Properties

Label 8325.2.a.cm.1.5
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8325,2,Mod(1,8325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-1,0,7,0,0,0,0,0,0,-16,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 9x^{4} + 26x^{3} - 23x^{2} - 9x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 925)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.548343\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.548343 q^{2} -1.69932 q^{4} -1.23269 q^{7} -2.02850 q^{8} +0.976048 q^{11} -6.96588 q^{13} -0.675937 q^{14} +2.28633 q^{16} +2.51901 q^{17} -2.92164 q^{19} +0.535210 q^{22} +8.99438 q^{23} -3.81970 q^{26} +2.09473 q^{28} +0.687767 q^{29} +6.60794 q^{31} +5.31069 q^{32} +1.38128 q^{34} +1.00000 q^{37} -1.60206 q^{38} +0.193259 q^{41} +9.21747 q^{43} -1.65862 q^{44} +4.93201 q^{46} -3.18723 q^{47} -5.48048 q^{49} +11.8373 q^{52} -1.28828 q^{53} +2.50051 q^{56} +0.377133 q^{58} -12.2588 q^{59} -3.67468 q^{61} +3.62342 q^{62} -1.66057 q^{64} +8.16762 q^{67} -4.28061 q^{68} +2.82331 q^{71} +0.837276 q^{73} +0.548343 q^{74} +4.96481 q^{76} -1.20316 q^{77} +3.44333 q^{79} +0.105972 q^{82} -4.66960 q^{83} +5.05434 q^{86} -1.97991 q^{88} +6.74431 q^{89} +8.58676 q^{91} -15.2843 q^{92} -1.74770 q^{94} +2.21791 q^{97} -3.00518 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 7 q^{4} - 16 q^{11} - q^{13} + 3 q^{14} + 3 q^{16} - 4 q^{17} + 9 q^{19} + q^{22} + q^{23} - 24 q^{26} + 7 q^{28} - 3 q^{29} + 11 q^{31} - 21 q^{32} - 23 q^{34} + 7 q^{37} + 32 q^{38}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.548343 0.387737 0.193869 0.981027i \(-0.437896\pi\)
0.193869 + 0.981027i \(0.437896\pi\)
\(3\) 0 0
\(4\) −1.69932 −0.849660
\(5\) 0 0
\(6\) 0 0
\(7\) −1.23269 −0.465912 −0.232956 0.972487i \(-0.574840\pi\)
−0.232956 + 0.972487i \(0.574840\pi\)
\(8\) −2.02850 −0.717182
\(9\) 0 0
\(10\) 0 0
\(11\) 0.976048 0.294290 0.147145 0.989115i \(-0.452992\pi\)
0.147145 + 0.989115i \(0.452992\pi\)
\(12\) 0 0
\(13\) −6.96588 −1.93199 −0.965994 0.258564i \(-0.916751\pi\)
−0.965994 + 0.258564i \(0.916751\pi\)
\(14\) −0.675937 −0.180652
\(15\) 0 0
\(16\) 2.28633 0.571582
\(17\) 2.51901 0.610951 0.305475 0.952200i \(-0.401185\pi\)
0.305475 + 0.952200i \(0.401185\pi\)
\(18\) 0 0
\(19\) −2.92164 −0.670271 −0.335136 0.942170i \(-0.608782\pi\)
−0.335136 + 0.942170i \(0.608782\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.535210 0.114107
\(23\) 8.99438 1.87546 0.937729 0.347368i \(-0.112925\pi\)
0.937729 + 0.347368i \(0.112925\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.81970 −0.749104
\(27\) 0 0
\(28\) 2.09473 0.395867
\(29\) 0.687767 0.127715 0.0638576 0.997959i \(-0.479660\pi\)
0.0638576 + 0.997959i \(0.479660\pi\)
\(30\) 0 0
\(31\) 6.60794 1.18682 0.593411 0.804900i \(-0.297781\pi\)
0.593411 + 0.804900i \(0.297781\pi\)
\(32\) 5.31069 0.938806
\(33\) 0 0
\(34\) 1.38128 0.236888
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) −1.60206 −0.259889
\(39\) 0 0
\(40\) 0 0
\(41\) 0.193259 0.0301820 0.0150910 0.999886i \(-0.495196\pi\)
0.0150910 + 0.999886i \(0.495196\pi\)
\(42\) 0 0
\(43\) 9.21747 1.40565 0.702826 0.711362i \(-0.251921\pi\)
0.702826 + 0.711362i \(0.251921\pi\)
\(44\) −1.65862 −0.250046
\(45\) 0 0
\(46\) 4.93201 0.727185
\(47\) −3.18723 −0.464905 −0.232453 0.972608i \(-0.574675\pi\)
−0.232453 + 0.972608i \(0.574675\pi\)
\(48\) 0 0
\(49\) −5.48048 −0.782926
\(50\) 0 0
\(51\) 0 0
\(52\) 11.8373 1.64153
\(53\) −1.28828 −0.176959 −0.0884795 0.996078i \(-0.528201\pi\)
−0.0884795 + 0.996078i \(0.528201\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.50051 0.334144
\(57\) 0 0
\(58\) 0.377133 0.0495199
\(59\) −12.2588 −1.59596 −0.797978 0.602686i \(-0.794097\pi\)
−0.797978 + 0.602686i \(0.794097\pi\)
\(60\) 0 0
\(61\) −3.67468 −0.470495 −0.235247 0.971936i \(-0.575590\pi\)
−0.235247 + 0.971936i \(0.575590\pi\)
\(62\) 3.62342 0.460175
\(63\) 0 0
\(64\) −1.66057 −0.207572
\(65\) 0 0
\(66\) 0 0
\(67\) 8.16762 0.997833 0.498917 0.866650i \(-0.333731\pi\)
0.498917 + 0.866650i \(0.333731\pi\)
\(68\) −4.28061 −0.519100
\(69\) 0 0
\(70\) 0 0
\(71\) 2.82331 0.335066 0.167533 0.985866i \(-0.446420\pi\)
0.167533 + 0.985866i \(0.446420\pi\)
\(72\) 0 0
\(73\) 0.837276 0.0979958 0.0489979 0.998799i \(-0.484397\pi\)
0.0489979 + 0.998799i \(0.484397\pi\)
\(74\) 0.548343 0.0637436
\(75\) 0 0
\(76\) 4.96481 0.569503
\(77\) −1.20316 −0.137113
\(78\) 0 0
\(79\) 3.44333 0.387405 0.193703 0.981060i \(-0.437950\pi\)
0.193703 + 0.981060i \(0.437950\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.105972 0.0117027
\(83\) −4.66960 −0.512555 −0.256278 0.966603i \(-0.582496\pi\)
−0.256278 + 0.966603i \(0.582496\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.05434 0.545023
\(87\) 0 0
\(88\) −1.97991 −0.211059
\(89\) 6.74431 0.714895 0.357448 0.933933i \(-0.383647\pi\)
0.357448 + 0.933933i \(0.383647\pi\)
\(90\) 0 0
\(91\) 8.58676 0.900137
\(92\) −15.2843 −1.59350
\(93\) 0 0
\(94\) −1.74770 −0.180261
\(95\) 0 0
\(96\) 0 0
\(97\) 2.21791 0.225195 0.112597 0.993641i \(-0.464083\pi\)
0.112597 + 0.993641i \(0.464083\pi\)
\(98\) −3.00518 −0.303569
\(99\) 0 0
\(100\) 0 0
\(101\) −4.83925 −0.481523 −0.240762 0.970584i \(-0.577397\pi\)
−0.240762 + 0.970584i \(0.577397\pi\)
\(102\) 0 0
\(103\) 8.95741 0.882600 0.441300 0.897360i \(-0.354517\pi\)
0.441300 + 0.897360i \(0.354517\pi\)
\(104\) 14.1303 1.38559
\(105\) 0 0
\(106\) −0.706420 −0.0686136
\(107\) 15.6463 1.51259 0.756293 0.654233i \(-0.227008\pi\)
0.756293 + 0.654233i \(0.227008\pi\)
\(108\) 0 0
\(109\) −12.4852 −1.19586 −0.597931 0.801548i \(-0.704010\pi\)
−0.597931 + 0.801548i \(0.704010\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.81833 −0.266307
\(113\) −19.4522 −1.82991 −0.914953 0.403561i \(-0.867772\pi\)
−0.914953 + 0.403561i \(0.867772\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.16874 −0.108514
\(117\) 0 0
\(118\) −6.72202 −0.618812
\(119\) −3.10516 −0.284650
\(120\) 0 0
\(121\) −10.0473 −0.913394
\(122\) −2.01499 −0.182428
\(123\) 0 0
\(124\) −11.2290 −1.00839
\(125\) 0 0
\(126\) 0 0
\(127\) −5.25778 −0.466553 −0.233276 0.972410i \(-0.574945\pi\)
−0.233276 + 0.972410i \(0.574945\pi\)
\(128\) −11.5319 −1.01929
\(129\) 0 0
\(130\) 0 0
\(131\) −15.2972 −1.33653 −0.668263 0.743926i \(-0.732962\pi\)
−0.668263 + 0.743926i \(0.732962\pi\)
\(132\) 0 0
\(133\) 3.60148 0.312288
\(134\) 4.47866 0.386897
\(135\) 0 0
\(136\) −5.10981 −0.438163
\(137\) 3.28024 0.280249 0.140125 0.990134i \(-0.455250\pi\)
0.140125 + 0.990134i \(0.455250\pi\)
\(138\) 0 0
\(139\) 0.561230 0.0476029 0.0238015 0.999717i \(-0.492423\pi\)
0.0238015 + 0.999717i \(0.492423\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.54815 0.129918
\(143\) −6.79904 −0.568564
\(144\) 0 0
\(145\) 0 0
\(146\) 0.459115 0.0379966
\(147\) 0 0
\(148\) −1.69932 −0.139683
\(149\) −12.7327 −1.04311 −0.521553 0.853219i \(-0.674647\pi\)
−0.521553 + 0.853219i \(0.674647\pi\)
\(150\) 0 0
\(151\) −18.1594 −1.47779 −0.738894 0.673822i \(-0.764651\pi\)
−0.738894 + 0.673822i \(0.764651\pi\)
\(152\) 5.92655 0.480707
\(153\) 0 0
\(154\) −0.659747 −0.0531639
\(155\) 0 0
\(156\) 0 0
\(157\) −12.5146 −0.998777 −0.499388 0.866378i \(-0.666442\pi\)
−0.499388 + 0.866378i \(0.666442\pi\)
\(158\) 1.88813 0.150211
\(159\) 0 0
\(160\) 0 0
\(161\) −11.0873 −0.873799
\(162\) 0 0
\(163\) −8.40802 −0.658567 −0.329284 0.944231i \(-0.606807\pi\)
−0.329284 + 0.944231i \(0.606807\pi\)
\(164\) −0.328409 −0.0256444
\(165\) 0 0
\(166\) −2.56055 −0.198737
\(167\) −11.9553 −0.925130 −0.462565 0.886585i \(-0.653071\pi\)
−0.462565 + 0.886585i \(0.653071\pi\)
\(168\) 0 0
\(169\) 35.5235 2.73258
\(170\) 0 0
\(171\) 0 0
\(172\) −15.6634 −1.19433
\(173\) −21.6980 −1.64967 −0.824834 0.565375i \(-0.808732\pi\)
−0.824834 + 0.565375i \(0.808732\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.23156 0.168211
\(177\) 0 0
\(178\) 3.69820 0.277192
\(179\) 3.99480 0.298586 0.149293 0.988793i \(-0.452300\pi\)
0.149293 + 0.988793i \(0.452300\pi\)
\(180\) 0 0
\(181\) 17.2016 1.27859 0.639293 0.768964i \(-0.279227\pi\)
0.639293 + 0.768964i \(0.279227\pi\)
\(182\) 4.70849 0.349017
\(183\) 0 0
\(184\) −18.2451 −1.34504
\(185\) 0 0
\(186\) 0 0
\(187\) 2.45868 0.179797
\(188\) 5.41612 0.395011
\(189\) 0 0
\(190\) 0 0
\(191\) 20.4730 1.48137 0.740686 0.671852i \(-0.234501\pi\)
0.740686 + 0.671852i \(0.234501\pi\)
\(192\) 0 0
\(193\) −20.4667 −1.47322 −0.736611 0.676317i \(-0.763575\pi\)
−0.736611 + 0.676317i \(0.763575\pi\)
\(194\) 1.21618 0.0873164
\(195\) 0 0
\(196\) 9.31309 0.665220
\(197\) 17.1879 1.22459 0.612294 0.790630i \(-0.290247\pi\)
0.612294 + 0.790630i \(0.290247\pi\)
\(198\) 0 0
\(199\) −12.8818 −0.913164 −0.456582 0.889681i \(-0.650926\pi\)
−0.456582 + 0.889681i \(0.650926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2.65357 −0.186704
\(203\) −0.847803 −0.0595041
\(204\) 0 0
\(205\) 0 0
\(206\) 4.91174 0.342217
\(207\) 0 0
\(208\) −15.9263 −1.10429
\(209\) −2.85167 −0.197254
\(210\) 0 0
\(211\) 14.6270 1.00697 0.503484 0.864005i \(-0.332051\pi\)
0.503484 + 0.864005i \(0.332051\pi\)
\(212\) 2.18920 0.150355
\(213\) 0 0
\(214\) 8.57955 0.586486
\(215\) 0 0
\(216\) 0 0
\(217\) −8.14554 −0.552955
\(218\) −6.84615 −0.463680
\(219\) 0 0
\(220\) 0 0
\(221\) −17.5472 −1.18035
\(222\) 0 0
\(223\) 3.59602 0.240807 0.120404 0.992725i \(-0.461581\pi\)
0.120404 + 0.992725i \(0.461581\pi\)
\(224\) −6.54642 −0.437401
\(225\) 0 0
\(226\) −10.6665 −0.709523
\(227\) −21.7284 −1.44217 −0.721084 0.692848i \(-0.756356\pi\)
−0.721084 + 0.692848i \(0.756356\pi\)
\(228\) 0 0
\(229\) −14.6078 −0.965314 −0.482657 0.875809i \(-0.660328\pi\)
−0.482657 + 0.875809i \(0.660328\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.39513 −0.0915950
\(233\) −18.5161 −1.21303 −0.606517 0.795071i \(-0.707434\pi\)
−0.606517 + 0.795071i \(0.707434\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 20.8316 1.35602
\(237\) 0 0
\(238\) −1.70269 −0.110369
\(239\) −18.0845 −1.16979 −0.584896 0.811109i \(-0.698864\pi\)
−0.584896 + 0.811109i \(0.698864\pi\)
\(240\) 0 0
\(241\) −12.4643 −0.802899 −0.401449 0.915881i \(-0.631493\pi\)
−0.401449 + 0.915881i \(0.631493\pi\)
\(242\) −5.50939 −0.354157
\(243\) 0 0
\(244\) 6.24446 0.399761
\(245\) 0 0
\(246\) 0 0
\(247\) 20.3518 1.29496
\(248\) −13.4042 −0.851167
\(249\) 0 0
\(250\) 0 0
\(251\) −4.32919 −0.273256 −0.136628 0.990622i \(-0.543627\pi\)
−0.136628 + 0.990622i \(0.543627\pi\)
\(252\) 0 0
\(253\) 8.77895 0.551928
\(254\) −2.88307 −0.180900
\(255\) 0 0
\(256\) −3.00231 −0.187645
\(257\) 16.4633 1.02695 0.513475 0.858105i \(-0.328358\pi\)
0.513475 + 0.858105i \(0.328358\pi\)
\(258\) 0 0
\(259\) −1.23269 −0.0765955
\(260\) 0 0
\(261\) 0 0
\(262\) −8.38813 −0.518221
\(263\) 19.3023 1.19023 0.595116 0.803640i \(-0.297106\pi\)
0.595116 + 0.803640i \(0.297106\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.97485 0.121086
\(267\) 0 0
\(268\) −13.8794 −0.847819
\(269\) 9.62970 0.587133 0.293567 0.955939i \(-0.405158\pi\)
0.293567 + 0.955939i \(0.405158\pi\)
\(270\) 0 0
\(271\) −3.65132 −0.221802 −0.110901 0.993831i \(-0.535374\pi\)
−0.110901 + 0.993831i \(0.535374\pi\)
\(272\) 5.75929 0.349208
\(273\) 0 0
\(274\) 1.79870 0.108663
\(275\) 0 0
\(276\) 0 0
\(277\) 25.0654 1.50603 0.753017 0.658002i \(-0.228598\pi\)
0.753017 + 0.658002i \(0.228598\pi\)
\(278\) 0.307747 0.0184574
\(279\) 0 0
\(280\) 0 0
\(281\) −11.5359 −0.688177 −0.344089 0.938937i \(-0.611812\pi\)
−0.344089 + 0.938937i \(0.611812\pi\)
\(282\) 0 0
\(283\) 30.7318 1.82682 0.913408 0.407045i \(-0.133441\pi\)
0.913408 + 0.407045i \(0.133441\pi\)
\(284\) −4.79771 −0.284692
\(285\) 0 0
\(286\) −3.72821 −0.220454
\(287\) −0.238228 −0.0140622
\(288\) 0 0
\(289\) −10.6546 −0.626739
\(290\) 0 0
\(291\) 0 0
\(292\) −1.42280 −0.0832631
\(293\) −16.2157 −0.947332 −0.473666 0.880705i \(-0.657070\pi\)
−0.473666 + 0.880705i \(0.657070\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.02850 −0.117904
\(297\) 0 0
\(298\) −6.98190 −0.404451
\(299\) −62.6538 −3.62336
\(300\) 0 0
\(301\) −11.3623 −0.654910
\(302\) −9.95756 −0.572993
\(303\) 0 0
\(304\) −6.67983 −0.383115
\(305\) 0 0
\(306\) 0 0
\(307\) 0.434062 0.0247732 0.0123866 0.999923i \(-0.496057\pi\)
0.0123866 + 0.999923i \(0.496057\pi\)
\(308\) 2.04456 0.116500
\(309\) 0 0
\(310\) 0 0
\(311\) 21.0126 1.19151 0.595756 0.803165i \(-0.296852\pi\)
0.595756 + 0.803165i \(0.296852\pi\)
\(312\) 0 0
\(313\) 2.16272 0.122244 0.0611222 0.998130i \(-0.480532\pi\)
0.0611222 + 0.998130i \(0.480532\pi\)
\(314\) −6.86232 −0.387263
\(315\) 0 0
\(316\) −5.85132 −0.329162
\(317\) 28.3991 1.59505 0.797526 0.603284i \(-0.206142\pi\)
0.797526 + 0.603284i \(0.206142\pi\)
\(318\) 0 0
\(319\) 0.671294 0.0375853
\(320\) 0 0
\(321\) 0 0
\(322\) −6.07963 −0.338805
\(323\) −7.35967 −0.409503
\(324\) 0 0
\(325\) 0 0
\(326\) −4.61048 −0.255351
\(327\) 0 0
\(328\) −0.392026 −0.0216460
\(329\) 3.92886 0.216605
\(330\) 0 0
\(331\) 16.2418 0.892728 0.446364 0.894851i \(-0.352719\pi\)
0.446364 + 0.894851i \(0.352719\pi\)
\(332\) 7.93515 0.435498
\(333\) 0 0
\(334\) −6.55561 −0.358707
\(335\) 0 0
\(336\) 0 0
\(337\) −11.0000 −0.599207 −0.299604 0.954064i \(-0.596854\pi\)
−0.299604 + 0.954064i \(0.596854\pi\)
\(338\) 19.4791 1.05952
\(339\) 0 0
\(340\) 0 0
\(341\) 6.44967 0.349269
\(342\) 0 0
\(343\) 15.3845 0.830687
\(344\) −18.6976 −1.00811
\(345\) 0 0
\(346\) −11.8980 −0.639638
\(347\) −8.15833 −0.437962 −0.218981 0.975729i \(-0.570273\pi\)
−0.218981 + 0.975729i \(0.570273\pi\)
\(348\) 0 0
\(349\) −28.2422 −1.51177 −0.755886 0.654704i \(-0.772793\pi\)
−0.755886 + 0.654704i \(0.772793\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.18349 0.276281
\(353\) −1.95167 −0.103877 −0.0519385 0.998650i \(-0.516540\pi\)
−0.0519385 + 0.998650i \(0.516540\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −11.4607 −0.607418
\(357\) 0 0
\(358\) 2.19052 0.115773
\(359\) −25.2874 −1.33462 −0.667310 0.744780i \(-0.732554\pi\)
−0.667310 + 0.744780i \(0.732554\pi\)
\(360\) 0 0
\(361\) −10.4640 −0.550736
\(362\) 9.43239 0.495755
\(363\) 0 0
\(364\) −14.5917 −0.764811
\(365\) 0 0
\(366\) 0 0
\(367\) 7.03397 0.367170 0.183585 0.983004i \(-0.441230\pi\)
0.183585 + 0.983004i \(0.441230\pi\)
\(368\) 20.5641 1.07198
\(369\) 0 0
\(370\) 0 0
\(371\) 1.58805 0.0824474
\(372\) 0 0
\(373\) 25.0922 1.29923 0.649613 0.760265i \(-0.274931\pi\)
0.649613 + 0.760265i \(0.274931\pi\)
\(374\) 1.34820 0.0697138
\(375\) 0 0
\(376\) 6.46529 0.333422
\(377\) −4.79091 −0.246744
\(378\) 0 0
\(379\) −18.9929 −0.975601 −0.487801 0.872955i \(-0.662201\pi\)
−0.487801 + 0.872955i \(0.662201\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 11.2262 0.574383
\(383\) 30.2394 1.54516 0.772580 0.634918i \(-0.218966\pi\)
0.772580 + 0.634918i \(0.218966\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.2228 −0.571223
\(387\) 0 0
\(388\) −3.76894 −0.191339
\(389\) 20.8628 1.05779 0.528894 0.848688i \(-0.322607\pi\)
0.528894 + 0.848688i \(0.322607\pi\)
\(390\) 0 0
\(391\) 22.6570 1.14581
\(392\) 11.1171 0.561500
\(393\) 0 0
\(394\) 9.42488 0.474819
\(395\) 0 0
\(396\) 0 0
\(397\) −28.4743 −1.42908 −0.714541 0.699593i \(-0.753365\pi\)
−0.714541 + 0.699593i \(0.753365\pi\)
\(398\) −7.06363 −0.354068
\(399\) 0 0
\(400\) 0 0
\(401\) 26.5071 1.32370 0.661851 0.749636i \(-0.269771\pi\)
0.661851 + 0.749636i \(0.269771\pi\)
\(402\) 0 0
\(403\) −46.0302 −2.29293
\(404\) 8.22343 0.409131
\(405\) 0 0
\(406\) −0.464887 −0.0230720
\(407\) 0.976048 0.0483809
\(408\) 0 0
\(409\) 7.94050 0.392632 0.196316 0.980541i \(-0.437102\pi\)
0.196316 + 0.980541i \(0.437102\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −15.2215 −0.749910
\(413\) 15.1113 0.743576
\(414\) 0 0
\(415\) 0 0
\(416\) −36.9936 −1.81376
\(417\) 0 0
\(418\) −1.56369 −0.0764827
\(419\) −31.9064 −1.55873 −0.779366 0.626569i \(-0.784459\pi\)
−0.779366 + 0.626569i \(0.784459\pi\)
\(420\) 0 0
\(421\) 11.0436 0.538232 0.269116 0.963108i \(-0.413268\pi\)
0.269116 + 0.963108i \(0.413268\pi\)
\(422\) 8.02064 0.390439
\(423\) 0 0
\(424\) 2.61327 0.126912
\(425\) 0 0
\(426\) 0 0
\(427\) 4.52974 0.219209
\(428\) −26.5881 −1.28518
\(429\) 0 0
\(430\) 0 0
\(431\) −40.0005 −1.92676 −0.963379 0.268143i \(-0.913590\pi\)
−0.963379 + 0.268143i \(0.913590\pi\)
\(432\) 0 0
\(433\) −3.42091 −0.164398 −0.0821992 0.996616i \(-0.526194\pi\)
−0.0821992 + 0.996616i \(0.526194\pi\)
\(434\) −4.46655 −0.214401
\(435\) 0 0
\(436\) 21.2163 1.01608
\(437\) −26.2784 −1.25707
\(438\) 0 0
\(439\) 1.87199 0.0893451 0.0446725 0.999002i \(-0.485776\pi\)
0.0446725 + 0.999002i \(0.485776\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.62187 −0.457666
\(443\) 39.0684 1.85620 0.928098 0.372335i \(-0.121443\pi\)
0.928098 + 0.372335i \(0.121443\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.97185 0.0933700
\(447\) 0 0
\(448\) 2.04697 0.0967102
\(449\) −27.7382 −1.30905 −0.654523 0.756042i \(-0.727130\pi\)
−0.654523 + 0.756042i \(0.727130\pi\)
\(450\) 0 0
\(451\) 0.188630 0.00888225
\(452\) 33.0554 1.55480
\(453\) 0 0
\(454\) −11.9146 −0.559182
\(455\) 0 0
\(456\) 0 0
\(457\) 3.94335 0.184462 0.0922310 0.995738i \(-0.470600\pi\)
0.0922310 + 0.995738i \(0.470600\pi\)
\(458\) −8.01012 −0.374288
\(459\) 0 0
\(460\) 0 0
\(461\) −31.1870 −1.45252 −0.726261 0.687419i \(-0.758744\pi\)
−0.726261 + 0.687419i \(0.758744\pi\)
\(462\) 0 0
\(463\) −29.8007 −1.38496 −0.692478 0.721439i \(-0.743481\pi\)
−0.692478 + 0.721439i \(0.743481\pi\)
\(464\) 1.57246 0.0729996
\(465\) 0 0
\(466\) −10.1532 −0.470338
\(467\) −17.4785 −0.808807 −0.404404 0.914581i \(-0.632521\pi\)
−0.404404 + 0.914581i \(0.632521\pi\)
\(468\) 0 0
\(469\) −10.0681 −0.464903
\(470\) 0 0
\(471\) 0 0
\(472\) 24.8669 1.14459
\(473\) 8.99670 0.413669
\(474\) 0 0
\(475\) 0 0
\(476\) 5.27666 0.241855
\(477\) 0 0
\(478\) −9.91653 −0.453572
\(479\) 4.30979 0.196919 0.0984597 0.995141i \(-0.468608\pi\)
0.0984597 + 0.995141i \(0.468608\pi\)
\(480\) 0 0
\(481\) −6.96588 −0.317617
\(482\) −6.83474 −0.311314
\(483\) 0 0
\(484\) 17.0736 0.776074
\(485\) 0 0
\(486\) 0 0
\(487\) 38.1250 1.72761 0.863804 0.503829i \(-0.168076\pi\)
0.863804 + 0.503829i \(0.168076\pi\)
\(488\) 7.45408 0.337430
\(489\) 0 0
\(490\) 0 0
\(491\) −36.0217 −1.62564 −0.812818 0.582517i \(-0.802068\pi\)
−0.812818 + 0.582517i \(0.802068\pi\)
\(492\) 0 0
\(493\) 1.73250 0.0780277
\(494\) 11.1598 0.502103
\(495\) 0 0
\(496\) 15.1079 0.678366
\(497\) −3.48027 −0.156111
\(498\) 0 0
\(499\) 20.1879 0.903733 0.451867 0.892085i \(-0.350758\pi\)
0.451867 + 0.892085i \(0.350758\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.37388 −0.105952
\(503\) −3.01511 −0.134437 −0.0672185 0.997738i \(-0.521412\pi\)
−0.0672185 + 0.997738i \(0.521412\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.81388 0.214003
\(507\) 0 0
\(508\) 8.93465 0.396411
\(509\) −24.8656 −1.10215 −0.551073 0.834457i \(-0.685782\pi\)
−0.551073 + 0.834457i \(0.685782\pi\)
\(510\) 0 0
\(511\) −1.03210 −0.0456575
\(512\) 21.4176 0.946532
\(513\) 0 0
\(514\) 9.02752 0.398187
\(515\) 0 0
\(516\) 0 0
\(517\) −3.11089 −0.136817
\(518\) −0.675937 −0.0296989
\(519\) 0 0
\(520\) 0 0
\(521\) −38.3050 −1.67817 −0.839085 0.544000i \(-0.816909\pi\)
−0.839085 + 0.544000i \(0.816909\pi\)
\(522\) 0 0
\(523\) 3.02688 0.132356 0.0661781 0.997808i \(-0.478919\pi\)
0.0661781 + 0.997808i \(0.478919\pi\)
\(524\) 25.9949 1.13559
\(525\) 0 0
\(526\) 10.5843 0.461497
\(527\) 16.6455 0.725090
\(528\) 0 0
\(529\) 57.8989 2.51734
\(530\) 0 0
\(531\) 0 0
\(532\) −6.12006 −0.265338
\(533\) −1.34622 −0.0583113
\(534\) 0 0
\(535\) 0 0
\(536\) −16.5680 −0.715628
\(537\) 0 0
\(538\) 5.28038 0.227653
\(539\) −5.34921 −0.230407
\(540\) 0 0
\(541\) −26.8271 −1.15339 −0.576693 0.816961i \(-0.695657\pi\)
−0.576693 + 0.816961i \(0.695657\pi\)
\(542\) −2.00218 −0.0860008
\(543\) 0 0
\(544\) 13.3777 0.573564
\(545\) 0 0
\(546\) 0 0
\(547\) −28.1420 −1.20326 −0.601632 0.798773i \(-0.705483\pi\)
−0.601632 + 0.798773i \(0.705483\pi\)
\(548\) −5.57417 −0.238117
\(549\) 0 0
\(550\) 0 0
\(551\) −2.00941 −0.0856038
\(552\) 0 0
\(553\) −4.24455 −0.180497
\(554\) 13.7444 0.583945
\(555\) 0 0
\(556\) −0.953710 −0.0404463
\(557\) −16.3022 −0.690748 −0.345374 0.938465i \(-0.612248\pi\)
−0.345374 + 0.938465i \(0.612248\pi\)
\(558\) 0 0
\(559\) −64.2078 −2.71570
\(560\) 0 0
\(561\) 0 0
\(562\) −6.32566 −0.266832
\(563\) −10.0364 −0.422985 −0.211492 0.977380i \(-0.567832\pi\)
−0.211492 + 0.977380i \(0.567832\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.8516 0.708325
\(567\) 0 0
\(568\) −5.72709 −0.240303
\(569\) 4.06296 0.170328 0.0851640 0.996367i \(-0.472859\pi\)
0.0851640 + 0.996367i \(0.472859\pi\)
\(570\) 0 0
\(571\) −30.9715 −1.29612 −0.648058 0.761591i \(-0.724418\pi\)
−0.648058 + 0.761591i \(0.724418\pi\)
\(572\) 11.5537 0.483086
\(573\) 0 0
\(574\) −0.130631 −0.00545243
\(575\) 0 0
\(576\) 0 0
\(577\) −1.38260 −0.0575583 −0.0287792 0.999586i \(-0.509162\pi\)
−0.0287792 + 0.999586i \(0.509162\pi\)
\(578\) −5.84236 −0.243010
\(579\) 0 0
\(580\) 0 0
\(581\) 5.75616 0.238806
\(582\) 0 0
\(583\) −1.25742 −0.0520772
\(584\) −1.69841 −0.0702808
\(585\) 0 0
\(586\) −8.89178 −0.367316
\(587\) −20.3736 −0.840907 −0.420453 0.907314i \(-0.638129\pi\)
−0.420453 + 0.907314i \(0.638129\pi\)
\(588\) 0 0
\(589\) −19.3061 −0.795493
\(590\) 0 0
\(591\) 0 0
\(592\) 2.28633 0.0939674
\(593\) −28.4271 −1.16736 −0.583681 0.811983i \(-0.698388\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 21.6370 0.886284
\(597\) 0 0
\(598\) −34.3558 −1.40491
\(599\) −4.99991 −0.204291 −0.102145 0.994769i \(-0.532571\pi\)
−0.102145 + 0.994769i \(0.532571\pi\)
\(600\) 0 0
\(601\) −26.3404 −1.07445 −0.537223 0.843440i \(-0.680527\pi\)
−0.537223 + 0.843440i \(0.680527\pi\)
\(602\) −6.23043 −0.253933
\(603\) 0 0
\(604\) 30.8585 1.25562
\(605\) 0 0
\(606\) 0 0
\(607\) 21.0686 0.855147 0.427573 0.903981i \(-0.359369\pi\)
0.427573 + 0.903981i \(0.359369\pi\)
\(608\) −15.5159 −0.629254
\(609\) 0 0
\(610\) 0 0
\(611\) 22.2019 0.898192
\(612\) 0 0
\(613\) −2.19848 −0.0887959 −0.0443980 0.999014i \(-0.514137\pi\)
−0.0443980 + 0.999014i \(0.514137\pi\)
\(614\) 0.238015 0.00960551
\(615\) 0 0
\(616\) 2.44061 0.0983351
\(617\) −19.0587 −0.767275 −0.383638 0.923484i \(-0.625329\pi\)
−0.383638 + 0.923484i \(0.625329\pi\)
\(618\) 0 0
\(619\) 26.9627 1.08372 0.541862 0.840467i \(-0.317720\pi\)
0.541862 + 0.840467i \(0.317720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 11.5221 0.461994
\(623\) −8.31363 −0.333079
\(624\) 0 0
\(625\) 0 0
\(626\) 1.18592 0.0473987
\(627\) 0 0
\(628\) 21.2664 0.848620
\(629\) 2.51901 0.100440
\(630\) 0 0
\(631\) −32.6629 −1.30029 −0.650145 0.759810i \(-0.725292\pi\)
−0.650145 + 0.759810i \(0.725292\pi\)
\(632\) −6.98479 −0.277840
\(633\) 0 0
\(634\) 15.5725 0.618461
\(635\) 0 0
\(636\) 0 0
\(637\) 38.1764 1.51260
\(638\) 0.368100 0.0145732
\(639\) 0 0
\(640\) 0 0
\(641\) 33.9051 1.33917 0.669586 0.742735i \(-0.266472\pi\)
0.669586 + 0.742735i \(0.266472\pi\)
\(642\) 0 0
\(643\) −23.2105 −0.915331 −0.457666 0.889124i \(-0.651314\pi\)
−0.457666 + 0.889124i \(0.651314\pi\)
\(644\) 18.8408 0.742432
\(645\) 0 0
\(646\) −4.03562 −0.158779
\(647\) −23.4822 −0.923180 −0.461590 0.887093i \(-0.652721\pi\)
−0.461590 + 0.887093i \(0.652721\pi\)
\(648\) 0 0
\(649\) −11.9652 −0.469674
\(650\) 0 0
\(651\) 0 0
\(652\) 14.2879 0.559558
\(653\) −6.98761 −0.273446 −0.136723 0.990609i \(-0.543657\pi\)
−0.136723 + 0.990609i \(0.543657\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.441853 0.0172515
\(657\) 0 0
\(658\) 2.15437 0.0839859
\(659\) −13.4171 −0.522656 −0.261328 0.965250i \(-0.584160\pi\)
−0.261328 + 0.965250i \(0.584160\pi\)
\(660\) 0 0
\(661\) 4.09587 0.159311 0.0796555 0.996822i \(-0.474618\pi\)
0.0796555 + 0.996822i \(0.474618\pi\)
\(662\) 8.90606 0.346144
\(663\) 0 0
\(664\) 9.47227 0.367596
\(665\) 0 0
\(666\) 0 0
\(667\) 6.18604 0.239524
\(668\) 20.3159 0.786045
\(669\) 0 0
\(670\) 0 0
\(671\) −3.58667 −0.138462
\(672\) 0 0
\(673\) 15.0709 0.580939 0.290469 0.956884i \(-0.406189\pi\)
0.290469 + 0.956884i \(0.406189\pi\)
\(674\) −6.03177 −0.232335
\(675\) 0 0
\(676\) −60.3658 −2.32176
\(677\) 7.36551 0.283080 0.141540 0.989933i \(-0.454795\pi\)
0.141540 + 0.989933i \(0.454795\pi\)
\(678\) 0 0
\(679\) −2.73399 −0.104921
\(680\) 0 0
\(681\) 0 0
\(682\) 3.53664 0.135425
\(683\) 46.2794 1.77083 0.885415 0.464801i \(-0.153874\pi\)
0.885415 + 0.464801i \(0.153874\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.43601 0.322088
\(687\) 0 0
\(688\) 21.0741 0.803444
\(689\) 8.97401 0.341883
\(690\) 0 0
\(691\) 5.06739 0.192773 0.0963863 0.995344i \(-0.469272\pi\)
0.0963863 + 0.995344i \(0.469272\pi\)
\(692\) 36.8718 1.40166
\(693\) 0 0
\(694\) −4.47357 −0.169814
\(695\) 0 0
\(696\) 0 0
\(697\) 0.486823 0.0184397
\(698\) −15.4864 −0.586170
\(699\) 0 0
\(700\) 0 0
\(701\) −20.9220 −0.790213 −0.395107 0.918635i \(-0.629292\pi\)
−0.395107 + 0.918635i \(0.629292\pi\)
\(702\) 0 0
\(703\) −2.92164 −0.110192
\(704\) −1.62080 −0.0610862
\(705\) 0 0
\(706\) −1.07019 −0.0402770
\(707\) 5.96528 0.224348
\(708\) 0 0
\(709\) −11.5698 −0.434515 −0.217257 0.976114i \(-0.569711\pi\)
−0.217257 + 0.976114i \(0.569711\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −13.6808 −0.512710
\(713\) 59.4344 2.22583
\(714\) 0 0
\(715\) 0 0
\(716\) −6.78845 −0.253696
\(717\) 0 0
\(718\) −13.8662 −0.517482
\(719\) −20.2226 −0.754176 −0.377088 0.926177i \(-0.623075\pi\)
−0.377088 + 0.926177i \(0.623075\pi\)
\(720\) 0 0
\(721\) −11.0417 −0.411214
\(722\) −5.73786 −0.213541
\(723\) 0 0
\(724\) −29.2310 −1.08636
\(725\) 0 0
\(726\) 0 0
\(727\) −33.7740 −1.25261 −0.626304 0.779579i \(-0.715433\pi\)
−0.626304 + 0.779579i \(0.715433\pi\)
\(728\) −17.4182 −0.645562
\(729\) 0 0
\(730\) 0 0
\(731\) 23.2189 0.858784
\(732\) 0 0
\(733\) −49.8177 −1.84006 −0.920030 0.391849i \(-0.871836\pi\)
−0.920030 + 0.391849i \(0.871836\pi\)
\(734\) 3.85703 0.142366
\(735\) 0 0
\(736\) 47.7663 1.76069
\(737\) 7.97199 0.293652
\(738\) 0 0
\(739\) −6.25259 −0.230005 −0.115003 0.993365i \(-0.536688\pi\)
−0.115003 + 0.993365i \(0.536688\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.870796 0.0319679
\(743\) 0.401960 0.0147465 0.00737324 0.999973i \(-0.497653\pi\)
0.00737324 + 0.999973i \(0.497653\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.7592 0.503758
\(747\) 0 0
\(748\) −4.17808 −0.152766
\(749\) −19.2870 −0.704733
\(750\) 0 0
\(751\) 48.4218 1.76694 0.883469 0.468490i \(-0.155202\pi\)
0.883469 + 0.468490i \(0.155202\pi\)
\(752\) −7.28705 −0.265731
\(753\) 0 0
\(754\) −2.62706 −0.0956719
\(755\) 0 0
\(756\) 0 0
\(757\) 16.3058 0.592643 0.296322 0.955088i \(-0.404240\pi\)
0.296322 + 0.955088i \(0.404240\pi\)
\(758\) −10.4146 −0.378277
\(759\) 0 0
\(760\) 0 0
\(761\) 37.6100 1.36336 0.681681 0.731650i \(-0.261249\pi\)
0.681681 + 0.731650i \(0.261249\pi\)
\(762\) 0 0
\(763\) 15.3903 0.557167
\(764\) −34.7901 −1.25866
\(765\) 0 0
\(766\) 16.5816 0.599116
\(767\) 85.3932 3.08337
\(768\) 0 0
\(769\) 35.9898 1.29783 0.648913 0.760863i \(-0.275224\pi\)
0.648913 + 0.760863i \(0.275224\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 34.7794 1.25174
\(773\) −11.1521 −0.401114 −0.200557 0.979682i \(-0.564275\pi\)
−0.200557 + 0.979682i \(0.564275\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.49903 −0.161506
\(777\) 0 0
\(778\) 11.4400 0.410144
\(779\) −0.564634 −0.0202301
\(780\) 0 0
\(781\) 2.75569 0.0986064
\(782\) 12.4238 0.444274
\(783\) 0 0
\(784\) −12.5302 −0.447506
\(785\) 0 0
\(786\) 0 0
\(787\) −28.9665 −1.03254 −0.516271 0.856425i \(-0.672680\pi\)
−0.516271 + 0.856425i \(0.672680\pi\)
\(788\) −29.2078 −1.04048
\(789\) 0 0
\(790\) 0 0
\(791\) 23.9785 0.852576
\(792\) 0 0
\(793\) 25.5974 0.908991
\(794\) −15.6137 −0.554109
\(795\) 0 0
\(796\) 21.8902 0.775879
\(797\) −54.2642 −1.92214 −0.961068 0.276312i \(-0.910888\pi\)
−0.961068 + 0.276312i \(0.910888\pi\)
\(798\) 0 0
\(799\) −8.02868 −0.284034
\(800\) 0 0
\(801\) 0 0
\(802\) 14.5350 0.513249
\(803\) 0.817222 0.0288391
\(804\) 0 0
\(805\) 0 0
\(806\) −25.2403 −0.889053
\(807\) 0 0
\(808\) 9.81640 0.345340
\(809\) −16.1657 −0.568355 −0.284177 0.958772i \(-0.591720\pi\)
−0.284177 + 0.958772i \(0.591720\pi\)
\(810\) 0 0
\(811\) −29.0693 −1.02076 −0.510381 0.859948i \(-0.670496\pi\)
−0.510381 + 0.859948i \(0.670496\pi\)
\(812\) 1.44069 0.0505582
\(813\) 0 0
\(814\) 0.535210 0.0187591
\(815\) 0 0
\(816\) 0 0
\(817\) −26.9302 −0.942167
\(818\) 4.35412 0.152238
\(819\) 0 0
\(820\) 0 0
\(821\) −30.7078 −1.07171 −0.535855 0.844310i \(-0.680010\pi\)
−0.535855 + 0.844310i \(0.680010\pi\)
\(822\) 0 0
\(823\) −3.08648 −0.107588 −0.0537940 0.998552i \(-0.517131\pi\)
−0.0537940 + 0.998552i \(0.517131\pi\)
\(824\) −18.1701 −0.632985
\(825\) 0 0
\(826\) 8.28615 0.288312
\(827\) −37.0441 −1.28815 −0.644074 0.764963i \(-0.722757\pi\)
−0.644074 + 0.764963i \(0.722757\pi\)
\(828\) 0 0
\(829\) −45.3315 −1.57443 −0.787215 0.616679i \(-0.788478\pi\)
−0.787215 + 0.616679i \(0.788478\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 11.5674 0.401026
\(833\) −13.8054 −0.478329
\(834\) 0 0
\(835\) 0 0
\(836\) 4.84589 0.167599
\(837\) 0 0
\(838\) −17.4957 −0.604379
\(839\) 45.1775 1.55970 0.779850 0.625967i \(-0.215296\pi\)
0.779850 + 0.625967i \(0.215296\pi\)
\(840\) 0 0
\(841\) −28.5270 −0.983689
\(842\) 6.05569 0.208693
\(843\) 0 0
\(844\) −24.8560 −0.855579
\(845\) 0 0
\(846\) 0 0
\(847\) 12.3852 0.425561
\(848\) −2.94543 −0.101147
\(849\) 0 0
\(850\) 0 0
\(851\) 8.99438 0.308323
\(852\) 0 0
\(853\) 21.6482 0.741220 0.370610 0.928789i \(-0.379149\pi\)
0.370610 + 0.928789i \(0.379149\pi\)
\(854\) 2.48385 0.0849957
\(855\) 0 0
\(856\) −31.7385 −1.08480
\(857\) −1.48050 −0.0505729 −0.0252865 0.999680i \(-0.508050\pi\)
−0.0252865 + 0.999680i \(0.508050\pi\)
\(858\) 0 0
\(859\) 20.1546 0.687666 0.343833 0.939031i \(-0.388275\pi\)
0.343833 + 0.939031i \(0.388275\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −21.9340 −0.747076
\(863\) −9.07168 −0.308803 −0.154402 0.988008i \(-0.549345\pi\)
−0.154402 + 0.988008i \(0.549345\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.87583 −0.0637434
\(867\) 0 0
\(868\) 13.8419 0.469824
\(869\) 3.36086 0.114009
\(870\) 0 0
\(871\) −56.8946 −1.92780
\(872\) 25.3261 0.857650
\(873\) 0 0
\(874\) −14.4096 −0.487411
\(875\) 0 0
\(876\) 0 0
\(877\) −3.52847 −0.119148 −0.0595739 0.998224i \(-0.518974\pi\)
−0.0595739 + 0.998224i \(0.518974\pi\)
\(878\) 1.02649 0.0346424
\(879\) 0 0
\(880\) 0 0
\(881\) 32.2604 1.08688 0.543441 0.839448i \(-0.317121\pi\)
0.543441 + 0.839448i \(0.317121\pi\)
\(882\) 0 0
\(883\) 31.5621 1.06215 0.531074 0.847326i \(-0.321789\pi\)
0.531074 + 0.847326i \(0.321789\pi\)
\(884\) 29.8182 1.00290
\(885\) 0 0
\(886\) 21.4229 0.719717
\(887\) 34.8507 1.17017 0.585087 0.810971i \(-0.301061\pi\)
0.585087 + 0.810971i \(0.301061\pi\)
\(888\) 0 0
\(889\) 6.48121 0.217373
\(890\) 0 0
\(891\) 0 0
\(892\) −6.11079 −0.204604
\(893\) 9.31195 0.311613
\(894\) 0 0
\(895\) 0 0
\(896\) 14.2153 0.474899
\(897\) 0 0
\(898\) −15.2100 −0.507566
\(899\) 4.54473 0.151575
\(900\) 0 0
\(901\) −3.24520 −0.108113
\(902\) 0.103434 0.00344398
\(903\) 0 0
\(904\) 39.4587 1.31238
\(905\) 0 0
\(906\) 0 0
\(907\) −36.6888 −1.21823 −0.609116 0.793081i \(-0.708476\pi\)
−0.609116 + 0.793081i \(0.708476\pi\)
\(908\) 36.9236 1.22535
\(909\) 0 0
\(910\) 0 0
\(911\) −27.6843 −0.917221 −0.458610 0.888637i \(-0.651653\pi\)
−0.458610 + 0.888637i \(0.651653\pi\)
\(912\) 0 0
\(913\) −4.55776 −0.150840
\(914\) 2.16231 0.0715228
\(915\) 0 0
\(916\) 24.8234 0.820188
\(917\) 18.8567 0.622704
\(918\) 0 0
\(919\) 34.3200 1.13211 0.566057 0.824366i \(-0.308468\pi\)
0.566057 + 0.824366i \(0.308468\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −17.1012 −0.563197
\(923\) −19.6669 −0.647343
\(924\) 0 0
\(925\) 0 0
\(926\) −16.3410 −0.536999
\(927\) 0 0
\(928\) 3.65252 0.119900
\(929\) 22.9783 0.753894 0.376947 0.926235i \(-0.376974\pi\)
0.376947 + 0.926235i \(0.376974\pi\)
\(930\) 0 0
\(931\) 16.0120 0.524772
\(932\) 31.4649 1.03067
\(933\) 0 0
\(934\) −9.58421 −0.313605
\(935\) 0 0
\(936\) 0 0
\(937\) 45.7823 1.49564 0.747822 0.663899i \(-0.231100\pi\)
0.747822 + 0.663899i \(0.231100\pi\)
\(938\) −5.52079 −0.180260
\(939\) 0 0
\(940\) 0 0
\(941\) 16.9929 0.553952 0.276976 0.960877i \(-0.410668\pi\)
0.276976 + 0.960877i \(0.410668\pi\)
\(942\) 0 0
\(943\) 1.73825 0.0566051
\(944\) −28.0276 −0.912219
\(945\) 0 0
\(946\) 4.93328 0.160395
\(947\) 23.4730 0.762769 0.381384 0.924417i \(-0.375447\pi\)
0.381384 + 0.924417i \(0.375447\pi\)
\(948\) 0 0
\(949\) −5.83237 −0.189327
\(950\) 0 0
\(951\) 0 0
\(952\) 6.29881 0.204146
\(953\) 24.6541 0.798623 0.399312 0.916815i \(-0.369249\pi\)
0.399312 + 0.916815i \(0.369249\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 30.7314 0.993924
\(957\) 0 0
\(958\) 2.36325 0.0763530
\(959\) −4.04351 −0.130572
\(960\) 0 0
\(961\) 12.6649 0.408546
\(962\) −3.81970 −0.123152
\(963\) 0 0
\(964\) 21.1809 0.682191
\(965\) 0 0
\(966\) 0 0
\(967\) 11.3662 0.365512 0.182756 0.983158i \(-0.441498\pi\)
0.182756 + 0.983158i \(0.441498\pi\)
\(968\) 20.3810 0.655070
\(969\) 0 0
\(970\) 0 0
\(971\) 1.93826 0.0622017 0.0311008 0.999516i \(-0.490099\pi\)
0.0311008 + 0.999516i \(0.490099\pi\)
\(972\) 0 0
\(973\) −0.691822 −0.0221788
\(974\) 20.9056 0.669858
\(975\) 0 0
\(976\) −8.40152 −0.268926
\(977\) 12.9186 0.413303 0.206651 0.978415i \(-0.433743\pi\)
0.206651 + 0.978415i \(0.433743\pi\)
\(978\) 0 0
\(979\) 6.58277 0.210386
\(980\) 0 0
\(981\) 0 0
\(982\) −19.7523 −0.630320
\(983\) −42.8843 −1.36780 −0.683898 0.729578i \(-0.739717\pi\)
−0.683898 + 0.729578i \(0.739717\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.950002 0.0302542
\(987\) 0 0
\(988\) −34.5843 −1.10027
\(989\) 82.9054 2.63624
\(990\) 0 0
\(991\) −30.3017 −0.962564 −0.481282 0.876566i \(-0.659829\pi\)
−0.481282 + 0.876566i \(0.659829\pi\)
\(992\) 35.0927 1.11419
\(993\) 0 0
\(994\) −1.90838 −0.0605302
\(995\) 0 0
\(996\) 0 0
\(997\) −9.76058 −0.309121 −0.154560 0.987983i \(-0.549396\pi\)
−0.154560 + 0.987983i \(0.549396\pi\)
\(998\) 11.0699 0.350411
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cm.1.5 7
3.2 odd 2 925.2.a.k.1.3 yes 7
5.4 even 2 8325.2.a.cn.1.3 7
15.2 even 4 925.2.b.i.149.6 14
15.8 even 4 925.2.b.i.149.9 14
15.14 odd 2 925.2.a.j.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.a.j.1.5 7 15.14 odd 2
925.2.a.k.1.3 yes 7 3.2 odd 2
925.2.b.i.149.6 14 15.2 even 4
925.2.b.i.149.9 14 15.8 even 4
8325.2.a.cm.1.5 7 1.1 even 1 trivial
8325.2.a.cn.1.3 7 5.4 even 2