Properties

Label 185.2.a.d.1.5
Level 185185
Weight 22
Character 185.1
Self dual yes
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(1,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 185=537 185 = 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 185.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x46x3+6x2+6x4 x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 1.178371.17837 of defining polynomial
Character χ\chi == 185.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.27092q20.518894q3+3.15709q4+1.00000q51.17837q61.33546q7+2.62766q82.73075q9+2.27092q10+5.55161q111.63819q122.96818q133.03272q140.518894q150.346968q160.426340q176.20132q185.57456q19+3.15709q20+0.692961q21+12.6073q223.50406q231.36348q24+1.00000q256.74052q26+2.97365q274.21616q28+8.06544q291.17837q30+4.57289q316.04326q322.88070q330.968185q341.33546q358.62122q361.00000q3712.6594q38+1.54017q39+2.62766q406.87056q41+1.57366q42+7.35197q43+17.5269q442.73075q457.95744q46+3.16383q47+0.180040q485.21655q49+2.27092q50+0.221225q519.37082q526.51383q53+6.75293q54+5.55161q553.50913q56+2.89261q57+18.3160q58+8.51080q591.63819q60+3.31895q61+10.3847q62+3.64680q6313.0298q642.96818q656.54184q66+9.68410q671.34599q68+1.81823q693.03272q70+7.81324q717.17548q720.762564q732.27092q740.518894q7517.5994q767.41394q77+3.49761q78+17.0722q790.346968q80+6.64924q8115.6025q822.74656q83+2.18774q840.426340q85+16.6957q864.18511q87+14.5877q88+0.0865103q896.20132q90+3.96388q9111.0626q922.37285q93+7.18481q945.57456q95+3.13581q9617.8411q9711.8464q9815.1601q99+O(q100)q+2.27092 q^{2} -0.518894 q^{3} +3.15709 q^{4} +1.00000 q^{5} -1.17837 q^{6} -1.33546 q^{7} +2.62766 q^{8} -2.73075 q^{9} +2.27092 q^{10} +5.55161 q^{11} -1.63819 q^{12} -2.96818 q^{13} -3.03272 q^{14} -0.518894 q^{15} -0.346968 q^{16} -0.426340 q^{17} -6.20132 q^{18} -5.57456 q^{19} +3.15709 q^{20} +0.692961 q^{21} +12.6073 q^{22} -3.50406 q^{23} -1.36348 q^{24} +1.00000 q^{25} -6.74052 q^{26} +2.97365 q^{27} -4.21616 q^{28} +8.06544 q^{29} -1.17837 q^{30} +4.57289 q^{31} -6.04326 q^{32} -2.88070 q^{33} -0.968185 q^{34} -1.33546 q^{35} -8.62122 q^{36} -1.00000 q^{37} -12.6594 q^{38} +1.54017 q^{39} +2.62766 q^{40} -6.87056 q^{41} +1.57366 q^{42} +7.35197 q^{43} +17.5269 q^{44} -2.73075 q^{45} -7.95744 q^{46} +3.16383 q^{47} +0.180040 q^{48} -5.21655 q^{49} +2.27092 q^{50} +0.221225 q^{51} -9.37082 q^{52} -6.51383 q^{53} +6.75293 q^{54} +5.55161 q^{55} -3.50913 q^{56} +2.89261 q^{57} +18.3160 q^{58} +8.51080 q^{59} -1.63819 q^{60} +3.31895 q^{61} +10.3847 q^{62} +3.64680 q^{63} -13.0298 q^{64} -2.96818 q^{65} -6.54184 q^{66} +9.68410 q^{67} -1.34599 q^{68} +1.81823 q^{69} -3.03272 q^{70} +7.81324 q^{71} -7.17548 q^{72} -0.762564 q^{73} -2.27092 q^{74} -0.518894 q^{75} -17.5994 q^{76} -7.41394 q^{77} +3.49761 q^{78} +17.0722 q^{79} -0.346968 q^{80} +6.64924 q^{81} -15.6025 q^{82} -2.74656 q^{83} +2.18774 q^{84} -0.426340 q^{85} +16.6957 q^{86} -4.18511 q^{87} +14.5877 q^{88} +0.0865103 q^{89} -6.20132 q^{90} +3.96388 q^{91} -11.0626 q^{92} -2.37285 q^{93} +7.18481 q^{94} -5.57456 q^{95} +3.13581 q^{96} -17.8411 q^{97} -11.8464 q^{98} -15.1601 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq3+6q4+5q52q6+7q76q8+2q9+7q11+2q13+4q14q15+8q168q176q18+14q19+6q209q21+2q22+2q23++18q99+O(q100) 5 q - q^{3} + 6 q^{4} + 5 q^{5} - 2 q^{6} + 7 q^{7} - 6 q^{8} + 2 q^{9} + 7 q^{11} + 2 q^{13} + 4 q^{14} - q^{15} + 8 q^{16} - 8 q^{17} - 6 q^{18} + 14 q^{19} + 6 q^{20} - 9 q^{21} + 2 q^{22} + 2 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.27092 1.60578 0.802892 0.596124i 0.203293π-0.203293\pi
0.802892 + 0.596124i 0.203293π0.203293\pi
33 −0.518894 −0.299584 −0.149792 0.988718i 0.547860π-0.547860\pi
−0.149792 + 0.988718i 0.547860π0.547860\pi
44 3.15709 1.57854
55 1.00000 0.447214
66 −1.17837 −0.481067
77 −1.33546 −0.504755 −0.252378 0.967629i 0.581213π-0.581213\pi
−0.252378 + 0.967629i 0.581213π0.581213\pi
88 2.62766 0.929018
99 −2.73075 −0.910250
1010 2.27092 0.718129
1111 5.55161 1.67387 0.836937 0.547299i 0.184344π-0.184344\pi
0.836937 + 0.547299i 0.184344π0.184344\pi
1212 −1.63819 −0.472906
1313 −2.96818 −0.823226 −0.411613 0.911359i 0.635035π-0.635035\pi
−0.411613 + 0.911359i 0.635035π0.635035\pi
1414 −3.03272 −0.810528
1515 −0.518894 −0.133978
1616 −0.346968 −0.0867420
1717 −0.426340 −0.103403 −0.0517013 0.998663i 0.516464π-0.516464\pi
−0.0517013 + 0.998663i 0.516464π0.516464\pi
1818 −6.20132 −1.46166
1919 −5.57456 −1.27889 −0.639446 0.768836i 0.720836π-0.720836\pi
−0.639446 + 0.768836i 0.720836π0.720836\pi
2020 3.15709 0.705947
2121 0.692961 0.151216
2222 12.6073 2.68788
2323 −3.50406 −0.730646 −0.365323 0.930881i 0.619042π-0.619042\pi
−0.365323 + 0.930881i 0.619042π0.619042\pi
2424 −1.36348 −0.278319
2525 1.00000 0.200000
2626 −6.74052 −1.32192
2727 2.97365 0.572280
2828 −4.21616 −0.796779
2929 8.06544 1.49771 0.748857 0.662731i 0.230603π-0.230603\pi
0.748857 + 0.662731i 0.230603π0.230603\pi
3030 −1.17837 −0.215140
3131 4.57289 0.821316 0.410658 0.911789i 0.365299π-0.365299\pi
0.410658 + 0.911789i 0.365299π0.365299\pi
3232 −6.04326 −1.06831
3333 −2.88070 −0.501465
3434 −0.968185 −0.166042
3535 −1.33546 −0.225733
3636 −8.62122 −1.43687
3737 −1.00000 −0.164399
3838 −12.6594 −2.05363
3939 1.54017 0.246625
4040 2.62766 0.415469
4141 −6.87056 −1.07300 −0.536501 0.843900i 0.680254π-0.680254\pi
−0.536501 + 0.843900i 0.680254π0.680254\pi
4242 1.57366 0.242821
4343 7.35197 1.12116 0.560582 0.828099i 0.310577π-0.310577\pi
0.560582 + 0.828099i 0.310577π0.310577\pi
4444 17.5269 2.64229
4545 −2.73075 −0.407076
4646 −7.95744 −1.17326
4747 3.16383 0.461492 0.230746 0.973014i 0.425883π-0.425883\pi
0.230746 + 0.973014i 0.425883π0.425883\pi
4848 0.180040 0.0259865
4949 −5.21655 −0.745222
5050 2.27092 0.321157
5151 0.221225 0.0309777
5252 −9.37082 −1.29950
5353 −6.51383 −0.894743 −0.447371 0.894348i 0.647640π-0.647640\pi
−0.447371 + 0.894348i 0.647640π0.647640\pi
5454 6.75293 0.918958
5555 5.55161 0.748579
5656 −3.50913 −0.468927
5757 2.89261 0.383135
5858 18.3160 2.40501
5959 8.51080 1.10801 0.554006 0.832513i 0.313099π-0.313099\pi
0.554006 + 0.832513i 0.313099π0.313099\pi
6060 −1.63819 −0.211490
6161 3.31895 0.424948 0.212474 0.977167i 0.431848π-0.431848\pi
0.212474 + 0.977167i 0.431848π0.431848\pi
6262 10.3847 1.31886
6363 3.64680 0.459453
6464 −13.0298 −1.62873
6565 −2.96818 −0.368158
6666 −6.54184 −0.805245
6767 9.68410 1.18310 0.591550 0.806268i 0.298516π-0.298516\pi
0.591550 + 0.806268i 0.298516π0.298516\pi
6868 −1.34599 −0.163226
6969 1.81823 0.218890
7070 −3.03272 −0.362479
7171 7.81324 0.927261 0.463630 0.886029i 0.346547π-0.346547\pi
0.463630 + 0.886029i 0.346547π0.346547\pi
7272 −7.17548 −0.845638
7373 −0.762564 −0.0892514 −0.0446257 0.999004i 0.514210π-0.514210\pi
−0.0446257 + 0.999004i 0.514210π0.514210\pi
7474 −2.27092 −0.263989
7575 −0.518894 −0.0599167
7676 −17.5994 −2.01879
7777 −7.41394 −0.844897
7878 3.49761 0.396027
7979 17.0722 1.92077 0.960385 0.278676i 0.0898956π-0.0898956\pi
0.960385 + 0.278676i 0.0898956π0.0898956\pi
8080 −0.346968 −0.0387922
8181 6.64924 0.738804
8282 −15.6025 −1.72301
8383 −2.74656 −0.301474 −0.150737 0.988574i 0.548165π-0.548165\pi
−0.150737 + 0.988574i 0.548165π0.548165\pi
8484 2.18774 0.238702
8585 −0.426340 −0.0462431
8686 16.6957 1.80035
8787 −4.18511 −0.448691
8888 14.5877 1.55506
8989 0.0865103 0.00917007 0.00458503 0.999989i 0.498541π-0.498541\pi
0.00458503 + 0.999989i 0.498541π0.498541\pi
9090 −6.20132 −0.653676
9191 3.96388 0.415528
9292 −11.0626 −1.15336
9393 −2.37285 −0.246053
9494 7.18481 0.741057
9595 −5.57456 −0.571938
9696 3.13581 0.320047
9797 −17.8411 −1.81149 −0.905745 0.423822i 0.860688π-0.860688\pi
−0.905745 + 0.423822i 0.860688π0.860688\pi
9898 −11.8464 −1.19667
9999 −15.1601 −1.52364
100100 3.15709 0.315709
101101 10.7584 1.07050 0.535250 0.844693i 0.320217π-0.320217\pi
0.535250 + 0.844693i 0.320217π0.320217\pi
102102 0.502385 0.0497436
103103 −8.19451 −0.807429 −0.403714 0.914885i 0.632281π-0.632281\pi
−0.403714 + 0.914885i 0.632281π0.632281\pi
104104 −7.79938 −0.764792
105105 0.692961 0.0676260
106106 −14.7924 −1.43676
107107 −5.61222 −0.542553 −0.271277 0.962501i 0.587446π-0.587446\pi
−0.271277 + 0.962501i 0.587446π0.587446\pi
108108 9.38808 0.903369
109109 −0.377808 −0.0361874 −0.0180937 0.999836i 0.505760π-0.505760\pi
−0.0180937 + 0.999836i 0.505760π0.505760\pi
110110 12.6073 1.20206
111111 0.518894 0.0492512
112112 0.463361 0.0437835
113113 −4.54935 −0.427967 −0.213984 0.976837i 0.568644π-0.568644\pi
−0.213984 + 0.976837i 0.568644π0.568644\pi
114114 6.56889 0.615233
115115 −3.50406 −0.326755
116116 25.4633 2.36421
117117 8.10537 0.749341
118118 19.3274 1.77923
119119 0.569359 0.0521930
120120 −1.36348 −0.124468
121121 19.8204 1.80186
122122 7.53707 0.682375
123123 3.56509 0.321454
124124 14.4370 1.29648
125125 1.00000 0.0894427
126126 8.28160 0.737783
127127 12.7560 1.13191 0.565954 0.824437i 0.308508π-0.308508\pi
0.565954 + 0.824437i 0.308508π0.308508\pi
128128 −17.5032 −1.54708
129129 −3.81489 −0.335882
130130 −6.74052 −0.591182
131131 −14.4960 −1.26652 −0.633262 0.773938i 0.718284π-0.718284\pi
−0.633262 + 0.773938i 0.718284π0.718284\pi
132132 −9.09462 −0.791585
133133 7.44459 0.645528
134134 21.9918 1.89980
135135 2.97365 0.255931
136136 −1.12028 −0.0960629
137137 −10.8425 −0.926341 −0.463170 0.886269i 0.653288π-0.653288\pi
−0.463170 + 0.886269i 0.653288π0.653288\pi
138138 4.12907 0.351490
139139 1.56615 0.132839 0.0664197 0.997792i 0.478842π-0.478842\pi
0.0664197 + 0.997792i 0.478842π0.478842\pi
140140 −4.21616 −0.356330
141141 −1.64169 −0.138255
142142 17.7433 1.48898
143143 −16.4782 −1.37798
144144 0.947482 0.0789569
145145 8.06544 0.669798
146146 −1.73172 −0.143319
147147 2.70684 0.223256
148148 −3.15709 −0.259511
149149 −8.09762 −0.663383 −0.331692 0.943388i 0.607619π-0.607619\pi
−0.331692 + 0.943388i 0.607619π0.607619\pi
150150 −1.17837 −0.0962134
151151 −12.0018 −0.976693 −0.488347 0.872650i 0.662400π-0.662400\pi
−0.488347 + 0.872650i 0.662400π0.662400\pi
152152 −14.6481 −1.18811
153153 1.16423 0.0941222
154154 −16.8365 −1.35672
155155 4.57289 0.367304
156156 4.86246 0.389309
157157 −19.2732 −1.53817 −0.769084 0.639147i 0.779287π-0.779287\pi
−0.769084 + 0.639147i 0.779287π0.779287\pi
158158 38.7696 3.08434
159159 3.37999 0.268050
160160 −6.04326 −0.477761
161161 4.67952 0.368798
162162 15.0999 1.18636
163163 −0.995229 −0.0779524 −0.0389762 0.999240i 0.512410π-0.512410\pi
−0.0389762 + 0.999240i 0.512410π0.512410\pi
164164 −21.6910 −1.69378
165165 −2.88070 −0.224262
166166 −6.23723 −0.484103
167167 −24.2625 −1.87749 −0.938744 0.344615i 0.888009π-0.888009\pi
−0.938744 + 0.344615i 0.888009π0.888009\pi
168168 1.82086 0.140483
169169 −4.18988 −0.322298
170170 −0.968185 −0.0742564
171171 15.2227 1.16411
172172 23.2108 1.76981
173173 −11.4556 −0.870950 −0.435475 0.900201i 0.643420π-0.643420\pi
−0.435475 + 0.900201i 0.643420π0.643420\pi
174174 −9.50406 −0.720501
175175 −1.33546 −0.100951
176176 −1.92623 −0.145195
177177 −4.41620 −0.331942
178178 0.196458 0.0147252
179179 −11.8233 −0.883715 −0.441858 0.897085i 0.645680π-0.645680\pi
−0.441858 + 0.897085i 0.645680π0.645680\pi
180180 −8.62122 −0.642588
181181 −14.8035 −1.10034 −0.550168 0.835054i 0.685436π-0.685436\pi
−0.550168 + 0.835054i 0.685436π0.685436\pi
182182 9.00167 0.667248
183183 −1.72218 −0.127307
184184 −9.20747 −0.678783
185185 −1.00000 −0.0735215
186186 −5.38855 −0.395108
187187 −2.36687 −0.173083
188188 9.98849 0.728485
189189 −3.97118 −0.288861
190190 −12.6594 −0.918410
191191 −7.71008 −0.557881 −0.278941 0.960308i 0.589983π-0.589983\pi
−0.278941 + 0.960308i 0.589983π0.589983\pi
192192 6.76110 0.487940
193193 26.0067 1.87200 0.936001 0.351997i 0.114497π-0.114497\pi
0.936001 + 0.351997i 0.114497π0.114497\pi
194194 −40.5158 −2.90886
195195 1.54017 0.110294
196196 −16.4691 −1.17637
197197 13.0887 0.932530 0.466265 0.884645i 0.345599π-0.345599\pi
0.466265 + 0.884645i 0.345599π0.345599\pi
198198 −34.4273 −2.44664
199199 18.2990 1.29718 0.648590 0.761138i 0.275359π-0.275359\pi
0.648590 + 0.761138i 0.275359π0.275359\pi
200200 2.62766 0.185804
201201 −5.02502 −0.354438
202202 24.4315 1.71899
203203 −10.7710 −0.755979
204204 0.698428 0.0488997
205205 −6.87056 −0.479861
206206 −18.6091 −1.29656
207207 9.56870 0.665071
208208 1.02986 0.0714083
209209 −30.9478 −2.14071
210210 1.57366 0.108593
211211 2.89163 0.199068 0.0995341 0.995034i 0.468265π-0.468265\pi
0.0995341 + 0.995034i 0.468265π0.468265\pi
212212 −20.5647 −1.41239
213213 −4.05424 −0.277792
214214 −12.7449 −0.871224
215215 7.35197 0.501400
216216 7.81374 0.531658
217217 −6.10690 −0.414564
218218 −0.857973 −0.0581092
219219 0.395690 0.0267383
220220 17.5269 1.18167
221221 1.26546 0.0851237
222222 1.17837 0.0790869
223223 25.8004 1.72772 0.863862 0.503728i 0.168039π-0.168039\pi
0.863862 + 0.503728i 0.168039π0.168039\pi
224224 8.07051 0.539233
225225 −2.73075 −0.182050
226226 −10.3312 −0.687223
227227 −6.01093 −0.398960 −0.199480 0.979902i 0.563925π-0.563925\pi
−0.199480 + 0.979902i 0.563925π0.563925\pi
228228 9.13222 0.604796
229229 5.22124 0.345029 0.172515 0.985007i 0.444811π-0.444811\pi
0.172515 + 0.985007i 0.444811π0.444811\pi
230230 −7.95744 −0.524698
231231 3.84705 0.253117
232232 21.1932 1.39140
233233 −15.2256 −0.997465 −0.498733 0.866756i 0.666201π-0.666201\pi
−0.498733 + 0.866756i 0.666201π0.666201\pi
234234 18.4067 1.20328
235235 3.16383 0.206385
236236 26.8693 1.74905
237237 −8.85865 −0.575431
238238 1.29297 0.0838107
239239 −12.1164 −0.783745 −0.391873 0.920019i 0.628173π-0.628173\pi
−0.391873 + 0.920019i 0.628173π0.628173\pi
240240 0.180040 0.0116215
241241 20.7909 1.33926 0.669628 0.742696i 0.266453π-0.266453\pi
0.669628 + 0.742696i 0.266453π0.266453\pi
242242 45.0106 2.89339
243243 −12.3712 −0.793613
244244 10.4782 0.670799
245245 −5.21655 −0.333273
246246 8.09605 0.516185
247247 16.5463 1.05282
248248 12.0160 0.763017
249249 1.42517 0.0903168
250250 2.27092 0.143626
251251 9.67062 0.610404 0.305202 0.952288i 0.401276π-0.401276\pi
0.305202 + 0.952288i 0.401276π0.401276\pi
252252 11.5133 0.725267
253253 −19.4532 −1.22301
254254 28.9678 1.81760
255255 0.221225 0.0138537
256256 −13.6888 −0.855550
257257 31.6442 1.97391 0.986957 0.160984i 0.0514667π-0.0514667\pi
0.986957 + 0.160984i 0.0514667π0.0514667\pi
258258 −8.66332 −0.539355
259259 1.33546 0.0829813
260260 −9.37082 −0.581154
261261 −22.0247 −1.36329
262262 −32.9193 −2.03376
263263 14.3161 0.882766 0.441383 0.897319i 0.354488π-0.354488\pi
0.441383 + 0.897319i 0.354488π0.354488\pi
264264 −7.56950 −0.465870
265265 −6.51383 −0.400141
266266 16.9061 1.03658
267267 −0.0448897 −0.00274720
268268 30.5736 1.86758
269269 −28.8212 −1.75726 −0.878631 0.477501i 0.841543π-0.841543\pi
−0.878631 + 0.477501i 0.841543π0.841543\pi
270270 6.75293 0.410970
271271 10.4382 0.634078 0.317039 0.948412i 0.397311π-0.397311\pi
0.317039 + 0.948412i 0.397311π0.397311\pi
272272 0.147926 0.00896935
273273 −2.05684 −0.124485
274274 −24.6226 −1.48750
275275 5.55161 0.334775
276276 5.74033 0.345527
277277 16.2020 0.973485 0.486742 0.873546i 0.338185π-0.338185\pi
0.486742 + 0.873546i 0.338185π0.338185\pi
278278 3.55661 0.213311
279279 −12.4874 −0.747602
280280 −3.50913 −0.209710
281281 8.10953 0.483774 0.241887 0.970304i 0.422234π-0.422234\pi
0.241887 + 0.970304i 0.422234π0.422234\pi
282282 −3.72816 −0.222008
283283 −0.429766 −0.0255470 −0.0127735 0.999918i 0.504066π-0.504066\pi
−0.0127735 + 0.999918i 0.504066π0.504066\pi
284284 24.6671 1.46372
285285 2.89261 0.171343
286286 −37.4207 −2.21274
287287 9.17534 0.541603
288288 16.5026 0.972426
289289 −16.8182 −0.989308
290290 18.3160 1.07555
291291 9.25765 0.542693
292292 −2.40748 −0.140887
293293 14.3831 0.840270 0.420135 0.907462i 0.361983π-0.361983\pi
0.420135 + 0.907462i 0.361983π0.361983\pi
294294 6.14702 0.358502
295295 8.51080 0.495518
296296 −2.62766 −0.152730
297297 16.5086 0.957924
298298 −18.3891 −1.06525
299299 10.4007 0.601487
300300 −1.63819 −0.0945812
301301 −9.81823 −0.565914
302302 −27.2552 −1.56836
303303 −5.58247 −0.320705
304304 1.93420 0.110934
305305 3.31895 0.190042
306306 2.64387 0.151140
307307 −24.8429 −1.41786 −0.708928 0.705281i 0.750821π-0.750821\pi
−0.708928 + 0.705281i 0.750821π0.750821\pi
308308 −23.4065 −1.33371
309309 4.25208 0.241892
310310 10.3847 0.589810
311311 −13.3533 −0.757198 −0.378599 0.925561i 0.623594π-0.623594\pi
−0.378599 + 0.925561i 0.623594π0.623594\pi
312312 4.04705 0.229119
313313 26.1131 1.47600 0.738001 0.674799i 0.235770π-0.235770\pi
0.738001 + 0.674799i 0.235770π0.235770\pi
314314 −43.7679 −2.46997
315315 3.64680 0.205474
316316 53.8984 3.03202
317317 27.5077 1.54498 0.772492 0.635024i 0.219010π-0.219010\pi
0.772492 + 0.635024i 0.219010π0.219010\pi
318318 7.67568 0.430431
319319 44.7762 2.50699
320320 −13.0298 −0.728390
321321 2.91215 0.162540
322322 10.6268 0.592210
323323 2.37666 0.132241
324324 20.9922 1.16623
325325 −2.96818 −0.164645
326326 −2.26009 −0.125175
327327 0.196042 0.0108412
328328 −18.0535 −0.996837
329329 −4.22516 −0.232940
330330 −6.54184 −0.360117
331331 −33.4582 −1.83903 −0.919516 0.393054i 0.871419π-0.871419\pi
−0.919516 + 0.393054i 0.871419π0.871419\pi
332332 −8.67114 −0.475891
333333 2.73075 0.149644
334334 −55.0982 −3.01484
335335 9.68410 0.529099
336336 −0.240435 −0.0131168
337337 −23.0022 −1.25301 −0.626504 0.779418i 0.715515π-0.715515\pi
−0.626504 + 0.779418i 0.715515π0.715515\pi
338338 −9.51489 −0.517542
339339 2.36063 0.128212
340340 −1.34599 −0.0729967
341341 25.3869 1.37478
342342 34.5697 1.86931
343343 16.3147 0.880910
344344 19.3185 1.04158
345345 1.81823 0.0978904
346346 −26.0147 −1.39856
347347 −21.1611 −1.13599 −0.567993 0.823033i 0.692280π-0.692280\pi
−0.567993 + 0.823033i 0.692280π0.692280\pi
348348 −13.2128 −0.708278
349349 −15.9769 −0.855224 −0.427612 0.903962i 0.640645π-0.640645\pi
−0.427612 + 0.903962i 0.640645π0.640645\pi
350350 −3.03272 −0.162106
351351 −8.82635 −0.471116
352352 −33.5498 −1.78821
353353 18.8153 1.00144 0.500718 0.865611i 0.333069π-0.333069\pi
0.500718 + 0.865611i 0.333069π0.333069\pi
354354 −10.0289 −0.533028
355355 7.81324 0.414684
356356 0.273121 0.0144754
357357 −0.295437 −0.0156362
358358 −26.8498 −1.41906
359359 33.7385 1.78065 0.890326 0.455324i 0.150477π-0.150477\pi
0.890326 + 0.455324i 0.150477π0.150477\pi
360360 −7.17548 −0.378181
361361 12.0758 0.635567
362362 −33.6176 −1.76690
363363 −10.2847 −0.539806
364364 12.5143 0.655929
365365 −0.762564 −0.0399144
366366 −3.91094 −0.204428
367367 −18.0331 −0.941320 −0.470660 0.882315i 0.655984π-0.655984\pi
−0.470660 + 0.882315i 0.655984π0.655984\pi
368368 1.21580 0.0633777
369369 18.7618 0.976699
370370 −2.27092 −0.118060
371371 8.69893 0.451626
372372 −7.49129 −0.388405
373373 27.0210 1.39909 0.699547 0.714587i 0.253385π-0.253385\pi
0.699547 + 0.714587i 0.253385π0.253385\pi
374374 −5.37499 −0.277934
375375 −0.518894 −0.0267956
376376 8.31346 0.428734
377377 −23.9397 −1.23296
378378 −9.01825 −0.463849
379379 −34.0246 −1.74772 −0.873862 0.486173i 0.838392π-0.838392\pi
−0.873862 + 0.486173i 0.838392π0.838392\pi
380380 −17.5994 −0.902830
381381 −6.61899 −0.339101
382382 −17.5090 −0.895838
383383 2.74649 0.140339 0.0701696 0.997535i 0.477646π-0.477646\pi
0.0701696 + 0.997535i 0.477646π0.477646\pi
384384 9.08232 0.463480
385385 −7.41394 −0.377849
386386 59.0592 3.00603
387387 −20.0764 −1.02054
388388 −56.3260 −2.85952
389389 2.23432 0.113285 0.0566423 0.998395i 0.481961π-0.481961\pi
0.0566423 + 0.998395i 0.481961π0.481961\pi
390390 3.49761 0.177109
391391 1.49392 0.0755507
392392 −13.7073 −0.692325
393393 7.52190 0.379430
394394 29.7234 1.49744
395395 17.0722 0.858995
396396 −47.8617 −2.40514
397397 5.74533 0.288350 0.144175 0.989552i 0.453947π-0.453947\pi
0.144175 + 0.989552i 0.453947π0.453947\pi
398398 41.5555 2.08299
399399 −3.86295 −0.193390
400400 −0.346968 −0.0173484
401401 −16.4458 −0.821264 −0.410632 0.911801i 0.634692π-0.634692\pi
−0.410632 + 0.911801i 0.634692π0.634692\pi
402402 −11.4114 −0.569150
403403 −13.5732 −0.676129
404404 33.9652 1.68983
405405 6.64924 0.330403
406406 −24.4602 −1.21394
407407 −5.55161 −0.275183
408408 0.581304 0.0287789
409409 32.5835 1.61115 0.805575 0.592494i 0.201856π-0.201856\pi
0.805575 + 0.592494i 0.201856π0.201856\pi
410410 −15.6025 −0.770553
411411 5.62613 0.277517
412412 −25.8708 −1.27456
413413 −11.3658 −0.559275
414414 21.7298 1.06796
415415 −2.74656 −0.134823
416416 17.9375 0.879458
417417 −0.812667 −0.0397965
418418 −70.2801 −3.43751
419419 26.6150 1.30023 0.650115 0.759836i 0.274721π-0.274721\pi
0.650115 + 0.759836i 0.274721π0.274721\pi
420420 2.18774 0.106751
421421 −13.6775 −0.666600 −0.333300 0.942821i 0.608162π-0.608162\pi
−0.333300 + 0.942821i 0.608162π0.608162\pi
422422 6.56667 0.319661
423423 −8.63962 −0.420073
424424 −17.1161 −0.831232
425425 −0.426340 −0.0206805
426426 −9.20687 −0.446074
427427 −4.43231 −0.214495
428428 −17.7183 −0.856445
429429 8.55045 0.412820
430430 16.6957 0.805140
431431 11.2668 0.542704 0.271352 0.962480i 0.412529π-0.412529\pi
0.271352 + 0.962480i 0.412529π0.412529\pi
432432 −1.03176 −0.0496407
433433 19.9228 0.957427 0.478714 0.877971i 0.341103π-0.341103\pi
0.478714 + 0.877971i 0.341103π0.341103\pi
434434 −13.8683 −0.665700
435435 −4.18511 −0.200661
436436 −1.19277 −0.0571235
437437 19.5336 0.934418
438438 0.898581 0.0429359
439439 18.4321 0.879717 0.439859 0.898067i 0.355029π-0.355029\pi
0.439859 + 0.898067i 0.355029π0.355029\pi
440440 14.5877 0.695444
441441 14.2451 0.678338
442442 2.87375 0.136690
443443 −22.1719 −1.05342 −0.526710 0.850045i 0.676575π-0.676575\pi
−0.526710 + 0.850045i 0.676575π0.676575\pi
444444 1.63819 0.0777453
445445 0.0865103 0.00410098
446446 58.5908 2.77435
447447 4.20181 0.198739
448448 17.4008 0.822109
449449 −4.70999 −0.222278 −0.111139 0.993805i 0.535450π-0.535450\pi
−0.111139 + 0.993805i 0.535450π0.535450\pi
450450 −6.20132 −0.292333
451451 −38.1427 −1.79607
452452 −14.3627 −0.675565
453453 6.22767 0.292601
454454 −13.6504 −0.640643
455455 3.96388 0.185830
456456 7.60079 0.355940
457457 −12.9225 −0.604488 −0.302244 0.953231i 0.597736π-0.597736\pi
−0.302244 + 0.953231i 0.597736π0.597736\pi
458458 11.8570 0.554043
459459 −1.26779 −0.0591752
460460 −11.0626 −0.515797
461461 −11.7403 −0.546802 −0.273401 0.961900i 0.588149π-0.588149\pi
−0.273401 + 0.961900i 0.588149π0.588149\pi
462462 8.73635 0.406452
463463 0.377012 0.0175212 0.00876061 0.999962i 0.497211π-0.497211\pi
0.00876061 + 0.999962i 0.497211π0.497211\pi
464464 −2.79845 −0.129915
465465 −2.37285 −0.110038
466466 −34.5763 −1.60171
467467 −7.22290 −0.334236 −0.167118 0.985937i 0.553446π-0.553446\pi
−0.167118 + 0.985937i 0.553446π0.553446\pi
468468 25.5894 1.18287
469469 −12.9327 −0.597176
470470 7.18481 0.331411
471471 10.0007 0.460810
472472 22.3635 1.02936
473473 40.8153 1.87669
474474 −20.1173 −0.924019
475475 −5.57456 −0.255779
476476 1.79752 0.0823890
477477 17.7876 0.814439
478478 −27.5154 −1.25853
479479 29.5805 1.35157 0.675783 0.737101i 0.263806π-0.263806\pi
0.675783 + 0.737101i 0.263806π0.263806\pi
480480 3.13581 0.143129
481481 2.96818 0.135338
482482 47.2144 2.15056
483483 −2.42817 −0.110486
484484 62.5748 2.84431
485485 −17.8411 −0.810123
486486 −28.0940 −1.27437
487487 3.98732 0.180683 0.0903413 0.995911i 0.471204π-0.471204\pi
0.0903413 + 0.995911i 0.471204π0.471204\pi
488488 8.72106 0.394784
489489 0.516419 0.0233533
490490 −11.8464 −0.535165
491491 4.67346 0.210910 0.105455 0.994424i 0.466370π-0.466370\pi
0.105455 + 0.994424i 0.466370π0.466370\pi
492492 11.2553 0.507429
493493 −3.43862 −0.154868
494494 37.5754 1.69060
495495 −15.1601 −0.681394
496496 −1.58665 −0.0712426
497497 −10.4342 −0.468040
498498 3.23646 0.145029
499499 2.75874 0.123498 0.0617491 0.998092i 0.480332π-0.480332\pi
0.0617491 + 0.998092i 0.480332π0.480332\pi
500500 3.15709 0.141189
501501 12.5897 0.562465
502502 21.9612 0.980177
503503 5.38439 0.240078 0.120039 0.992769i 0.461698π-0.461698\pi
0.120039 + 0.992769i 0.461698π0.461698\pi
504504 9.58254 0.426840
505505 10.7584 0.478742
506506 −44.1766 −1.96389
507507 2.17410 0.0965553
508508 40.2717 1.78677
509509 16.0712 0.712342 0.356171 0.934421i 0.384082π-0.384082\pi
0.356171 + 0.934421i 0.384082π0.384082\pi
510510 0.502385 0.0222460
511511 1.01837 0.0450501
512512 3.92024 0.173252
513513 −16.5768 −0.731884
514514 71.8616 3.16968
515515 −8.19451 −0.361093
516516 −12.0440 −0.530205
517517 17.5644 0.772479
518518 3.03272 0.133250
519519 5.94422 0.260922
520520 −7.79938 −0.342025
521521 −26.9444 −1.18045 −0.590227 0.807237i 0.700962π-0.700962\pi
−0.590227 + 0.807237i 0.700962π0.700962\pi
522522 −50.0164 −2.18916
523523 8.47473 0.370574 0.185287 0.982684i 0.440679π-0.440679\pi
0.185287 + 0.982684i 0.440679π0.440679\pi
524524 −45.7652 −1.99926
525525 0.692961 0.0302433
526526 32.5107 1.41753
527527 −1.94961 −0.0849262
528528 0.999510 0.0434981
529529 −10.7216 −0.466156
530530 −14.7924 −0.642540
531531 −23.2408 −1.00857
532532 23.5032 1.01899
533533 20.3931 0.883323
534534 −0.101941 −0.00441142
535535 −5.61222 −0.242637
536536 25.4465 1.09912
537537 6.13504 0.264747
538538 −65.4508 −2.82178
539539 −28.9603 −1.24741
540540 9.38808 0.403999
541541 18.8254 0.809368 0.404684 0.914457i 0.367382π-0.367382\pi
0.404684 + 0.914457i 0.367382π0.367382\pi
542542 23.7045 1.01819
543543 7.68145 0.329643
544544 2.57648 0.110466
545545 −0.377808 −0.0161835
546546 −4.67091 −0.199897
547547 17.8907 0.764953 0.382476 0.923965i 0.375071π-0.375071\pi
0.382476 + 0.923965i 0.375071π0.375071\pi
548548 −34.2309 −1.46227
549549 −9.06321 −0.386809
550550 12.6073 0.537576
551551 −44.9613 −1.91542
552552 4.77770 0.203352
553553 −22.7992 −0.969519
554554 36.7935 1.56321
555555 0.518894 0.0220258
556556 4.94448 0.209693
557557 −19.5753 −0.829433 −0.414717 0.909951i 0.636119π-0.636119\pi
−0.414717 + 0.909951i 0.636119π0.636119\pi
558558 −28.3580 −1.20049
559559 −21.8220 −0.922972
560560 0.463361 0.0195806
561561 1.22816 0.0518528
562562 18.4161 0.776837
563563 20.0503 0.845018 0.422509 0.906359i 0.361150π-0.361150\pi
0.422509 + 0.906359i 0.361150π0.361150\pi
564564 −5.18297 −0.218242
565565 −4.54935 −0.191393
566566 −0.975966 −0.0410229
567567 −8.87977 −0.372915
568568 20.5305 0.861442
569569 −34.7651 −1.45743 −0.728715 0.684817i 0.759882π-0.759882\pi
−0.728715 + 0.684817i 0.759882π0.759882\pi
570570 6.56889 0.275141
571571 1.04707 0.0438184 0.0219092 0.999760i 0.493026π-0.493026\pi
0.0219092 + 0.999760i 0.493026π0.493026\pi
572572 −52.0232 −2.17520
573573 4.00071 0.167132
574574 20.8365 0.869698
575575 −3.50406 −0.146129
576576 35.5812 1.48255
577577 −28.6481 −1.19264 −0.596318 0.802749i 0.703370π-0.703370\pi
−0.596318 + 0.802749i 0.703370π0.703370\pi
578578 −38.1929 −1.58862
579579 −13.4947 −0.560821
580580 25.4633 1.05731
581581 3.66791 0.152171
582582 21.0234 0.871448
583583 −36.1622 −1.49769
584584 −2.00376 −0.0829161
585585 8.10537 0.335116
586586 32.6629 1.34929
587587 −26.6924 −1.10171 −0.550857 0.834600i 0.685699π-0.685699\pi
−0.550857 + 0.834600i 0.685699π0.685699\pi
588588 8.54573 0.352420
589589 −25.4919 −1.05037
590590 19.3274 0.795695
591591 −6.79164 −0.279371
592592 0.346968 0.0142603
593593 −10.0943 −0.414521 −0.207261 0.978286i 0.566455π-0.566455\pi
−0.207261 + 0.978286i 0.566455π0.566455\pi
594594 37.4897 1.53822
595595 0.569359 0.0233414
596596 −25.5649 −1.04718
597597 −9.49523 −0.388614
598598 23.6192 0.965859
599599 −9.37239 −0.382946 −0.191473 0.981498i 0.561326π-0.561326\pi
−0.191473 + 0.981498i 0.561326π0.561326\pi
600600 −1.36348 −0.0556637
601601 −41.6868 −1.70044 −0.850220 0.526427i 0.823531π-0.823531\pi
−0.850220 + 0.526427i 0.823531π0.823531\pi
602602 −22.2964 −0.908735
603603 −26.4448 −1.07692
604604 −37.8908 −1.54175
605605 19.8204 0.805814
606606 −12.6774 −0.514982
607607 20.4257 0.829052 0.414526 0.910037i 0.363947π-0.363947\pi
0.414526 + 0.910037i 0.363947π0.363947\pi
608608 33.6885 1.36625
609609 5.58903 0.226479
610610 7.53707 0.305167
611611 −9.39083 −0.379912
612612 3.67557 0.148576
613613 39.0819 1.57850 0.789251 0.614070i 0.210469π-0.210469\pi
0.789251 + 0.614070i 0.210469π0.210469\pi
614614 −56.4162 −2.27677
615615 3.56509 0.143758
616616 −19.4813 −0.784924
617617 24.7773 0.997495 0.498747 0.866747i 0.333794π-0.333794\pi
0.498747 + 0.866747i 0.333794π0.333794\pi
618618 9.65615 0.388427
619619 27.7629 1.11589 0.557943 0.829879i 0.311591π-0.311591\pi
0.557943 + 0.829879i 0.311591π0.311591\pi
620620 14.4370 0.579805
621621 −10.4198 −0.418134
622622 −30.3244 −1.21590
623623 −0.115531 −0.00462864
624624 −0.534391 −0.0213928
625625 1.00000 0.0400000
626626 59.3009 2.37014
627627 16.0586 0.641320
628628 −60.8472 −2.42807
629629 0.426340 0.0169993
630630 8.28160 0.329947
631631 20.6678 0.822772 0.411386 0.911461i 0.365045π-0.365045\pi
0.411386 + 0.911461i 0.365045π0.365045\pi
632632 44.8599 1.78443
633633 −1.50045 −0.0596376
634634 62.4678 2.48091
635635 12.7560 0.506205
636636 10.6709 0.423129
637637 15.4837 0.613486
638638 101.683 4.02568
639639 −21.3360 −0.844039
640640 −17.5032 −0.691875
641641 −23.3208 −0.921116 −0.460558 0.887630i 0.652351π-0.652351\pi
−0.460558 + 0.887630i 0.652351π0.652351\pi
642642 6.61326 0.261004
643643 8.04242 0.317162 0.158581 0.987346i 0.449308π-0.449308\pi
0.158581 + 0.987346i 0.449308π0.449308\pi
644644 14.7737 0.582163
645645 −3.81489 −0.150211
646646 5.39721 0.212350
647647 49.3437 1.93990 0.969950 0.243305i 0.0782315π-0.0782315\pi
0.969950 + 0.243305i 0.0782315π0.0782315\pi
648648 17.4719 0.686362
649649 47.2487 1.85467
650650 −6.74052 −0.264385
651651 3.16884 0.124196
652652 −3.14203 −0.123051
653653 24.9760 0.977385 0.488693 0.872456i 0.337474π-0.337474\pi
0.488693 + 0.872456i 0.337474π0.337474\pi
654654 0.445197 0.0174086
655655 −14.4960 −0.566407
656656 2.38386 0.0930743
657657 2.08237 0.0812410
658658 −9.59501 −0.374052
659659 −32.3446 −1.25997 −0.629983 0.776609i 0.716938π-0.716938\pi
−0.629983 + 0.776609i 0.716938π0.716938\pi
660660 −9.09462 −0.354008
661661 −1.85884 −0.0723006 −0.0361503 0.999346i 0.511510π-0.511510\pi
−0.0361503 + 0.999346i 0.511510π0.511510\pi
662662 −75.9811 −2.95309
663663 −0.656637 −0.0255017
664664 −7.21703 −0.280075
665665 7.44459 0.288689
666666 6.20132 0.240296
667667 −28.2618 −1.09430
668668 −76.5988 −2.96370
669669 −13.3877 −0.517598
670670 21.9918 0.849619
671671 18.4255 0.711309
672672 −4.18774 −0.161546
673673 −44.3587 −1.70990 −0.854951 0.518709i 0.826413π-0.826413\pi
−0.854951 + 0.518709i 0.826413π0.826413\pi
674674 −52.2362 −2.01206
675675 2.97365 0.114456
676676 −13.2278 −0.508762
677677 8.33112 0.320191 0.160096 0.987102i 0.448820π-0.448820\pi
0.160096 + 0.987102i 0.448820π0.448820\pi
678678 5.36081 0.205881
679679 23.8260 0.914360
680680 −1.12028 −0.0429606
681681 3.11904 0.119522
682682 57.6518 2.20760
683683 −24.2726 −0.928764 −0.464382 0.885635i 0.653723π-0.653723\pi
−0.464382 + 0.885635i 0.653723π0.653723\pi
684684 48.0595 1.83760
685685 −10.8425 −0.414272
686686 37.0494 1.41455
687687 −2.70927 −0.103365
688688 −2.55090 −0.0972520
689689 19.3342 0.736576
690690 4.12907 0.157191
691691 29.0133 1.10372 0.551858 0.833938i 0.313919π-0.313919\pi
0.551858 + 0.833938i 0.313919π0.313919\pi
692692 −36.1662 −1.37483
693693 20.2456 0.769067
694694 −48.0552 −1.82415
695695 1.56615 0.0594076
696696 −10.9970 −0.416842
697697 2.92919 0.110951
698698 −36.2823 −1.37330
699699 7.90050 0.298824
700700 −4.21616 −0.159356
701701 33.0887 1.24974 0.624871 0.780728i 0.285151π-0.285151\pi
0.624871 + 0.780728i 0.285151π0.285151\pi
702702 −20.0440 −0.756510
703703 5.57456 0.210249
704704 −72.3366 −2.72629
705705 −1.64169 −0.0618297
706706 42.7280 1.60809
707707 −14.3674 −0.540341
708708 −13.9423 −0.523985
709709 −31.3446 −1.17717 −0.588586 0.808434i 0.700315π-0.700315\pi
−0.588586 + 0.808434i 0.700315π0.700315\pi
710710 17.7433 0.665892
711711 −46.6198 −1.74838
712712 0.227319 0.00851916
713713 −16.0237 −0.600091
714714 −0.670914 −0.0251083
715715 −16.4782 −0.616250
716716 −37.3272 −1.39498
717717 6.28713 0.234797
718718 76.6176 2.85934
719719 −19.2288 −0.717114 −0.358557 0.933508i 0.616731π-0.616731\pi
−0.358557 + 0.933508i 0.616731π0.616731\pi
720720 0.947482 0.0353106
721721 10.9434 0.407554
722722 27.4231 1.02058
723723 −10.7883 −0.401219
724724 −46.7360 −1.73693
725725 8.06544 0.299543
726726 −23.3557 −0.866813
727727 51.4657 1.90876 0.954379 0.298599i 0.0965192π-0.0965192\pi
0.954379 + 0.298599i 0.0965192π0.0965192\pi
728728 10.4157 0.386033
729729 −13.5284 −0.501051
730730 −1.73172 −0.0640940
731731 −3.13444 −0.115931
732732 −5.43708 −0.200960
733733 8.23113 0.304024 0.152012 0.988379i 0.451425π-0.451425\pi
0.152012 + 0.988379i 0.451425π0.451425\pi
734734 −40.9518 −1.51156
735735 2.70684 0.0998433
736736 21.1759 0.780554
737737 53.7624 1.98036
738738 42.6065 1.56837
739739 −11.7725 −0.433057 −0.216528 0.976276i 0.569473π-0.569473\pi
−0.216528 + 0.976276i 0.569473π0.569473\pi
740740 −3.15709 −0.116057
741741 −8.58580 −0.315407
742742 19.7546 0.725214
743743 −29.3902 −1.07822 −0.539112 0.842234i 0.681240π-0.681240\pi
−0.539112 + 0.842234i 0.681240π0.681240\pi
744744 −6.23503 −0.228587
745745 −8.09762 −0.296674
746746 61.3625 2.24664
747747 7.50017 0.274417
748748 −7.47243 −0.273219
749749 7.49487 0.273857
750750 −1.17837 −0.0430279
751751 −9.66463 −0.352667 −0.176334 0.984330i 0.556424π-0.556424\pi
−0.176334 + 0.984330i 0.556424π0.556424\pi
752752 −1.09775 −0.0400307
753753 −5.01803 −0.182867
754754 −54.3652 −1.97986
755755 −12.0018 −0.436791
756756 −12.5374 −0.455980
757757 3.21095 0.116704 0.0583520 0.998296i 0.481415π-0.481415\pi
0.0583520 + 0.998296i 0.481415π0.481415\pi
758758 −77.2672 −2.80647
759759 10.0941 0.366394
760760 −14.6481 −0.531341
761761 −3.78248 −0.137115 −0.0685574 0.997647i 0.521840π-0.521840\pi
−0.0685574 + 0.997647i 0.521840π0.521840\pi
762762 −15.0312 −0.544524
763763 0.504546 0.0182658
764764 −24.3414 −0.880641
765765 1.16423 0.0420927
766766 6.23707 0.225354
767767 −25.2616 −0.912144
768768 7.10304 0.256309
769769 7.39888 0.266810 0.133405 0.991062i 0.457409π-0.457409\pi
0.133405 + 0.991062i 0.457409π0.457409\pi
770770 −16.8365 −0.606745
771771 −16.4200 −0.591352
772772 82.1054 2.95504
773773 −12.8663 −0.462769 −0.231385 0.972862i 0.574326π-0.574326\pi
−0.231385 + 0.972862i 0.574326π0.574326\pi
774774 −45.5919 −1.63877
775775 4.57289 0.164263
776776 −46.8804 −1.68291
777777 −0.692961 −0.0248598
778778 5.07397 0.181911
779779 38.3004 1.37225
780780 4.86246 0.174104
781781 43.3761 1.55212
782782 3.39257 0.121318
783783 23.9838 0.857111
784784 1.80998 0.0646420
785785 −19.2732 −0.687890
786786 17.0817 0.609282
787787 −3.19598 −0.113924 −0.0569621 0.998376i 0.518141π-0.518141\pi
−0.0569621 + 0.998376i 0.518141π0.518141\pi
788788 41.3221 1.47204
789789 −7.42852 −0.264462
790790 38.7696 1.37936
791791 6.07546 0.216019
792792 −39.8355 −1.41549
793793 −9.85125 −0.349828
794794 13.0472 0.463027
795795 3.37999 0.119876
796796 57.7715 2.04766
797797 −33.4964 −1.18650 −0.593252 0.805017i 0.702156π-0.702156\pi
−0.593252 + 0.805017i 0.702156π0.702156\pi
798798 −8.77247 −0.310542
799799 −1.34887 −0.0477195
800800 −6.04326 −0.213661
801801 −0.236238 −0.00834705
802802 −37.3471 −1.31877
803803 −4.23346 −0.149396
804804 −15.8644 −0.559495
805805 4.67952 0.164931
806806 −30.8237 −1.08572
807807 14.9552 0.526447
808808 28.2694 0.994514
809809 3.02505 0.106355 0.0531775 0.998585i 0.483065π-0.483065\pi
0.0531775 + 0.998585i 0.483065π0.483065\pi
810810 15.0999 0.530556
811811 −15.5601 −0.546388 −0.273194 0.961959i 0.588080π-0.588080\pi
−0.273194 + 0.961959i 0.588080π0.588080\pi
812812 −34.0052 −1.19335
813813 −5.41635 −0.189960
814814 −12.6073 −0.441885
815815 −0.995229 −0.0348614
816816 −0.0767581 −0.00268707
817817 −40.9840 −1.43385
818818 73.9946 2.58716
819819 −10.8244 −0.378234
820820 −21.6910 −0.757482
821821 −21.2585 −0.741928 −0.370964 0.928647i 0.620973π-0.620973\pi
−0.370964 + 0.928647i 0.620973π0.620973\pi
822822 12.7765 0.445632
823823 −21.0705 −0.734472 −0.367236 0.930128i 0.619696π-0.619696\pi
−0.367236 + 0.930128i 0.619696π0.619696\pi
824824 −21.5324 −0.750116
825825 −2.88070 −0.100293
826826 −25.8109 −0.898075
827827 −11.8965 −0.413683 −0.206841 0.978374i 0.566318π-0.566318\pi
−0.206841 + 0.978374i 0.566318π0.566318\pi
828828 30.2092 1.04984
829829 3.76808 0.130871 0.0654355 0.997857i 0.479156π-0.479156\pi
0.0654355 + 0.997857i 0.479156π0.479156\pi
830830 −6.23723 −0.216497
831831 −8.40713 −0.291640
832832 38.6749 1.34081
833833 2.22403 0.0770579
834834 −1.84550 −0.0639046
835835 −24.2625 −0.839638
836836 −97.7050 −3.37920
837837 13.5982 0.470022
838838 60.4407 2.08789
839839 27.0741 0.934703 0.467352 0.884071i 0.345208π-0.345208\pi
0.467352 + 0.884071i 0.345208π0.345208\pi
840840 1.82086 0.0628258
841841 36.0513 1.24315
842842 −31.0605 −1.07042
843843 −4.20799 −0.144931
844844 9.12914 0.314238
845845 −4.18988 −0.144136
846846 −19.6199 −0.674547
847847 −26.4693 −0.909496
848848 2.26009 0.0776118
849849 0.223003 0.00765345
850850 −0.968185 −0.0332085
851851 3.50406 0.120118
852852 −12.7996 −0.438507
853853 −5.26211 −0.180171 −0.0900857 0.995934i 0.528714π-0.528714\pi
−0.0900857 + 0.995934i 0.528714π0.528714\pi
854854 −10.0654 −0.344432
855855 15.2227 0.520607
856856 −14.7470 −0.504042
857857 43.5043 1.48608 0.743040 0.669247i 0.233383π-0.233383\pi
0.743040 + 0.669247i 0.233383π0.233383\pi
858858 19.4174 0.662899
859859 12.2666 0.418530 0.209265 0.977859i 0.432893π-0.432893\pi
0.209265 + 0.977859i 0.432893π0.432893\pi
860860 23.2108 0.791482
861861 −4.76103 −0.162255
862862 25.5861 0.871466
863863 −25.5488 −0.869692 −0.434846 0.900505i 0.643197π-0.643197\pi
−0.434846 + 0.900505i 0.643197π0.643197\pi
864864 −17.9705 −0.611370
865865 −11.4556 −0.389501
866866 45.2431 1.53742
867867 8.72688 0.296380
868868 −19.2800 −0.654407
869869 94.7781 3.21513
870870 −9.50406 −0.322218
871871 −28.7442 −0.973960
872872 −0.992751 −0.0336188
873873 48.7196 1.64891
874874 44.3593 1.50047
875875 −1.33546 −0.0451467
876876 1.24923 0.0422075
877877 −5.42848 −0.183307 −0.0916534 0.995791i 0.529215π-0.529215\pi
−0.0916534 + 0.995791i 0.529215π0.529215\pi
878878 41.8579 1.41264
879879 −7.46331 −0.251731
880880 −1.92623 −0.0649333
881881 −1.60640 −0.0541211 −0.0270606 0.999634i 0.508615π-0.508615\pi
−0.0270606 + 0.999634i 0.508615π0.508615\pi
882882 32.3495 1.08926
883883 −27.0365 −0.909850 −0.454925 0.890530i 0.650334π-0.650334\pi
−0.454925 + 0.890530i 0.650334π0.650334\pi
884884 3.99516 0.134372
885885 −4.41620 −0.148449
886886 −50.3508 −1.69157
887887 5.22338 0.175384 0.0876919 0.996148i 0.472051π-0.472051\pi
0.0876919 + 0.996148i 0.472051π0.472051\pi
888888 1.36348 0.0457553
889889 −17.0350 −0.571337
890890 0.196458 0.00658529
891891 36.9140 1.23667
892892 81.4543 2.72729
893893 −17.6370 −0.590199
894894 9.54198 0.319132
895895 −11.8233 −0.395209
896896 23.3748 0.780897
897897 −5.39686 −0.180196
898898 −10.6960 −0.356931
899899 36.8824 1.23010
900900 −8.62122 −0.287374
901901 2.77710 0.0925187
902902 −86.6191 −2.88410
903903 5.09462 0.169538
904904 −11.9541 −0.397589
905905 −14.8035 −0.492085
906906 14.1425 0.469855
907907 35.8601 1.19071 0.595357 0.803461i 0.297011π-0.297011\pi
0.595357 + 0.803461i 0.297011π0.297011\pi
908908 −18.9771 −0.629776
909909 −29.3785 −0.974423
910910 9.00167 0.298403
911911 −37.2761 −1.23501 −0.617506 0.786566i 0.711857π-0.711857\pi
−0.617506 + 0.786566i 0.711857π0.711857\pi
912912 −1.00364 −0.0332339
913913 −15.2478 −0.504630
914914 −29.3459 −0.970677
915915 −1.72218 −0.0569336
916916 16.4839 0.544644
917917 19.3588 0.639285
918918 −2.87904 −0.0950226
919919 20.7180 0.683423 0.341712 0.939805i 0.388993π-0.388993\pi
0.341712 + 0.939805i 0.388993π0.388993\pi
920920 −9.20747 −0.303561
921921 12.8908 0.424767
922922 −26.6614 −0.878046
923923 −23.1911 −0.763345
924924 12.1455 0.399557
925925 −1.00000 −0.0328798
926926 0.856165 0.0281353
927927 22.3771 0.734962
928928 −48.7415 −1.60002
929929 4.73148 0.155235 0.0776173 0.996983i 0.475269π-0.475269\pi
0.0776173 + 0.996983i 0.475269π0.475269\pi
930930 −5.38855 −0.176698
931931 29.0800 0.953059
932932 −48.0687 −1.57454
933933 6.92897 0.226844
934934 −16.4026 −0.536711
935935 −2.36687 −0.0774051
936936 21.2981 0.696152
937937 −9.43501 −0.308228 −0.154114 0.988053i 0.549252π-0.549252\pi
−0.154114 + 0.988053i 0.549252π0.549252\pi
938938 −29.3691 −0.958937
939939 −13.5500 −0.442186
940940 9.98849 0.325789
941941 41.6919 1.35912 0.679559 0.733621i 0.262171π-0.262171\pi
0.679559 + 0.733621i 0.262171π0.262171\pi
942942 22.7109 0.739962
943943 24.0748 0.783985
944944 −2.95297 −0.0961111
945945 −3.97118 −0.129183
946946 92.6883 3.01356
947947 40.4822 1.31550 0.657748 0.753238i 0.271509π-0.271509\pi
0.657748 + 0.753238i 0.271509π0.271509\pi
948948 −27.9676 −0.908344
949949 2.26343 0.0734741
950950 −12.6594 −0.410725
951951 −14.2736 −0.462852
952952 1.49608 0.0484882
953953 57.3835 1.85883 0.929416 0.369033i 0.120311π-0.120311\pi
0.929416 + 0.369033i 0.120311π0.120311\pi
954954 40.3943 1.30781
955955 −7.71008 −0.249492
956956 −38.2526 −1.23718
957957 −23.2341 −0.751052
958958 67.1749 2.17032
959959 14.4797 0.467575
960960 6.76110 0.218214
961961 −10.0887 −0.325440
962962 6.74052 0.217323
963963 15.3256 0.493859
964964 65.6386 2.11408
965965 26.0067 0.837185
966966 −5.51419 −0.177416
967967 −5.51447 −0.177333 −0.0886667 0.996061i 0.528261π-0.528261\pi
−0.0886667 + 0.996061i 0.528261π0.528261\pi
968968 52.0813 1.67396
969969 −1.23323 −0.0396172
970970 −40.5158 −1.30088
971971 −29.5277 −0.947590 −0.473795 0.880635i 0.657116π-0.657116\pi
−0.473795 + 0.880635i 0.657116π0.657116\pi
972972 −39.0570 −1.25275
973973 −2.09153 −0.0670514
974974 9.05489 0.290137
975975 1.54017 0.0493250
976976 −1.15157 −0.0368608
977977 45.5206 1.45633 0.728166 0.685401i 0.240373π-0.240373\pi
0.728166 + 0.685401i 0.240373π0.240373\pi
978978 1.17275 0.0375003
979979 0.480272 0.0153495
980980 −16.4691 −0.526087
981981 1.03170 0.0329396
982982 10.6131 0.338677
983983 −11.2739 −0.359582 −0.179791 0.983705i 0.557542π-0.557542\pi
−0.179791 + 0.983705i 0.557542π0.557542\pi
984984 9.36785 0.298636
985985 13.0887 0.417040
986986 −7.80883 −0.248684
987987 2.19241 0.0697852
988988 52.2383 1.66192
989989 −25.7617 −0.819175
990990 −34.4273 −1.09417
991991 −12.4139 −0.394341 −0.197170 0.980369i 0.563175π-0.563175\pi
−0.197170 + 0.980369i 0.563175π0.563175\pi
992992 −27.6352 −0.877417
993993 17.3613 0.550944
994994 −23.6954 −0.751571
995995 18.2990 0.580116
996996 4.49940 0.142569
997997 −38.6932 −1.22543 −0.612713 0.790306i 0.709922π-0.709922\pi
−0.612713 + 0.790306i 0.709922π0.709922\pi
998998 6.26488 0.198311
999999 −2.97365 −0.0940822
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.a.d.1.5 5
3.2 odd 2 1665.2.a.q.1.1 5
4.3 odd 2 2960.2.a.ba.1.3 5
5.2 odd 4 925.2.b.g.149.9 10
5.3 odd 4 925.2.b.g.149.2 10
5.4 even 2 925.2.a.h.1.1 5
7.6 odd 2 9065.2.a.j.1.5 5
15.14 odd 2 8325.2.a.cc.1.5 5
37.36 even 2 6845.2.a.g.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.5 5 1.1 even 1 trivial
925.2.a.h.1.1 5 5.4 even 2
925.2.b.g.149.2 10 5.3 odd 4
925.2.b.g.149.9 10 5.2 odd 4
1665.2.a.q.1.1 5 3.2 odd 2
2960.2.a.ba.1.3 5 4.3 odd 2
6845.2.a.g.1.1 5 37.36 even 2
8325.2.a.cc.1.5 5 15.14 odd 2
9065.2.a.j.1.5 5 7.6 odd 2