Properties

Label 925.2.b.g.149.9
Level $925$
Weight $2$
Character 925.149
Analytic conductor $7.386$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(149,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-12,0,-4,0,0,-4,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.8689006034944.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 10x^{7} + 26x^{6} - 4x^{5} + 6x^{4} + 22x^{3} + 25x^{2} + 10x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.9
Root \(0.786830 + 0.786830i\) of defining polynomial
Character \(\chi\) \(=\) 925.149
Dual form 925.2.b.g.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27092i q^{2} +0.518894i q^{3} -3.15709 q^{4} -1.17837 q^{6} -1.33546i q^{7} -2.62766i q^{8} +2.73075 q^{9} +5.55161 q^{11} -1.63819i q^{12} +2.96818i q^{13} +3.03272 q^{14} -0.346968 q^{16} -0.426340i q^{17} +6.20132i q^{18} +5.57456 q^{19} +0.692961 q^{21} +12.6073i q^{22} +3.50406i q^{23} +1.36348 q^{24} -6.74052 q^{26} +2.97365i q^{27} +4.21616i q^{28} -8.06544 q^{29} +4.57289 q^{31} -6.04326i q^{32} +2.88070i q^{33} +0.968185 q^{34} -8.62122 q^{36} -1.00000i q^{37} +12.6594i q^{38} -1.54017 q^{39} -6.87056 q^{41} +1.57366i q^{42} -7.35197i q^{43} -17.5269 q^{44} -7.95744 q^{46} +3.16383i q^{47} -0.180040i q^{48} +5.21655 q^{49} +0.221225 q^{51} -9.37082i q^{52} +6.51383i q^{53} -6.75293 q^{54} -3.50913 q^{56} +2.89261i q^{57} -18.3160i q^{58} -8.51080 q^{59} +3.31895 q^{61} +10.3847i q^{62} -3.64680i q^{63} +13.0298 q^{64} -6.54184 q^{66} +9.68410i q^{67} +1.34599i q^{68} -1.81823 q^{69} +7.81324 q^{71} -7.17548i q^{72} +0.762564i q^{73} +2.27092 q^{74} -17.5994 q^{76} -7.41394i q^{77} -3.49761i q^{78} -17.0722 q^{79} +6.64924 q^{81} -15.6025i q^{82} +2.74656i q^{83} -2.18774 q^{84} +16.6957 q^{86} -4.18511i q^{87} -14.5877i q^{88} -0.0865103 q^{89} +3.96388 q^{91} -11.0626i q^{92} +2.37285i q^{93} -7.18481 q^{94} +3.13581 q^{96} -17.8411i q^{97} +11.8464i q^{98} +15.1601 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 4 q^{6} - 4 q^{9} + 14 q^{11} - 8 q^{14} + 16 q^{16} - 28 q^{19} - 18 q^{21} - 24 q^{24} - 40 q^{26} - 4 q^{29} + 16 q^{31} - 24 q^{34} - 72 q^{36} - 24 q^{39} - 18 q^{41} - 36 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27092i 1.60578i 0.596124 + 0.802892i \(0.296707\pi\)
−0.596124 + 0.802892i \(0.703293\pi\)
\(3\) 0.518894i 0.299584i 0.988718 + 0.149792i \(0.0478603\pi\)
−0.988718 + 0.149792i \(0.952140\pi\)
\(4\) −3.15709 −1.57854
\(5\) 0 0
\(6\) −1.17837 −0.481067
\(7\) − 1.33546i − 0.504755i −0.967629 0.252378i \(-0.918787\pi\)
0.967629 0.252378i \(-0.0812125\pi\)
\(8\) − 2.62766i − 0.929018i
\(9\) 2.73075 0.910250
\(10\) 0 0
\(11\) 5.55161 1.67387 0.836937 0.547299i \(-0.184344\pi\)
0.836937 + 0.547299i \(0.184344\pi\)
\(12\) − 1.63819i − 0.472906i
\(13\) 2.96818i 0.823226i 0.911359 + 0.411613i \(0.135035\pi\)
−0.911359 + 0.411613i \(0.864965\pi\)
\(14\) 3.03272 0.810528
\(15\) 0 0
\(16\) −0.346968 −0.0867420
\(17\) − 0.426340i − 0.103403i −0.998663 0.0517013i \(-0.983536\pi\)
0.998663 0.0517013i \(-0.0164644\pi\)
\(18\) 6.20132i 1.46166i
\(19\) 5.57456 1.27889 0.639446 0.768836i \(-0.279164\pi\)
0.639446 + 0.768836i \(0.279164\pi\)
\(20\) 0 0
\(21\) 0.692961 0.151216
\(22\) 12.6073i 2.68788i
\(23\) 3.50406i 0.730646i 0.930881 + 0.365323i \(0.119042\pi\)
−0.930881 + 0.365323i \(0.880958\pi\)
\(24\) 1.36348 0.278319
\(25\) 0 0
\(26\) −6.74052 −1.32192
\(27\) 2.97365i 0.572280i
\(28\) 4.21616i 0.796779i
\(29\) −8.06544 −1.49771 −0.748857 0.662731i \(-0.769397\pi\)
−0.748857 + 0.662731i \(0.769397\pi\)
\(30\) 0 0
\(31\) 4.57289 0.821316 0.410658 0.911789i \(-0.365299\pi\)
0.410658 + 0.911789i \(0.365299\pi\)
\(32\) − 6.04326i − 1.06831i
\(33\) 2.88070i 0.501465i
\(34\) 0.968185 0.166042
\(35\) 0 0
\(36\) −8.62122 −1.43687
\(37\) − 1.00000i − 0.164399i
\(38\) 12.6594i 2.05363i
\(39\) −1.54017 −0.246625
\(40\) 0 0
\(41\) −6.87056 −1.07300 −0.536501 0.843900i \(-0.680254\pi\)
−0.536501 + 0.843900i \(0.680254\pi\)
\(42\) 1.57366i 0.242821i
\(43\) − 7.35197i − 1.12116i −0.828099 0.560582i \(-0.810577\pi\)
0.828099 0.560582i \(-0.189423\pi\)
\(44\) −17.5269 −2.64229
\(45\) 0 0
\(46\) −7.95744 −1.17326
\(47\) 3.16383i 0.461492i 0.973014 + 0.230746i \(0.0741166\pi\)
−0.973014 + 0.230746i \(0.925883\pi\)
\(48\) − 0.180040i − 0.0259865i
\(49\) 5.21655 0.745222
\(50\) 0 0
\(51\) 0.221225 0.0309777
\(52\) − 9.37082i − 1.29950i
\(53\) 6.51383i 0.894743i 0.894348 + 0.447371i \(0.147640\pi\)
−0.894348 + 0.447371i \(0.852360\pi\)
\(54\) −6.75293 −0.918958
\(55\) 0 0
\(56\) −3.50913 −0.468927
\(57\) 2.89261i 0.383135i
\(58\) − 18.3160i − 2.40501i
\(59\) −8.51080 −1.10801 −0.554006 0.832513i \(-0.686901\pi\)
−0.554006 + 0.832513i \(0.686901\pi\)
\(60\) 0 0
\(61\) 3.31895 0.424948 0.212474 0.977167i \(-0.431848\pi\)
0.212474 + 0.977167i \(0.431848\pi\)
\(62\) 10.3847i 1.31886i
\(63\) − 3.64680i − 0.459453i
\(64\) 13.0298 1.62873
\(65\) 0 0
\(66\) −6.54184 −0.805245
\(67\) 9.68410i 1.18310i 0.806268 + 0.591550i \(0.201484\pi\)
−0.806268 + 0.591550i \(0.798516\pi\)
\(68\) 1.34599i 0.163226i
\(69\) −1.81823 −0.218890
\(70\) 0 0
\(71\) 7.81324 0.927261 0.463630 0.886029i \(-0.346547\pi\)
0.463630 + 0.886029i \(0.346547\pi\)
\(72\) − 7.17548i − 0.845638i
\(73\) 0.762564i 0.0892514i 0.999004 + 0.0446257i \(0.0142095\pi\)
−0.999004 + 0.0446257i \(0.985790\pi\)
\(74\) 2.27092 0.263989
\(75\) 0 0
\(76\) −17.5994 −2.01879
\(77\) − 7.41394i − 0.844897i
\(78\) − 3.49761i − 0.396027i
\(79\) −17.0722 −1.92077 −0.960385 0.278676i \(-0.910104\pi\)
−0.960385 + 0.278676i \(0.910104\pi\)
\(80\) 0 0
\(81\) 6.64924 0.738804
\(82\) − 15.6025i − 1.72301i
\(83\) 2.74656i 0.301474i 0.988574 + 0.150737i \(0.0481647\pi\)
−0.988574 + 0.150737i \(0.951835\pi\)
\(84\) −2.18774 −0.238702
\(85\) 0 0
\(86\) 16.6957 1.80035
\(87\) − 4.18511i − 0.448691i
\(88\) − 14.5877i − 1.55506i
\(89\) −0.0865103 −0.00917007 −0.00458503 0.999989i \(-0.501459\pi\)
−0.00458503 + 0.999989i \(0.501459\pi\)
\(90\) 0 0
\(91\) 3.96388 0.415528
\(92\) − 11.0626i − 1.15336i
\(93\) 2.37285i 0.246053i
\(94\) −7.18481 −0.741057
\(95\) 0 0
\(96\) 3.13581 0.320047
\(97\) − 17.8411i − 1.81149i −0.423822 0.905745i \(-0.639312\pi\)
0.423822 0.905745i \(-0.360688\pi\)
\(98\) 11.8464i 1.19667i
\(99\) 15.1601 1.52364
\(100\) 0 0
\(101\) 10.7584 1.07050 0.535250 0.844693i \(-0.320217\pi\)
0.535250 + 0.844693i \(0.320217\pi\)
\(102\) 0.502385i 0.0497436i
\(103\) 8.19451i 0.807429i 0.914885 + 0.403714i \(0.132281\pi\)
−0.914885 + 0.403714i \(0.867719\pi\)
\(104\) 7.79938 0.764792
\(105\) 0 0
\(106\) −14.7924 −1.43676
\(107\) − 5.61222i − 0.542553i −0.962501 0.271277i \(-0.912554\pi\)
0.962501 0.271277i \(-0.0874458\pi\)
\(108\) − 9.38808i − 0.903369i
\(109\) 0.377808 0.0361874 0.0180937 0.999836i \(-0.494240\pi\)
0.0180937 + 0.999836i \(0.494240\pi\)
\(110\) 0 0
\(111\) 0.518894 0.0492512
\(112\) 0.463361i 0.0437835i
\(113\) 4.54935i 0.427967i 0.976837 + 0.213984i \(0.0686439\pi\)
−0.976837 + 0.213984i \(0.931356\pi\)
\(114\) −6.56889 −0.615233
\(115\) 0 0
\(116\) 25.4633 2.36421
\(117\) 8.10537i 0.749341i
\(118\) − 19.3274i − 1.77923i
\(119\) −0.569359 −0.0521930
\(120\) 0 0
\(121\) 19.8204 1.80186
\(122\) 7.53707i 0.682375i
\(123\) − 3.56509i − 0.321454i
\(124\) −14.4370 −1.29648
\(125\) 0 0
\(126\) 8.28160 0.737783
\(127\) 12.7560i 1.13191i 0.824437 + 0.565954i \(0.191492\pi\)
−0.824437 + 0.565954i \(0.808508\pi\)
\(128\) 17.5032i 1.54708i
\(129\) 3.81489 0.335882
\(130\) 0 0
\(131\) −14.4960 −1.26652 −0.633262 0.773938i \(-0.718284\pi\)
−0.633262 + 0.773938i \(0.718284\pi\)
\(132\) − 9.09462i − 0.791585i
\(133\) − 7.44459i − 0.645528i
\(134\) −21.9918 −1.89980
\(135\) 0 0
\(136\) −1.12028 −0.0960629
\(137\) − 10.8425i − 0.926341i −0.886269 0.463170i \(-0.846712\pi\)
0.886269 0.463170i \(-0.153288\pi\)
\(138\) − 4.12907i − 0.351490i
\(139\) −1.56615 −0.132839 −0.0664197 0.997792i \(-0.521158\pi\)
−0.0664197 + 0.997792i \(0.521158\pi\)
\(140\) 0 0
\(141\) −1.64169 −0.138255
\(142\) 17.7433i 1.48898i
\(143\) 16.4782i 1.37798i
\(144\) −0.947482 −0.0789569
\(145\) 0 0
\(146\) −1.73172 −0.143319
\(147\) 2.70684i 0.223256i
\(148\) 3.15709i 0.259511i
\(149\) 8.09762 0.663383 0.331692 0.943388i \(-0.392381\pi\)
0.331692 + 0.943388i \(0.392381\pi\)
\(150\) 0 0
\(151\) −12.0018 −0.976693 −0.488347 0.872650i \(-0.662400\pi\)
−0.488347 + 0.872650i \(0.662400\pi\)
\(152\) − 14.6481i − 1.18811i
\(153\) − 1.16423i − 0.0941222i
\(154\) 16.8365 1.35672
\(155\) 0 0
\(156\) 4.86246 0.389309
\(157\) − 19.2732i − 1.53817i −0.639147 0.769084i \(-0.720713\pi\)
0.639147 0.769084i \(-0.279287\pi\)
\(158\) − 38.7696i − 3.08434i
\(159\) −3.37999 −0.268050
\(160\) 0 0
\(161\) 4.67952 0.368798
\(162\) 15.0999i 1.18636i
\(163\) 0.995229i 0.0779524i 0.999240 + 0.0389762i \(0.0124096\pi\)
−0.999240 + 0.0389762i \(0.987590\pi\)
\(164\) 21.6910 1.69378
\(165\) 0 0
\(166\) −6.23723 −0.484103
\(167\) − 24.2625i − 1.87749i −0.344615 0.938744i \(-0.611991\pi\)
0.344615 0.938744i \(-0.388009\pi\)
\(168\) − 1.82086i − 0.140483i
\(169\) 4.18988 0.322298
\(170\) 0 0
\(171\) 15.2227 1.16411
\(172\) 23.2108i 1.76981i
\(173\) 11.4556i 0.870950i 0.900201 + 0.435475i \(0.143420\pi\)
−0.900201 + 0.435475i \(0.856580\pi\)
\(174\) 9.50406 0.720501
\(175\) 0 0
\(176\) −1.92623 −0.145195
\(177\) − 4.41620i − 0.331942i
\(178\) − 0.196458i − 0.0147252i
\(179\) 11.8233 0.883715 0.441858 0.897085i \(-0.354320\pi\)
0.441858 + 0.897085i \(0.354320\pi\)
\(180\) 0 0
\(181\) −14.8035 −1.10034 −0.550168 0.835054i \(-0.685436\pi\)
−0.550168 + 0.835054i \(0.685436\pi\)
\(182\) 9.00167i 0.667248i
\(183\) 1.72218i 0.127307i
\(184\) 9.20747 0.678783
\(185\) 0 0
\(186\) −5.38855 −0.395108
\(187\) − 2.36687i − 0.173083i
\(188\) − 9.98849i − 0.728485i
\(189\) 3.97118 0.288861
\(190\) 0 0
\(191\) −7.71008 −0.557881 −0.278941 0.960308i \(-0.589983\pi\)
−0.278941 + 0.960308i \(0.589983\pi\)
\(192\) 6.76110i 0.487940i
\(193\) − 26.0067i − 1.87200i −0.351997 0.936001i \(-0.614497\pi\)
0.351997 0.936001i \(-0.385503\pi\)
\(194\) 40.5158 2.90886
\(195\) 0 0
\(196\) −16.4691 −1.17637
\(197\) 13.0887i 0.932530i 0.884645 + 0.466265i \(0.154401\pi\)
−0.884645 + 0.466265i \(0.845599\pi\)
\(198\) 34.4273i 2.44664i
\(199\) −18.2990 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(200\) 0 0
\(201\) −5.02502 −0.354438
\(202\) 24.4315i 1.71899i
\(203\) 10.7710i 0.755979i
\(204\) −0.698428 −0.0488997
\(205\) 0 0
\(206\) −18.6091 −1.29656
\(207\) 9.56870i 0.665071i
\(208\) − 1.02986i − 0.0714083i
\(209\) 30.9478 2.14071
\(210\) 0 0
\(211\) 2.89163 0.199068 0.0995341 0.995034i \(-0.468265\pi\)
0.0995341 + 0.995034i \(0.468265\pi\)
\(212\) − 20.5647i − 1.41239i
\(213\) 4.05424i 0.277792i
\(214\) 12.7449 0.871224
\(215\) 0 0
\(216\) 7.81374 0.531658
\(217\) − 6.10690i − 0.414564i
\(218\) 0.857973i 0.0581092i
\(219\) −0.395690 −0.0267383
\(220\) 0 0
\(221\) 1.26546 0.0851237
\(222\) 1.17837i 0.0790869i
\(223\) − 25.8004i − 1.72772i −0.503728 0.863862i \(-0.668039\pi\)
0.503728 0.863862i \(-0.331961\pi\)
\(224\) −8.07051 −0.539233
\(225\) 0 0
\(226\) −10.3312 −0.687223
\(227\) − 6.01093i − 0.398960i −0.979902 0.199480i \(-0.936075\pi\)
0.979902 0.199480i \(-0.0639252\pi\)
\(228\) − 9.13222i − 0.604796i
\(229\) −5.22124 −0.345029 −0.172515 0.985007i \(-0.555189\pi\)
−0.172515 + 0.985007i \(0.555189\pi\)
\(230\) 0 0
\(231\) 3.84705 0.253117
\(232\) 21.1932i 1.39140i
\(233\) 15.2256i 0.997465i 0.866756 + 0.498733i \(0.166201\pi\)
−0.866756 + 0.498733i \(0.833799\pi\)
\(234\) −18.4067 −1.20328
\(235\) 0 0
\(236\) 26.8693 1.74905
\(237\) − 8.85865i − 0.575431i
\(238\) − 1.29297i − 0.0838107i
\(239\) 12.1164 0.783745 0.391873 0.920019i \(-0.371827\pi\)
0.391873 + 0.920019i \(0.371827\pi\)
\(240\) 0 0
\(241\) 20.7909 1.33926 0.669628 0.742696i \(-0.266453\pi\)
0.669628 + 0.742696i \(0.266453\pi\)
\(242\) 45.0106i 2.89339i
\(243\) 12.3712i 0.793613i
\(244\) −10.4782 −0.670799
\(245\) 0 0
\(246\) 8.09605 0.516185
\(247\) 16.5463i 1.05282i
\(248\) − 12.0160i − 0.763017i
\(249\) −1.42517 −0.0903168
\(250\) 0 0
\(251\) 9.67062 0.610404 0.305202 0.952288i \(-0.401276\pi\)
0.305202 + 0.952288i \(0.401276\pi\)
\(252\) 11.5133i 0.725267i
\(253\) 19.4532i 1.22301i
\(254\) −28.9678 −1.81760
\(255\) 0 0
\(256\) −13.6888 −0.855550
\(257\) 31.6442i 1.97391i 0.160984 + 0.986957i \(0.448533\pi\)
−0.160984 + 0.986957i \(0.551467\pi\)
\(258\) 8.66332i 0.539355i
\(259\) −1.33546 −0.0829813
\(260\) 0 0
\(261\) −22.0247 −1.36329
\(262\) − 32.9193i − 2.03376i
\(263\) − 14.3161i − 0.882766i −0.897319 0.441383i \(-0.854488\pi\)
0.897319 0.441383i \(-0.145512\pi\)
\(264\) 7.56950 0.465870
\(265\) 0 0
\(266\) 16.9061 1.03658
\(267\) − 0.0448897i − 0.00274720i
\(268\) − 30.5736i − 1.86758i
\(269\) 28.8212 1.75726 0.878631 0.477501i \(-0.158457\pi\)
0.878631 + 0.477501i \(0.158457\pi\)
\(270\) 0 0
\(271\) 10.4382 0.634078 0.317039 0.948412i \(-0.397311\pi\)
0.317039 + 0.948412i \(0.397311\pi\)
\(272\) 0.147926i 0.00896935i
\(273\) 2.05684i 0.124485i
\(274\) 24.6226 1.48750
\(275\) 0 0
\(276\) 5.74033 0.345527
\(277\) 16.2020i 0.973485i 0.873546 + 0.486742i \(0.161815\pi\)
−0.873546 + 0.486742i \(0.838185\pi\)
\(278\) − 3.55661i − 0.213311i
\(279\) 12.4874 0.747602
\(280\) 0 0
\(281\) 8.10953 0.483774 0.241887 0.970304i \(-0.422234\pi\)
0.241887 + 0.970304i \(0.422234\pi\)
\(282\) − 3.72816i − 0.222008i
\(283\) 0.429766i 0.0255470i 0.999918 + 0.0127735i \(0.00406603\pi\)
−0.999918 + 0.0127735i \(0.995934\pi\)
\(284\) −24.6671 −1.46372
\(285\) 0 0
\(286\) −37.4207 −2.21274
\(287\) 9.17534i 0.541603i
\(288\) − 16.5026i − 0.972426i
\(289\) 16.8182 0.989308
\(290\) 0 0
\(291\) 9.25765 0.542693
\(292\) − 2.40748i − 0.140887i
\(293\) − 14.3831i − 0.840270i −0.907462 0.420135i \(-0.861983\pi\)
0.907462 0.420135i \(-0.138017\pi\)
\(294\) −6.14702 −0.358502
\(295\) 0 0
\(296\) −2.62766 −0.152730
\(297\) 16.5086i 0.957924i
\(298\) 18.3891i 1.06525i
\(299\) −10.4007 −0.601487
\(300\) 0 0
\(301\) −9.81823 −0.565914
\(302\) − 27.2552i − 1.56836i
\(303\) 5.58247i 0.320705i
\(304\) −1.93420 −0.110934
\(305\) 0 0
\(306\) 2.64387 0.151140
\(307\) − 24.8429i − 1.41786i −0.705281 0.708928i \(-0.749179\pi\)
0.705281 0.708928i \(-0.250821\pi\)
\(308\) 23.4065i 1.33371i
\(309\) −4.25208 −0.241892
\(310\) 0 0
\(311\) −13.3533 −0.757198 −0.378599 0.925561i \(-0.623594\pi\)
−0.378599 + 0.925561i \(0.623594\pi\)
\(312\) 4.04705i 0.229119i
\(313\) − 26.1131i − 1.47600i −0.674799 0.738001i \(-0.735770\pi\)
0.674799 0.738001i \(-0.264230\pi\)
\(314\) 43.7679 2.46997
\(315\) 0 0
\(316\) 53.8984 3.03202
\(317\) 27.5077i 1.54498i 0.635024 + 0.772492i \(0.280990\pi\)
−0.635024 + 0.772492i \(0.719010\pi\)
\(318\) − 7.67568i − 0.430431i
\(319\) −44.7762 −2.50699
\(320\) 0 0
\(321\) 2.91215 0.162540
\(322\) 10.6268i 0.592210i
\(323\) − 2.37666i − 0.132241i
\(324\) −20.9922 −1.16623
\(325\) 0 0
\(326\) −2.26009 −0.125175
\(327\) 0.196042i 0.0108412i
\(328\) 18.0535i 0.996837i
\(329\) 4.22516 0.232940
\(330\) 0 0
\(331\) −33.4582 −1.83903 −0.919516 0.393054i \(-0.871419\pi\)
−0.919516 + 0.393054i \(0.871419\pi\)
\(332\) − 8.67114i − 0.475891i
\(333\) − 2.73075i − 0.149644i
\(334\) 55.0982 3.01484
\(335\) 0 0
\(336\) −0.240435 −0.0131168
\(337\) − 23.0022i − 1.25301i −0.779418 0.626504i \(-0.784485\pi\)
0.779418 0.626504i \(-0.215515\pi\)
\(338\) 9.51489i 0.517542i
\(339\) −2.36063 −0.128212
\(340\) 0 0
\(341\) 25.3869 1.37478
\(342\) 34.5697i 1.86931i
\(343\) − 16.3147i − 0.880910i
\(344\) −19.3185 −1.04158
\(345\) 0 0
\(346\) −26.0147 −1.39856
\(347\) − 21.1611i − 1.13599i −0.823033 0.567993i \(-0.807720\pi\)
0.823033 0.567993i \(-0.192280\pi\)
\(348\) 13.2128i 0.708278i
\(349\) 15.9769 0.855224 0.427612 0.903962i \(-0.359355\pi\)
0.427612 + 0.903962i \(0.359355\pi\)
\(350\) 0 0
\(351\) −8.82635 −0.471116
\(352\) − 33.5498i − 1.78821i
\(353\) − 18.8153i − 1.00144i −0.865611 0.500718i \(-0.833069\pi\)
0.865611 0.500718i \(-0.166931\pi\)
\(354\) 10.0289 0.533028
\(355\) 0 0
\(356\) 0.273121 0.0144754
\(357\) − 0.295437i − 0.0156362i
\(358\) 26.8498i 1.41906i
\(359\) −33.7385 −1.78065 −0.890326 0.455324i \(-0.849523\pi\)
−0.890326 + 0.455324i \(0.849523\pi\)
\(360\) 0 0
\(361\) 12.0758 0.635567
\(362\) − 33.6176i − 1.76690i
\(363\) 10.2847i 0.539806i
\(364\) −12.5143 −0.655929
\(365\) 0 0
\(366\) −3.91094 −0.204428
\(367\) − 18.0331i − 0.941320i −0.882315 0.470660i \(-0.844016\pi\)
0.882315 0.470660i \(-0.155984\pi\)
\(368\) − 1.21580i − 0.0633777i
\(369\) −18.7618 −0.976699
\(370\) 0 0
\(371\) 8.69893 0.451626
\(372\) − 7.49129i − 0.388405i
\(373\) − 27.0210i − 1.39909i −0.714587 0.699547i \(-0.753385\pi\)
0.714587 0.699547i \(-0.246615\pi\)
\(374\) 5.37499 0.277934
\(375\) 0 0
\(376\) 8.31346 0.428734
\(377\) − 23.9397i − 1.23296i
\(378\) 9.01825i 0.463849i
\(379\) 34.0246 1.74772 0.873862 0.486173i \(-0.161608\pi\)
0.873862 + 0.486173i \(0.161608\pi\)
\(380\) 0 0
\(381\) −6.61899 −0.339101
\(382\) − 17.5090i − 0.895838i
\(383\) − 2.74649i − 0.140339i −0.997535 0.0701696i \(-0.977646\pi\)
0.997535 0.0701696i \(-0.0223540\pi\)
\(384\) −9.08232 −0.463480
\(385\) 0 0
\(386\) 59.0592 3.00603
\(387\) − 20.0764i − 1.02054i
\(388\) 56.3260i 2.85952i
\(389\) −2.23432 −0.113285 −0.0566423 0.998395i \(-0.518039\pi\)
−0.0566423 + 0.998395i \(0.518039\pi\)
\(390\) 0 0
\(391\) 1.49392 0.0755507
\(392\) − 13.7073i − 0.692325i
\(393\) − 7.52190i − 0.379430i
\(394\) −29.7234 −1.49744
\(395\) 0 0
\(396\) −47.8617 −2.40514
\(397\) 5.74533i 0.288350i 0.989552 + 0.144175i \(0.0460528\pi\)
−0.989552 + 0.144175i \(0.953947\pi\)
\(398\) − 41.5555i − 2.08299i
\(399\) 3.86295 0.193390
\(400\) 0 0
\(401\) −16.4458 −0.821264 −0.410632 0.911801i \(-0.634692\pi\)
−0.410632 + 0.911801i \(0.634692\pi\)
\(402\) − 11.4114i − 0.569150i
\(403\) 13.5732i 0.676129i
\(404\) −33.9652 −1.68983
\(405\) 0 0
\(406\) −24.4602 −1.21394
\(407\) − 5.55161i − 0.275183i
\(408\) − 0.581304i − 0.0287789i
\(409\) −32.5835 −1.61115 −0.805575 0.592494i \(-0.798144\pi\)
−0.805575 + 0.592494i \(0.798144\pi\)
\(410\) 0 0
\(411\) 5.62613 0.277517
\(412\) − 25.8708i − 1.27456i
\(413\) 11.3658i 0.559275i
\(414\) −21.7298 −1.06796
\(415\) 0 0
\(416\) 17.9375 0.879458
\(417\) − 0.812667i − 0.0397965i
\(418\) 70.2801i 3.43751i
\(419\) −26.6150 −1.30023 −0.650115 0.759836i \(-0.725279\pi\)
−0.650115 + 0.759836i \(0.725279\pi\)
\(420\) 0 0
\(421\) −13.6775 −0.666600 −0.333300 0.942821i \(-0.608162\pi\)
−0.333300 + 0.942821i \(0.608162\pi\)
\(422\) 6.56667i 0.319661i
\(423\) 8.63962i 0.420073i
\(424\) 17.1161 0.831232
\(425\) 0 0
\(426\) −9.20687 −0.446074
\(427\) − 4.43231i − 0.214495i
\(428\) 17.7183i 0.856445i
\(429\) −8.55045 −0.412820
\(430\) 0 0
\(431\) 11.2668 0.542704 0.271352 0.962480i \(-0.412529\pi\)
0.271352 + 0.962480i \(0.412529\pi\)
\(432\) − 1.03176i − 0.0496407i
\(433\) − 19.9228i − 0.957427i −0.877971 0.478714i \(-0.841103\pi\)
0.877971 0.478714i \(-0.158897\pi\)
\(434\) 13.8683 0.665700
\(435\) 0 0
\(436\) −1.19277 −0.0571235
\(437\) 19.5336i 0.934418i
\(438\) − 0.898581i − 0.0429359i
\(439\) −18.4321 −0.879717 −0.439859 0.898067i \(-0.644971\pi\)
−0.439859 + 0.898067i \(0.644971\pi\)
\(440\) 0 0
\(441\) 14.2451 0.678338
\(442\) 2.87375i 0.136690i
\(443\) 22.1719i 1.05342i 0.850045 + 0.526710i \(0.176575\pi\)
−0.850045 + 0.526710i \(0.823425\pi\)
\(444\) −1.63819 −0.0777453
\(445\) 0 0
\(446\) 58.5908 2.77435
\(447\) 4.20181i 0.198739i
\(448\) − 17.4008i − 0.822109i
\(449\) 4.70999 0.222278 0.111139 0.993805i \(-0.464550\pi\)
0.111139 + 0.993805i \(0.464550\pi\)
\(450\) 0 0
\(451\) −38.1427 −1.79607
\(452\) − 14.3627i − 0.675565i
\(453\) − 6.22767i − 0.292601i
\(454\) 13.6504 0.640643
\(455\) 0 0
\(456\) 7.60079 0.355940
\(457\) − 12.9225i − 0.604488i −0.953231 0.302244i \(-0.902264\pi\)
0.953231 0.302244i \(-0.0977357\pi\)
\(458\) − 11.8570i − 0.554043i
\(459\) 1.26779 0.0591752
\(460\) 0 0
\(461\) −11.7403 −0.546802 −0.273401 0.961900i \(-0.588149\pi\)
−0.273401 + 0.961900i \(0.588149\pi\)
\(462\) 8.73635i 0.406452i
\(463\) − 0.377012i − 0.0175212i −0.999962 0.00876061i \(-0.997211\pi\)
0.999962 0.00876061i \(-0.00278862\pi\)
\(464\) 2.79845 0.129915
\(465\) 0 0
\(466\) −34.5763 −1.60171
\(467\) − 7.22290i − 0.334236i −0.985937 0.167118i \(-0.946554\pi\)
0.985937 0.167118i \(-0.0534461\pi\)
\(468\) − 25.5894i − 1.18287i
\(469\) 12.9327 0.597176
\(470\) 0 0
\(471\) 10.0007 0.460810
\(472\) 22.3635i 1.02936i
\(473\) − 40.8153i − 1.87669i
\(474\) 20.1173 0.924019
\(475\) 0 0
\(476\) 1.79752 0.0823890
\(477\) 17.7876i 0.814439i
\(478\) 27.5154i 1.25853i
\(479\) −29.5805 −1.35157 −0.675783 0.737101i \(-0.736194\pi\)
−0.675783 + 0.737101i \(0.736194\pi\)
\(480\) 0 0
\(481\) 2.96818 0.135338
\(482\) 47.2144i 2.15056i
\(483\) 2.42817i 0.110486i
\(484\) −62.5748 −2.84431
\(485\) 0 0
\(486\) −28.0940 −1.27437
\(487\) 3.98732i 0.180683i 0.995911 + 0.0903413i \(0.0287958\pi\)
−0.995911 + 0.0903413i \(0.971204\pi\)
\(488\) − 8.72106i − 0.394784i
\(489\) −0.516419 −0.0233533
\(490\) 0 0
\(491\) 4.67346 0.210910 0.105455 0.994424i \(-0.466370\pi\)
0.105455 + 0.994424i \(0.466370\pi\)
\(492\) 11.2553i 0.507429i
\(493\) 3.43862i 0.154868i
\(494\) −37.5754 −1.69060
\(495\) 0 0
\(496\) −1.58665 −0.0712426
\(497\) − 10.4342i − 0.468040i
\(498\) − 3.23646i − 0.145029i
\(499\) −2.75874 −0.123498 −0.0617491 0.998092i \(-0.519668\pi\)
−0.0617491 + 0.998092i \(0.519668\pi\)
\(500\) 0 0
\(501\) 12.5897 0.562465
\(502\) 21.9612i 0.980177i
\(503\) − 5.38439i − 0.240078i −0.992769 0.120039i \(-0.961698\pi\)
0.992769 0.120039i \(-0.0383020\pi\)
\(504\) −9.58254 −0.426840
\(505\) 0 0
\(506\) −44.1766 −1.96389
\(507\) 2.17410i 0.0965553i
\(508\) − 40.2717i − 1.78677i
\(509\) −16.0712 −0.712342 −0.356171 0.934421i \(-0.615918\pi\)
−0.356171 + 0.934421i \(0.615918\pi\)
\(510\) 0 0
\(511\) 1.01837 0.0450501
\(512\) 3.92024i 0.173252i
\(513\) 16.5768i 0.731884i
\(514\) −71.8616 −3.16968
\(515\) 0 0
\(516\) −12.0440 −0.530205
\(517\) 17.5644i 0.772479i
\(518\) − 3.03272i − 0.133250i
\(519\) −5.94422 −0.260922
\(520\) 0 0
\(521\) −26.9444 −1.18045 −0.590227 0.807237i \(-0.700962\pi\)
−0.590227 + 0.807237i \(0.700962\pi\)
\(522\) − 50.0164i − 2.18916i
\(523\) − 8.47473i − 0.370574i −0.982684 0.185287i \(-0.940679\pi\)
0.982684 0.185287i \(-0.0593215\pi\)
\(524\) 45.7652 1.99926
\(525\) 0 0
\(526\) 32.5107 1.41753
\(527\) − 1.94961i − 0.0849262i
\(528\) − 0.999510i − 0.0434981i
\(529\) 10.7216 0.466156
\(530\) 0 0
\(531\) −23.2408 −1.00857
\(532\) 23.5032i 1.01899i
\(533\) − 20.3931i − 0.883323i
\(534\) 0.101941 0.00441142
\(535\) 0 0
\(536\) 25.4465 1.09912
\(537\) 6.13504i 0.264747i
\(538\) 65.4508i 2.82178i
\(539\) 28.9603 1.24741
\(540\) 0 0
\(541\) 18.8254 0.809368 0.404684 0.914457i \(-0.367382\pi\)
0.404684 + 0.914457i \(0.367382\pi\)
\(542\) 23.7045i 1.01819i
\(543\) − 7.68145i − 0.329643i
\(544\) −2.57648 −0.110466
\(545\) 0 0
\(546\) −4.67091 −0.199897
\(547\) 17.8907i 0.764953i 0.923965 + 0.382476i \(0.124929\pi\)
−0.923965 + 0.382476i \(0.875071\pi\)
\(548\) 34.2309i 1.46227i
\(549\) 9.06321 0.386809
\(550\) 0 0
\(551\) −44.9613 −1.91542
\(552\) 4.77770i 0.203352i
\(553\) 22.7992i 0.969519i
\(554\) −36.7935 −1.56321
\(555\) 0 0
\(556\) 4.94448 0.209693
\(557\) − 19.5753i − 0.829433i −0.909951 0.414717i \(-0.863881\pi\)
0.909951 0.414717i \(-0.136119\pi\)
\(558\) 28.3580i 1.20049i
\(559\) 21.8220 0.922972
\(560\) 0 0
\(561\) 1.22816 0.0518528
\(562\) 18.4161i 0.776837i
\(563\) − 20.0503i − 0.845018i −0.906359 0.422509i \(-0.861150\pi\)
0.906359 0.422509i \(-0.138850\pi\)
\(564\) 5.18297 0.218242
\(565\) 0 0
\(566\) −0.975966 −0.0410229
\(567\) − 8.87977i − 0.372915i
\(568\) − 20.5305i − 0.861442i
\(569\) 34.7651 1.45743 0.728715 0.684817i \(-0.240118\pi\)
0.728715 + 0.684817i \(0.240118\pi\)
\(570\) 0 0
\(571\) 1.04707 0.0438184 0.0219092 0.999760i \(-0.493026\pi\)
0.0219092 + 0.999760i \(0.493026\pi\)
\(572\) − 52.0232i − 2.17520i
\(573\) − 4.00071i − 0.167132i
\(574\) −20.8365 −0.869698
\(575\) 0 0
\(576\) 35.5812 1.48255
\(577\) − 28.6481i − 1.19264i −0.802749 0.596318i \(-0.796630\pi\)
0.802749 0.596318i \(-0.203370\pi\)
\(578\) 38.1929i 1.58862i
\(579\) 13.4947 0.560821
\(580\) 0 0
\(581\) 3.66791 0.152171
\(582\) 21.0234i 0.871448i
\(583\) 36.1622i 1.49769i
\(584\) 2.00376 0.0829161
\(585\) 0 0
\(586\) 32.6629 1.34929
\(587\) − 26.6924i − 1.10171i −0.834600 0.550857i \(-0.814301\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(588\) − 8.54573i − 0.352420i
\(589\) 25.4919 1.05037
\(590\) 0 0
\(591\) −6.79164 −0.279371
\(592\) 0.346968i 0.0142603i
\(593\) 10.0943i 0.414521i 0.978286 + 0.207261i \(0.0664548\pi\)
−0.978286 + 0.207261i \(0.933545\pi\)
\(594\) −37.4897 −1.53822
\(595\) 0 0
\(596\) −25.5649 −1.04718
\(597\) − 9.49523i − 0.388614i
\(598\) − 23.6192i − 0.965859i
\(599\) 9.37239 0.382946 0.191473 0.981498i \(-0.438674\pi\)
0.191473 + 0.981498i \(0.438674\pi\)
\(600\) 0 0
\(601\) −41.6868 −1.70044 −0.850220 0.526427i \(-0.823531\pi\)
−0.850220 + 0.526427i \(0.823531\pi\)
\(602\) − 22.2964i − 0.908735i
\(603\) 26.4448i 1.07692i
\(604\) 37.8908 1.54175
\(605\) 0 0
\(606\) −12.6774 −0.514982
\(607\) 20.4257i 0.829052i 0.910037 + 0.414526i \(0.136053\pi\)
−0.910037 + 0.414526i \(0.863947\pi\)
\(608\) − 33.6885i − 1.36625i
\(609\) −5.58903 −0.226479
\(610\) 0 0
\(611\) −9.39083 −0.379912
\(612\) 3.67557i 0.148576i
\(613\) − 39.0819i − 1.57850i −0.614070 0.789251i \(-0.710469\pi\)
0.614070 0.789251i \(-0.289531\pi\)
\(614\) 56.4162 2.27677
\(615\) 0 0
\(616\) −19.4813 −0.784924
\(617\) 24.7773i 0.997495i 0.866747 + 0.498747i \(0.166206\pi\)
−0.866747 + 0.498747i \(0.833794\pi\)
\(618\) − 9.65615i − 0.388427i
\(619\) −27.7629 −1.11589 −0.557943 0.829879i \(-0.688409\pi\)
−0.557943 + 0.829879i \(0.688409\pi\)
\(620\) 0 0
\(621\) −10.4198 −0.418134
\(622\) − 30.3244i − 1.21590i
\(623\) 0.115531i 0.00462864i
\(624\) 0.534391 0.0213928
\(625\) 0 0
\(626\) 59.3009 2.37014
\(627\) 16.0586i 0.641320i
\(628\) 60.8472i 2.42807i
\(629\) −0.426340 −0.0169993
\(630\) 0 0
\(631\) 20.6678 0.822772 0.411386 0.911461i \(-0.365045\pi\)
0.411386 + 0.911461i \(0.365045\pi\)
\(632\) 44.8599i 1.78443i
\(633\) 1.50045i 0.0596376i
\(634\) −62.4678 −2.48091
\(635\) 0 0
\(636\) 10.6709 0.423129
\(637\) 15.4837i 0.613486i
\(638\) − 101.683i − 4.02568i
\(639\) 21.3360 0.844039
\(640\) 0 0
\(641\) −23.3208 −0.921116 −0.460558 0.887630i \(-0.652351\pi\)
−0.460558 + 0.887630i \(0.652351\pi\)
\(642\) 6.61326i 0.261004i
\(643\) − 8.04242i − 0.317162i −0.987346 0.158581i \(-0.949308\pi\)
0.987346 0.158581i \(-0.0506919\pi\)
\(644\) −14.7737 −0.582163
\(645\) 0 0
\(646\) 5.39721 0.212350
\(647\) 49.3437i 1.93990i 0.243305 + 0.969950i \(0.421768\pi\)
−0.243305 + 0.969950i \(0.578232\pi\)
\(648\) − 17.4719i − 0.686362i
\(649\) −47.2487 −1.85467
\(650\) 0 0
\(651\) 3.16884 0.124196
\(652\) − 3.14203i − 0.123051i
\(653\) − 24.9760i − 0.977385i −0.872456 0.488693i \(-0.837474\pi\)
0.872456 0.488693i \(-0.162526\pi\)
\(654\) −0.445197 −0.0174086
\(655\) 0 0
\(656\) 2.38386 0.0930743
\(657\) 2.08237i 0.0812410i
\(658\) 9.59501i 0.374052i
\(659\) 32.3446 1.25997 0.629983 0.776609i \(-0.283062\pi\)
0.629983 + 0.776609i \(0.283062\pi\)
\(660\) 0 0
\(661\) −1.85884 −0.0723006 −0.0361503 0.999346i \(-0.511510\pi\)
−0.0361503 + 0.999346i \(0.511510\pi\)
\(662\) − 75.9811i − 2.95309i
\(663\) 0.656637i 0.0255017i
\(664\) 7.21703 0.280075
\(665\) 0 0
\(666\) 6.20132 0.240296
\(667\) − 28.2618i − 1.09430i
\(668\) 76.5988i 2.96370i
\(669\) 13.3877 0.517598
\(670\) 0 0
\(671\) 18.4255 0.711309
\(672\) − 4.18774i − 0.161546i
\(673\) 44.3587i 1.70990i 0.518709 + 0.854951i \(0.326413\pi\)
−0.518709 + 0.854951i \(0.673587\pi\)
\(674\) 52.2362 2.01206
\(675\) 0 0
\(676\) −13.2278 −0.508762
\(677\) 8.33112i 0.320191i 0.987102 + 0.160096i \(0.0511802\pi\)
−0.987102 + 0.160096i \(0.948820\pi\)
\(678\) − 5.36081i − 0.205881i
\(679\) −23.8260 −0.914360
\(680\) 0 0
\(681\) 3.11904 0.119522
\(682\) 57.6518i 2.20760i
\(683\) 24.2726i 0.928764i 0.885635 + 0.464382i \(0.153723\pi\)
−0.885635 + 0.464382i \(0.846277\pi\)
\(684\) −48.0595 −1.83760
\(685\) 0 0
\(686\) 37.0494 1.41455
\(687\) − 2.70927i − 0.103365i
\(688\) 2.55090i 0.0972520i
\(689\) −19.3342 −0.736576
\(690\) 0 0
\(691\) 29.0133 1.10372 0.551858 0.833938i \(-0.313919\pi\)
0.551858 + 0.833938i \(0.313919\pi\)
\(692\) − 36.1662i − 1.37483i
\(693\) − 20.2456i − 0.769067i
\(694\) 48.0552 1.82415
\(695\) 0 0
\(696\) −10.9970 −0.416842
\(697\) 2.92919i 0.110951i
\(698\) 36.2823i 1.37330i
\(699\) −7.90050 −0.298824
\(700\) 0 0
\(701\) 33.0887 1.24974 0.624871 0.780728i \(-0.285151\pi\)
0.624871 + 0.780728i \(0.285151\pi\)
\(702\) − 20.0440i − 0.756510i
\(703\) − 5.57456i − 0.210249i
\(704\) 72.3366 2.72629
\(705\) 0 0
\(706\) 42.7280 1.60809
\(707\) − 14.3674i − 0.540341i
\(708\) 13.9423i 0.523985i
\(709\) 31.3446 1.17717 0.588586 0.808434i \(-0.299685\pi\)
0.588586 + 0.808434i \(0.299685\pi\)
\(710\) 0 0
\(711\) −46.6198 −1.74838
\(712\) 0.227319i 0.00851916i
\(713\) 16.0237i 0.600091i
\(714\) 0.670914 0.0251083
\(715\) 0 0
\(716\) −37.3272 −1.39498
\(717\) 6.28713i 0.234797i
\(718\) − 76.6176i − 2.85934i
\(719\) 19.2288 0.717114 0.358557 0.933508i \(-0.383269\pi\)
0.358557 + 0.933508i \(0.383269\pi\)
\(720\) 0 0
\(721\) 10.9434 0.407554
\(722\) 27.4231i 1.02058i
\(723\) 10.7883i 0.401219i
\(724\) 46.7360 1.73693
\(725\) 0 0
\(726\) −23.3557 −0.866813
\(727\) 51.4657i 1.90876i 0.298599 + 0.954379i \(0.403481\pi\)
−0.298599 + 0.954379i \(0.596519\pi\)
\(728\) − 10.4157i − 0.386033i
\(729\) 13.5284 0.501051
\(730\) 0 0
\(731\) −3.13444 −0.115931
\(732\) − 5.43708i − 0.200960i
\(733\) − 8.23113i − 0.304024i −0.988379 0.152012i \(-0.951425\pi\)
0.988379 0.152012i \(-0.0485752\pi\)
\(734\) 40.9518 1.51156
\(735\) 0 0
\(736\) 21.1759 0.780554
\(737\) 53.7624i 1.98036i
\(738\) − 42.6065i − 1.56837i
\(739\) 11.7725 0.433057 0.216528 0.976276i \(-0.430527\pi\)
0.216528 + 0.976276i \(0.430527\pi\)
\(740\) 0 0
\(741\) −8.58580 −0.315407
\(742\) 19.7546i 0.725214i
\(743\) 29.3902i 1.07822i 0.842234 + 0.539112i \(0.181240\pi\)
−0.842234 + 0.539112i \(0.818760\pi\)
\(744\) 6.23503 0.228587
\(745\) 0 0
\(746\) 61.3625 2.24664
\(747\) 7.50017i 0.274417i
\(748\) 7.47243i 0.273219i
\(749\) −7.49487 −0.273857
\(750\) 0 0
\(751\) −9.66463 −0.352667 −0.176334 0.984330i \(-0.556424\pi\)
−0.176334 + 0.984330i \(0.556424\pi\)
\(752\) − 1.09775i − 0.0400307i
\(753\) 5.01803i 0.182867i
\(754\) 54.3652 1.97986
\(755\) 0 0
\(756\) −12.5374 −0.455980
\(757\) 3.21095i 0.116704i 0.998296 + 0.0583520i \(0.0185846\pi\)
−0.998296 + 0.0583520i \(0.981415\pi\)
\(758\) 77.2672i 2.80647i
\(759\) −10.0941 −0.366394
\(760\) 0 0
\(761\) −3.78248 −0.137115 −0.0685574 0.997647i \(-0.521840\pi\)
−0.0685574 + 0.997647i \(0.521840\pi\)
\(762\) − 15.0312i − 0.544524i
\(763\) − 0.504546i − 0.0182658i
\(764\) 24.3414 0.880641
\(765\) 0 0
\(766\) 6.23707 0.225354
\(767\) − 25.2616i − 0.912144i
\(768\) − 7.10304i − 0.256309i
\(769\) −7.39888 −0.266810 −0.133405 0.991062i \(-0.542591\pi\)
−0.133405 + 0.991062i \(0.542591\pi\)
\(770\) 0 0
\(771\) −16.4200 −0.591352
\(772\) 82.1054i 2.95504i
\(773\) 12.8663i 0.462769i 0.972862 + 0.231385i \(0.0743256\pi\)
−0.972862 + 0.231385i \(0.925674\pi\)
\(774\) 45.5919 1.63877
\(775\) 0 0
\(776\) −46.8804 −1.68291
\(777\) − 0.692961i − 0.0248598i
\(778\) − 5.07397i − 0.181911i
\(779\) −38.3004 −1.37225
\(780\) 0 0
\(781\) 43.3761 1.55212
\(782\) 3.39257i 0.121318i
\(783\) − 23.9838i − 0.857111i
\(784\) −1.80998 −0.0646420
\(785\) 0 0
\(786\) 17.0817 0.609282
\(787\) − 3.19598i − 0.113924i −0.998376 0.0569621i \(-0.981859\pi\)
0.998376 0.0569621i \(-0.0181414\pi\)
\(788\) − 41.3221i − 1.47204i
\(789\) 7.42852 0.264462
\(790\) 0 0
\(791\) 6.07546 0.216019
\(792\) − 39.8355i − 1.41549i
\(793\) 9.85125i 0.349828i
\(794\) −13.0472 −0.463027
\(795\) 0 0
\(796\) 57.7715 2.04766
\(797\) − 33.4964i − 1.18650i −0.805017 0.593252i \(-0.797844\pi\)
0.805017 0.593252i \(-0.202156\pi\)
\(798\) 8.77247i 0.310542i
\(799\) 1.34887 0.0477195
\(800\) 0 0
\(801\) −0.236238 −0.00834705
\(802\) − 37.3471i − 1.31877i
\(803\) 4.23346i 0.149396i
\(804\) 15.8644 0.559495
\(805\) 0 0
\(806\) −30.8237 −1.08572
\(807\) 14.9552i 0.526447i
\(808\) − 28.2694i − 0.994514i
\(809\) −3.02505 −0.106355 −0.0531775 0.998585i \(-0.516935\pi\)
−0.0531775 + 0.998585i \(0.516935\pi\)
\(810\) 0 0
\(811\) −15.5601 −0.546388 −0.273194 0.961959i \(-0.588080\pi\)
−0.273194 + 0.961959i \(0.588080\pi\)
\(812\) − 34.0052i − 1.19335i
\(813\) 5.41635i 0.189960i
\(814\) 12.6073 0.441885
\(815\) 0 0
\(816\) −0.0767581 −0.00268707
\(817\) − 40.9840i − 1.43385i
\(818\) − 73.9946i − 2.58716i
\(819\) 10.8244 0.378234
\(820\) 0 0
\(821\) −21.2585 −0.741928 −0.370964 0.928647i \(-0.620973\pi\)
−0.370964 + 0.928647i \(0.620973\pi\)
\(822\) 12.7765i 0.445632i
\(823\) 21.0705i 0.734472i 0.930128 + 0.367236i \(0.119696\pi\)
−0.930128 + 0.367236i \(0.880304\pi\)
\(824\) 21.5324 0.750116
\(825\) 0 0
\(826\) −25.8109 −0.898075
\(827\) − 11.8965i − 0.413683i −0.978374 0.206841i \(-0.933682\pi\)
0.978374 0.206841i \(-0.0663184\pi\)
\(828\) − 30.2092i − 1.04984i
\(829\) −3.76808 −0.130871 −0.0654355 0.997857i \(-0.520844\pi\)
−0.0654355 + 0.997857i \(0.520844\pi\)
\(830\) 0 0
\(831\) −8.40713 −0.291640
\(832\) 38.6749i 1.34081i
\(833\) − 2.22403i − 0.0770579i
\(834\) 1.84550 0.0639046
\(835\) 0 0
\(836\) −97.7050 −3.37920
\(837\) 13.5982i 0.470022i
\(838\) − 60.4407i − 2.08789i
\(839\) −27.0741 −0.934703 −0.467352 0.884071i \(-0.654792\pi\)
−0.467352 + 0.884071i \(0.654792\pi\)
\(840\) 0 0
\(841\) 36.0513 1.24315
\(842\) − 31.0605i − 1.07042i
\(843\) 4.20799i 0.144931i
\(844\) −9.12914 −0.314238
\(845\) 0 0
\(846\) −19.6199 −0.674547
\(847\) − 26.4693i − 0.909496i
\(848\) − 2.26009i − 0.0776118i
\(849\) −0.223003 −0.00765345
\(850\) 0 0
\(851\) 3.50406 0.120118
\(852\) − 12.7996i − 0.438507i
\(853\) 5.26211i 0.180171i 0.995934 + 0.0900857i \(0.0287141\pi\)
−0.995934 + 0.0900857i \(0.971286\pi\)
\(854\) 10.0654 0.344432
\(855\) 0 0
\(856\) −14.7470 −0.504042
\(857\) 43.5043i 1.48608i 0.669247 + 0.743040i \(0.266617\pi\)
−0.669247 + 0.743040i \(0.733383\pi\)
\(858\) − 19.4174i − 0.662899i
\(859\) −12.2666 −0.418530 −0.209265 0.977859i \(-0.567107\pi\)
−0.209265 + 0.977859i \(0.567107\pi\)
\(860\) 0 0
\(861\) −4.76103 −0.162255
\(862\) 25.5861i 0.871466i
\(863\) 25.5488i 0.869692i 0.900505 + 0.434846i \(0.143197\pi\)
−0.900505 + 0.434846i \(0.856803\pi\)
\(864\) 17.9705 0.611370
\(865\) 0 0
\(866\) 45.2431 1.53742
\(867\) 8.72688i 0.296380i
\(868\) 19.2800i 0.654407i
\(869\) −94.7781 −3.21513
\(870\) 0 0
\(871\) −28.7442 −0.973960
\(872\) − 0.992751i − 0.0336188i
\(873\) − 48.7196i − 1.64891i
\(874\) −44.3593 −1.50047
\(875\) 0 0
\(876\) 1.24923 0.0422075
\(877\) − 5.42848i − 0.183307i −0.995791 0.0916534i \(-0.970785\pi\)
0.995791 0.0916534i \(-0.0292152\pi\)
\(878\) − 41.8579i − 1.41264i
\(879\) 7.46331 0.251731
\(880\) 0 0
\(881\) −1.60640 −0.0541211 −0.0270606 0.999634i \(-0.508615\pi\)
−0.0270606 + 0.999634i \(0.508615\pi\)
\(882\) 32.3495i 1.08926i
\(883\) 27.0365i 0.909850i 0.890530 + 0.454925i \(0.150334\pi\)
−0.890530 + 0.454925i \(0.849666\pi\)
\(884\) −3.99516 −0.134372
\(885\) 0 0
\(886\) −50.3508 −1.69157
\(887\) 5.22338i 0.175384i 0.996148 + 0.0876919i \(0.0279491\pi\)
−0.996148 + 0.0876919i \(0.972051\pi\)
\(888\) − 1.36348i − 0.0457553i
\(889\) 17.0350 0.571337
\(890\) 0 0
\(891\) 36.9140 1.23667
\(892\) 81.4543i 2.72729i
\(893\) 17.6370i 0.590199i
\(894\) −9.54198 −0.319132
\(895\) 0 0
\(896\) 23.3748 0.780897
\(897\) − 5.39686i − 0.180196i
\(898\) 10.6960i 0.356931i
\(899\) −36.8824 −1.23010
\(900\) 0 0
\(901\) 2.77710 0.0925187
\(902\) − 86.6191i − 2.88410i
\(903\) − 5.09462i − 0.169538i
\(904\) 11.9541 0.397589
\(905\) 0 0
\(906\) 14.1425 0.469855
\(907\) 35.8601i 1.19071i 0.803461 + 0.595357i \(0.202989\pi\)
−0.803461 + 0.595357i \(0.797011\pi\)
\(908\) 18.9771i 0.629776i
\(909\) 29.3785 0.974423
\(910\) 0 0
\(911\) −37.2761 −1.23501 −0.617506 0.786566i \(-0.711857\pi\)
−0.617506 + 0.786566i \(0.711857\pi\)
\(912\) − 1.00364i − 0.0332339i
\(913\) 15.2478i 0.504630i
\(914\) 29.3459 0.970677
\(915\) 0 0
\(916\) 16.4839 0.544644
\(917\) 19.3588i 0.639285i
\(918\) 2.87904i 0.0950226i
\(919\) −20.7180 −0.683423 −0.341712 0.939805i \(-0.611007\pi\)
−0.341712 + 0.939805i \(0.611007\pi\)
\(920\) 0 0
\(921\) 12.8908 0.424767
\(922\) − 26.6614i − 0.878046i
\(923\) 23.1911i 0.763345i
\(924\) −12.1455 −0.399557
\(925\) 0 0
\(926\) 0.856165 0.0281353
\(927\) 22.3771i 0.734962i
\(928\) 48.7415i 1.60002i
\(929\) −4.73148 −0.155235 −0.0776173 0.996983i \(-0.524731\pi\)
−0.0776173 + 0.996983i \(0.524731\pi\)
\(930\) 0 0
\(931\) 29.0800 0.953059
\(932\) − 48.0687i − 1.57454i
\(933\) − 6.92897i − 0.226844i
\(934\) 16.4026 0.536711
\(935\) 0 0
\(936\) 21.2981 0.696152
\(937\) − 9.43501i − 0.308228i −0.988053 0.154114i \(-0.950748\pi\)
0.988053 0.154114i \(-0.0492524\pi\)
\(938\) 29.3691i 0.958937i
\(939\) 13.5500 0.442186
\(940\) 0 0
\(941\) 41.6919 1.35912 0.679559 0.733621i \(-0.262171\pi\)
0.679559 + 0.733621i \(0.262171\pi\)
\(942\) 22.7109i 0.739962i
\(943\) − 24.0748i − 0.783985i
\(944\) 2.95297 0.0961111
\(945\) 0 0
\(946\) 92.6883 3.01356
\(947\) 40.4822i 1.31550i 0.753238 + 0.657748i \(0.228491\pi\)
−0.753238 + 0.657748i \(0.771509\pi\)
\(948\) 27.9676i 0.908344i
\(949\) −2.26343 −0.0734741
\(950\) 0 0
\(951\) −14.2736 −0.462852
\(952\) 1.49608i 0.0484882i
\(953\) − 57.3835i − 1.85883i −0.369033 0.929416i \(-0.620311\pi\)
0.369033 0.929416i \(-0.379689\pi\)
\(954\) −40.3943 −1.30781
\(955\) 0 0
\(956\) −38.2526 −1.23718
\(957\) − 23.2341i − 0.751052i
\(958\) − 67.1749i − 2.17032i
\(959\) −14.4797 −0.467575
\(960\) 0 0
\(961\) −10.0887 −0.325440
\(962\) 6.74052i 0.217323i
\(963\) − 15.3256i − 0.493859i
\(964\) −65.6386 −2.11408
\(965\) 0 0
\(966\) −5.51419 −0.177416
\(967\) − 5.51447i − 0.177333i −0.996061 0.0886667i \(-0.971739\pi\)
0.996061 0.0886667i \(-0.0282606\pi\)
\(968\) − 52.0813i − 1.67396i
\(969\) 1.23323 0.0396172
\(970\) 0 0
\(971\) −29.5277 −0.947590 −0.473795 0.880635i \(-0.657116\pi\)
−0.473795 + 0.880635i \(0.657116\pi\)
\(972\) − 39.0570i − 1.25275i
\(973\) 2.09153i 0.0670514i
\(974\) −9.05489 −0.290137
\(975\) 0 0
\(976\) −1.15157 −0.0368608
\(977\) 45.5206i 1.45633i 0.685401 + 0.728166i \(0.259627\pi\)
−0.685401 + 0.728166i \(0.740373\pi\)
\(978\) − 1.17275i − 0.0375003i
\(979\) −0.480272 −0.0153495
\(980\) 0 0
\(981\) 1.03170 0.0329396
\(982\) 10.6131i 0.338677i
\(983\) 11.2739i 0.359582i 0.983705 + 0.179791i \(0.0575421\pi\)
−0.983705 + 0.179791i \(0.942458\pi\)
\(984\) −9.36785 −0.298636
\(985\) 0 0
\(986\) −7.80883 −0.248684
\(987\) 2.19241i 0.0697852i
\(988\) − 52.2383i − 1.66192i
\(989\) 25.7617 0.819175
\(990\) 0 0
\(991\) −12.4139 −0.394341 −0.197170 0.980369i \(-0.563175\pi\)
−0.197170 + 0.980369i \(0.563175\pi\)
\(992\) − 27.6352i − 0.877417i
\(993\) − 17.3613i − 0.550944i
\(994\) 23.6954 0.751571
\(995\) 0 0
\(996\) 4.49940 0.142569
\(997\) − 38.6932i − 1.22543i −0.790306 0.612713i \(-0.790078\pi\)
0.790306 0.612713i \(-0.209922\pi\)
\(998\) − 6.26488i − 0.198311i
\(999\) 2.97365 0.0940822
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.b.g.149.9 10
5.2 odd 4 925.2.a.h.1.1 5
5.3 odd 4 185.2.a.d.1.5 5
5.4 even 2 inner 925.2.b.g.149.2 10
15.2 even 4 8325.2.a.cc.1.5 5
15.8 even 4 1665.2.a.q.1.1 5
20.3 even 4 2960.2.a.ba.1.3 5
35.13 even 4 9065.2.a.j.1.5 5
185.73 odd 4 6845.2.a.g.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.5 5 5.3 odd 4
925.2.a.h.1.1 5 5.2 odd 4
925.2.b.g.149.2 10 5.4 even 2 inner
925.2.b.g.149.9 10 1.1 even 1 trivial
1665.2.a.q.1.1 5 15.8 even 4
2960.2.a.ba.1.3 5 20.3 even 4
6845.2.a.g.1.1 5 185.73 odd 4
8325.2.a.cc.1.5 5 15.2 even 4
9065.2.a.j.1.5 5 35.13 even 4