Properties

Label 925.2.b.f.149.10
Level $925$
Weight $2$
Character 925.149
Analytic conductor $7.386$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(149,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-20,0,-12,0,0,-12,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.60703296077824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 20x^{8} + 142x^{6} + 420x^{4} + 457x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.10
Root \(-2.72362i\) of defining polynomial
Character \(\chi\) \(=\) 925.149
Dual form 925.2.b.f.149.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.72362i q^{2} +2.29298i q^{3} -5.41809 q^{4} -6.24519 q^{6} +3.82710i q^{7} -9.30957i q^{8} -2.25774 q^{9} -4.41809 q^{11} -12.4236i q^{12} +3.67583i q^{13} -10.4236 q^{14} +14.5195 q^{16} -2.28688i q^{17} -6.14922i q^{18} +2.39037 q^{19} -8.77545 q^{21} -12.0332i q^{22} +0.265251i q^{23} +21.3466 q^{24} -10.0116 q^{26} +1.70198i q^{27} -20.7356i q^{28} +6.58595 q^{29} +2.34076 q^{31} +20.9265i q^{32} -10.1306i q^{33} +6.22860 q^{34} +12.2326 q^{36} +1.00000i q^{37} +6.51044i q^{38} -8.42859 q^{39} -4.41809 q^{41} -23.9010i q^{42} -7.71249i q^{43} +23.9376 q^{44} -0.722443 q^{46} +10.9285i q^{47} +33.2929i q^{48} -7.64669 q^{49} +5.24377 q^{51} -19.9160i q^{52} +0.109574i q^{53} -4.63555 q^{54} +35.6286 q^{56} +5.48105i q^{57} +17.9376i q^{58} +2.00504 q^{59} +3.96271 q^{61} +6.37534i q^{62} -8.64059i q^{63} -27.9567 q^{64} +27.5918 q^{66} +6.80664i q^{67} +12.3905i q^{68} -0.608215 q^{69} -5.79485 q^{71} +21.0186i q^{72} +0.140654i q^{73} -2.72362 q^{74} -12.9512 q^{76} -16.9085i q^{77} -22.9563i q^{78} +6.62418 q^{79} -10.6758 q^{81} -12.0332i q^{82} -13.9904i q^{83} +47.5462 q^{84} +21.0059 q^{86} +15.1014i q^{87} +41.1305i q^{88} -14.8139 q^{89} -14.0678 q^{91} -1.43716i q^{92} +5.36731i q^{93} -29.7651 q^{94} -47.9839 q^{96} -8.94394i q^{97} -20.8266i q^{98} +9.97490 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 20 q^{4} - 12 q^{6} - 12 q^{9} - 10 q^{11} + 16 q^{14} + 32 q^{16} + 8 q^{19} + 6 q^{21} + 84 q^{24} - 8 q^{26} + 8 q^{29} + 16 q^{31} + 64 q^{34} + 32 q^{36} - 4 q^{39} - 10 q^{41} + 92 q^{44} - 44 q^{49}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.72362i 1.92589i 0.269701 + 0.962944i \(0.413075\pi\)
−0.269701 + 0.962944i \(0.586925\pi\)
\(3\) 2.29298i 1.32385i 0.749570 + 0.661925i \(0.230260\pi\)
−0.749570 + 0.661925i \(0.769740\pi\)
\(4\) −5.41809 −2.70905
\(5\) 0 0
\(6\) −6.24519 −2.54959
\(7\) 3.82710i 1.44651i 0.690582 + 0.723254i \(0.257354\pi\)
−0.690582 + 0.723254i \(0.742646\pi\)
\(8\) − 9.30957i − 3.29143i
\(9\) −2.25774 −0.752580
\(10\) 0 0
\(11\) −4.41809 −1.33210 −0.666052 0.745905i \(-0.732017\pi\)
−0.666052 + 0.745905i \(0.732017\pi\)
\(12\) − 12.4236i − 3.58637i
\(13\) 3.67583i 1.01949i 0.860325 + 0.509746i \(0.170261\pi\)
−0.860325 + 0.509746i \(0.829739\pi\)
\(14\) −10.4236 −2.78581
\(15\) 0 0
\(16\) 14.5195 3.62988
\(17\) − 2.28688i − 0.554651i −0.960776 0.277325i \(-0.910552\pi\)
0.960776 0.277325i \(-0.0894480\pi\)
\(18\) − 6.14922i − 1.44938i
\(19\) 2.39037 0.548387 0.274194 0.961674i \(-0.411589\pi\)
0.274194 + 0.961674i \(0.411589\pi\)
\(20\) 0 0
\(21\) −8.77545 −1.91496
\(22\) − 12.0332i − 2.56548i
\(23\) 0.265251i 0.0553087i 0.999618 + 0.0276544i \(0.00880378\pi\)
−0.999618 + 0.0276544i \(0.991196\pi\)
\(24\) 21.3466 4.35736
\(25\) 0 0
\(26\) −10.0116 −1.96343
\(27\) 1.70198i 0.327547i
\(28\) − 20.7356i − 3.91865i
\(29\) 6.58595 1.22298 0.611490 0.791252i \(-0.290570\pi\)
0.611490 + 0.791252i \(0.290570\pi\)
\(30\) 0 0
\(31\) 2.34076 0.420413 0.210207 0.977657i \(-0.432586\pi\)
0.210207 + 0.977657i \(0.432586\pi\)
\(32\) 20.9265i 3.69931i
\(33\) − 10.1306i − 1.76351i
\(34\) 6.22860 1.06820
\(35\) 0 0
\(36\) 12.2326 2.03877
\(37\) 1.00000i 0.164399i
\(38\) 6.51044i 1.05613i
\(39\) −8.42859 −1.34965
\(40\) 0 0
\(41\) −4.41809 −0.689990 −0.344995 0.938605i \(-0.612119\pi\)
−0.344995 + 0.938605i \(0.612119\pi\)
\(42\) − 23.9010i − 3.68800i
\(43\) − 7.71249i − 1.17614i −0.808809 0.588072i \(-0.799887\pi\)
0.808809 0.588072i \(-0.200113\pi\)
\(44\) 23.9376 3.60873
\(45\) 0 0
\(46\) −0.722443 −0.106518
\(47\) 10.9285i 1.59409i 0.603920 + 0.797045i \(0.293605\pi\)
−0.603920 + 0.797045i \(0.706395\pi\)
\(48\) 33.2929i 4.80542i
\(49\) −7.64669 −1.09238
\(50\) 0 0
\(51\) 5.24377 0.734275
\(52\) − 19.9160i − 2.76185i
\(53\) 0.109574i 0.0150512i 0.999972 + 0.00752559i \(0.00239549\pi\)
−0.999972 + 0.00752559i \(0.997605\pi\)
\(54\) −4.63555 −0.630819
\(55\) 0 0
\(56\) 35.6286 4.76108
\(57\) 5.48105i 0.725983i
\(58\) 17.9376i 2.35532i
\(59\) 2.00504 0.261034 0.130517 0.991446i \(-0.458336\pi\)
0.130517 + 0.991446i \(0.458336\pi\)
\(60\) 0 0
\(61\) 3.96271 0.507374 0.253687 0.967286i \(-0.418357\pi\)
0.253687 + 0.967286i \(0.418357\pi\)
\(62\) 6.37534i 0.809669i
\(63\) − 8.64059i − 1.08861i
\(64\) −27.9567 −3.49458
\(65\) 0 0
\(66\) 27.5918 3.39632
\(67\) 6.80664i 0.831563i 0.909464 + 0.415782i \(0.136492\pi\)
−0.909464 + 0.415782i \(0.863508\pi\)
\(68\) 12.3905i 1.50257i
\(69\) −0.608215 −0.0732205
\(70\) 0 0
\(71\) −5.79485 −0.687722 −0.343861 0.939020i \(-0.611735\pi\)
−0.343861 + 0.939020i \(0.611735\pi\)
\(72\) 21.0186i 2.47706i
\(73\) 0.140654i 0.0164623i 0.999966 + 0.00823116i \(0.00262009\pi\)
−0.999966 + 0.00823116i \(0.997380\pi\)
\(74\) −2.72362 −0.316614
\(75\) 0 0
\(76\) −12.9512 −1.48561
\(77\) − 16.9085i − 1.92690i
\(78\) − 22.9563i − 2.59928i
\(79\) 6.62418 0.745278 0.372639 0.927976i \(-0.378453\pi\)
0.372639 + 0.927976i \(0.378453\pi\)
\(80\) 0 0
\(81\) −10.6758 −1.18620
\(82\) − 12.0332i − 1.32884i
\(83\) − 13.9904i − 1.53565i −0.640660 0.767825i \(-0.721339\pi\)
0.640660 0.767825i \(-0.278661\pi\)
\(84\) 47.5462 5.18771
\(85\) 0 0
\(86\) 21.0059 2.26512
\(87\) 15.1014i 1.61904i
\(88\) 41.1305i 4.38453i
\(89\) −14.8139 −1.57027 −0.785136 0.619323i \(-0.787407\pi\)
−0.785136 + 0.619323i \(0.787407\pi\)
\(90\) 0 0
\(91\) −14.0678 −1.47470
\(92\) − 1.43716i − 0.149834i
\(93\) 5.36731i 0.556565i
\(94\) −29.7651 −3.07004
\(95\) 0 0
\(96\) −47.9839 −4.89734
\(97\) − 8.94394i − 0.908119i −0.890971 0.454060i \(-0.849975\pi\)
0.890971 0.454060i \(-0.150025\pi\)
\(98\) − 20.8266i − 2.10381i
\(99\) 9.97490 1.00252
\(100\) 0 0
\(101\) −11.5935 −1.15359 −0.576796 0.816888i \(-0.695697\pi\)
−0.576796 + 0.816888i \(0.695697\pi\)
\(102\) 14.2820i 1.41413i
\(103\) 13.5918i 1.33924i 0.742703 + 0.669620i \(0.233543\pi\)
−0.742703 + 0.669620i \(0.766457\pi\)
\(104\) 34.2204 3.35559
\(105\) 0 0
\(106\) −0.298438 −0.0289869
\(107\) 6.66146i 0.643988i 0.946742 + 0.321994i \(0.104353\pi\)
−0.946742 + 0.321994i \(0.895647\pi\)
\(108\) − 9.22151i − 0.887340i
\(109\) 4.85120 0.464661 0.232331 0.972637i \(-0.425365\pi\)
0.232331 + 0.972637i \(0.425365\pi\)
\(110\) 0 0
\(111\) −2.29298 −0.217640
\(112\) 55.5676i 5.25065i
\(113\) 2.83965i 0.267132i 0.991040 + 0.133566i \(0.0426428\pi\)
−0.991040 + 0.133566i \(0.957357\pi\)
\(114\) −14.9283 −1.39816
\(115\) 0 0
\(116\) −35.6833 −3.31311
\(117\) − 8.29907i − 0.767249i
\(118\) 5.46096i 0.502722i
\(119\) 8.75213 0.802306
\(120\) 0 0
\(121\) 8.51952 0.774502
\(122\) 10.7929i 0.977145i
\(123\) − 10.1306i − 0.913443i
\(124\) −12.6825 −1.13892
\(125\) 0 0
\(126\) 23.5337 2.09655
\(127\) 8.81853i 0.782518i 0.920281 + 0.391259i \(0.127960\pi\)
−0.920281 + 0.391259i \(0.872040\pi\)
\(128\) − 34.2903i − 3.03087i
\(129\) 17.6845 1.55704
\(130\) 0 0
\(131\) 4.61549 0.403257 0.201629 0.979462i \(-0.435377\pi\)
0.201629 + 0.979462i \(0.435377\pi\)
\(132\) 54.8884i 4.77742i
\(133\) 9.14817i 0.793247i
\(134\) −18.5387 −1.60150
\(135\) 0 0
\(136\) −21.2899 −1.82559
\(137\) − 14.1324i − 1.20741i −0.797207 0.603706i \(-0.793690\pi\)
0.797207 0.603706i \(-0.206310\pi\)
\(138\) − 1.65655i − 0.141015i
\(139\) −13.2152 −1.12090 −0.560448 0.828190i \(-0.689371\pi\)
−0.560448 + 0.828190i \(0.689371\pi\)
\(140\) 0 0
\(141\) −25.0589 −2.11034
\(142\) − 15.7830i − 1.32448i
\(143\) − 16.2402i − 1.35807i
\(144\) −32.7813 −2.73178
\(145\) 0 0
\(146\) −0.383088 −0.0317046
\(147\) − 17.5337i − 1.44615i
\(148\) − 5.41809i − 0.445364i
\(149\) −6.99743 −0.573252 −0.286626 0.958043i \(-0.592534\pi\)
−0.286626 + 0.958043i \(0.592534\pi\)
\(150\) 0 0
\(151\) 19.7185 1.60467 0.802333 0.596877i \(-0.203592\pi\)
0.802333 + 0.596877i \(0.203592\pi\)
\(152\) − 22.2533i − 1.80498i
\(153\) 5.16319i 0.417419i
\(154\) 46.0522 3.71099
\(155\) 0 0
\(156\) 45.6669 3.65628
\(157\) 12.9768i 1.03566i 0.855482 + 0.517832i \(0.173261\pi\)
−0.855482 + 0.517832i \(0.826739\pi\)
\(158\) 18.0417i 1.43532i
\(159\) −0.251251 −0.0199255
\(160\) 0 0
\(161\) −1.01514 −0.0800045
\(162\) − 29.0769i − 2.28450i
\(163\) 2.33572i 0.182948i 0.995807 + 0.0914740i \(0.0291578\pi\)
−0.995807 + 0.0914740i \(0.970842\pi\)
\(164\) 23.9376 1.86921
\(165\) 0 0
\(166\) 38.1046 2.95749
\(167\) − 22.8816i − 1.77063i −0.464994 0.885314i \(-0.653944\pi\)
0.464994 0.885314i \(-0.346056\pi\)
\(168\) 81.6956i 6.30295i
\(169\) −0.511728 −0.0393637
\(170\) 0 0
\(171\) −5.39682 −0.412705
\(172\) 41.7869i 3.18622i
\(173\) − 14.0099i − 1.06515i −0.846382 0.532577i \(-0.821224\pi\)
0.846382 0.532577i \(-0.178776\pi\)
\(174\) −41.1305 −3.11810
\(175\) 0 0
\(176\) −64.1486 −4.83538
\(177\) 4.59751i 0.345570i
\(178\) − 40.3474i − 3.02417i
\(179\) 14.7815 1.10482 0.552412 0.833571i \(-0.313708\pi\)
0.552412 + 0.833571i \(0.313708\pi\)
\(180\) 0 0
\(181\) −8.18949 −0.608720 −0.304360 0.952557i \(-0.598443\pi\)
−0.304360 + 0.952557i \(0.598443\pi\)
\(182\) − 38.3152i − 2.84011i
\(183\) 9.08641i 0.671687i
\(184\) 2.46938 0.182045
\(185\) 0 0
\(186\) −14.6185 −1.07188
\(187\) 10.1037i 0.738853i
\(188\) − 59.2118i − 4.31846i
\(189\) −6.51366 −0.473799
\(190\) 0 0
\(191\) 19.8743 1.43805 0.719026 0.694983i \(-0.244588\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(192\) − 64.1040i − 4.62631i
\(193\) − 17.0390i − 1.22650i −0.789890 0.613249i \(-0.789862\pi\)
0.789890 0.613249i \(-0.210138\pi\)
\(194\) 24.3599 1.74894
\(195\) 0 0
\(196\) 41.4304 2.95932
\(197\) − 26.5277i − 1.89002i −0.327038 0.945011i \(-0.606051\pi\)
0.327038 0.945011i \(-0.393949\pi\)
\(198\) 27.1678i 1.93073i
\(199\) 5.05687 0.358472 0.179236 0.983806i \(-0.442637\pi\)
0.179236 + 0.983806i \(0.442637\pi\)
\(200\) 0 0
\(201\) −15.6075 −1.10087
\(202\) − 31.5762i − 2.22169i
\(203\) 25.2051i 1.76905i
\(204\) −28.4112 −1.98918
\(205\) 0 0
\(206\) −37.0189 −2.57923
\(207\) − 0.598869i − 0.0416243i
\(208\) 53.3713i 3.70063i
\(209\) −10.5609 −0.730509
\(210\) 0 0
\(211\) −19.6605 −1.35348 −0.676741 0.736221i \(-0.736608\pi\)
−0.676741 + 0.736221i \(0.736608\pi\)
\(212\) − 0.593683i − 0.0407743i
\(213\) − 13.2875i − 0.910442i
\(214\) −18.1433 −1.24025
\(215\) 0 0
\(216\) 15.8447 1.07810
\(217\) 8.95833i 0.608131i
\(218\) 13.2128i 0.894885i
\(219\) −0.322517 −0.0217937
\(220\) 0 0
\(221\) 8.40620 0.565462
\(222\) − 6.24519i − 0.419150i
\(223\) 24.1933i 1.62010i 0.586358 + 0.810052i \(0.300561\pi\)
−0.586358 + 0.810052i \(0.699439\pi\)
\(224\) −80.0877 −5.35109
\(225\) 0 0
\(226\) −7.73412 −0.514466
\(227\) 18.1013i 1.20143i 0.799465 + 0.600713i \(0.205117\pi\)
−0.799465 + 0.600713i \(0.794883\pi\)
\(228\) − 29.6968i − 1.96672i
\(229\) −19.6182 −1.29641 −0.648205 0.761466i \(-0.724480\pi\)
−0.648205 + 0.761466i \(0.724480\pi\)
\(230\) 0 0
\(231\) 38.7707 2.55093
\(232\) − 61.3124i − 4.02536i
\(233\) 4.67013i 0.305951i 0.988230 + 0.152975i \(0.0488855\pi\)
−0.988230 + 0.152975i \(0.951114\pi\)
\(234\) 22.6035 1.47764
\(235\) 0 0
\(236\) −10.8635 −0.707152
\(237\) 15.1891i 0.986637i
\(238\) 23.8375i 1.54515i
\(239\) 9.64645 0.623977 0.311989 0.950086i \(-0.399005\pi\)
0.311989 + 0.950086i \(0.399005\pi\)
\(240\) 0 0
\(241\) 1.59826 0.102953 0.0514764 0.998674i \(-0.483607\pi\)
0.0514764 + 0.998674i \(0.483607\pi\)
\(242\) 23.2039i 1.49160i
\(243\) − 19.3735i − 1.24281i
\(244\) −21.4703 −1.37450
\(245\) 0 0
\(246\) 27.5918 1.75919
\(247\) 8.78658i 0.559077i
\(248\) − 21.7915i − 1.38376i
\(249\) 32.0797 2.03297
\(250\) 0 0
\(251\) −6.49812 −0.410158 −0.205079 0.978745i \(-0.565745\pi\)
−0.205079 + 0.978745i \(0.565745\pi\)
\(252\) 46.8155i 2.94910i
\(253\) − 1.17190i − 0.0736770i
\(254\) −24.0183 −1.50704
\(255\) 0 0
\(256\) 37.4804 2.34252
\(257\) − 4.01155i − 0.250234i −0.992142 0.125117i \(-0.960069\pi\)
0.992142 0.125117i \(-0.0399306\pi\)
\(258\) 48.1659i 2.99868i
\(259\) −3.82710 −0.237804
\(260\) 0 0
\(261\) −14.8694 −0.920391
\(262\) 12.5708i 0.776629i
\(263\) 26.2537i 1.61887i 0.587208 + 0.809436i \(0.300227\pi\)
−0.587208 + 0.809436i \(0.699773\pi\)
\(264\) −94.3113 −5.80446
\(265\) 0 0
\(266\) −24.9161 −1.52770
\(267\) − 33.9680i − 2.07881i
\(268\) − 36.8790i − 2.25274i
\(269\) −3.00335 −0.183117 −0.0915587 0.995800i \(-0.529185\pi\)
−0.0915587 + 0.995800i \(0.529185\pi\)
\(270\) 0 0
\(271\) 5.91480 0.359298 0.179649 0.983731i \(-0.442504\pi\)
0.179649 + 0.983731i \(0.442504\pi\)
\(272\) − 33.2045i − 2.01332i
\(273\) − 32.2571i − 1.95229i
\(274\) 38.4912 2.32534
\(275\) 0 0
\(276\) 3.29537 0.198358
\(277\) 12.2719i 0.737345i 0.929559 + 0.368672i \(0.120188\pi\)
−0.929559 + 0.368672i \(0.879812\pi\)
\(278\) − 35.9931i − 2.15872i
\(279\) −5.28483 −0.316395
\(280\) 0 0
\(281\) −3.42907 −0.204561 −0.102281 0.994756i \(-0.532614\pi\)
−0.102281 + 0.994756i \(0.532614\pi\)
\(282\) − 68.2507i − 4.06427i
\(283\) 21.8283i 1.29756i 0.760976 + 0.648780i \(0.224720\pi\)
−0.760976 + 0.648780i \(0.775280\pi\)
\(284\) 31.3970 1.86307
\(285\) 0 0
\(286\) 44.2320 2.61549
\(287\) − 16.9085i − 0.998075i
\(288\) − 47.2466i − 2.78403i
\(289\) 11.7702 0.692362
\(290\) 0 0
\(291\) 20.5082 1.20221
\(292\) − 0.762077i − 0.0445972i
\(293\) 7.43221i 0.434194i 0.976150 + 0.217097i \(0.0696589\pi\)
−0.976150 + 0.217097i \(0.930341\pi\)
\(294\) 47.7550 2.78513
\(295\) 0 0
\(296\) 9.30957 0.541108
\(297\) − 7.51952i − 0.436327i
\(298\) − 19.0583i − 1.10402i
\(299\) −0.975019 −0.0563868
\(300\) 0 0
\(301\) 29.5164 1.70130
\(302\) 53.7055i 3.09041i
\(303\) − 26.5835i − 1.52718i
\(304\) 34.7070 1.99058
\(305\) 0 0
\(306\) −14.0625 −0.803902
\(307\) 0.195164i 0.0111386i 0.999984 + 0.00556930i \(0.00177277\pi\)
−0.999984 + 0.00556930i \(0.998227\pi\)
\(308\) 91.6116i 5.22006i
\(309\) −31.1657 −1.77295
\(310\) 0 0
\(311\) −9.98641 −0.566277 −0.283139 0.959079i \(-0.591376\pi\)
−0.283139 + 0.959079i \(0.591376\pi\)
\(312\) 78.4666i 4.44229i
\(313\) − 5.33350i − 0.301467i −0.988574 0.150734i \(-0.951836\pi\)
0.988574 0.150734i \(-0.0481635\pi\)
\(314\) −35.3439 −1.99457
\(315\) 0 0
\(316\) −35.8904 −2.01899
\(317\) 24.8111i 1.39353i 0.717300 + 0.696765i \(0.245378\pi\)
−0.717300 + 0.696765i \(0.754622\pi\)
\(318\) − 0.684312i − 0.0383743i
\(319\) −29.0973 −1.62914
\(320\) 0 0
\(321\) −15.2746 −0.852544
\(322\) − 2.76486i − 0.154080i
\(323\) − 5.46649i − 0.304164i
\(324\) 57.8426 3.21348
\(325\) 0 0
\(326\) −6.36162 −0.352337
\(327\) 11.1237i 0.615142i
\(328\) 41.1305i 2.27105i
\(329\) −41.8246 −2.30586
\(330\) 0 0
\(331\) −15.8959 −0.873717 −0.436859 0.899530i \(-0.643909\pi\)
−0.436859 + 0.899530i \(0.643909\pi\)
\(332\) 75.8015i 4.16015i
\(333\) − 2.25774i − 0.123723i
\(334\) 62.3206 3.41003
\(335\) 0 0
\(336\) −127.415 −6.95107
\(337\) 25.2470i 1.37529i 0.726045 + 0.687647i \(0.241356\pi\)
−0.726045 + 0.687647i \(0.758644\pi\)
\(338\) − 1.39375i − 0.0758101i
\(339\) −6.51125 −0.353642
\(340\) 0 0
\(341\) −10.3417 −0.560035
\(342\) − 14.6989i − 0.794824i
\(343\) − 2.47493i − 0.133634i
\(344\) −71.7999 −3.87119
\(345\) 0 0
\(346\) 38.1576 2.05137
\(347\) 23.4864i 1.26082i 0.776264 + 0.630408i \(0.217112\pi\)
−0.776264 + 0.630408i \(0.782888\pi\)
\(348\) − 81.8209i − 4.38606i
\(349\) 7.13314 0.381828 0.190914 0.981607i \(-0.438855\pi\)
0.190914 + 0.981607i \(0.438855\pi\)
\(350\) 0 0
\(351\) −6.25621 −0.333932
\(352\) − 92.4551i − 4.92787i
\(353\) 1.49954i 0.0798126i 0.999203 + 0.0399063i \(0.0127059\pi\)
−0.999203 + 0.0399063i \(0.987294\pi\)
\(354\) −12.5218 −0.665529
\(355\) 0 0
\(356\) 80.2631 4.25394
\(357\) 20.0684i 1.06213i
\(358\) 40.2593i 2.12777i
\(359\) 6.47638 0.341810 0.170905 0.985287i \(-0.445331\pi\)
0.170905 + 0.985287i \(0.445331\pi\)
\(360\) 0 0
\(361\) −13.2862 −0.699271
\(362\) − 22.3050i − 1.17233i
\(363\) 19.5351i 1.02532i
\(364\) 76.2204 3.99504
\(365\) 0 0
\(366\) −24.7479 −1.29359
\(367\) 24.5122i 1.27953i 0.768572 + 0.639763i \(0.220967\pi\)
−0.768572 + 0.639763i \(0.779033\pi\)
\(368\) 3.85132i 0.200764i
\(369\) 9.97490 0.519272
\(370\) 0 0
\(371\) −0.419351 −0.0217716
\(372\) − 29.0806i − 1.50776i
\(373\) 18.9696i 0.982208i 0.871101 + 0.491104i \(0.163407\pi\)
−0.871101 + 0.491104i \(0.836593\pi\)
\(374\) −27.5185 −1.42295
\(375\) 0 0
\(376\) 101.740 5.24684
\(377\) 24.2088i 1.24682i
\(378\) − 17.7407i − 0.912485i
\(379\) −23.7286 −1.21886 −0.609428 0.792841i \(-0.708601\pi\)
−0.609428 + 0.792841i \(0.708601\pi\)
\(380\) 0 0
\(381\) −20.2207 −1.03594
\(382\) 54.1299i 2.76953i
\(383\) 12.0392i 0.615173i 0.951520 + 0.307586i \(0.0995213\pi\)
−0.951520 + 0.307586i \(0.900479\pi\)
\(384\) 78.6269 4.01241
\(385\) 0 0
\(386\) 46.4078 2.36210
\(387\) 17.4128i 0.885142i
\(388\) 48.4591i 2.46014i
\(389\) −30.3044 −1.53649 −0.768247 0.640153i \(-0.778871\pi\)
−0.768247 + 0.640153i \(0.778871\pi\)
\(390\) 0 0
\(391\) 0.606599 0.0306770
\(392\) 71.1874i 3.59550i
\(393\) 10.5832i 0.533853i
\(394\) 72.2514 3.63997
\(395\) 0 0
\(396\) −54.0449 −2.71586
\(397\) − 26.5246i − 1.33123i −0.746295 0.665615i \(-0.768169\pi\)
0.746295 0.665615i \(-0.231831\pi\)
\(398\) 13.7730i 0.690377i
\(399\) −20.9765 −1.05014
\(400\) 0 0
\(401\) 15.7889 0.788462 0.394231 0.919011i \(-0.371011\pi\)
0.394231 + 0.919011i \(0.371011\pi\)
\(402\) − 42.5088i − 2.12014i
\(403\) 8.60425i 0.428608i
\(404\) 62.8144 3.12513
\(405\) 0 0
\(406\) −68.6490 −3.40699
\(407\) − 4.41809i − 0.218997i
\(408\) − 48.8172i − 2.41681i
\(409\) 9.75340 0.482275 0.241137 0.970491i \(-0.422480\pi\)
0.241137 + 0.970491i \(0.422480\pi\)
\(410\) 0 0
\(411\) 32.4052 1.59843
\(412\) − 73.6417i − 3.62806i
\(413\) 7.67348i 0.377587i
\(414\) 1.63109 0.0801637
\(415\) 0 0
\(416\) −76.9222 −3.77142
\(417\) − 30.3021i − 1.48390i
\(418\) − 28.7637i − 1.40688i
\(419\) 9.64020 0.470954 0.235477 0.971880i \(-0.424335\pi\)
0.235477 + 0.971880i \(0.424335\pi\)
\(420\) 0 0
\(421\) −17.5464 −0.855161 −0.427581 0.903977i \(-0.640634\pi\)
−0.427581 + 0.903977i \(0.640634\pi\)
\(422\) − 53.5476i − 2.60666i
\(423\) − 24.6738i − 1.19968i
\(424\) 1.02009 0.0495399
\(425\) 0 0
\(426\) 36.1899 1.75341
\(427\) 15.1657i 0.733920i
\(428\) − 36.0924i − 1.74459i
\(429\) 37.2383 1.79788
\(430\) 0 0
\(431\) 2.48113 0.119512 0.0597558 0.998213i \(-0.480968\pi\)
0.0597558 + 0.998213i \(0.480968\pi\)
\(432\) 24.7120i 1.18896i
\(433\) 18.3658i 0.882603i 0.897359 + 0.441302i \(0.145483\pi\)
−0.897359 + 0.441302i \(0.854517\pi\)
\(434\) −24.3991 −1.17119
\(435\) 0 0
\(436\) −26.2843 −1.25879
\(437\) 0.634048i 0.0303306i
\(438\) − 0.878412i − 0.0419721i
\(439\) −23.5970 −1.12622 −0.563111 0.826381i \(-0.690396\pi\)
−0.563111 + 0.826381i \(0.690396\pi\)
\(440\) 0 0
\(441\) 17.2642 0.822106
\(442\) 22.8953i 1.08902i
\(443\) 1.45360i 0.0690625i 0.999404 + 0.0345313i \(0.0109938\pi\)
−0.999404 + 0.0345313i \(0.989006\pi\)
\(444\) 12.4236 0.589596
\(445\) 0 0
\(446\) −65.8933 −3.12014
\(447\) − 16.0449i − 0.758900i
\(448\) − 106.993i − 5.05494i
\(449\) 38.3957 1.81200 0.906001 0.423275i \(-0.139119\pi\)
0.906001 + 0.423275i \(0.139119\pi\)
\(450\) 0 0
\(451\) 19.5195 0.919138
\(452\) − 15.3855i − 0.723672i
\(453\) 45.2140i 2.12434i
\(454\) −49.3010 −2.31381
\(455\) 0 0
\(456\) 51.0262 2.38952
\(457\) 20.1534i 0.942736i 0.881937 + 0.471368i \(0.156240\pi\)
−0.881937 + 0.471368i \(0.843760\pi\)
\(458\) − 53.4326i − 2.49674i
\(459\) 3.89224 0.181674
\(460\) 0 0
\(461\) 34.6000 1.61148 0.805742 0.592267i \(-0.201767\pi\)
0.805742 + 0.592267i \(0.201767\pi\)
\(462\) 105.597i 4.91280i
\(463\) − 33.7416i − 1.56810i −0.620695 0.784052i \(-0.713150\pi\)
0.620695 0.784052i \(-0.286850\pi\)
\(464\) 95.6249 4.43927
\(465\) 0 0
\(466\) −12.7197 −0.589227
\(467\) − 32.4863i − 1.50329i −0.659570 0.751643i \(-0.729262\pi\)
0.659570 0.751643i \(-0.270738\pi\)
\(468\) 44.9651i 2.07851i
\(469\) −26.0497 −1.20286
\(470\) 0 0
\(471\) −29.7556 −1.37106
\(472\) − 18.6661i − 0.859175i
\(473\) 34.0745i 1.56675i
\(474\) −41.3692 −1.90015
\(475\) 0 0
\(476\) −47.4198 −2.17348
\(477\) − 0.247390i − 0.0113272i
\(478\) 26.2732i 1.20171i
\(479\) −19.3799 −0.885492 −0.442746 0.896647i \(-0.645996\pi\)
−0.442746 + 0.896647i \(0.645996\pi\)
\(480\) 0 0
\(481\) −3.67583 −0.167603
\(482\) 4.35304i 0.198276i
\(483\) − 2.32770i − 0.105914i
\(484\) −46.1595 −2.09816
\(485\) 0 0
\(486\) 52.7659 2.39351
\(487\) 2.36162i 0.107015i 0.998567 + 0.0535076i \(0.0170401\pi\)
−0.998567 + 0.0535076i \(0.982960\pi\)
\(488\) − 36.8912i − 1.66998i
\(489\) −5.35576 −0.242196
\(490\) 0 0
\(491\) 14.1469 0.638442 0.319221 0.947680i \(-0.396579\pi\)
0.319221 + 0.947680i \(0.396579\pi\)
\(492\) 54.8884i 2.47456i
\(493\) − 15.0613i − 0.678327i
\(494\) −23.9313 −1.07672
\(495\) 0 0
\(496\) 33.9868 1.52605
\(497\) − 22.1775i − 0.994796i
\(498\) 87.3729i 3.91528i
\(499\) 31.1547 1.39468 0.697338 0.716743i \(-0.254368\pi\)
0.697338 + 0.716743i \(0.254368\pi\)
\(500\) 0 0
\(501\) 52.4669 2.34405
\(502\) − 17.6984i − 0.789918i
\(503\) 13.3094i 0.593438i 0.954965 + 0.296719i \(0.0958925\pi\)
−0.954965 + 0.296719i \(0.904108\pi\)
\(504\) −80.4402 −3.58309
\(505\) 0 0
\(506\) 3.19182 0.141894
\(507\) − 1.17338i − 0.0521117i
\(508\) − 47.7796i − 2.11988i
\(509\) −24.4420 −1.08337 −0.541686 0.840581i \(-0.682214\pi\)
−0.541686 + 0.840581i \(0.682214\pi\)
\(510\) 0 0
\(511\) −0.538297 −0.0238129
\(512\) 33.5015i 1.48057i
\(513\) 4.06837i 0.179623i
\(514\) 10.9259 0.481922
\(515\) 0 0
\(516\) −95.8165 −4.21808
\(517\) − 48.2832i − 2.12349i
\(518\) − 10.4236i − 0.457985i
\(519\) 32.1244 1.41010
\(520\) 0 0
\(521\) 21.2938 0.932897 0.466448 0.884548i \(-0.345533\pi\)
0.466448 + 0.884548i \(0.345533\pi\)
\(522\) − 40.4985i − 1.77257i
\(523\) 4.62687i 0.202319i 0.994870 + 0.101159i \(0.0322552\pi\)
−0.994870 + 0.101159i \(0.967745\pi\)
\(524\) −25.0072 −1.09244
\(525\) 0 0
\(526\) −71.5050 −3.11777
\(527\) − 5.35305i − 0.233183i
\(528\) − 147.091i − 6.40132i
\(529\) 22.9296 0.996941
\(530\) 0 0
\(531\) −4.52686 −0.196449
\(532\) − 49.5656i − 2.14894i
\(533\) − 16.2402i − 0.703439i
\(534\) 92.5157 4.00355
\(535\) 0 0
\(536\) 63.3669 2.73703
\(537\) 33.8937i 1.46262i
\(538\) − 8.17997i − 0.352664i
\(539\) 33.7838 1.45517
\(540\) 0 0
\(541\) −18.9838 −0.816179 −0.408089 0.912942i \(-0.633805\pi\)
−0.408089 + 0.912942i \(0.633805\pi\)
\(542\) 16.1096i 0.691968i
\(543\) − 18.7783i − 0.805855i
\(544\) 47.8564 2.05183
\(545\) 0 0
\(546\) 87.8559 3.75988
\(547\) 3.76479i 0.160971i 0.996756 + 0.0804855i \(0.0256471\pi\)
−0.996756 + 0.0804855i \(0.974353\pi\)
\(548\) 76.5706i 3.27093i
\(549\) −8.94678 −0.381839
\(550\) 0 0
\(551\) 15.7428 0.670667
\(552\) 5.66222i 0.241000i
\(553\) 25.3514i 1.07805i
\(554\) −33.4239 −1.42004
\(555\) 0 0
\(556\) 71.6010 3.03656
\(557\) − 29.2177i − 1.23799i −0.785394 0.618996i \(-0.787540\pi\)
0.785394 0.618996i \(-0.212460\pi\)
\(558\) − 14.3939i − 0.609341i
\(559\) 28.3498 1.19907
\(560\) 0 0
\(561\) −23.1675 −0.978131
\(562\) − 9.33948i − 0.393962i
\(563\) 17.2201i 0.725741i 0.931840 + 0.362871i \(0.118203\pi\)
−0.931840 + 0.362871i \(0.881797\pi\)
\(564\) 135.771 5.71700
\(565\) 0 0
\(566\) −59.4520 −2.49895
\(567\) − 40.8575i − 1.71585i
\(568\) 53.9476i 2.26359i
\(569\) 28.1495 1.18009 0.590045 0.807371i \(-0.299110\pi\)
0.590045 + 0.807371i \(0.299110\pi\)
\(570\) 0 0
\(571\) 29.0284 1.21480 0.607401 0.794396i \(-0.292212\pi\)
0.607401 + 0.794396i \(0.292212\pi\)
\(572\) 87.9906i 3.67907i
\(573\) 45.5713i 1.90377i
\(574\) 46.0522 1.92218
\(575\) 0 0
\(576\) 63.1189 2.62995
\(577\) 18.3603i 0.764347i 0.924090 + 0.382174i \(0.124824\pi\)
−0.924090 + 0.382174i \(0.875176\pi\)
\(578\) 32.0574i 1.33341i
\(579\) 39.0701 1.62370
\(580\) 0 0
\(581\) 53.5428 2.22133
\(582\) 55.8566i 2.31533i
\(583\) − 0.484109i − 0.0200497i
\(584\) 1.30943 0.0541846
\(585\) 0 0
\(586\) −20.2425 −0.836210
\(587\) − 40.9523i − 1.69028i −0.534544 0.845141i \(-0.679516\pi\)
0.534544 0.845141i \(-0.320484\pi\)
\(588\) 94.9990i 3.91769i
\(589\) 5.59528 0.230549
\(590\) 0 0
\(591\) 60.8275 2.50211
\(592\) 14.5195i 0.596749i
\(593\) − 12.6520i − 0.519557i −0.965668 0.259778i \(-0.916350\pi\)
0.965668 0.259778i \(-0.0836495\pi\)
\(594\) 20.4803 0.840317
\(595\) 0 0
\(596\) 37.9127 1.55297
\(597\) 11.5953i 0.474563i
\(598\) − 2.65558i − 0.108595i
\(599\) 22.0493 0.900910 0.450455 0.892799i \(-0.351262\pi\)
0.450455 + 0.892799i \(0.351262\pi\)
\(600\) 0 0
\(601\) 0.498980 0.0203538 0.0101769 0.999948i \(-0.496761\pi\)
0.0101769 + 0.999948i \(0.496761\pi\)
\(602\) 80.3915i 3.27651i
\(603\) − 15.3676i − 0.625818i
\(604\) −106.836 −4.34711
\(605\) 0 0
\(606\) 72.4034 2.94119
\(607\) 41.2564i 1.67455i 0.546784 + 0.837274i \(0.315852\pi\)
−0.546784 + 0.837274i \(0.684148\pi\)
\(608\) 50.0219i 2.02866i
\(609\) −57.7947 −2.34196
\(610\) 0 0
\(611\) −40.1714 −1.62516
\(612\) − 27.9746i − 1.13081i
\(613\) 4.13184i 0.166883i 0.996513 + 0.0834417i \(0.0265912\pi\)
−0.996513 + 0.0834417i \(0.973409\pi\)
\(614\) −0.531552 −0.0214517
\(615\) 0 0
\(616\) −157.411 −6.34225
\(617\) 37.7095i 1.51813i 0.651017 + 0.759063i \(0.274343\pi\)
−0.651017 + 0.759063i \(0.725657\pi\)
\(618\) − 84.8834i − 3.41451i
\(619\) 23.7226 0.953493 0.476746 0.879041i \(-0.341816\pi\)
0.476746 + 0.879041i \(0.341816\pi\)
\(620\) 0 0
\(621\) −0.451454 −0.0181162
\(622\) − 27.1992i − 1.09059i
\(623\) − 56.6943i − 2.27141i
\(624\) −122.379 −4.89909
\(625\) 0 0
\(626\) 14.5264 0.580592
\(627\) − 24.2158i − 0.967085i
\(628\) − 70.3097i − 2.80566i
\(629\) 2.28688 0.0911840
\(630\) 0 0
\(631\) 21.4175 0.852615 0.426308 0.904578i \(-0.359814\pi\)
0.426308 + 0.904578i \(0.359814\pi\)
\(632\) − 61.6682i − 2.45303i
\(633\) − 45.0810i − 1.79181i
\(634\) −67.5759 −2.68378
\(635\) 0 0
\(636\) 1.36130 0.0539791
\(637\) − 28.1079i − 1.11368i
\(638\) − 79.2500i − 3.13754i
\(639\) 13.0833 0.517566
\(640\) 0 0
\(641\) −36.6406 −1.44722 −0.723608 0.690211i \(-0.757518\pi\)
−0.723608 + 0.690211i \(0.757518\pi\)
\(642\) − 41.6021i − 1.64190i
\(643\) − 13.5452i − 0.534170i −0.963673 0.267085i \(-0.913940\pi\)
0.963673 0.267085i \(-0.0860604\pi\)
\(644\) 5.50014 0.216736
\(645\) 0 0
\(646\) 14.8886 0.585785
\(647\) 18.8904i 0.742657i 0.928502 + 0.371329i \(0.121098\pi\)
−0.928502 + 0.371329i \(0.878902\pi\)
\(648\) 99.3874i 3.90431i
\(649\) −8.85844 −0.347724
\(650\) 0 0
\(651\) −20.5412 −0.805075
\(652\) − 12.6552i − 0.495614i
\(653\) 7.44489i 0.291341i 0.989333 + 0.145670i \(0.0465339\pi\)
−0.989333 + 0.145670i \(0.953466\pi\)
\(654\) −30.2967 −1.18469
\(655\) 0 0
\(656\) −64.1486 −2.50458
\(657\) − 0.317560i − 0.0123892i
\(658\) − 113.914i − 4.44083i
\(659\) −5.00068 −0.194799 −0.0973993 0.995245i \(-0.531052\pi\)
−0.0973993 + 0.995245i \(0.531052\pi\)
\(660\) 0 0
\(661\) −7.47493 −0.290741 −0.145371 0.989377i \(-0.546437\pi\)
−0.145371 + 0.989377i \(0.546437\pi\)
\(662\) − 43.2943i − 1.68268i
\(663\) 19.2752i 0.748587i
\(664\) −130.245 −5.05448
\(665\) 0 0
\(666\) 6.14922 0.238277
\(667\) 1.74693i 0.0676415i
\(668\) 123.974i 4.79671i
\(669\) −55.4747 −2.14477
\(670\) 0 0
\(671\) −17.5076 −0.675875
\(672\) − 183.639i − 7.08404i
\(673\) 38.6412i 1.48951i 0.667338 + 0.744755i \(0.267434\pi\)
−0.667338 + 0.744755i \(0.732566\pi\)
\(674\) −68.7632 −2.64866
\(675\) 0 0
\(676\) 2.77259 0.106638
\(677\) 43.8791i 1.68641i 0.537590 + 0.843206i \(0.319335\pi\)
−0.537590 + 0.843206i \(0.680665\pi\)
\(678\) − 17.7341i − 0.681076i
\(679\) 34.2293 1.31360
\(680\) 0 0
\(681\) −41.5059 −1.59051
\(682\) − 28.1668i − 1.07856i
\(683\) − 18.8393i − 0.720867i −0.932785 0.360433i \(-0.882629\pi\)
0.932785 0.360433i \(-0.117371\pi\)
\(684\) 29.2405 1.11804
\(685\) 0 0
\(686\) 6.74077 0.257364
\(687\) − 44.9842i − 1.71625i
\(688\) − 111.982i − 4.26926i
\(689\) −0.402776 −0.0153445
\(690\) 0 0
\(691\) −42.3770 −1.61210 −0.806048 0.591850i \(-0.798398\pi\)
−0.806048 + 0.591850i \(0.798398\pi\)
\(692\) 75.9069i 2.88555i
\(693\) 38.1749i 1.45015i
\(694\) −63.9680 −2.42819
\(695\) 0 0
\(696\) 140.588 5.32897
\(697\) 10.1037i 0.382703i
\(698\) 19.4279i 0.735359i
\(699\) −10.7085 −0.405033
\(700\) 0 0
\(701\) 16.1386 0.609546 0.304773 0.952425i \(-0.401419\pi\)
0.304773 + 0.952425i \(0.401419\pi\)
\(702\) − 17.0395i − 0.643115i
\(703\) 2.39037i 0.0901543i
\(704\) 123.515 4.65515
\(705\) 0 0
\(706\) −4.08418 −0.153710
\(707\) − 44.3693i − 1.66868i
\(708\) − 24.9097i − 0.936164i
\(709\) 20.5619 0.772218 0.386109 0.922453i \(-0.373819\pi\)
0.386109 + 0.922453i \(0.373819\pi\)
\(710\) 0 0
\(711\) −14.9557 −0.560881
\(712\) 137.911i 5.16844i
\(713\) 0.620891i 0.0232525i
\(714\) −54.6587 −2.04555
\(715\) 0 0
\(716\) −80.0877 −2.99302
\(717\) 22.1191i 0.826052i
\(718\) 17.6392i 0.658288i
\(719\) −5.93966 −0.221512 −0.110756 0.993848i \(-0.535327\pi\)
−0.110756 + 0.993848i \(0.535327\pi\)
\(720\) 0 0
\(721\) −52.0172 −1.93722
\(722\) − 36.1864i − 1.34672i
\(723\) 3.66477i 0.136294i
\(724\) 44.3714 1.64905
\(725\) 0 0
\(726\) −53.2060 −1.97466
\(727\) − 24.8976i − 0.923401i −0.887036 0.461701i \(-0.847239\pi\)
0.887036 0.461701i \(-0.152761\pi\)
\(728\) 130.965i 4.85388i
\(729\) 12.3954 0.459089
\(730\) 0 0
\(731\) −17.6376 −0.652349
\(732\) − 49.2310i − 1.81963i
\(733\) − 20.8362i − 0.769604i −0.922999 0.384802i \(-0.874270\pi\)
0.922999 0.384802i \(-0.125730\pi\)
\(734\) −66.7618 −2.46422
\(735\) 0 0
\(736\) −5.55078 −0.204604
\(737\) − 30.0724i − 1.10773i
\(738\) 27.1678i 1.00006i
\(739\) 39.3500 1.44751 0.723756 0.690056i \(-0.242414\pi\)
0.723756 + 0.690056i \(0.242414\pi\)
\(740\) 0 0
\(741\) −20.1474 −0.740134
\(742\) − 1.14215i − 0.0419297i
\(743\) − 3.25437i − 0.119391i −0.998217 0.0596955i \(-0.980987\pi\)
0.998217 0.0596955i \(-0.0190130\pi\)
\(744\) 49.9674 1.83189
\(745\) 0 0
\(746\) −51.6659 −1.89162
\(747\) 31.5868i 1.15570i
\(748\) − 54.7425i − 2.00159i
\(749\) −25.4941 −0.931533
\(750\) 0 0
\(751\) 45.4895 1.65994 0.829968 0.557811i \(-0.188358\pi\)
0.829968 + 0.557811i \(0.188358\pi\)
\(752\) 158.677i 5.78636i
\(753\) − 14.9000i − 0.542988i
\(754\) −65.9356 −2.40123
\(755\) 0 0
\(756\) 35.2916 1.28354
\(757\) 31.5740i 1.14758i 0.819004 + 0.573788i \(0.194527\pi\)
−0.819004 + 0.573788i \(0.805473\pi\)
\(758\) − 64.6276i − 2.34738i
\(759\) 2.68715 0.0975374
\(760\) 0 0
\(761\) 41.8552 1.51725 0.758626 0.651527i \(-0.225871\pi\)
0.758626 + 0.651527i \(0.225871\pi\)
\(762\) − 55.0734i − 1.99510i
\(763\) 18.5660i 0.672136i
\(764\) −107.681 −3.89575
\(765\) 0 0
\(766\) −32.7901 −1.18475
\(767\) 7.37018i 0.266122i
\(768\) 85.9416i 3.10115i
\(769\) 22.1619 0.799180 0.399590 0.916694i \(-0.369152\pi\)
0.399590 + 0.916694i \(0.369152\pi\)
\(770\) 0 0
\(771\) 9.19840 0.331272
\(772\) 92.3191i 3.32264i
\(773\) − 19.3276i − 0.695165i −0.937649 0.347582i \(-0.887003\pi\)
0.937649 0.347582i \(-0.112997\pi\)
\(774\) −47.4258 −1.70468
\(775\) 0 0
\(776\) −83.2642 −2.98901
\(777\) − 8.77545i − 0.314817i
\(778\) − 82.5376i − 2.95912i
\(779\) −10.5609 −0.378382
\(780\) 0 0
\(781\) 25.6022 0.916118
\(782\) 1.65214i 0.0590806i
\(783\) 11.2092i 0.400584i
\(784\) −111.026 −3.96522
\(785\) 0 0
\(786\) −28.8246 −1.02814
\(787\) 19.5111i 0.695496i 0.937588 + 0.347748i \(0.113054\pi\)
−0.937588 + 0.347748i \(0.886946\pi\)
\(788\) 143.730i 5.12016i
\(789\) −60.1991 −2.14314
\(790\) 0 0
\(791\) −10.8676 −0.386408
\(792\) − 92.8620i − 3.29971i
\(793\) 14.5663i 0.517263i
\(794\) 72.2428 2.56380
\(795\) 0 0
\(796\) −27.3986 −0.971117
\(797\) − 22.2367i − 0.787664i −0.919183 0.393832i \(-0.871149\pi\)
0.919183 0.393832i \(-0.128851\pi\)
\(798\) − 57.1320i − 2.02245i
\(799\) 24.9923 0.884163
\(800\) 0 0
\(801\) 33.4460 1.18176
\(802\) 43.0030i 1.51849i
\(803\) − 0.621423i − 0.0219295i
\(804\) 84.5627 2.98229
\(805\) 0 0
\(806\) −23.4347 −0.825451
\(807\) − 6.88661i − 0.242420i
\(808\) 107.930i 3.79697i
\(809\) −12.4896 −0.439110 −0.219555 0.975600i \(-0.570461\pi\)
−0.219555 + 0.975600i \(0.570461\pi\)
\(810\) 0 0
\(811\) −3.99535 −0.140296 −0.0701478 0.997537i \(-0.522347\pi\)
−0.0701478 + 0.997537i \(0.522347\pi\)
\(812\) − 136.563i − 4.79244i
\(813\) 13.5625i 0.475657i
\(814\) 12.0332 0.421763
\(815\) 0 0
\(816\) 76.1370 2.66533
\(817\) − 18.4357i − 0.644982i
\(818\) 26.5645i 0.928807i
\(819\) 31.7614 1.10983
\(820\) 0 0
\(821\) −1.51952 −0.0530317 −0.0265159 0.999648i \(-0.508441\pi\)
−0.0265159 + 0.999648i \(0.508441\pi\)
\(822\) 88.2595i 3.07840i
\(823\) − 46.9850i − 1.63779i −0.573940 0.818897i \(-0.694586\pi\)
0.573940 0.818897i \(-0.305414\pi\)
\(824\) 126.534 4.40802
\(825\) 0 0
\(826\) −20.8996 −0.727191
\(827\) − 10.5199i − 0.365814i −0.983130 0.182907i \(-0.941449\pi\)
0.983130 0.182907i \(-0.0585507\pi\)
\(828\) 3.24473i 0.112762i
\(829\) 53.8789 1.87129 0.935645 0.352942i \(-0.114819\pi\)
0.935645 + 0.352942i \(0.114819\pi\)
\(830\) 0 0
\(831\) −28.1391 −0.976134
\(832\) − 102.764i − 3.56270i
\(833\) 17.4871i 0.605892i
\(834\) 82.5312 2.85782
\(835\) 0 0
\(836\) 57.2196 1.97898
\(837\) 3.98394i 0.137705i
\(838\) 26.2562i 0.907006i
\(839\) −12.0120 −0.414699 −0.207349 0.978267i \(-0.566484\pi\)
−0.207349 + 0.978267i \(0.566484\pi\)
\(840\) 0 0
\(841\) 14.3748 0.495682
\(842\) − 47.7898i − 1.64694i
\(843\) − 7.86278i − 0.270808i
\(844\) 106.522 3.66665
\(845\) 0 0
\(846\) 67.2019 2.31045
\(847\) 32.6051i 1.12032i
\(848\) 1.59096i 0.0546340i
\(849\) −50.0518 −1.71777
\(850\) 0 0
\(851\) −0.265251 −0.00909270
\(852\) 71.9926i 2.46643i
\(853\) 0.967727i 0.0331343i 0.999863 + 0.0165672i \(0.00527373\pi\)
−0.999863 + 0.0165672i \(0.994726\pi\)
\(854\) −41.3056 −1.41345
\(855\) 0 0
\(856\) 62.0154 2.11964
\(857\) 0.683897i 0.0233615i 0.999932 + 0.0116807i \(0.00371818\pi\)
−0.999932 + 0.0116807i \(0.996282\pi\)
\(858\) 101.423i 3.46252i
\(859\) −23.9043 −0.815605 −0.407803 0.913070i \(-0.633705\pi\)
−0.407803 + 0.913070i \(0.633705\pi\)
\(860\) 0 0
\(861\) 38.7707 1.32130
\(862\) 6.75764i 0.230166i
\(863\) − 51.4456i − 1.75123i −0.483012 0.875614i \(-0.660457\pi\)
0.483012 0.875614i \(-0.339543\pi\)
\(864\) −35.6166 −1.21170
\(865\) 0 0
\(866\) −50.0214 −1.69979
\(867\) 26.9887i 0.916584i
\(868\) − 48.5371i − 1.64745i
\(869\) −29.2662 −0.992788
\(870\) 0 0
\(871\) −25.0201 −0.847772
\(872\) − 45.1626i − 1.52940i
\(873\) 20.1931i 0.683433i
\(874\) −1.72690 −0.0584134
\(875\) 0 0
\(876\) 1.74742 0.0590400
\(877\) − 29.8721i − 1.00871i −0.863497 0.504354i \(-0.831731\pi\)
0.863497 0.504354i \(-0.168269\pi\)
\(878\) − 64.2691i − 2.16898i
\(879\) −17.0419 −0.574808
\(880\) 0 0
\(881\) 25.1190 0.846279 0.423140 0.906064i \(-0.360928\pi\)
0.423140 + 0.906064i \(0.360928\pi\)
\(882\) 47.0211i 1.58328i
\(883\) − 39.3961i − 1.32578i −0.748715 0.662892i \(-0.769329\pi\)
0.748715 0.662892i \(-0.230671\pi\)
\(884\) −45.5455 −1.53186
\(885\) 0 0
\(886\) −3.95904 −0.133007
\(887\) 18.7079i 0.628148i 0.949398 + 0.314074i \(0.101694\pi\)
−0.949398 + 0.314074i \(0.898306\pi\)
\(888\) 21.3466i 0.716346i
\(889\) −33.7494 −1.13192
\(890\) 0 0
\(891\) 47.1668 1.58015
\(892\) − 131.082i − 4.38893i
\(893\) 26.1232i 0.874179i
\(894\) 43.7003 1.46156
\(895\) 0 0
\(896\) 131.232 4.38417
\(897\) − 2.23570i − 0.0746477i
\(898\) 104.575i 3.48971i
\(899\) 15.4162 0.514158
\(900\) 0 0
\(901\) 0.250583 0.00834815
\(902\) 53.1637i 1.77016i
\(903\) 67.6805i 2.25227i
\(904\) 26.4359 0.879245
\(905\) 0 0
\(906\) −123.146 −4.09124
\(907\) 16.8702i 0.560164i 0.959976 + 0.280082i \(0.0903617\pi\)
−0.959976 + 0.280082i \(0.909638\pi\)
\(908\) − 98.0745i − 3.25472i
\(909\) 26.1750 0.868171
\(910\) 0 0
\(911\) 32.4128 1.07388 0.536941 0.843620i \(-0.319580\pi\)
0.536941 + 0.843620i \(0.319580\pi\)
\(912\) 79.5823i 2.63523i
\(913\) 61.8110i 2.04565i
\(914\) −54.8901 −1.81560
\(915\) 0 0
\(916\) 106.293 3.51203
\(917\) 17.6639i 0.583315i
\(918\) 10.6010i 0.349884i
\(919\) −58.0857 −1.91607 −0.958035 0.286650i \(-0.907458\pi\)
−0.958035 + 0.286650i \(0.907458\pi\)
\(920\) 0 0
\(921\) −0.447506 −0.0147458
\(922\) 94.2372i 3.10354i
\(923\) − 21.3009i − 0.701127i
\(924\) −210.063 −6.91057
\(925\) 0 0
\(926\) 91.8991 3.01999
\(927\) − 30.6868i − 1.00789i
\(928\) 137.821i 4.52419i
\(929\) 7.38274 0.242220 0.121110 0.992639i \(-0.461355\pi\)
0.121110 + 0.992639i \(0.461355\pi\)
\(930\) 0 0
\(931\) −18.2784 −0.599050
\(932\) − 25.3032i − 0.828834i
\(933\) − 22.8986i − 0.749666i
\(934\) 88.4802 2.89516
\(935\) 0 0
\(936\) −77.2608 −2.52535
\(937\) − 34.2781i − 1.11982i −0.828555 0.559908i \(-0.810837\pi\)
0.828555 0.559908i \(-0.189163\pi\)
\(938\) − 70.9494i − 2.31658i
\(939\) 12.2296 0.399097
\(940\) 0 0
\(941\) 8.74328 0.285023 0.142511 0.989793i \(-0.454482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(942\) − 81.0428i − 2.64052i
\(943\) − 1.17190i − 0.0381625i
\(944\) 29.1122 0.947522
\(945\) 0 0
\(946\) −92.8058 −3.01738
\(947\) 41.2549i 1.34060i 0.742089 + 0.670302i \(0.233835\pi\)
−0.742089 + 0.670302i \(0.766165\pi\)
\(948\) − 82.2958i − 2.67284i
\(949\) −0.517021 −0.0167832
\(950\) 0 0
\(951\) −56.8912 −1.84482
\(952\) − 81.4786i − 2.64074i
\(953\) − 13.2048i − 0.427745i −0.976862 0.213873i \(-0.931392\pi\)
0.976862 0.213873i \(-0.0686078\pi\)
\(954\) 0.673796 0.0218149
\(955\) 0 0
\(956\) −52.2654 −1.69038
\(957\) − 66.7195i − 2.15673i
\(958\) − 52.7835i − 1.70536i
\(959\) 54.0861 1.74653
\(960\) 0 0
\(961\) −25.5208 −0.823253
\(962\) − 10.0116i − 0.322785i
\(963\) − 15.0399i − 0.484652i
\(964\) −8.65950 −0.278904
\(965\) 0 0
\(966\) 6.33976 0.203979
\(967\) 12.1924i 0.392082i 0.980596 + 0.196041i \(0.0628086\pi\)
−0.980596 + 0.196041i \(0.937191\pi\)
\(968\) − 79.3131i − 2.54922i
\(969\) 12.5345 0.402667
\(970\) 0 0
\(971\) 6.80253 0.218303 0.109152 0.994025i \(-0.465187\pi\)
0.109152 + 0.994025i \(0.465187\pi\)
\(972\) 104.967i 3.36682i
\(973\) − 50.5758i − 1.62138i
\(974\) −6.43214 −0.206099
\(975\) 0 0
\(976\) 57.5367 1.84171
\(977\) 55.4080i 1.77266i 0.463056 + 0.886329i \(0.346753\pi\)
−0.463056 + 0.886329i \(0.653247\pi\)
\(978\) − 14.5870i − 0.466442i
\(979\) 65.4492 2.09177
\(980\) 0 0
\(981\) −10.9528 −0.349695
\(982\) 38.5308i 1.22957i
\(983\) 13.4921i 0.430331i 0.976578 + 0.215165i \(0.0690291\pi\)
−0.976578 + 0.215165i \(0.930971\pi\)
\(984\) −94.3113 −3.00653
\(985\) 0 0
\(986\) 41.0212 1.30638
\(987\) − 95.9027i − 3.05262i
\(988\) − 47.6065i − 1.51456i
\(989\) 2.04575 0.0650510
\(990\) 0 0
\(991\) −2.47900 −0.0787481 −0.0393740 0.999225i \(-0.512536\pi\)
−0.0393740 + 0.999225i \(0.512536\pi\)
\(992\) 48.9839i 1.55524i
\(993\) − 36.4489i − 1.15667i
\(994\) 60.4029 1.91587
\(995\) 0 0
\(996\) −173.811 −5.50741
\(997\) − 13.6685i − 0.432885i −0.976295 0.216443i \(-0.930555\pi\)
0.976295 0.216443i \(-0.0694455\pi\)
\(998\) 84.8534i 2.68599i
\(999\) −1.70198 −0.0538484
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.b.f.149.10 10
5.2 odd 4 925.2.a.f.1.1 5
5.3 odd 4 185.2.a.e.1.5 5
5.4 even 2 inner 925.2.b.f.149.1 10
15.2 even 4 8325.2.a.ch.1.5 5
15.8 even 4 1665.2.a.p.1.1 5
20.3 even 4 2960.2.a.w.1.5 5
35.13 even 4 9065.2.a.k.1.5 5
185.73 odd 4 6845.2.a.f.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.5 5 5.3 odd 4
925.2.a.f.1.1 5 5.2 odd 4
925.2.b.f.149.1 10 5.4 even 2 inner
925.2.b.f.149.10 10 1.1 even 1 trivial
1665.2.a.p.1.1 5 15.8 even 4
2960.2.a.w.1.5 5 20.3 even 4
6845.2.a.f.1.1 5 185.73 odd 4
8325.2.a.ch.1.5 5 15.2 even 4
9065.2.a.k.1.5 5 35.13 even 4