Properties

Label 925.2.b.i.149.9
Level $925$
Weight $2$
Character 925.149
Analytic conductor $7.386$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(149,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,0,12,0,0,-20,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 21x^{12} + 170x^{10} + 665x^{8} + 1280x^{6} + 1087x^{4} + 311x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.9
Root \(0.548343i\) of defining polynomial
Character \(\chi\) \(=\) 925.149
Dual form 925.2.b.i.149.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.548343i q^{2} -2.30011i q^{3} +1.69932 q^{4} +1.26125 q^{6} +1.23269i q^{7} +2.02850i q^{8} -2.29051 q^{9} -0.976048 q^{11} -3.90863i q^{12} -6.96588i q^{13} -0.675937 q^{14} +2.28633 q^{16} +2.51901i q^{17} -1.25599i q^{18} +2.92164 q^{19} +2.83532 q^{21} -0.535210i q^{22} -8.99438i q^{23} +4.66577 q^{24} +3.81970 q^{26} -1.63190i q^{27} +2.09473i q^{28} +0.687767 q^{29} +6.60794 q^{31} +5.31069i q^{32} +2.24502i q^{33} -1.38128 q^{34} -3.89232 q^{36} -1.00000i q^{37} +1.60206i q^{38} -16.0223 q^{39} -0.193259 q^{41} +1.55473i q^{42} +9.21747i q^{43} -1.65862 q^{44} +4.93201 q^{46} -3.18723i q^{47} -5.25881i q^{48} +5.48048 q^{49} +5.79402 q^{51} -11.8373i q^{52} +1.28828i q^{53} +0.894839 q^{54} -2.50051 q^{56} -6.72011i q^{57} +0.377133i q^{58} -12.2588 q^{59} -3.67468 q^{61} +3.62342i q^{62} -2.82349i q^{63} +1.66057 q^{64} -1.23104 q^{66} -8.16762i q^{67} +4.28061i q^{68} -20.6881 q^{69} -2.82331 q^{71} -4.64630i q^{72} +0.837276i q^{73} +0.548343 q^{74} +4.96481 q^{76} -1.20316i q^{77} -8.78573i q^{78} -3.44333 q^{79} -10.6251 q^{81} -0.105972i q^{82} +4.66960i q^{83} +4.81812 q^{84} -5.05434 q^{86} -1.58194i q^{87} -1.97991i q^{88} +6.74431 q^{89} +8.58676 q^{91} -15.2843i q^{92} -15.1990i q^{93} +1.74770 q^{94} +12.2152 q^{96} -2.21791i q^{97} +3.00518i q^{98} +2.23565 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 12 q^{6} - 20 q^{9} + 32 q^{11} + 6 q^{14} + 6 q^{16} - 18 q^{19} + 4 q^{21} + 48 q^{26} - 6 q^{29} + 22 q^{31} + 46 q^{34} + 38 q^{36} - 4 q^{39} + 58 q^{41} - 36 q^{44} + 14 q^{46} - 10 q^{49}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.548343i 0.387737i 0.981027 + 0.193869i \(0.0621036\pi\)
−0.981027 + 0.193869i \(0.937896\pi\)
\(3\) − 2.30011i − 1.32797i −0.747746 0.663985i \(-0.768864\pi\)
0.747746 0.663985i \(-0.231136\pi\)
\(4\) 1.69932 0.849660
\(5\) 0 0
\(6\) 1.26125 0.514904
\(7\) 1.23269i 0.465912i 0.972487 + 0.232956i \(0.0748399\pi\)
−0.972487 + 0.232956i \(0.925160\pi\)
\(8\) 2.02850i 0.717182i
\(9\) −2.29051 −0.763505
\(10\) 0 0
\(11\) −0.976048 −0.294290 −0.147145 0.989115i \(-0.547008\pi\)
−0.147145 + 0.989115i \(0.547008\pi\)
\(12\) − 3.90863i − 1.12832i
\(13\) − 6.96588i − 1.93199i −0.258564 0.965994i \(-0.583249\pi\)
0.258564 0.965994i \(-0.416751\pi\)
\(14\) −0.675937 −0.180652
\(15\) 0 0
\(16\) 2.28633 0.571582
\(17\) 2.51901i 0.610951i 0.952200 + 0.305475i \(0.0988154\pi\)
−0.952200 + 0.305475i \(0.901185\pi\)
\(18\) − 1.25599i − 0.296039i
\(19\) 2.92164 0.670271 0.335136 0.942170i \(-0.391218\pi\)
0.335136 + 0.942170i \(0.391218\pi\)
\(20\) 0 0
\(21\) 2.83532 0.618718
\(22\) − 0.535210i − 0.114107i
\(23\) − 8.99438i − 1.87546i −0.347368 0.937729i \(-0.612925\pi\)
0.347368 0.937729i \(-0.387075\pi\)
\(24\) 4.66577 0.952396
\(25\) 0 0
\(26\) 3.81970 0.749104
\(27\) − 1.63190i − 0.314059i
\(28\) 2.09473i 0.395867i
\(29\) 0.687767 0.127715 0.0638576 0.997959i \(-0.479660\pi\)
0.0638576 + 0.997959i \(0.479660\pi\)
\(30\) 0 0
\(31\) 6.60794 1.18682 0.593411 0.804900i \(-0.297781\pi\)
0.593411 + 0.804900i \(0.297781\pi\)
\(32\) 5.31069i 0.938806i
\(33\) 2.24502i 0.390808i
\(34\) −1.38128 −0.236888
\(35\) 0 0
\(36\) −3.89232 −0.648719
\(37\) − 1.00000i − 0.164399i
\(38\) 1.60206i 0.259889i
\(39\) −16.0223 −2.56562
\(40\) 0 0
\(41\) −0.193259 −0.0301820 −0.0150910 0.999886i \(-0.504804\pi\)
−0.0150910 + 0.999886i \(0.504804\pi\)
\(42\) 1.55473i 0.239900i
\(43\) 9.21747i 1.40565i 0.711362 + 0.702826i \(0.248079\pi\)
−0.711362 + 0.702826i \(0.751921\pi\)
\(44\) −1.65862 −0.250046
\(45\) 0 0
\(46\) 4.93201 0.727185
\(47\) − 3.18723i − 0.464905i −0.972608 0.232453i \(-0.925325\pi\)
0.972608 0.232453i \(-0.0746751\pi\)
\(48\) − 5.25881i − 0.759043i
\(49\) 5.48048 0.782926
\(50\) 0 0
\(51\) 5.79402 0.811324
\(52\) − 11.8373i − 1.64153i
\(53\) 1.28828i 0.176959i 0.996078 + 0.0884795i \(0.0282008\pi\)
−0.996078 + 0.0884795i \(0.971799\pi\)
\(54\) 0.894839 0.121772
\(55\) 0 0
\(56\) −2.50051 −0.334144
\(57\) − 6.72011i − 0.890100i
\(58\) 0.377133i 0.0495199i
\(59\) −12.2588 −1.59596 −0.797978 0.602686i \(-0.794097\pi\)
−0.797978 + 0.602686i \(0.794097\pi\)
\(60\) 0 0
\(61\) −3.67468 −0.470495 −0.235247 0.971936i \(-0.575590\pi\)
−0.235247 + 0.971936i \(0.575590\pi\)
\(62\) 3.62342i 0.460175i
\(63\) − 2.82349i − 0.355726i
\(64\) 1.66057 0.207572
\(65\) 0 0
\(66\) −1.23104 −0.151531
\(67\) − 8.16762i − 0.997833i −0.866650 0.498917i \(-0.833731\pi\)
0.866650 0.498917i \(-0.166269\pi\)
\(68\) 4.28061i 0.519100i
\(69\) −20.6881 −2.49055
\(70\) 0 0
\(71\) −2.82331 −0.335066 −0.167533 0.985866i \(-0.553580\pi\)
−0.167533 + 0.985866i \(0.553580\pi\)
\(72\) − 4.64630i − 0.547572i
\(73\) 0.837276i 0.0979958i 0.998799 + 0.0489979i \(0.0156028\pi\)
−0.998799 + 0.0489979i \(0.984397\pi\)
\(74\) 0.548343 0.0637436
\(75\) 0 0
\(76\) 4.96481 0.569503
\(77\) − 1.20316i − 0.137113i
\(78\) − 8.78573i − 0.994788i
\(79\) −3.44333 −0.387405 −0.193703 0.981060i \(-0.562050\pi\)
−0.193703 + 0.981060i \(0.562050\pi\)
\(80\) 0 0
\(81\) −10.6251 −1.18057
\(82\) − 0.105972i − 0.0117027i
\(83\) 4.66960i 0.512555i 0.966603 + 0.256278i \(0.0824962\pi\)
−0.966603 + 0.256278i \(0.917504\pi\)
\(84\) 4.81812 0.525700
\(85\) 0 0
\(86\) −5.05434 −0.545023
\(87\) − 1.58194i − 0.169602i
\(88\) − 1.97991i − 0.211059i
\(89\) 6.74431 0.714895 0.357448 0.933933i \(-0.383647\pi\)
0.357448 + 0.933933i \(0.383647\pi\)
\(90\) 0 0
\(91\) 8.58676 0.900137
\(92\) − 15.2843i − 1.59350i
\(93\) − 15.1990i − 1.57606i
\(94\) 1.74770 0.180261
\(95\) 0 0
\(96\) 12.2152 1.24671
\(97\) − 2.21791i − 0.225195i −0.993641 0.112597i \(-0.964083\pi\)
0.993641 0.112597i \(-0.0359170\pi\)
\(98\) 3.00518i 0.303569i
\(99\) 2.23565 0.224692
\(100\) 0 0
\(101\) 4.83925 0.481523 0.240762 0.970584i \(-0.422603\pi\)
0.240762 + 0.970584i \(0.422603\pi\)
\(102\) 3.17711i 0.314581i
\(103\) 8.95741i 0.882600i 0.897360 + 0.441300i \(0.145483\pi\)
−0.897360 + 0.441300i \(0.854517\pi\)
\(104\) 14.1303 1.38559
\(105\) 0 0
\(106\) −0.706420 −0.0686136
\(107\) 15.6463i 1.51259i 0.654233 + 0.756293i \(0.272992\pi\)
−0.654233 + 0.756293i \(0.727008\pi\)
\(108\) − 2.77311i − 0.266843i
\(109\) 12.4852 1.19586 0.597931 0.801548i \(-0.295990\pi\)
0.597931 + 0.801548i \(0.295990\pi\)
\(110\) 0 0
\(111\) −2.30011 −0.218317
\(112\) 2.81833i 0.266307i
\(113\) 19.4522i 1.82991i 0.403561 + 0.914953i \(0.367772\pi\)
−0.403561 + 0.914953i \(0.632228\pi\)
\(114\) 3.68493 0.345125
\(115\) 0 0
\(116\) 1.16874 0.108514
\(117\) 15.9555i 1.47508i
\(118\) − 6.72202i − 0.618812i
\(119\) −3.10516 −0.284650
\(120\) 0 0
\(121\) −10.0473 −0.913394
\(122\) − 2.01499i − 0.182428i
\(123\) 0.444518i 0.0400808i
\(124\) 11.2290 1.00839
\(125\) 0 0
\(126\) 1.54824 0.137928
\(127\) 5.25778i 0.466553i 0.972410 + 0.233276i \(0.0749447\pi\)
−0.972410 + 0.233276i \(0.925055\pi\)
\(128\) 11.5319i 1.01929i
\(129\) 21.2012 1.86666
\(130\) 0 0
\(131\) 15.2972 1.33653 0.668263 0.743926i \(-0.267038\pi\)
0.668263 + 0.743926i \(0.267038\pi\)
\(132\) 3.81501i 0.332054i
\(133\) 3.60148i 0.312288i
\(134\) 4.47866 0.386897
\(135\) 0 0
\(136\) −5.10981 −0.438163
\(137\) 3.28024i 0.280249i 0.990134 + 0.140125i \(0.0447503\pi\)
−0.990134 + 0.140125i \(0.955250\pi\)
\(138\) − 11.3442i − 0.965680i
\(139\) −0.561230 −0.0476029 −0.0238015 0.999717i \(-0.507577\pi\)
−0.0238015 + 0.999717i \(0.507577\pi\)
\(140\) 0 0
\(141\) −7.33099 −0.617380
\(142\) − 1.54815i − 0.129918i
\(143\) 6.79904i 0.568564i
\(144\) −5.23686 −0.436405
\(145\) 0 0
\(146\) −0.459115 −0.0379966
\(147\) − 12.6057i − 1.03970i
\(148\) − 1.69932i − 0.139683i
\(149\) −12.7327 −1.04311 −0.521553 0.853219i \(-0.674647\pi\)
−0.521553 + 0.853219i \(0.674647\pi\)
\(150\) 0 0
\(151\) −18.1594 −1.47779 −0.738894 0.673822i \(-0.764651\pi\)
−0.738894 + 0.673822i \(0.764651\pi\)
\(152\) 5.92655i 0.480707i
\(153\) − 5.76984i − 0.466464i
\(154\) 0.659747 0.0531639
\(155\) 0 0
\(156\) −27.2270 −2.17991
\(157\) 12.5146i 0.998777i 0.866378 + 0.499388i \(0.166442\pi\)
−0.866378 + 0.499388i \(0.833558\pi\)
\(158\) − 1.88813i − 0.150211i
\(159\) 2.96319 0.234996
\(160\) 0 0
\(161\) 11.0873 0.873799
\(162\) − 5.82620i − 0.457749i
\(163\) − 8.40802i − 0.658567i −0.944231 0.329284i \(-0.893193\pi\)
0.944231 0.329284i \(-0.106807\pi\)
\(164\) −0.328409 −0.0256444
\(165\) 0 0
\(166\) −2.56055 −0.198737
\(167\) − 11.9553i − 0.925130i −0.886585 0.462565i \(-0.846929\pi\)
0.886585 0.462565i \(-0.153071\pi\)
\(168\) 5.75144i 0.443733i
\(169\) −35.5235 −2.73258
\(170\) 0 0
\(171\) −6.69207 −0.511755
\(172\) 15.6634i 1.19433i
\(173\) 21.6980i 1.64967i 0.565375 + 0.824834i \(0.308732\pi\)
−0.565375 + 0.824834i \(0.691268\pi\)
\(174\) 0.867447 0.0657610
\(175\) 0 0
\(176\) −2.23156 −0.168211
\(177\) 28.1966i 2.11938i
\(178\) 3.69820i 0.277192i
\(179\) 3.99480 0.298586 0.149293 0.988793i \(-0.452300\pi\)
0.149293 + 0.988793i \(0.452300\pi\)
\(180\) 0 0
\(181\) 17.2016 1.27859 0.639293 0.768964i \(-0.279227\pi\)
0.639293 + 0.768964i \(0.279227\pi\)
\(182\) 4.70849i 0.349017i
\(183\) 8.45218i 0.624803i
\(184\) 18.2451 1.34504
\(185\) 0 0
\(186\) 8.33428 0.611099
\(187\) − 2.45868i − 0.179797i
\(188\) − 5.41612i − 0.395011i
\(189\) 2.01162 0.146324
\(190\) 0 0
\(191\) −20.4730 −1.48137 −0.740686 0.671852i \(-0.765499\pi\)
−0.740686 + 0.671852i \(0.765499\pi\)
\(192\) − 3.81950i − 0.275649i
\(193\) − 20.4667i − 1.47322i −0.676317 0.736611i \(-0.736425\pi\)
0.676317 0.736611i \(-0.263575\pi\)
\(194\) 1.21618 0.0873164
\(195\) 0 0
\(196\) 9.31309 0.665220
\(197\) 17.1879i 1.22459i 0.790630 + 0.612294i \(0.209753\pi\)
−0.790630 + 0.612294i \(0.790247\pi\)
\(198\) 1.22591i 0.0871213i
\(199\) 12.8818 0.913164 0.456582 0.889681i \(-0.349074\pi\)
0.456582 + 0.889681i \(0.349074\pi\)
\(200\) 0 0
\(201\) −18.7864 −1.32509
\(202\) 2.65357i 0.186704i
\(203\) 0.847803i 0.0595041i
\(204\) 9.84588 0.689350
\(205\) 0 0
\(206\) −4.91174 −0.342217
\(207\) 20.6018i 1.43192i
\(208\) − 15.9263i − 1.10429i
\(209\) −2.85167 −0.197254
\(210\) 0 0
\(211\) 14.6270 1.00697 0.503484 0.864005i \(-0.332051\pi\)
0.503484 + 0.864005i \(0.332051\pi\)
\(212\) 2.18920i 0.150355i
\(213\) 6.49394i 0.444957i
\(214\) −8.57955 −0.586486
\(215\) 0 0
\(216\) 3.31030 0.225237
\(217\) 8.14554i 0.552955i
\(218\) 6.84615i 0.463680i
\(219\) 1.92583 0.130135
\(220\) 0 0
\(221\) 17.5472 1.18035
\(222\) − 1.26125i − 0.0846496i
\(223\) 3.59602i 0.240807i 0.992725 + 0.120404i \(0.0384189\pi\)
−0.992725 + 0.120404i \(0.961581\pi\)
\(224\) −6.54642 −0.437401
\(225\) 0 0
\(226\) −10.6665 −0.709523
\(227\) − 21.7284i − 1.44217i −0.692848 0.721084i \(-0.743644\pi\)
0.692848 0.721084i \(-0.256356\pi\)
\(228\) − 11.4196i − 0.756282i
\(229\) 14.6078 0.965314 0.482657 0.875809i \(-0.339672\pi\)
0.482657 + 0.875809i \(0.339672\pi\)
\(230\) 0 0
\(231\) −2.76741 −0.182082
\(232\) 1.39513i 0.0915950i
\(233\) 18.5161i 1.21303i 0.795071 + 0.606517i \(0.207434\pi\)
−0.795071 + 0.606517i \(0.792566\pi\)
\(234\) −8.74907 −0.571944
\(235\) 0 0
\(236\) −20.8316 −1.35602
\(237\) 7.92005i 0.514462i
\(238\) − 1.70269i − 0.110369i
\(239\) −18.0845 −1.16979 −0.584896 0.811109i \(-0.698864\pi\)
−0.584896 + 0.811109i \(0.698864\pi\)
\(240\) 0 0
\(241\) −12.4643 −0.802899 −0.401449 0.915881i \(-0.631493\pi\)
−0.401449 + 0.915881i \(0.631493\pi\)
\(242\) − 5.50939i − 0.354157i
\(243\) 19.5432i 1.25370i
\(244\) −6.24446 −0.399761
\(245\) 0 0
\(246\) −0.243748 −0.0155408
\(247\) − 20.3518i − 1.29496i
\(248\) 13.4042i 0.851167i
\(249\) 10.7406 0.680658
\(250\) 0 0
\(251\) 4.32919 0.273256 0.136628 0.990622i \(-0.456373\pi\)
0.136628 + 0.990622i \(0.456373\pi\)
\(252\) − 4.79801i − 0.302246i
\(253\) 8.77895i 0.551928i
\(254\) −2.88307 −0.180900
\(255\) 0 0
\(256\) −3.00231 −0.187645
\(257\) 16.4633i 1.02695i 0.858105 + 0.513475i \(0.171642\pi\)
−0.858105 + 0.513475i \(0.828358\pi\)
\(258\) 11.6255i 0.723775i
\(259\) 1.23269 0.0765955
\(260\) 0 0
\(261\) −1.57534 −0.0975111
\(262\) 8.38813i 0.518221i
\(263\) − 19.3023i − 1.19023i −0.803640 0.595116i \(-0.797106\pi\)
0.803640 0.595116i \(-0.202894\pi\)
\(264\) −4.55402 −0.280280
\(265\) 0 0
\(266\) −1.97485 −0.121086
\(267\) − 15.5127i − 0.949359i
\(268\) − 13.8794i − 0.847819i
\(269\) 9.62970 0.587133 0.293567 0.955939i \(-0.405158\pi\)
0.293567 + 0.955939i \(0.405158\pi\)
\(270\) 0 0
\(271\) −3.65132 −0.221802 −0.110901 0.993831i \(-0.535374\pi\)
−0.110901 + 0.993831i \(0.535374\pi\)
\(272\) 5.75929i 0.349208i
\(273\) − 19.7505i − 1.19536i
\(274\) −1.79870 −0.108663
\(275\) 0 0
\(276\) −35.1557 −2.11612
\(277\) − 25.0654i − 1.50603i −0.658002 0.753017i \(-0.728598\pi\)
0.658002 0.753017i \(-0.271402\pi\)
\(278\) − 0.307747i − 0.0184574i
\(279\) −15.1356 −0.906144
\(280\) 0 0
\(281\) 11.5359 0.688177 0.344089 0.938937i \(-0.388188\pi\)
0.344089 + 0.938937i \(0.388188\pi\)
\(282\) − 4.01990i − 0.239381i
\(283\) 30.7318i 1.82682i 0.407045 + 0.913408i \(0.366559\pi\)
−0.407045 + 0.913408i \(0.633441\pi\)
\(284\) −4.79771 −0.284692
\(285\) 0 0
\(286\) −3.72821 −0.220454
\(287\) − 0.238228i − 0.0140622i
\(288\) − 12.1642i − 0.716783i
\(289\) 10.6546 0.626739
\(290\) 0 0
\(291\) −5.10144 −0.299052
\(292\) 1.42280i 0.0832631i
\(293\) 16.2157i 0.947332i 0.880705 + 0.473666i \(0.157070\pi\)
−0.880705 + 0.473666i \(0.842930\pi\)
\(294\) 6.91226 0.403131
\(295\) 0 0
\(296\) 2.02850 0.117904
\(297\) 1.59281i 0.0924242i
\(298\) − 6.98190i − 0.404451i
\(299\) −62.6538 −3.62336
\(300\) 0 0
\(301\) −11.3623 −0.654910
\(302\) − 9.95756i − 0.572993i
\(303\) − 11.1308i − 0.639448i
\(304\) 6.67983 0.383115
\(305\) 0 0
\(306\) 3.16385 0.180865
\(307\) − 0.434062i − 0.0247732i −0.999923 0.0123866i \(-0.996057\pi\)
0.999923 0.0123866i \(-0.00394288\pi\)
\(308\) − 2.04456i − 0.116500i
\(309\) 20.6030 1.17207
\(310\) 0 0
\(311\) −21.0126 −1.19151 −0.595756 0.803165i \(-0.703148\pi\)
−0.595756 + 0.803165i \(0.703148\pi\)
\(312\) − 32.5012i − 1.84002i
\(313\) 2.16272i 0.122244i 0.998130 + 0.0611222i \(0.0194679\pi\)
−0.998130 + 0.0611222i \(0.980532\pi\)
\(314\) −6.86232 −0.387263
\(315\) 0 0
\(316\) −5.85132 −0.329162
\(317\) 28.3991i 1.59505i 0.603284 + 0.797526i \(0.293858\pi\)
−0.603284 + 0.797526i \(0.706142\pi\)
\(318\) 1.62485i 0.0911168i
\(319\) −0.671294 −0.0375853
\(320\) 0 0
\(321\) 35.9883 2.00867
\(322\) 6.07963i 0.338805i
\(323\) 7.35967i 0.409503i
\(324\) −18.0554 −1.00308
\(325\) 0 0
\(326\) 4.61048 0.255351
\(327\) − 28.7173i − 1.58807i
\(328\) − 0.392026i − 0.0216460i
\(329\) 3.92886 0.216605
\(330\) 0 0
\(331\) 16.2418 0.892728 0.446364 0.894851i \(-0.352719\pi\)
0.446364 + 0.894851i \(0.352719\pi\)
\(332\) 7.93515i 0.435498i
\(333\) 2.29051i 0.125519i
\(334\) 6.55561 0.358707
\(335\) 0 0
\(336\) 6.48247 0.353648
\(337\) 11.0000i 0.599207i 0.954064 + 0.299604i \(0.0968544\pi\)
−0.954064 + 0.299604i \(0.903146\pi\)
\(338\) − 19.4791i − 1.05952i
\(339\) 44.7422 2.43006
\(340\) 0 0
\(341\) −6.44967 −0.349269
\(342\) − 3.66955i − 0.198427i
\(343\) 15.3845i 0.830687i
\(344\) −18.6976 −1.00811
\(345\) 0 0
\(346\) −11.8980 −0.639638
\(347\) − 8.15833i − 0.437962i −0.975729 0.218981i \(-0.929727\pi\)
0.975729 0.218981i \(-0.0702733\pi\)
\(348\) − 2.68822i − 0.144104i
\(349\) 28.2422 1.51177 0.755886 0.654704i \(-0.227207\pi\)
0.755886 + 0.654704i \(0.227207\pi\)
\(350\) 0 0
\(351\) −11.3676 −0.606757
\(352\) − 5.18349i − 0.276281i
\(353\) 1.95167i 0.103877i 0.998650 + 0.0519385i \(0.0165400\pi\)
−0.998650 + 0.0519385i \(0.983460\pi\)
\(354\) −15.4614 −0.821764
\(355\) 0 0
\(356\) 11.4607 0.607418
\(357\) 7.14222i 0.378006i
\(358\) 2.19052i 0.115773i
\(359\) −25.2874 −1.33462 −0.667310 0.744780i \(-0.732554\pi\)
−0.667310 + 0.744780i \(0.732554\pi\)
\(360\) 0 0
\(361\) −10.4640 −0.550736
\(362\) 9.43239i 0.495755i
\(363\) 23.1100i 1.21296i
\(364\) 14.5917 0.764811
\(365\) 0 0
\(366\) −4.63470 −0.242259
\(367\) − 7.03397i − 0.367170i −0.983004 0.183585i \(-0.941230\pi\)
0.983004 0.183585i \(-0.0587703\pi\)
\(368\) − 20.5641i − 1.07198i
\(369\) 0.442663 0.0230441
\(370\) 0 0
\(371\) −1.58805 −0.0824474
\(372\) − 25.8280i − 1.33912i
\(373\) 25.0922i 1.29923i 0.760265 + 0.649613i \(0.225069\pi\)
−0.760265 + 0.649613i \(0.774931\pi\)
\(374\) 1.34820 0.0697138
\(375\) 0 0
\(376\) 6.46529 0.333422
\(377\) − 4.79091i − 0.246744i
\(378\) 1.10306i 0.0567352i
\(379\) 18.9929 0.975601 0.487801 0.872955i \(-0.337799\pi\)
0.487801 + 0.872955i \(0.337799\pi\)
\(380\) 0 0
\(381\) 12.0935 0.619568
\(382\) − 11.2262i − 0.574383i
\(383\) − 30.2394i − 1.54516i −0.634918 0.772580i \(-0.718966\pi\)
0.634918 0.772580i \(-0.281034\pi\)
\(384\) 26.5247 1.35359
\(385\) 0 0
\(386\) 11.2228 0.571223
\(387\) − 21.1127i − 1.07322i
\(388\) − 3.76894i − 0.191339i
\(389\) 20.8628 1.05779 0.528894 0.848688i \(-0.322607\pi\)
0.528894 + 0.848688i \(0.322607\pi\)
\(390\) 0 0
\(391\) 22.6570 1.14581
\(392\) 11.1171i 0.561500i
\(393\) − 35.1853i − 1.77487i
\(394\) −9.42488 −0.474819
\(395\) 0 0
\(396\) 3.79909 0.190911
\(397\) 28.4743i 1.42908i 0.699593 + 0.714541i \(0.253365\pi\)
−0.699593 + 0.714541i \(0.746635\pi\)
\(398\) 7.06363i 0.354068i
\(399\) 8.28380 0.414709
\(400\) 0 0
\(401\) −26.5071 −1.32370 −0.661851 0.749636i \(-0.730229\pi\)
−0.661851 + 0.749636i \(0.730229\pi\)
\(402\) − 10.3014i − 0.513788i
\(403\) − 46.0302i − 2.29293i
\(404\) 8.22343 0.409131
\(405\) 0 0
\(406\) −0.464887 −0.0230720
\(407\) 0.976048i 0.0483809i
\(408\) 11.7531i 0.581867i
\(409\) −7.94050 −0.392632 −0.196316 0.980541i \(-0.562898\pi\)
−0.196316 + 0.980541i \(0.562898\pi\)
\(410\) 0 0
\(411\) 7.54491 0.372163
\(412\) 15.2215i 0.749910i
\(413\) − 15.1113i − 0.743576i
\(414\) −11.2968 −0.555209
\(415\) 0 0
\(416\) 36.9936 1.81376
\(417\) 1.29089i 0.0632153i
\(418\) − 1.56369i − 0.0764827i
\(419\) −31.9064 −1.55873 −0.779366 0.626569i \(-0.784459\pi\)
−0.779366 + 0.626569i \(0.784459\pi\)
\(420\) 0 0
\(421\) 11.0436 0.538232 0.269116 0.963108i \(-0.413268\pi\)
0.269116 + 0.963108i \(0.413268\pi\)
\(422\) 8.02064i 0.390439i
\(423\) 7.30040i 0.354957i
\(424\) −2.61327 −0.126912
\(425\) 0 0
\(426\) −3.56091 −0.172527
\(427\) − 4.52974i − 0.219209i
\(428\) 26.5881i 1.28518i
\(429\) 15.6385 0.755036
\(430\) 0 0
\(431\) 40.0005 1.92676 0.963379 0.268143i \(-0.0864100\pi\)
0.963379 + 0.268143i \(0.0864100\pi\)
\(432\) − 3.73105i − 0.179510i
\(433\) − 3.42091i − 0.164398i −0.996616 0.0821992i \(-0.973806\pi\)
0.996616 0.0821992i \(-0.0261944\pi\)
\(434\) −4.46655 −0.214401
\(435\) 0 0
\(436\) 21.2163 1.01608
\(437\) − 26.2784i − 1.25707i
\(438\) 1.05602i 0.0504584i
\(439\) −1.87199 −0.0893451 −0.0446725 0.999002i \(-0.514224\pi\)
−0.0446725 + 0.999002i \(0.514224\pi\)
\(440\) 0 0
\(441\) −12.5531 −0.597767
\(442\) 9.62187i 0.457666i
\(443\) − 39.0684i − 1.85620i −0.372335 0.928098i \(-0.621443\pi\)
0.372335 0.928098i \(-0.378557\pi\)
\(444\) −3.90863 −0.185495
\(445\) 0 0
\(446\) −1.97185 −0.0933700
\(447\) 29.2867i 1.38521i
\(448\) 2.04697i 0.0967102i
\(449\) −27.7382 −1.30905 −0.654523 0.756042i \(-0.727130\pi\)
−0.654523 + 0.756042i \(0.727130\pi\)
\(450\) 0 0
\(451\) 0.188630 0.00888225
\(452\) 33.0554i 1.55480i
\(453\) 41.7685i 1.96246i
\(454\) 11.9146 0.559182
\(455\) 0 0
\(456\) 13.6317 0.638364
\(457\) − 3.94335i − 0.184462i −0.995738 0.0922310i \(-0.970600\pi\)
0.995738 0.0922310i \(-0.0293998\pi\)
\(458\) 8.01012i 0.374288i
\(459\) 4.11077 0.191874
\(460\) 0 0
\(461\) 31.1870 1.45252 0.726261 0.687419i \(-0.241256\pi\)
0.726261 + 0.687419i \(0.241256\pi\)
\(462\) − 1.51749i − 0.0706001i
\(463\) − 29.8007i − 1.38496i −0.721439 0.692478i \(-0.756519\pi\)
0.721439 0.692478i \(-0.243481\pi\)
\(464\) 1.57246 0.0729996
\(465\) 0 0
\(466\) −10.1532 −0.470338
\(467\) − 17.4785i − 0.808807i −0.914581 0.404404i \(-0.867479\pi\)
0.914581 0.404404i \(-0.132521\pi\)
\(468\) 27.1134i 1.25332i
\(469\) 10.0681 0.464903
\(470\) 0 0
\(471\) 28.7851 1.32635
\(472\) − 24.8669i − 1.14459i
\(473\) − 8.99670i − 0.413669i
\(474\) −4.34291 −0.199476
\(475\) 0 0
\(476\) −5.27666 −0.241855
\(477\) − 2.95083i − 0.135109i
\(478\) − 9.91653i − 0.453572i
\(479\) 4.30979 0.196919 0.0984597 0.995141i \(-0.468608\pi\)
0.0984597 + 0.995141i \(0.468608\pi\)
\(480\) 0 0
\(481\) −6.96588 −0.317617
\(482\) − 6.83474i − 0.311314i
\(483\) − 25.5020i − 1.16038i
\(484\) −17.0736 −0.776074
\(485\) 0 0
\(486\) −10.7164 −0.486105
\(487\) − 38.1250i − 1.72761i −0.503829 0.863804i \(-0.668076\pi\)
0.503829 0.863804i \(-0.331924\pi\)
\(488\) − 7.45408i − 0.337430i
\(489\) −19.3394 −0.874558
\(490\) 0 0
\(491\) 36.0217 1.62564 0.812818 0.582517i \(-0.197932\pi\)
0.812818 + 0.582517i \(0.197932\pi\)
\(492\) 0.755377i 0.0340550i
\(493\) 1.73250i 0.0780277i
\(494\) 11.1598 0.502103
\(495\) 0 0
\(496\) 15.1079 0.678366
\(497\) − 3.48027i − 0.156111i
\(498\) 5.88954i 0.263917i
\(499\) −20.1879 −0.903733 −0.451867 0.892085i \(-0.649242\pi\)
−0.451867 + 0.892085i \(0.649242\pi\)
\(500\) 0 0
\(501\) −27.4985 −1.22854
\(502\) 2.37388i 0.105952i
\(503\) 3.01511i 0.134437i 0.997738 + 0.0672185i \(0.0214124\pi\)
−0.997738 + 0.0672185i \(0.978588\pi\)
\(504\) 5.72744 0.255121
\(505\) 0 0
\(506\) −4.81388 −0.214003
\(507\) 81.7081i 3.62878i
\(508\) 8.93465i 0.396411i
\(509\) −24.8656 −1.10215 −0.551073 0.834457i \(-0.685782\pi\)
−0.551073 + 0.834457i \(0.685782\pi\)
\(510\) 0 0
\(511\) −1.03210 −0.0456575
\(512\) 21.4176i 0.946532i
\(513\) − 4.76782i − 0.210504i
\(514\) −9.02752 −0.398187
\(515\) 0 0
\(516\) 36.0276 1.58603
\(517\) 3.11089i 0.136817i
\(518\) 0.675937i 0.0296989i
\(519\) 49.9078 2.19071
\(520\) 0 0
\(521\) 38.3050 1.67817 0.839085 0.544000i \(-0.183091\pi\)
0.839085 + 0.544000i \(0.183091\pi\)
\(522\) − 0.863828i − 0.0378087i
\(523\) 3.02688i 0.132356i 0.997808 + 0.0661781i \(0.0210805\pi\)
−0.997808 + 0.0661781i \(0.978919\pi\)
\(524\) 25.9949 1.13559
\(525\) 0 0
\(526\) 10.5843 0.461497
\(527\) 16.6455i 0.725090i
\(528\) 5.13285i 0.223379i
\(529\) −57.8989 −2.51734
\(530\) 0 0
\(531\) 28.0789 1.21852
\(532\) 6.12006i 0.265338i
\(533\) 1.34622i 0.0583113i
\(534\) 8.50626 0.368102
\(535\) 0 0
\(536\) 16.5680 0.715628
\(537\) − 9.18850i − 0.396513i
\(538\) 5.28038i 0.227653i
\(539\) −5.34921 −0.230407
\(540\) 0 0
\(541\) −26.8271 −1.15339 −0.576693 0.816961i \(-0.695657\pi\)
−0.576693 + 0.816961i \(0.695657\pi\)
\(542\) − 2.00218i − 0.0860008i
\(543\) − 39.5656i − 1.69792i
\(544\) −13.3777 −0.573564
\(545\) 0 0
\(546\) 10.8301 0.463484
\(547\) 28.1420i 1.20326i 0.798773 + 0.601632i \(0.205483\pi\)
−0.798773 + 0.601632i \(0.794517\pi\)
\(548\) 5.57417i 0.238117i
\(549\) 8.41691 0.359225
\(550\) 0 0
\(551\) 2.00941 0.0856038
\(552\) − 41.9657i − 1.78618i
\(553\) − 4.24455i − 0.180497i
\(554\) 13.7444 0.583945
\(555\) 0 0
\(556\) −0.953710 −0.0404463
\(557\) − 16.3022i − 0.690748i −0.938465 0.345374i \(-0.887752\pi\)
0.938465 0.345374i \(-0.112248\pi\)
\(558\) − 8.29950i − 0.351346i
\(559\) 64.2078 2.71570
\(560\) 0 0
\(561\) −5.65524 −0.238764
\(562\) 6.32566i 0.266832i
\(563\) 10.0364i 0.422985i 0.977380 + 0.211492i \(0.0678323\pi\)
−0.977380 + 0.211492i \(0.932168\pi\)
\(564\) −12.4577 −0.524563
\(565\) 0 0
\(566\) −16.8516 −0.708325
\(567\) − 13.0974i − 0.550040i
\(568\) − 5.72709i − 0.240303i
\(569\) 4.06296 0.170328 0.0851640 0.996367i \(-0.472859\pi\)
0.0851640 + 0.996367i \(0.472859\pi\)
\(570\) 0 0
\(571\) −30.9715 −1.29612 −0.648058 0.761591i \(-0.724418\pi\)
−0.648058 + 0.761591i \(0.724418\pi\)
\(572\) 11.5537i 0.483086i
\(573\) 47.0901i 1.96722i
\(574\) 0.130631 0.00545243
\(575\) 0 0
\(576\) −3.80357 −0.158482
\(577\) 1.38260i 0.0575583i 0.999586 + 0.0287792i \(0.00916196\pi\)
−0.999586 + 0.0287792i \(0.990838\pi\)
\(578\) 5.84236i 0.243010i
\(579\) −47.0756 −1.95639
\(580\) 0 0
\(581\) −5.75616 −0.238806
\(582\) − 2.79734i − 0.115954i
\(583\) − 1.25742i − 0.0520772i
\(584\) −1.69841 −0.0702808
\(585\) 0 0
\(586\) −8.89178 −0.367316
\(587\) − 20.3736i − 0.840907i −0.907314 0.420453i \(-0.861871\pi\)
0.907314 0.420453i \(-0.138129\pi\)
\(588\) − 21.4211i − 0.883393i
\(589\) 19.3061 0.795493
\(590\) 0 0
\(591\) 39.5341 1.62622
\(592\) − 2.28633i − 0.0939674i
\(593\) 28.4271i 1.16736i 0.811983 + 0.583681i \(0.198388\pi\)
−0.811983 + 0.583681i \(0.801612\pi\)
\(594\) −0.873407 −0.0358363
\(595\) 0 0
\(596\) −21.6370 −0.886284
\(597\) − 29.6295i − 1.21265i
\(598\) − 34.3558i − 1.40491i
\(599\) −4.99991 −0.204291 −0.102145 0.994769i \(-0.532571\pi\)
−0.102145 + 0.994769i \(0.532571\pi\)
\(600\) 0 0
\(601\) −26.3404 −1.07445 −0.537223 0.843440i \(-0.680527\pi\)
−0.537223 + 0.843440i \(0.680527\pi\)
\(602\) − 6.23043i − 0.253933i
\(603\) 18.7080i 0.761850i
\(604\) −30.8585 −1.25562
\(605\) 0 0
\(606\) 6.10350 0.247938
\(607\) − 21.0686i − 0.855147i −0.903981 0.427573i \(-0.859369\pi\)
0.903981 0.427573i \(-0.140631\pi\)
\(608\) 15.5159i 0.629254i
\(609\) 1.95004 0.0790197
\(610\) 0 0
\(611\) −22.2019 −0.898192
\(612\) − 9.80480i − 0.396336i
\(613\) − 2.19848i − 0.0887959i −0.999014 0.0443980i \(-0.985863\pi\)
0.999014 0.0443980i \(-0.0141370\pi\)
\(614\) 0.238015 0.00960551
\(615\) 0 0
\(616\) 2.44061 0.0983351
\(617\) − 19.0587i − 0.767275i −0.923484 0.383638i \(-0.874671\pi\)
0.923484 0.383638i \(-0.125329\pi\)
\(618\) 11.2975i 0.454454i
\(619\) −26.9627 −1.08372 −0.541862 0.840467i \(-0.682280\pi\)
−0.541862 + 0.840467i \(0.682280\pi\)
\(620\) 0 0
\(621\) −14.6779 −0.589004
\(622\) − 11.5221i − 0.461994i
\(623\) 8.31363i 0.333079i
\(624\) −36.6322 −1.46646
\(625\) 0 0
\(626\) −1.18592 −0.0473987
\(627\) 6.55915i 0.261947i
\(628\) 21.2664i 0.848620i
\(629\) 2.51901 0.100440
\(630\) 0 0
\(631\) −32.6629 −1.30029 −0.650145 0.759810i \(-0.725292\pi\)
−0.650145 + 0.759810i \(0.725292\pi\)
\(632\) − 6.98479i − 0.277840i
\(633\) − 33.6438i − 1.33722i
\(634\) −15.5725 −0.618461
\(635\) 0 0
\(636\) 5.03541 0.199667
\(637\) − 38.1764i − 1.51260i
\(638\) − 0.368100i − 0.0145732i
\(639\) 6.46684 0.255824
\(640\) 0 0
\(641\) −33.9051 −1.33917 −0.669586 0.742735i \(-0.733528\pi\)
−0.669586 + 0.742735i \(0.733528\pi\)
\(642\) 19.7339i 0.778836i
\(643\) − 23.2105i − 0.915331i −0.889124 0.457666i \(-0.848686\pi\)
0.889124 0.457666i \(-0.151314\pi\)
\(644\) 18.8408 0.742432
\(645\) 0 0
\(646\) −4.03562 −0.158779
\(647\) − 23.4822i − 0.923180i −0.887093 0.461590i \(-0.847279\pi\)
0.887093 0.461590i \(-0.152721\pi\)
\(648\) − 21.5530i − 0.846680i
\(649\) 11.9652 0.469674
\(650\) 0 0
\(651\) 18.7356 0.734308
\(652\) − 14.2879i − 0.559558i
\(653\) 6.98761i 0.273446i 0.990609 + 0.136723i \(0.0436571\pi\)
−0.990609 + 0.136723i \(0.956343\pi\)
\(654\) 15.7469 0.615753
\(655\) 0 0
\(656\) −0.441853 −0.0172515
\(657\) − 1.91779i − 0.0748203i
\(658\) 2.15437i 0.0839859i
\(659\) −13.4171 −0.522656 −0.261328 0.965250i \(-0.584160\pi\)
−0.261328 + 0.965250i \(0.584160\pi\)
\(660\) 0 0
\(661\) 4.09587 0.159311 0.0796555 0.996822i \(-0.474618\pi\)
0.0796555 + 0.996822i \(0.474618\pi\)
\(662\) 8.90606i 0.346144i
\(663\) − 40.3604i − 1.56747i
\(664\) −9.47227 −0.367596
\(665\) 0 0
\(666\) −1.25599 −0.0486686
\(667\) − 6.18604i − 0.239524i
\(668\) − 20.3159i − 0.786045i
\(669\) 8.27125 0.319785
\(670\) 0 0
\(671\) 3.58667 0.138462
\(672\) 15.0575i 0.580856i
\(673\) 15.0709i 0.580939i 0.956884 + 0.290469i \(0.0938115\pi\)
−0.956884 + 0.290469i \(0.906189\pi\)
\(674\) −6.03177 −0.232335
\(675\) 0 0
\(676\) −60.3658 −2.32176
\(677\) 7.36551i 0.283080i 0.989933 + 0.141540i \(0.0452053\pi\)
−0.989933 + 0.141540i \(0.954795\pi\)
\(678\) 24.5341i 0.942225i
\(679\) 2.73399 0.104921
\(680\) 0 0
\(681\) −49.9778 −1.91515
\(682\) − 3.53664i − 0.135425i
\(683\) − 46.2794i − 1.77083i −0.464801 0.885415i \(-0.653874\pi\)
0.464801 0.885415i \(-0.346126\pi\)
\(684\) −11.3720 −0.434818
\(685\) 0 0
\(686\) −8.43601 −0.322088
\(687\) − 33.5997i − 1.28191i
\(688\) 21.0741i 0.803444i
\(689\) 8.97401 0.341883
\(690\) 0 0
\(691\) 5.06739 0.192773 0.0963863 0.995344i \(-0.469272\pi\)
0.0963863 + 0.995344i \(0.469272\pi\)
\(692\) 36.8718i 1.40166i
\(693\) 2.75586i 0.104687i
\(694\) 4.47357 0.169814
\(695\) 0 0
\(696\) 3.20896 0.121635
\(697\) − 0.486823i − 0.0184397i
\(698\) 15.4864i 0.586170i
\(699\) 42.5892 1.61087
\(700\) 0 0
\(701\) 20.9220 0.790213 0.395107 0.918635i \(-0.370708\pi\)
0.395107 + 0.918635i \(0.370708\pi\)
\(702\) − 6.23335i − 0.235262i
\(703\) − 2.92164i − 0.110192i
\(704\) −1.62080 −0.0610862
\(705\) 0 0
\(706\) −1.07019 −0.0402770
\(707\) 5.96528i 0.224348i
\(708\) 47.9150i 1.80075i
\(709\) 11.5698 0.434515 0.217257 0.976114i \(-0.430289\pi\)
0.217257 + 0.976114i \(0.430289\pi\)
\(710\) 0 0
\(711\) 7.88700 0.295786
\(712\) 13.6808i 0.512710i
\(713\) − 59.4344i − 2.22583i
\(714\) −3.91639 −0.146567
\(715\) 0 0
\(716\) 6.78845 0.253696
\(717\) 41.5964i 1.55345i
\(718\) − 13.8662i − 0.517482i
\(719\) −20.2226 −0.754176 −0.377088 0.926177i \(-0.623075\pi\)
−0.377088 + 0.926177i \(0.623075\pi\)
\(720\) 0 0
\(721\) −11.0417 −0.411214
\(722\) − 5.73786i − 0.213541i
\(723\) 28.6694i 1.06623i
\(724\) 29.2310 1.08636
\(725\) 0 0
\(726\) −12.6722 −0.470310
\(727\) 33.7740i 1.25261i 0.779579 + 0.626304i \(0.215433\pi\)
−0.779579 + 0.626304i \(0.784567\pi\)
\(728\) 17.4182i 0.645562i
\(729\) 13.0763 0.484307
\(730\) 0 0
\(731\) −23.2189 −0.858784
\(732\) 14.3630i 0.530870i
\(733\) − 49.8177i − 1.84006i −0.391849 0.920030i \(-0.628164\pi\)
0.391849 0.920030i \(-0.371836\pi\)
\(734\) 3.85703 0.142366
\(735\) 0 0
\(736\) 47.7663 1.76069
\(737\) 7.97199i 0.293652i
\(738\) 0.242731i 0.00893506i
\(739\) 6.25259 0.230005 0.115003 0.993365i \(-0.463312\pi\)
0.115003 + 0.993365i \(0.463312\pi\)
\(740\) 0 0
\(741\) −46.8115 −1.71966
\(742\) − 0.870796i − 0.0319679i
\(743\) − 0.401960i − 0.0147465i −0.999973 0.00737324i \(-0.997653\pi\)
0.999973 0.00737324i \(-0.00234700\pi\)
\(744\) 30.8312 1.13032
\(745\) 0 0
\(746\) −13.7592 −0.503758
\(747\) − 10.6958i − 0.391338i
\(748\) − 4.17808i − 0.152766i
\(749\) −19.2870 −0.704733
\(750\) 0 0
\(751\) 48.4218 1.76694 0.883469 0.468490i \(-0.155202\pi\)
0.883469 + 0.468490i \(0.155202\pi\)
\(752\) − 7.28705i − 0.265731i
\(753\) − 9.95763i − 0.362876i
\(754\) 2.62706 0.0956719
\(755\) 0 0
\(756\) 3.41838 0.124325
\(757\) − 16.3058i − 0.592643i −0.955088 0.296322i \(-0.904240\pi\)
0.955088 0.296322i \(-0.0957601\pi\)
\(758\) 10.4146i 0.378277i
\(759\) 20.1926 0.732944
\(760\) 0 0
\(761\) −37.6100 −1.36336 −0.681681 0.731650i \(-0.738751\pi\)
−0.681681 + 0.731650i \(0.738751\pi\)
\(762\) 6.63138i 0.240230i
\(763\) 15.3903i 0.557167i
\(764\) −34.7901 −1.25866
\(765\) 0 0
\(766\) 16.5816 0.599116
\(767\) 85.3932i 3.08337i
\(768\) 6.90566i 0.249187i
\(769\) −35.9898 −1.29783 −0.648913 0.760863i \(-0.724776\pi\)
−0.648913 + 0.760863i \(0.724776\pi\)
\(770\) 0 0
\(771\) 37.8673 1.36376
\(772\) − 34.7794i − 1.25174i
\(773\) 11.1521i 0.401114i 0.979682 + 0.200557i \(0.0642752\pi\)
−0.979682 + 0.200557i \(0.935725\pi\)
\(774\) 11.5770 0.416128
\(775\) 0 0
\(776\) 4.49903 0.161506
\(777\) − 2.83532i − 0.101717i
\(778\) 11.4400i 0.410144i
\(779\) −0.564634 −0.0202301
\(780\) 0 0
\(781\) 2.75569 0.0986064
\(782\) 12.4238i 0.444274i
\(783\) − 1.12236i − 0.0401100i
\(784\) 12.5302 0.447506
\(785\) 0 0
\(786\) 19.2936 0.688181
\(787\) 28.9665i 1.03254i 0.856425 + 0.516271i \(0.172680\pi\)
−0.856425 + 0.516271i \(0.827320\pi\)
\(788\) 29.2078i 1.04048i
\(789\) −44.3975 −1.58059
\(790\) 0 0
\(791\) −23.9785 −0.852576
\(792\) 4.53502i 0.161145i
\(793\) 25.5974i 0.908991i
\(794\) −15.6137 −0.554109
\(795\) 0 0
\(796\) 21.8902 0.775879
\(797\) − 54.2642i − 1.92214i −0.276312 0.961068i \(-0.589112\pi\)
0.276312 0.961068i \(-0.410888\pi\)
\(798\) 4.54237i 0.160798i
\(799\) 8.02868 0.284034
\(800\) 0 0
\(801\) −15.4479 −0.545826
\(802\) − 14.5350i − 0.513249i
\(803\) − 0.817222i − 0.0288391i
\(804\) −31.9241 −1.12588
\(805\) 0 0
\(806\) 25.2403 0.889053
\(807\) − 22.1494i − 0.779695i
\(808\) 9.81640i 0.345340i
\(809\) −16.1657 −0.568355 −0.284177 0.958772i \(-0.591720\pi\)
−0.284177 + 0.958772i \(0.591720\pi\)
\(810\) 0 0
\(811\) −29.0693 −1.02076 −0.510381 0.859948i \(-0.670496\pi\)
−0.510381 + 0.859948i \(0.670496\pi\)
\(812\) 1.44069i 0.0505582i
\(813\) 8.39844i 0.294546i
\(814\) −0.535210 −0.0187591
\(815\) 0 0
\(816\) 13.2470 0.463738
\(817\) 26.9302i 0.942167i
\(818\) − 4.35412i − 0.152238i
\(819\) −19.6681 −0.687259
\(820\) 0 0
\(821\) 30.7078 1.07171 0.535855 0.844310i \(-0.319990\pi\)
0.535855 + 0.844310i \(0.319990\pi\)
\(822\) 4.13720i 0.144301i
\(823\) − 3.08648i − 0.107588i −0.998552 0.0537940i \(-0.982869\pi\)
0.998552 0.0537940i \(-0.0171314\pi\)
\(824\) −18.1701 −0.632985
\(825\) 0 0
\(826\) 8.28615 0.288312
\(827\) − 37.0441i − 1.28815i −0.764963 0.644074i \(-0.777243\pi\)
0.764963 0.644074i \(-0.222757\pi\)
\(828\) 35.0090i 1.21665i
\(829\) 45.3315 1.57443 0.787215 0.616679i \(-0.211522\pi\)
0.787215 + 0.616679i \(0.211522\pi\)
\(830\) 0 0
\(831\) −57.6532 −1.99997
\(832\) − 11.5674i − 0.401026i
\(833\) 13.8054i 0.478329i
\(834\) −0.707853 −0.0245109
\(835\) 0 0
\(836\) −4.84589 −0.167599
\(837\) − 10.7835i − 0.372732i
\(838\) − 17.4957i − 0.604379i
\(839\) 45.1775 1.55970 0.779850 0.625967i \(-0.215296\pi\)
0.779850 + 0.625967i \(0.215296\pi\)
\(840\) 0 0
\(841\) −28.5270 −0.983689
\(842\) 6.05569i 0.208693i
\(843\) − 26.5340i − 0.913879i
\(844\) 24.8560 0.855579
\(845\) 0 0
\(846\) −4.00312 −0.137630
\(847\) − 12.3852i − 0.425561i
\(848\) 2.94543i 0.101147i
\(849\) 70.6866 2.42596
\(850\) 0 0
\(851\) −8.99438 −0.308323
\(852\) 11.0353i 0.378062i
\(853\) 21.6482i 0.741220i 0.928789 + 0.370610i \(0.120851\pi\)
−0.928789 + 0.370610i \(0.879149\pi\)
\(854\) 2.48385 0.0849957
\(855\) 0 0
\(856\) −31.7385 −1.08480
\(857\) − 1.48050i − 0.0505729i −0.999680 0.0252865i \(-0.991950\pi\)
0.999680 0.0252865i \(-0.00804979\pi\)
\(858\) 8.57529i 0.292756i
\(859\) −20.1546 −0.687666 −0.343833 0.939031i \(-0.611725\pi\)
−0.343833 + 0.939031i \(0.611725\pi\)
\(860\) 0 0
\(861\) −0.547952 −0.0186741
\(862\) 21.9340i 0.747076i
\(863\) 9.07168i 0.308803i 0.988008 + 0.154402i \(0.0493450\pi\)
−0.988008 + 0.154402i \(0.950655\pi\)
\(864\) 8.66649 0.294840
\(865\) 0 0
\(866\) 1.87583 0.0637434
\(867\) − 24.5067i − 0.832291i
\(868\) 13.8419i 0.469824i
\(869\) 3.36086 0.114009
\(870\) 0 0
\(871\) −56.8946 −1.92780
\(872\) 25.3261i 0.857650i
\(873\) 5.08016i 0.171937i
\(874\) 14.4096 0.487411
\(875\) 0 0
\(876\) 3.27260 0.110571
\(877\) 3.52847i 0.119148i 0.998224 + 0.0595739i \(0.0189742\pi\)
−0.998224 + 0.0595739i \(0.981026\pi\)
\(878\) − 1.02649i − 0.0346424i
\(879\) 37.2980 1.25803
\(880\) 0 0
\(881\) −32.2604 −1.08688 −0.543441 0.839448i \(-0.682879\pi\)
−0.543441 + 0.839448i \(0.682879\pi\)
\(882\) − 6.88342i − 0.231777i
\(883\) 31.5621i 1.06215i 0.847326 + 0.531074i \(0.178211\pi\)
−0.847326 + 0.531074i \(0.821789\pi\)
\(884\) 29.8182 1.00290
\(885\) 0 0
\(886\) 21.4229 0.719717
\(887\) 34.8507i 1.17017i 0.810971 + 0.585087i \(0.198939\pi\)
−0.810971 + 0.585087i \(0.801061\pi\)
\(888\) − 4.66577i − 0.156573i
\(889\) −6.48121 −0.217373
\(890\) 0 0
\(891\) 10.3706 0.347428
\(892\) 6.11079i 0.204604i
\(893\) − 9.31195i − 0.311613i
\(894\) −16.0592 −0.537098
\(895\) 0 0
\(896\) −14.2153 −0.474899
\(897\) 144.111i 4.81172i
\(898\) − 15.2100i − 0.507566i
\(899\) 4.54473 0.151575
\(900\) 0 0
\(901\) −3.24520 −0.108113
\(902\) 0.103434i 0.00344398i
\(903\) 26.1345i 0.869701i
\(904\) −39.4587 −1.31238
\(905\) 0 0
\(906\) −22.9035 −0.760918
\(907\) 36.6888i 1.21823i 0.793081 + 0.609116i \(0.208476\pi\)
−0.793081 + 0.609116i \(0.791524\pi\)
\(908\) − 36.9236i − 1.22535i
\(909\) −11.0844 −0.367645
\(910\) 0 0
\(911\) 27.6843 0.917221 0.458610 0.888637i \(-0.348347\pi\)
0.458610 + 0.888637i \(0.348347\pi\)
\(912\) − 15.3644i − 0.508765i
\(913\) − 4.55776i − 0.150840i
\(914\) 2.16231 0.0715228
\(915\) 0 0
\(916\) 24.8234 0.820188
\(917\) 18.8567i 0.622704i
\(918\) 2.25411i 0.0743968i
\(919\) −34.3200 −1.13211 −0.566057 0.824366i \(-0.691532\pi\)
−0.566057 + 0.824366i \(0.691532\pi\)
\(920\) 0 0
\(921\) −0.998391 −0.0328981
\(922\) 17.1012i 0.563197i
\(923\) 19.6669i 0.647343i
\(924\) −4.70272 −0.154708
\(925\) 0 0
\(926\) 16.3410 0.536999
\(927\) − 20.5171i − 0.673869i
\(928\) 3.65252i 0.119900i
\(929\) 22.9783 0.753894 0.376947 0.926235i \(-0.376974\pi\)
0.376947 + 0.926235i \(0.376974\pi\)
\(930\) 0 0
\(931\) 16.0120 0.524772
\(932\) 31.4649i 1.03067i
\(933\) 48.3312i 1.58229i
\(934\) 9.58421 0.313605
\(935\) 0 0
\(936\) −32.3656 −1.05790
\(937\) − 45.7823i − 1.49564i −0.663899 0.747822i \(-0.731100\pi\)
0.663899 0.747822i \(-0.268900\pi\)
\(938\) 5.52079i 0.180260i
\(939\) 4.97451 0.162337
\(940\) 0 0
\(941\) −16.9929 −0.553952 −0.276976 0.960877i \(-0.589332\pi\)
−0.276976 + 0.960877i \(0.589332\pi\)
\(942\) 15.7841i 0.514274i
\(943\) 1.73825i 0.0566051i
\(944\) −28.0276 −0.912219
\(945\) 0 0
\(946\) 4.93328 0.160395
\(947\) 23.4730i 0.762769i 0.924417 + 0.381384i \(0.124553\pi\)
−0.924417 + 0.381384i \(0.875447\pi\)
\(948\) 13.4587i 0.437118i
\(949\) 5.83237 0.189327
\(950\) 0 0
\(951\) 65.3211 2.11818
\(952\) − 6.29881i − 0.204146i
\(953\) − 24.6541i − 0.798623i −0.916815 0.399312i \(-0.869249\pi\)
0.916815 0.399312i \(-0.130751\pi\)
\(954\) 1.61807 0.0523868
\(955\) 0 0
\(956\) −30.7314 −0.993924
\(957\) 1.54405i 0.0499121i
\(958\) 2.36325i 0.0763530i
\(959\) −4.04351 −0.130572
\(960\) 0 0
\(961\) 12.6649 0.408546
\(962\) − 3.81970i − 0.123152i
\(963\) − 35.8381i − 1.15487i
\(964\) −21.1809 −0.682191
\(965\) 0 0
\(966\) 13.9838 0.449922
\(967\) − 11.3662i − 0.365512i −0.983158 0.182756i \(-0.941498\pi\)
0.983158 0.182756i \(-0.0585019\pi\)
\(968\) − 20.3810i − 0.655070i
\(969\) 16.9281 0.543807
\(970\) 0 0
\(971\) −1.93826 −0.0622017 −0.0311008 0.999516i \(-0.509901\pi\)
−0.0311008 + 0.999516i \(0.509901\pi\)
\(972\) 33.2101i 1.06522i
\(973\) − 0.691822i − 0.0221788i
\(974\) 20.9056 0.669858
\(975\) 0 0
\(976\) −8.40152 −0.268926
\(977\) 12.9186i 0.413303i 0.978415 + 0.206651i \(0.0662566\pi\)
−0.978415 + 0.206651i \(0.933743\pi\)
\(978\) − 10.6046i − 0.339099i
\(979\) −6.58277 −0.210386
\(980\) 0 0
\(981\) −28.5974 −0.913046
\(982\) 19.7523i 0.630320i
\(983\) 42.8843i 1.36780i 0.729578 + 0.683898i \(0.239717\pi\)
−0.729578 + 0.683898i \(0.760283\pi\)
\(984\) −0.901703 −0.0287452
\(985\) 0 0
\(986\) −0.950002 −0.0302542
\(987\) − 9.03682i − 0.287645i
\(988\) − 34.5843i − 1.10027i
\(989\) 82.9054 2.63624
\(990\) 0 0
\(991\) −30.3017 −0.962564 −0.481282 0.876566i \(-0.659829\pi\)
−0.481282 + 0.876566i \(0.659829\pi\)
\(992\) 35.0927i 1.11419i
\(993\) − 37.3579i − 1.18552i
\(994\) 1.90838 0.0605302
\(995\) 0 0
\(996\) 18.2517 0.578328
\(997\) 9.76058i 0.309121i 0.987983 + 0.154560i \(0.0493961\pi\)
−0.987983 + 0.154560i \(0.950604\pi\)
\(998\) − 11.0699i − 0.350411i
\(999\) −1.63190 −0.0516309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.b.i.149.9 14
5.2 odd 4 925.2.a.k.1.3 yes 7
5.3 odd 4 925.2.a.j.1.5 7
5.4 even 2 inner 925.2.b.i.149.6 14
15.2 even 4 8325.2.a.cm.1.5 7
15.8 even 4 8325.2.a.cn.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.a.j.1.5 7 5.3 odd 4
925.2.a.k.1.3 yes 7 5.2 odd 4
925.2.b.i.149.6 14 5.4 even 2 inner
925.2.b.i.149.9 14 1.1 even 1 trivial
8325.2.a.cm.1.5 7 15.2 even 4
8325.2.a.cn.1.3 7 15.8 even 4