919i \(-0.173293\pi\)
\(98\) 20.3322i 2.05386i
\(99\) −0.893470 −0.0897971
\(100\) −0.135372 −0.0135372
\(101\) 5.22165 0.519573 0.259787 0.965666i \(-0.416348\pi\)
0.259787 + 0.965666i \(0.416348\pi\)
\(102\) 13.7890 1.36531
\(103\) 13.4563i 1.32589i −0.748670 0.662943i \(-0.769307\pi\)
0.748670 0.662943i \(-0.230693\pi\)
\(104\) 12.3680 1.21278
\(105\) 13.0679i 1.27530i
\(106\) 10.4747i 1.01739i
\(107\) 3.61849 0.349812 0.174906 0.984585i \(-0.444038\pi\)
0.174906 + 0.984585i \(0.444038\pi\)
\(108\) 0.681135 0.0655423
\(109\) 15.9453i 1.52728i 0.645642 + 0.763640i \(0.276590\pi\)
−0.645642 + 0.763640i \(0.723410\pi\)
\(110\) −0.254101 −0.0242275
\(111\) −14.8099 + 8.32583i −1.40569 + 0.790253i
\(112\) 17.3621 1.64057
\(113\) 7.28167i 0.685002i 0.939517 + 0.342501i \(0.111274\pi\)
−0.939517 + 0.342501i \(0.888726\pi\)
\(114\) −30.2394 −2.83218
\(115\) −3.32146 −0.309727
\(116\) 0.272998i 0.0253472i
\(117\) 20.3658i 1.88282i
\(118\) 12.4664 1.14763
\(119\) 16.9149i 1.55059i
\(120\) 8.14435 0.743474
\(121\) −10.9654 −0.996852
\(122\) −17.1663 −1.55417
\(123\) 2.87861 0.259556
\(124\) 0.276556i 0.0248355i
\(125\) 1.00000i 0.0894427i
\(126\) 30.6751i 2.73276i
\(127\) −12.3627 −1.09701 −0.548505 0.836148i \(-0.684803\pi\)
−0.548505 + 0.836148i \(0.684803\pi\)
\(128\) 10.0312i 0.886638i
\(129\) 11.3190i 0.996583i
\(130\) 5.79198i 0.507990i
\(131\) 7.80186i 0.681652i 0.940126 + 0.340826i \(0.110707\pi\)
−0.940126 + 0.340826i \(0.889293\pi\)
\(132\) −0.0703601 −0.00612406
\(133\) 37.0945i 3.21651i
\(134\) 10.0429i 0.867577i
\(135\) 5.03157i 0.433048i
\(136\) 10.5419 0.903961
\(137\) 1.28562 0.109838 0.0549188 0.998491i \(-0.482510\pi\)
0.0549188 + 0.998491i \(0.482510\pi\)
\(138\) 12.6681 1.07838
\(139\) 3.93652 0.333891 0.166946 0.985966i \(-0.446610\pi\)
0.166946 + 0.985966i \(0.446610\pi\)
\(140\) 0.633360i 0.0535287i
\(141\) −7.77434 −0.654718
\(142\) 20.8027i 1.74572i
\(143\) 0.789297i 0.0660043i
\(144\) −17.8178 −1.48481
\(145\) −2.01664 −0.167473
\(146\) 0.850177i 0.0703611i
\(147\) 41.5886 3.43017
\(148\) −0.717786 + 0.403525i −0.0590017 + 0.0331696i
\(149\) −15.5509 −1.27398 −0.636988 0.770873i \(-0.719820\pi\)
−0.636988 + 0.770873i \(0.719820\pi\)
\(150\) 3.81402i 0.311413i
\(151\) 15.0928 1.22824 0.614119 0.789213i \(-0.289511\pi\)
0.614119 + 0.789213i \(0.289511\pi\)
\(152\) −23.1185 −1.87516
\(153\) 17.3588i 1.40337i
\(154\) 1.18885i 0.0958000i
\(155\) 2.04293 0.164092
\(156\) 1.60379i 0.128406i
\(157\) −6.89821 −0.550537 −0.275269 0.961367i \(-0.588767\pi\)
−0.275269 + 0.961367i \(0.588767\pi\)
\(158\) −0.905208 −0.0720144
\(159\) 21.4255 1.69915
\(160\) 0.764435 0.0604339
\(161\) 15.5399i 1.22472i
\(162\) 0.478737i 0.0376131i
\(163\) 4.42444i 0.346549i 0.984874 + 0.173275i \(0.0554348\pi\)
−0.984874 + 0.173275i \(0.944565\pi\)
\(164\) 0.139517 0.0108944
\(165\) 0.519752i 0.0404627i
\(166\) 13.3179i 1.03367i
\(167\) 16.1383i 1.24882i −0.781096 0.624411i \(-0.785339\pi\)
0.781096 0.624411i \(-0.214661\pi\)
\(168\) 38.1046i 2.93983i
\(169\) −4.99126 −0.383943
\(170\) 4.93680i 0.378635i
\(171\) 38.0680i 2.91113i
\(172\) 0.548594i 0.0418299i
\(173\) 23.7342 1.80448 0.902239 0.431236i \(-0.141922\pi\)
0.902239 + 0.431236i \(0.141922\pi\)
\(174\) 7.69152 0.583093
\(175\) 4.67865 0.353673
\(176\) 0.690545 0.0520518
\(177\) 25.4996i 1.91667i
\(178\) −8.27929 −0.620559
\(179\) 7.66128i 0.572631i −0.958135 0.286315i \(-0.907570\pi\)
0.958135 0.286315i \(-0.0924305\pi\)
\(180\) 0.649980i 0.0484467i
\(181\) −13.9590 −1.03756 −0.518781 0.854907i \(-0.673614\pi\)
−0.518781 + 0.854907i \(0.673614\pi\)
\(182\) −27.0986 −2.00868
\(183\) 35.1130i 2.59563i
\(184\) 9.68497 0.713985
\(185\) −2.98085 5.30231i −0.219157 0.389834i
\(186\) −7.79178 −0.571321
\(187\) 0.672758i 0.0491969i
\(188\) −0.376796 −0.0274807
\(189\) −23.5409 −1.71235
\(190\) 10.8264i 0.785433i
\(191\) 20.7490i 1.50134i 0.660675 + 0.750672i \(0.270270\pi\)
−0.660675 + 0.750672i \(0.729730\pi\)
\(192\) −23.6456 −1.70647
\(193\) 9.18440i 0.661108i 0.943787 + 0.330554i \(0.107236\pi\)
−0.943787 + 0.330554i \(0.892764\pi\)
\(194\) −13.9307 −1.00017
\(195\) −11.8473 −0.848400
\(196\) 2.01566 0.143976
\(197\) −8.62507 −0.614511 −0.307255 0.951627i \(-0.599411\pi\)
−0.307255 + 0.951627i \(0.599411\pi\)
\(198\) 1.22004i 0.0867048i
\(199\) 1.09459i 0.0775938i 0.999247 + 0.0387969i \(0.0123525\pi\)
−0.999247 + 0.0387969i \(0.987647\pi\)
\(200\) 2.91588i 0.206184i
\(201\) 20.5424 1.44895
\(202\) 7.13023i 0.501681i
\(203\) 9.43517i 0.662219i
\(204\) 1.36699i 0.0957087i
\(205\) 1.03061i 0.0719812i
\(206\) −18.3747 −1.28023
\(207\) 15.9477i 1.10844i
\(208\) 15.7403i 1.09139i
\(209\) 1.47536i 0.102053i
\(210\) −17.8445 −1.23138
\(211\) 6.92566 0.476782 0.238391 0.971169i \(-0.423380\pi\)
0.238391 + 0.971169i \(0.423380\pi\)
\(212\) 1.03842 0.0713192
\(213\) 42.5511 2.91555
\(214\) 4.94109i 0.337766i
\(215\) 4.05248 0.276377
\(216\) 14.6714i 0.998265i
\(217\) 9.55815i 0.648850i
\(218\) 21.7735 1.47469
\(219\) −1.73900 −0.117511
\(220\) 0.0251907i 0.00169835i
\(221\) −15.3349 −1.03153
\(222\) 11.3690 + 20.2231i 0.763040 + 1.35729i
\(223\) 5.75304 0.385252 0.192626 0.981272i \(-0.438300\pi\)
0.192626 + 0.981272i \(0.438300\pi\)
\(224\) 3.57652i 0.238967i
\(225\) −4.80143 −0.320095
\(226\) 9.94322 0.661413
\(227\) 7.56947i 0.502404i −0.967935 0.251202i \(-0.919174\pi\)
0.967935 0.251202i \(-0.0808258\pi\)
\(228\) 2.99783i 0.198536i
\(229\) −19.8975 −1.31487 −0.657433 0.753513i \(-0.728358\pi\)
−0.657433 + 0.753513i \(0.728358\pi\)
\(230\) 4.53549i 0.299062i
\(231\) 2.43174 0.159997
\(232\) 5.88029 0.386060
\(233\) 17.7494 1.16280 0.581402 0.813616i \(-0.302504\pi\)
0.581402 + 0.813616i \(0.302504\pi\)
\(234\) 27.8097 1.81798
\(235\) 2.78341i 0.181569i
\(236\) 1.23588i 0.0804489i
\(237\) 1.85157i 0.120272i
\(238\) −23.0975 −1.49719
\(239\) 9.34261i 0.604323i −0.953257 0.302162i \(-0.902292\pi\)
0.953257 0.302162i \(-0.0977082\pi\)
\(240\) 10.3650i 0.669058i
\(241\) 13.0233i 0.838903i 0.907778 + 0.419452i \(0.137778\pi\)
−0.907778 + 0.419452i \(0.862222\pi\)
\(242\) 14.9734i 0.962524i
\(243\) −16.0739 −1.03114
\(244\) 1.70181i 0.108947i
\(245\) 14.8897i 0.951271i
\(246\) 3.93078i 0.250618i
\(247\) 33.6295 2.13979
\(248\) −5.95694 −0.378266
\(249\) −27.2412 −1.72634
\(250\) −1.36551 −0.0863627
\(251\) 7.49230i 0.472910i 0.971642 + 0.236455i \(0.0759856\pi\)
−0.971642 + 0.236455i \(0.924014\pi\)
\(252\) −3.04103 −0.191567
\(253\) 0.618071i 0.0388578i
\(254\) 16.8814i 1.05923i
\(255\) −10.0980 −0.632363
\(256\) −3.23372 −0.202107
\(257\) 2.57062i 0.160351i −0.996781 0.0801756i \(-0.974452\pi\)
0.996781 0.0801756i \(-0.0255481\pi\)
\(258\) −15.4563 −0.962265
\(259\) 24.8076 13.9464i 1.54147 0.866585i
\(260\) −0.574197 −0.0356102
\(261\) 9.68277i 0.599348i
\(262\) 10.6535 0.658178
\(263\) −18.2800 −1.12719 −0.563597 0.826050i \(-0.690583\pi\)
−0.563597 + 0.826050i \(0.690583\pi\)
\(264\) 1.51554i 0.0932748i
\(265\) 7.67087i 0.471218i
\(266\) 50.6531 3.10574
\(267\) 16.9350i 1.03640i
\(268\) 0.995622 0.0608173
\(269\) −2.38487 −0.145408 −0.0727040 0.997354i \(-0.523163\pi\)
−0.0727040 + 0.997354i \(0.523163\pi\)
\(270\) 6.87067 0.418136
\(271\) −8.55124 −0.519451 −0.259725 0.965683i \(-0.583632\pi\)
−0.259725 + 0.965683i \(0.583632\pi\)
\(272\) 13.4163i 0.813481i
\(273\) 55.4291i 3.35472i
\(274\) 1.75553i 0.106055i
\(275\) 0.186084 0.0112213
\(276\) 1.25587i 0.0755947i
\(277\) 19.1136i 1.14843i 0.818705 + 0.574214i \(0.194692\pi\)
−0.818705 + 0.574214i \(0.805308\pi\)
\(278\) 5.37537i 0.322393i
\(279\) 9.80898i 0.587248i
\(280\) −13.6424 −0.815288
\(281\) 4.61050i 0.275039i 0.990499 + 0.137520i \(0.0439130\pi\)
−0.990499 + 0.137520i \(0.956087\pi\)
\(282\) 10.6160i 0.632172i
\(283\) 11.3598i 0.675273i 0.941277 + 0.337636i \(0.109627\pi\)
−0.941277 + 0.337636i \(0.890373\pi\)
\(284\) 2.06231 0.122376
\(285\) 22.1451 1.31176
\(286\) −1.07780 −0.0637314
\(287\) −4.82188 −0.284627
\(288\) 3.67038i 0.216279i
\(289\) 3.92931 0.231136
\(290\) 2.75376i 0.161706i
\(291\) 28.4948i 1.67039i
\(292\) −0.0842836 −0.00493233
\(293\) −14.0612 −0.821466 −0.410733 0.911756i \(-0.634727\pi\)
−0.410733 + 0.911756i \(0.634727\pi\)
\(294\) 56.7898i 3.31205i
\(295\) −9.12948 −0.531539
\(296\) 8.69182 + 15.4609i 0.505201 + 0.898647i
\(297\) −0.936295 −0.0543294
\(298\) 21.2349i 1.23011i
\(299\) −14.0883 −0.814749
\(300\) −0.378109 −0.0218301
\(301\) 18.9601i 1.09284i
\(302\) 20.6095i 1.18594i
\(303\) 14.5846 0.837863
\(304\) 29.4220i 1.68747i
\(305\) 12.5713 0.719833
\(306\) 23.7037 1.35505
\(307\) −9.03504 −0.515657 −0.257829 0.966191i \(-0.583007\pi\)
−0.257829 + 0.966191i \(0.583007\pi\)
\(308\) 0.117858 0.00671560
\(309\) 37.5847i 2.13812i
\(310\) 2.78965i 0.158441i
\(311\) 28.0432i 1.59019i −0.606487 0.795093i \(-0.707422\pi\)
0.606487 0.795093i \(-0.292578\pi\)
\(312\) 34.5452 1.95574
\(313\) 15.7374i 0.889528i 0.895648 + 0.444764i \(0.146713\pi\)
−0.895648 + 0.444764i \(0.853287\pi\)
\(314\) 9.41961i 0.531579i
\(315\) 22.4642i 1.26571i
\(316\) 0.0897392i 0.00504822i
\(317\) 32.4811 1.82432 0.912159 0.409836i \(-0.134414\pi\)
0.912159 + 0.409836i \(0.134414\pi\)
\(318\) 29.2568i 1.64064i
\(319\) 0.375266i 0.0210108i
\(320\) 8.46571i 0.473247i
\(321\) 10.1068 0.564107
\(322\) −21.2200 −1.18254
\(323\) 28.6641 1.59492
\(324\) −0.0474604 −0.00263669
\(325\) 4.24161i 0.235282i
\(326\) 6.04164 0.334615
\(327\) 44.5368i 2.46289i
\(328\) 3.00515i 0.165931i
\(329\) 13.0226 0.717958
\(330\) −0.709729 −0.0390693
\(331\) 23.2086i 1.27566i 0.770177 + 0.637830i \(0.220168\pi\)
−0.770177 + 0.637830i \(0.779832\pi\)
\(332\) −1.32029 −0.0724605
\(333\) −25.4587 + 14.3124i −1.39513 + 0.784312i
\(334\) −22.0371 −1.20582
\(335\) 7.35469i 0.401830i
\(336\) 48.4942 2.64558
\(337\) −4.46538 −0.243245 −0.121622 0.992576i \(-0.538810\pi\)
−0.121622 + 0.992576i \(0.538810\pi\)
\(338\) 6.81563i 0.370721i
\(339\) 20.3385i 1.10463i
\(340\) −0.489417 −0.0265424
\(341\) 0.380157i 0.0205867i
\(342\) −51.9824 −2.81088
\(343\) −36.9134 −1.99313
\(344\) −11.8166 −0.637106
\(345\) −9.27717 −0.499466
\(346\) 32.4094i 1.74234i
\(347\) 9.36350i 0.502659i 0.967902 + 0.251330i \(0.0808678\pi\)
−0.967902 + 0.251330i \(0.919132\pi\)
\(348\) 0.762511i 0.0408749i
\(349\) 15.2015 0.813720 0.406860 0.913490i \(-0.366624\pi\)
0.406860 + 0.913490i \(0.366624\pi\)
\(350\) 6.38876i 0.341493i
\(351\) 21.3419i 1.13915i
\(352\) 0.142249i 0.00758192i
\(353\) 4.76686i 0.253714i −0.991921 0.126857i \(-0.959511\pi\)
0.991921 0.126857i \(-0.0404889\pi\)
\(354\) 34.8200 1.85066
\(355\) 15.2343i 0.808555i
\(356\) 0.820781i 0.0435013i
\(357\) 47.2451i 2.50048i
\(358\) −10.4616 −0.552911
\(359\) 4.76777 0.251633 0.125817 0.992054i \(-0.459845\pi\)
0.125817 + 0.992054i \(0.459845\pi\)
\(360\) 14.0004 0.737885
\(361\) −43.8607 −2.30846
\(362\) 19.0612i 1.00183i
\(363\) −30.6274 −1.60752
\(364\) 2.68647i 0.140809i
\(365\) 0.622606i 0.0325887i
\(366\) −47.9473 −2.50625
\(367\) −13.5255 −0.706027 −0.353014 0.935618i \(-0.614843\pi\)
−0.353014 + 0.935618i \(0.614843\pi\)
\(368\) 12.3257i 0.642521i
\(369\) 4.94842 0.257604
\(370\) −7.24038 + 4.07040i −0.376409 + 0.211610i
\(371\) −35.8893 −1.86328
\(372\) 0.772450i 0.0400497i
\(373\) −17.6980 −0.916366 −0.458183 0.888858i \(-0.651500\pi\)
−0.458183 + 0.888858i \(0.651500\pi\)
\(374\) −0.918660 −0.0475028
\(375\) 2.79310i 0.144235i
\(376\) 8.11608i 0.418555i
\(377\) −8.55382 −0.440544
\(378\) 32.1455i 1.65338i
\(379\) 10.1646 0.522123 0.261061 0.965322i \(-0.415927\pi\)
0.261061 + 0.965322i \(0.415927\pi\)
\(380\) 1.07330 0.0550590
\(381\) −34.5302 −1.76904
\(382\) 28.3330 1.44964
\(383\) 36.9494i 1.88802i 0.329911 + 0.944012i \(0.392981\pi\)
−0.329911 + 0.944012i \(0.607019\pi\)
\(384\) 28.0181i 1.42979i
\(385\) 0.870623i 0.0443710i
\(386\) 12.5414 0.638342
\(387\) 19.4577i 0.989090i
\(388\) 1.38105i 0.0701120i
\(389\) 24.8802i 1.26148i −0.775995 0.630739i \(-0.782752\pi\)
0.775995 0.630739i \(-0.217248\pi\)
\(390\) 16.1776i 0.819184i
\(391\) −12.0082 −0.607281
\(392\) 43.4167i 2.19288i
\(393\) 21.7914i 1.09923i
\(394\) 11.7776i 0.593349i
\(395\) 0.662906 0.0333544
\(396\) −0.120951 −0.00607802
\(397\) −3.14936 −0.158062 −0.0790308 0.996872i \(-0.525183\pi\)
−0.0790308 + 0.996872i \(0.525183\pi\)
\(398\) 1.49468 0.0749218
\(399\) 103.609i 5.18693i
\(400\) 3.71093 0.185546
\(401\) 37.0988i 1.85263i 0.376756 + 0.926313i \(0.377040\pi\)
−0.376756 + 0.926313i \(0.622960\pi\)
\(402\) 28.0509i 1.39905i
\(403\) 8.66531 0.431650
\(404\) 0.706867 0.0351679
\(405\) 0.350591i 0.0174210i
\(406\) −12.8839 −0.639415
\(407\) 0.986677 0.554690i 0.0489077 0.0274950i
\(408\) 29.4446 1.45773
\(409\) 16.6487i 0.823226i 0.911359 + 0.411613i \(0.135034\pi\)
−0.911359 + 0.411613i \(0.864966\pi\)
\(410\) 1.40732 0.0695025
\(411\) 3.59086 0.177124
\(412\) 1.82161i 0.0897441i
\(413\) 42.7136i 2.10180i
\(414\) 21.7768 1.07027
\(415\) 9.75304i 0.478758i
\(416\) 3.24244 0.158974
\(417\) 10.9951 0.538433
\(418\) 2.01463 0.0985388
\(419\) −8.08323 −0.394892 −0.197446 0.980314i \(-0.563265\pi\)
−0.197446 + 0.980314i \(0.563265\pi\)
\(420\) 1.76904i 0.0863203i
\(421\) 14.4462i 0.704067i −0.935987 0.352034i \(-0.885490\pi\)
0.935987 0.352034i \(-0.114510\pi\)
\(422\) 9.45708i 0.460363i
\(423\) −13.3643 −0.649795
\(424\) 22.3673i 1.08625i
\(425\) 3.61534i 0.175370i
\(426\) 58.1041i 2.81515i
\(427\) 58.8169i 2.84635i
\(428\) 0.489843 0.0236775
\(429\) 2.20459i 0.106438i
\(430\) 5.53372i 0.266860i
\(431\) 13.8283i 0.666086i 0.942912 + 0.333043i \(0.108075\pi\)
−0.942912 + 0.333043i \(0.891925\pi\)
\(432\) −18.6718 −0.898347
\(433\) 18.0931 0.869497 0.434749 0.900552i \(-0.356837\pi\)
0.434749 + 0.900552i \(0.356837\pi\)
\(434\) 13.0518 0.626506
\(435\) −5.63270 −0.270067
\(436\) 2.15855i 0.103376i
\(437\) 26.3341 1.25973
\(438\) 2.37463i 0.113464i
\(439\) 0.179590i 0.00857135i −0.999991 0.00428567i \(-0.998636\pi\)
0.999991 0.00428567i \(-0.00136418\pi\)
\(440\) −0.542599 −0.0258674
\(441\) 71.4920 3.40438
\(442\) 20.9400i 0.996013i
\(443\) 3.43515 0.163209 0.0816045 0.996665i \(-0.473996\pi\)
0.0816045 + 0.996665i \(0.473996\pi\)
\(444\) −2.00485 + 1.12709i −0.0951461 + 0.0534892i
\(445\) 6.06313 0.287420
\(446\) 7.85586i 0.371986i
\(447\) −43.4352 −2.05441
\(448\) 39.6081 1.87130
\(449\) 26.3383i 1.24298i 0.783422 + 0.621490i \(0.213472\pi\)
−0.783422 + 0.621490i \(0.786528\pi\)
\(450\) 6.55641i 0.309072i
\(451\) −0.191781 −0.00903062
\(452\) 0.985737i 0.0463652i
\(453\) 42.1559 1.98066
\(454\) −10.3362 −0.485103
\(455\) 19.8450 0.930348
\(456\) −64.5723 −3.02388
\(457\) 9.74641i 0.455918i −0.973671 0.227959i \(-0.926795\pi\)
0.973671 0.227959i \(-0.0732052\pi\)
\(458\) 27.1704i 1.26959i
\(459\) 18.1908i 0.849075i
\(460\) −0.449633 −0.0209643
\(461\) 17.7513i 0.826763i 0.910558 + 0.413381i \(0.135652\pi\)
−0.910558 + 0.413381i \(0.864348\pi\)
\(462\) 3.32057i 0.154487i
\(463\) 32.0881i 1.49126i −0.666361 0.745629i \(-0.732149\pi\)
0.666361 0.745629i \(-0.267851\pi\)
\(464\) 7.48362i 0.347419i
\(465\) 5.70612 0.264615
\(466\) 24.2371i 1.12276i
\(467\) 28.3944i 1.31393i −0.753919 0.656967i \(-0.771839\pi\)
0.753919 0.656967i \(-0.228161\pi\)
\(468\) 2.75696i 0.127441i
\(469\) −34.4100 −1.58891
\(470\) −3.80078 −0.175317
\(471\) −19.2674 −0.887796
\(472\) 26.6205 1.22531
\(473\) 0.754103i 0.0346737i
\(474\) −2.52834 −0.116130
\(475\) 7.92848i 0.363783i
\(476\) 2.28981i 0.104953i
\(477\) 36.8311 1.68638
\(478\) −12.7575 −0.583513
\(479\) 1.49825i 0.0684567i 0.999414 + 0.0342283i \(0.0108973\pi\)
−0.999414 + 0.0342283i \(0.989103\pi\)
\(480\) 2.13515 0.0974557
\(481\) −12.6436 22.4903i −0.576500 1.02547i
\(482\) 17.7835 0.810015
\(483\) 43.4046i 1.97498i
\(484\) −1.48441 −0.0674731
\(485\) 10.2018 0.463241
\(486\) 21.9492i 0.995635i
\(487\) 31.5505i 1.42969i −0.699284 0.714844i \(-0.746498\pi\)
0.699284 0.714844i \(-0.253502\pi\)
\(488\) −36.6565 −1.65936
\(489\) 12.3579i 0.558845i
\(490\) 20.3322 0.918513
\(491\) 16.9549 0.765166 0.382583 0.923921i \(-0.375035\pi\)
0.382583 + 0.923921i \(0.375035\pi\)
\(492\) 0.389684 0.0175683
\(493\) −7.29086 −0.328364
\(494\) 45.9215i 2.06611i
\(495\) 0.893470i 0.0401585i
\(496\) 7.58117i 0.340405i
\(497\) −71.2761 −3.19717
\(498\) 37.1983i 1.66690i
\(499\) 15.1962i 0.680274i −0.940376 0.340137i \(-0.889527\pi\)
0.940376 0.340137i \(-0.110473\pi\)
\(500\) 0.135372i 0.00605404i
\(501\) 45.0761i 2.01385i
\(502\) 10.2308 0.456625
\(503\) 2.02764i 0.0904081i 0.998978 + 0.0452040i \(0.0143938\pi\)
−0.998978 + 0.0452040i \(0.985606\pi\)
\(504\) 65.5029i 2.91773i
\(505\) 5.22165i 0.232360i
\(506\) −0.843984 −0.0375197
\(507\) −13.9411 −0.619146
\(508\) −1.67356 −0.0742524
\(509\) −4.66055 −0.206575 −0.103288 0.994652i \(-0.532936\pi\)
−0.103288 + 0.994652i \(0.532936\pi\)
\(510\) 13.7890i 0.610587i
\(511\) 2.91295 0.128861
\(512\) 24.4780i 1.08179i
\(513\) 39.8927i 1.76130i
\(514\) −3.51022 −0.154829
\(515\) 13.4563 0.592954
\(516\) 1.53228i 0.0674549i
\(517\) 0.517948 0.0227793
\(518\) −19.0440 33.8752i −0.836744 1.48839i
\(519\) 66.2921 2.90990
\(520\) 12.3680i 0.542374i
\(521\) 23.5400 1.03130 0.515652 0.856798i \(-0.327550\pi\)
0.515652 + 0.856798i \(0.327550\pi\)
\(522\) 13.2219 0.578709
\(523\) 11.4942i 0.502607i 0.967908 + 0.251303i \(0.0808592\pi\)
−0.967908 + 0.251303i \(0.919141\pi\)
\(524\) 1.05616i 0.0461384i
\(525\) 13.0679 0.570332
\(526\) 24.9616i 1.08838i
\(527\) 7.38589 0.321734
\(528\) 1.92876 0.0839387
\(529\) 11.9679 0.520345
\(530\) 10.4747 0.454991
\(531\) 43.8345i 1.90226i
\(532\) 5.02158i 0.217713i
\(533\) 4.37146i 0.189349i
\(534\) −23.1249 −1.00071
\(535\) 3.61849i 0.156441i
\(536\) 21.4454i 0.926300i
\(537\) 21.3987i 0.923423i
\(538\) 3.25657i 0.140401i
\(539\) −2.77075 −0.119345
\(540\) 0.681135i 0.0293114i
\(541\) 27.6299i 1.18790i −0.804500 0.593952i \(-0.797567\pi\)
0.804500 0.593952i \(-0.202433\pi\)
\(542\) 11.6768i 0.501563i
\(543\) −38.9888 −1.67317
\(544\) 2.76369 0.118492
\(545\) −15.9453 −0.683021
\(546\) −75.6892 −3.23920
\(547\) 32.6357i 1.39540i −0.716390 0.697700i \(-0.754207\pi\)
0.716390 0.697700i \(-0.245793\pi\)
\(548\) 0.174037 0.00743449
\(549\) 60.3603i 2.57612i
\(550\) 0.254101i 0.0108349i
\(551\) 15.9889 0.681151
\(552\) 27.0511 1.15137
\(553\) 3.10150i 0.131889i
\(554\) 26.0999 1.10888
\(555\) −8.32583 14.8099i −0.353412 0.628645i
\(556\) 0.532896 0.0225998
\(557\) 23.9676i 1.01554i 0.861492 + 0.507771i \(0.169530\pi\)
−0.861492 + 0.507771i \(0.830470\pi\)
\(558\) −13.3943 −0.567026
\(559\) 17.1891 0.727020
\(560\) 17.3621i 0.733684i
\(561\) 1.87908i 0.0793349i
\(562\) 6.29570 0.265568
\(563\) 15.7977i 0.665792i 0.942964 + 0.332896i \(0.108026\pi\)
−0.942964 + 0.332896i \(0.891974\pi\)
\(564\) −1.05243 −0.0443153
\(565\) −7.28167 −0.306342
\(566\) 15.5120 0.652019
\(567\) 1.64029 0.0688858
\(568\) 44.4215i 1.86389i
\(569\) 24.2188i 1.01530i −0.861562 0.507652i \(-0.830514\pi\)
0.861562 0.507652i \(-0.169486\pi\)
\(570\) 30.2394i 1.26659i
\(571\) 24.0429 1.00617 0.503083 0.864238i \(-0.332199\pi\)
0.503083 + 0.864238i \(0.332199\pi\)
\(572\) 0.106849i 0.00446758i
\(573\) 57.9540i 2.42106i
\(574\) 6.58434i 0.274825i
\(575\) 3.32146i 0.138514i
\(576\) −40.6475 −1.69364
\(577\) 23.8305i 0.992076i −0.868301 0.496038i \(-0.834788\pi\)
0.868301 0.496038i \(-0.165212\pi\)
\(578\) 5.36553i 0.223176i
\(579\) 25.6530i 1.06610i
\(580\) −0.272998 −0.0113356
\(581\) 45.6310 1.89309
\(582\) −38.9100 −1.61287
\(583\) −1.42743 −0.0591180
\(584\) 1.81544i 0.0751236i
\(585\) −20.3658 −0.842021
\(586\) 19.2008i 0.793178i
\(587\) 7.16402i 0.295691i 0.989010 + 0.147845i \(0.0472338\pi\)
−0.989010 + 0.147845i \(0.952766\pi\)
\(588\) 5.62995 0.232175
\(589\) −16.1973 −0.667399
\(590\) 12.4664i 0.513235i
\(591\) −24.0907 −0.990959
\(592\) 19.6765 11.0617i 0.808699 0.454635i
\(593\) −33.0533 −1.35734 −0.678668 0.734445i \(-0.737442\pi\)
−0.678668 + 0.734445i \(0.737442\pi\)
\(594\) 1.27852i 0.0524585i
\(595\) 16.9149 0.693444
\(596\) −2.10516 −0.0862306
\(597\) 3.05732i 0.125128i
\(598\) 19.2378i 0.786692i
\(599\) −40.2670 −1.64527 −0.822633 0.568572i \(-0.807496\pi\)
−0.822633 + 0.568572i \(0.807496\pi\)
\(600\) 8.14435i 0.332492i
\(601\) 6.28442 0.256347 0.128173 0.991752i \(-0.459089\pi\)
0.128173 + 0.991752i \(0.459089\pi\)
\(602\) 25.8903 1.05521
\(603\) 35.3130 1.43806
\(604\) 2.04315 0.0831348
\(605\) 10.9654i 0.445806i
\(606\) 19.9155i 0.809010i
\(607\) 26.3428i 1.06922i 0.845098 + 0.534611i \(0.179542\pi\)
−0.845098 + 0.534611i \(0.820458\pi\)
\(608\) −6.06081 −0.245798
\(609\) 26.3534i 1.06789i
\(610\) 17.1663i 0.695044i
\(611\) 11.8061i 0.477625i
\(612\) 2.34990i 0.0949891i
\(613\) 29.2189 1.18014 0.590070 0.807352i \(-0.299100\pi\)
0.590070 + 0.807352i \(0.299100\pi\)
\(614\) 12.3375i 0.497900i
\(615\) 2.87861i 0.116077i
\(616\) 2.53863i 0.102284i
\(617\) −6.55954 −0.264077 −0.132039 0.991245i \(-0.542152\pi\)
−0.132039 + 0.991245i \(0.542152\pi\)
\(618\) −51.3225 −2.06449
\(619\) 11.6979 0.470177 0.235088 0.971974i \(-0.424462\pi\)
0.235088 + 0.971974i \(0.424462\pi\)
\(620\) 0.276556 0.0111068
\(621\) 16.7121i 0.670635i
\(622\) −38.2934 −1.53543
\(623\) 28.3673i 1.13651i
\(624\) 43.9643i 1.75998i
\(625\) 1.00000 0.0400000
\(626\) 21.4896 0.858897
\(627\) 4.12084i 0.164571i
\(628\) −0.933828 −0.0372638
\(629\) −10.7768 19.1697i −0.429699 0.764345i
\(630\) −30.6751 −1.22213
\(631\) 7.02214i 0.279547i −0.990183 0.139774i \(-0.955363\pi\)
0.990183 0.139774i \(-0.0446375\pi\)
\(632\) −1.93296 −0.0768888
\(633\) 19.3441 0.768858
\(634\) 44.3533i 1.76150i
\(635\) 12.3627i 0.490597i
\(636\) 2.90042 0.115009
\(637\) 63.1565i 2.50235i
\(638\) −0.512430 −0.0202873
\(639\) 73.1466 2.89363
\(640\) −10.0312 −0.396517
\(641\) 36.0787 1.42502 0.712511 0.701661i \(-0.247558\pi\)
0.712511 + 0.701661i \(0.247558\pi\)
\(642\) 13.8010i 0.544681i
\(643\) 46.9144i 1.85012i −0.379817 0.925062i \(-0.624013\pi\)
0.379817 0.925062i \(-0.375987\pi\)
\(644\) 2.10368i 0.0828965i
\(645\) 11.3190 0.445685
\(646\) 39.1413i 1.53999i
\(647\) 6.09043i 0.239439i −0.992808 0.119720i \(-0.961800\pi\)
0.992808 0.119720i \(-0.0381996\pi\)
\(648\) 1.02228i 0.0401590i
\(649\) 1.69885i 0.0666858i
\(650\) −5.79198 −0.227180
\(651\) 26.6969i 1.04633i
\(652\) 0.598947i 0.0234566i
\(653\) 37.3874i 1.46308i −0.681798 0.731540i \(-0.738802\pi\)
0.681798 0.731540i \(-0.261198\pi\)
\(654\) 60.8156 2.37808
\(655\) −7.80186 −0.304844
\(656\) −3.82454 −0.149323
\(657\) −2.98940 −0.116627
\(658\) 17.7825i 0.693234i
\(659\) 6.06336 0.236195 0.118098 0.993002i \(-0.462320\pi\)
0.118098 + 0.993002i \(0.462320\pi\)
\(660\) 0.0703601i 0.00273876i
\(661\) 1.09225i 0.0424835i −0.999774 0.0212418i \(-0.993238\pi\)
0.999774 0.0212418i \(-0.00676197\pi\)
\(662\) 31.6917 1.23173
\(663\) −42.8319 −1.66345
\(664\) 28.4387i 1.10364i
\(665\) −37.0945 −1.43846
\(666\) 19.5437 + 34.7641i 0.757303 + 1.34708i
\(667\) −6.69820 −0.259355
\(668\) 2.18469i 0.0845280i
\(669\) 16.0688 0.621257
\(670\) 10.0429 0.387992
\(671\) 2.33933i 0.0903087i
\(672\) 9.98960i 0.385357i
\(673\) −10.6301 −0.409762 −0.204881 0.978787i \(-0.565681\pi\)
−0.204881 + 0.978787i \(0.565681\pi\)
\(674\) 6.09753i 0.234868i
\(675\) −5.03157 −0.193665
\(676\) −0.675678 −0.0259876
\(677\) 15.3033 0.588153 0.294076 0.955782i \(-0.404988\pi\)
0.294076 + 0.955782i \(0.404988\pi\)
\(678\) 27.7724 1.06659
\(679\) 47.7308i 1.83174i
\(680\) 10.5419i 0.404263i
\(681\) 21.1423i 0.810175i
\(682\) 0.519110 0.0198777
\(683\) 23.6010i 0.903066i −0.892255 0.451533i \(-0.850877\pi\)
0.892255 0.451533i \(-0.149123\pi\)
\(684\) 5.15335i 0.197043i
\(685\) 1.28562i 0.0491209i
\(686\) 50.4057i 1.92450i
\(687\) −55.5759 −2.12035
\(688\) 15.0385i 0.573337i
\(689\) 32.5368i 1.23955i
\(690\) 12.6681i 0.482266i
\(691\) −32.4523 −1.23454 −0.617271 0.786751i \(-0.711762\pi\)
−0.617271 + 0.786751i \(0.711762\pi\)
\(692\) 3.21296 0.122138
\(693\) 4.18023 0.158794
\(694\) 12.7860 0.485350
\(695\) 3.93652i 0.149321i
\(696\) 16.4243 0.622560
\(697\) 3.72602i 0.141133i
\(698\) 20.7579i 0.785699i
\(699\) 49.5760 1.87514
\(700\) 0.633360 0.0239387
\(701\) 29.6756i 1.12083i −0.828211 0.560416i \(-0.810641\pi\)
0.828211 0.560416i \(-0.189359\pi\)
\(702\) 29.1427 1.09992
\(703\) 23.6336 + 42.0392i 0.891359 + 1.58554i
\(704\) 1.57533 0.0593727
\(705\) 7.77434i 0.292799i
\(706\) −6.50921 −0.244977
\(707\) −24.4302 −0.918794
\(708\) 3.45194i 0.129732i
\(709\) 2.33245i 0.0875969i 0.999040 + 0.0437985i \(0.0139459\pi\)
−0.999040 + 0.0437985i \(0.986054\pi\)
\(710\) 20.8027 0.780712
\(711\) 3.18289i 0.119368i
\(712\) −17.6794 −0.662562
\(713\) 6.78550 0.254119
\(714\) −64.5138 −2.41437
\(715\) 0.789297 0.0295180
\(716\) 1.03713i 0.0387592i
\(717\) 26.0949i 0.974531i
\(718\) 6.51045i 0.242968i
\(719\) −38.0117 −1.41760 −0.708799 0.705410i \(-0.750763\pi\)
−0.708799 + 0.705410i \(0.750763\pi\)
\(720\) 17.8178i 0.664028i
\(721\) 62.9572i 2.34465i
\(722\) 59.8924i 2.22897i
\(723\) 36.3754i 1.35281i
\(724\) −1.88966 −0.0702286
\(725\) 2.01664i 0.0748963i
\(726\) 41.8222i 1.55217i
\(727\) 11.8176i 0.438289i 0.975692 + 0.219145i \(0.0703267\pi\)
−0.975692 + 0.219145i \(0.929673\pi\)
\(728\) −57.8656 −2.14464
\(729\) −43.8444 −1.62387
\(730\) −0.850177 −0.0314665
\(731\) 14.6511 0.541891
\(732\) 4.75333i 0.175688i
\(733\) 26.8937 0.993340 0.496670 0.867939i \(-0.334556\pi\)
0.496670 + 0.867939i \(0.334556\pi\)
\(734\) 18.4693i 0.681715i
\(735\) 41.5886i 1.53402i
\(736\) 2.53904 0.0935902
\(737\) −1.36859 −0.0504127
\(738\) 6.75713i 0.248733i
\(739\) −19.0328 −0.700134 −0.350067 0.936725i \(-0.613841\pi\)
−0.350067 + 0.936725i \(0.613841\pi\)
\(740\) −0.403525 0.717786i −0.0148339 0.0263864i
\(741\) 93.9307 3.45063
\(742\) 49.0073i 1.79912i
\(743\) 22.1010 0.810806 0.405403 0.914138i \(-0.367131\pi\)
0.405403 + 0.914138i \(0.367131\pi\)
\(744\) −16.6383 −0.609991
\(745\) 15.5509i 0.569740i
\(746\) 24.1668i 0.884810i
\(747\) −46.8285 −1.71337
\(748\) 0.0910728i 0.00332995i
\(749\) −16.9296 −0.618595
\(750\) −3.81402 −0.139268
\(751\) −35.7157 −1.30328 −0.651641 0.758527i \(-0.725919\pi\)
−0.651641 + 0.758527i \(0.725919\pi\)
\(752\) 10.3290 0.376661
\(753\) 20.9268i 0.762614i
\(754\) 11.6804i 0.425373i
\(755\) 15.0928i 0.549285i
\(756\) −3.18679 −0.115902
\(757\) 9.16811i 0.333221i 0.986023 + 0.166610i \(0.0532822\pi\)
−0.986023 + 0.166610i \(0.946718\pi\)
\(758\) 13.8800i 0.504143i
\(759\) 1.72634i 0.0626620i
\(760\) 23.1185i 0.838596i
\(761\) −33.4346 −1.21200 −0.606001 0.795464i \(-0.707227\pi\)
−0.606001 + 0.795464i \(0.707227\pi\)
\(762\) 47.1515i 1.70812i
\(763\) 74.6023i 2.70079i
\(764\) 2.80884i 0.101620i
\(765\) −17.3588 −0.627608
\(766\) 50.4549 1.82301
\(767\) −38.7237 −1.39823
\(768\) −9.03210 −0.325918
\(769\) 33.3999i 1.20443i −0.798333 0.602216i \(-0.794284\pi\)
0.798333 0.602216i \(-0.205716\pi\)
\(770\) 1.18885 0.0428431
\(771\) 7.18002i 0.258582i
\(772\) 1.24331i 0.0447479i
\(773\) −33.6561 −1.21053 −0.605263 0.796026i \(-0.706932\pi\)
−0.605263 + 0.796026i \(0.706932\pi\)
\(774\) −26.5698 −0.955030
\(775\) 2.04293i 0.0733842i
\(776\) −29.7473 −1.06787
\(777\) 69.2903 38.9537i 2.48578 1.39745i
\(778\) −33.9743 −1.21804
\(779\) 8.17120i 0.292764i
\(780\) −1.60379 −0.0574249
\(781\) −2.83487 −0.101440
\(782\) 16.3974i 0.586368i
\(783\) 10.1469i 0.362620i
\(784\) −55.2548 −1.97339
\(785\) 6.89821i 0.246208i
\(786\) 29.7565 1.06138
\(787\) 1.05415 0.0375764 0.0187882 0.999823i \(-0.494019\pi\)
0.0187882 + 0.999823i \(0.494019\pi\)
\(788\) −1.16760 −0.0415939
\(789\) −51.0579 −1.81771
\(790\) 0.905208i 0.0322058i
\(791\) 34.0684i 1.21133i
\(792\) 2.60525i 0.0925735i
\(793\) 53.3227 1.89354
\(794\) 4.30049i 0.152619i
\(795\) 21.4255i 0.759885i
\(796\) 0.148178i 0.00525203i
\(797\) 26.3106i 0.931970i −0.884793 0.465985i \(-0.845700\pi\)
0.884793 0.465985i \(-0.154300\pi\)
\(798\) 141.479 5.00832
\(799\) 10.0630i 0.356002i
\(800\) 0.764435i 0.0270269i
\(801\) 29.1117i 1.02861i
\(802\) 50.6589 1.78883
\(803\) 0.115857 0.00408851
\(804\) 2.78087 0.0980739
\(805\) 15.5399 0.547710
\(806\) 11.8326i 0.416786i
\(807\) −6.66118 −0.234485
\(808\) 15.2257i 0.535638i
\(809\) 15.9357i 0.560271i 0.959960 + 0.280136i \(0.0903794\pi\)
−0.959960 + 0.280136i \(0.909621\pi\)
\(810\) −0.478737 −0.0168211
\(811\) 14.8155 0.520242 0.260121 0.965576i \(-0.416238\pi\)
0.260121 + 0.965576i \(0.416238\pi\)
\(812\) 1.27726i 0.0448231i
\(813\) −23.8845 −0.837665
\(814\) −0.757437 1.34732i −0.0265481 0.0472236i
\(815\) −4.42444 −0.154981
\(816\) 37.4730i 1.31182i
\(817\) −32.1300 −1.12409
\(818\) 22.7340 0.794877
\(819\) 95.2843i 3.32950i
\(820\) 0.139517i 0.00487213i
\(821\) −15.9564 −0.556882 −0.278441 0.960453i \(-0.589818\pi\)
−0.278441 + 0.960453i \(0.589818\pi\)
\(822\) 4.90337i 0.171025i
\(823\) −10.3719 −0.361542 −0.180771 0.983525i \(-0.557859\pi\)
−0.180771 + 0.983525i \(0.557859\pi\)
\(824\) −39.2369 −1.36688
\(825\) 0.519752 0.0180955
\(826\) −58.3261 −2.02942
\(827\) 54.8138i 1.90606i −0.302871 0.953032i \(-0.597945\pi\)
0.302871 0.953032i \(-0.402055\pi\)
\(828\) 2.15888i 0.0750263i
\(829\) 18.7538i 0.651347i −0.945482 0.325674i \(-0.894409\pi\)
0.945482 0.325674i \(-0.105591\pi\)
\(830\) −13.3179 −0.462271
\(831\) 53.3864i 1.85195i
\(832\) 35.9082i 1.24489i
\(833\) 53.8315i 1.86515i
\(834\) 15.0140i 0.519891i
\(835\) 16.1383 0.558490
\(836\) 0.199724i 0.00690758i
\(837\) 10.2791i 0.355299i
\(838\) 11.0378i 0.381293i
\(839\) −27.0261 −0.933043 −0.466522 0.884510i \(-0.654493\pi\)
−0.466522 + 0.884510i \(0.654493\pi\)
\(840\) −38.1046 −1.31473
\(841\) 24.9331 0.859764
\(842\) −19.7266 −0.679822
\(843\) 12.8776i 0.443528i
\(844\) 0.937543 0.0322716
\(845\) 4.99126i 0.171704i
\(846\) 18.2492i 0.627419i
\(847\) 51.3031 1.76280
\(848\) −28.4660 −0.977528
\(849\) 31.7292i 1.08894i
\(850\) −4.93680 −0.169331
\(851\) −9.90078 17.6114i −0.339394 0.603711i
\(852\) 5.76024 0.197343
\(853\) 32.8016i 1.12311i 0.827441 + 0.561553i \(0.189796\pi\)
−0.827441 + 0.561553i \(0.810204\pi\)
\(854\) 80.3152 2.74833
\(855\) 38.0680 1.30190
\(856\) 10.5511i 0.360628i
\(857\) 44.9972i 1.53707i 0.639805 + 0.768537i \(0.279015\pi\)
−0.639805 + 0.768537i \(0.720985\pi\)
\(858\) −3.01039 −0.102773
\(859\) 38.4263i 1.31109i −0.755157 0.655543i \(-0.772440\pi\)
0.755157 0.655543i \(-0.227560\pi\)
\(860\) 0.548594 0.0187069
\(861\) −13.4680 −0.458989
\(862\) 18.8827 0.643149
\(863\) 11.3362 0.385890 0.192945 0.981210i \(-0.438196\pi\)
0.192945 + 0.981210i \(0.438196\pi\)
\(864\) 3.84631i 0.130854i
\(865\) 23.7342i 0.806987i
\(866\) 24.7063i 0.839555i
\(867\) 10.9750 0.372729
\(868\) 1.29391i 0.0439182i
\(869\) 0.123356i 0.00418458i
\(870\) 7.69152i 0.260767i
\(871\) 31.1957i 1.05703i
\(872\) 46.4945 1.57450
\(873\) 48.9833i 1.65783i
\(874\) 35.9596i 1.21635i
\(875\) 4.67865i 0.158167i
\(876\) −0.235413 −0.00795386
\(877\) −15.7379 −0.531433 −0.265716 0.964051i \(-0.585608\pi\)
−0.265716 + 0.964051i \(0.585608\pi\)
\(878\) −0.245232 −0.00827618
\(879\) −39.2745 −1.32469
\(880\) 0.690545i 0.0232783i
\(881\) −19.4357 −0.654804 −0.327402 0.944885i \(-0.606173\pi\)
−0.327402 + 0.944885i \(0.606173\pi\)
\(882\) 97.6233i 3.28715i
\(883\) 20.2319i 0.680858i −0.940270 0.340429i \(-0.889428\pi\)
0.940270 0.340429i \(-0.110572\pi\)
\(884\) −2.07592 −0.0698207
\(885\) −25.4996 −0.857159
\(886\) 4.69075i 0.157589i
\(887\) −10.5339 −0.353695 −0.176847 0.984238i \(-0.556590\pi\)
−0.176847 + 0.984238i \(0.556590\pi\)
\(888\) 24.2771 + 43.1839i 0.814687 + 1.44916i
\(889\) 57.8406 1.93991
\(890\) 8.27929i 0.277522i
\(891\) 0.0652395 0.00218561
\(892\) 0.778803 0.0260762
\(893\) 22.0682i 0.738483i
\(894\) 59.3113i 1.98367i
\(895\) 7.66128 0.256088
\(896\) 46.9323i 1.56790i
\(897\) −39.3501 −1.31386
\(898\) 35.9653 1.20018
\(899\) 4.11986 0.137405
\(900\) −0.649980 −0.0216660
\(901\) 27.7328i 0.923914i
\(902\) 0.261880i 0.00871964i
\(903\) 52.9576i 1.76232i
\(904\) 21.2325 0.706182
\(905\) 13.9590i 0.464012i
\(906\) 57.5644i 1.91245i
\(907\) 9.71635i 0.322626i 0.986903 + 0.161313i \(0.0515729\pi\)
−0.986903 + 0.161313i \(0.948427\pi\)
\(908\) 1.02470i 0.0340058i
\(909\) 25.0713 0.831564
\(910\) 27.0986i 0.898311i
\(911\) 9.06312i 0.300274i −0.988665 0.150137i \(-0.952028\pi\)
0.988665 0.150137i \(-0.0479715\pi\)
\(912\) 82.1787i 2.72121i
\(913\) 1.81489 0.0600640
\(914\) −13.3089 −0.440218
\(915\) 35.1130 1.16080
\(916\) −2.69358 −0.0889983
\(917\) 36.5022i 1.20541i
\(918\) 24.8398 0.819836
\(919\) 16.9169i 0.558036i −0.960286 0.279018i \(-0.909991\pi\)
0.960286 0.279018i \(-0.0900089\pi\)
\(920\) 9.68497i 0.319304i
\(921\) −25.2358 −0.831548
\(922\) 24.2397 0.798292
\(923\) 64.6182i 2.12693i
\(924\) 0.329190 0.0108296
\(925\) 5.30231 2.98085i 0.174339 0.0980099i
\(926\) −43.8167 −1.43991
\(927\) 64.6093i 2.12205i
\(928\) 1.54159 0.0506053
\(929\) −22.5222 −0.738930 −0.369465 0.929245i \(-0.620459\pi\)
−0.369465 + 0.929245i \(0.620459\pi\)
\(930\) 7.79178i 0.255502i
\(931\) 118.053i 3.86903i
\(932\) 2.40278 0.0787058
\(933\) 78.3277i 2.56433i
\(934\) −38.7729 −1.26869
\(935\) 0.672758 0.0220015
\(936\) 59.3842 1.94103
\(937\) 30.8630 1.00825 0.504126 0.863630i \(-0.331815\pi\)
0.504126 + 0.863630i \(0.331815\pi\)
\(938\) 46.9873i 1.53419i
\(939\) 43.9561i 1.43445i
\(940\) 0.376796i 0.0122897i
\(941\) −54.0573 −1.76222 −0.881108 0.472914i \(-0.843202\pi\)
−0.881108 + 0.472914i \(0.843202\pi\)
\(942\) 26.3099i 0.857224i
\(943\) 3.42314i 0.111473i
\(944\) 33.8789i 1.10266i
\(945\) 23.5409i 0.765787i
\(946\) 1.02974 0.0334797
\(947\) 53.5495i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(948\) 0.250651i 0.00814076i
\(949\) 2.64085i 0.0857256i
\(950\) 10.8264 0.351256
\(951\) 90.7230 2.94189
\(952\) −49.3218 −1.59853
\(953\) 32.2122 1.04346 0.521728 0.853112i \(-0.325288\pi\)
0.521728 + 0.853112i \(0.325288\pi\)
\(954\) 50.2934i 1.62831i
\(955\) −20.7490 −0.671421
\(956\) 1.26473i 0.0409043i
\(957\) 1.04816i 0.0338821i
\(958\) 2.04588 0.0660993
\(959\) −6.01495 −0.194233
\(960\) 23.6456i 0.763158i
\(961\) 26.8264 0.865369
\(962\) −30.7109 + 17.2650i −0.990158 + 0.556647i
\(963\) 17.3739 0.559866
\(964\) 1.76299i 0.0567822i
\(965\) −9.18440 −0.295656
\(966\) −59.2696 −1.90697
\(967\) 25.9095i 0.833193i −0.909091 0.416597i \(-0.863223\pi\)
0.909091 0.416597i \(-0.136777\pi\)
\(968\) 31.9737i 1.02767i
\(969\) 80.0619 2.57196
\(970\) 13.9307i 0.447289i
\(971\) 7.44649 0.238969 0.119485 0.992836i \(-0.461876\pi\)
0.119485 + 0.992836i \(0.461876\pi\)
\(972\) −2.17597 −0.0697942
\(973\) −18.4176 −0.590441
\(974\) −43.0826 −1.38046
\(975\) 11.8473i 0.379416i
\(976\) 46.6513i 1.49327i
\(977\) 5.21832i 0.166949i 0.996510 + 0.0834744i \(0.0266017\pi\)
−0.996510 + 0.0834744i \(0.973398\pi\)
\(978\) 16.8749 0.539600
\(979\) 1.12825i 0.0360591i
\(980\) 2.01566i 0.0643879i
\(981\) 76.5600i 2.44437i
\(982\) 23.1522i 0.738816i
\(983\) 30.9100 0.985874 0.492937 0.870065i \(-0.335923\pi\)
0.492937 + 0.870065i \(0.335923\pi\)
\(984\) 8.39369i 0.267581i
\(985\) 8.62507i 0.274818i
\(986\) 9.95576i 0.317056i
\(987\) 36.3734 1.15778
\(988\) 4.55251 0.144834
\(989\) 13.4601 0.428008
\(990\) −1.22004 −0.0387756
\(991\) 37.9145i 1.20439i 0.798348 + 0.602196i \(0.205708\pi\)
−0.798348 + 0.602196i \(0.794292\pi\)
\(992\) −1.56169 −0.0495836
\(993\) 64.8240i 2.05713i
\(994\) 97.3285i 3.08707i
\(995\) −1.09459 −0.0347010
\(996\) −3.68771 −0.116850
\(997\) 43.7248i 1.38478i −0.721525 0.692389i \(-0.756558\pi\)
0.721525 0.692389i \(-0.243442\pi\)
\(998\) −20.7506 −0.656848
\(999\) −26.6789 + 14.9984i −0.844084 + 0.474527i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.c.b.36.4 12
3.2 odd 2 1665.2.e.e.406.9 12
4.3 odd 2 2960.2.p.h.961.4 12
5.2 odd 4 925.2.d.e.924.9 12
5.3 odd 4 925.2.d.f.924.4 12
5.4 even 2 925.2.c.c.776.9 12
37.6 odd 4 6845.2.a.i.1.2 6
37.31 odd 4 6845.2.a.h.1.5 6
37.36 even 2 inner 185.2.c.b.36.9 yes 12
111.110 odd 2 1665.2.e.e.406.4 12
148.147 odd 2 2960.2.p.h.961.3 12
185.73 odd 4 925.2.d.e.924.10 12
185.147 odd 4 925.2.d.f.924.3 12
185.184 even 2 925.2.c.c.776.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.c.b.36.4 12 1.1 even 1 trivial
185.2.c.b.36.9 yes 12 37.36 even 2 inner
925.2.c.c.776.4 12 185.184 even 2
925.2.c.c.776.9 12 5.4 even 2
925.2.d.e.924.9 12 5.2 odd 4
925.2.d.e.924.10 12 185.73 odd 4
925.2.d.f.924.3 12 185.147 odd 4
925.2.d.f.924.4 12 5.3 odd 4
1665.2.e.e.406.4 12 111.110 odd 2
1665.2.e.e.406.9 12 3.2 odd 2
2960.2.p.h.961.3 12 148.147 odd 2
2960.2.p.h.961.4 12 4.3 odd 2
6845.2.a.h.1.5 6 37.31 odd 4
6845.2.a.i.1.2 6 37.6 odd 4