Properties

Label 185.2.c
Level $185$
Weight $2$
Character orbit 185.c
Rep. character $\chi_{185}(36,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $2$
Sturm bound $38$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(38\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 22 14 8
Cusp forms 18 14 4
Eisenstein series 4 0 4

Trace form

\( 14 q + 4 q^{3} - 14 q^{4} - 16 q^{7} + 18 q^{9} - 2 q^{10} - 4 q^{11} - 32 q^{12} + 38 q^{16} - 4 q^{21} - 14 q^{25} - 12 q^{26} + 16 q^{27} + 28 q^{28} - 12 q^{30} - 24 q^{33} + 4 q^{34} - 30 q^{36} + 12 q^{37}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.c.a 185.c 37.b $2$ $1.477$ \(\Q(\sqrt{-1}) \) None 185.2.c.a \(0\) \(2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+2 q^{4}+i q^{5}+q^{7}-2 q^{9}+\cdots\)
185.2.c.b 185.c 37.b $12$ $1.477$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 185.2.c.b \(0\) \(2\) \(0\) \(-18\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{9}q^{3}+(-1+\beta _{9}+\beta _{10}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(185, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(185, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)