Properties

Label 185.2.a.e.1.5
Level 185185
Weight 22
Character 185.1
Self dual yes
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(1,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 185=537 185 = 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 185.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.973904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x48x3+6x2+19x+6 x^{5} - 2x^{4} - 8x^{3} + 6x^{2} + 19x + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 3.292983.29298 of defining polynomial
Character χ\chi == 185.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.72362q22.29298q3+5.41809q41.00000q56.24519q6+3.82710q7+9.30957q8+2.25774q92.72362q104.41809q1112.4236q123.67583q13+10.4236q14+2.29298q15+14.5195q162.28688q17+6.14922q182.39037q195.41809q208.77545q2112.0332q220.265251q2321.3466q24+1.00000q2510.0116q26+1.70198q27+20.7356q286.58595q29+6.24519q30+2.34076q31+20.9265q32+10.1306q336.22860q343.82710q35+12.2326q36+1.00000q376.51044q38+8.42859q399.30957q404.41809q4123.9010q42+7.71249q4323.9376q442.25774q450.722443q46+10.9285q4733.2929q48+7.64669q49+2.72362q50+5.24377q5119.9160q520.109574q53+4.63555q54+4.41809q55+35.6286q56+5.48105q5717.9376q582.00504q59+12.4236q60+3.96271q61+6.37534q62+8.64059q63+27.9567q64+3.67583q65+27.5918q66+6.80664q6712.3905q68+0.608215q6910.4236q705.79485q71+21.0186q720.140654q73+2.72362q742.29298q7512.9512q7616.9085q77+22.9563q786.62418q7914.5195q8010.6758q8112.0332q82+13.9904q8347.5462q84+2.28688q85+21.0059q86+15.1014q8741.1305q88+14.8139q896.14922q9014.0678q911.43716q925.36731q93+29.7651q94+2.39037q9547.9839q968.94394q97+20.8266q989.97490q99+O(q100)q+2.72362 q^{2} -2.29298 q^{3} +5.41809 q^{4} -1.00000 q^{5} -6.24519 q^{6} +3.82710 q^{7} +9.30957 q^{8} +2.25774 q^{9} -2.72362 q^{10} -4.41809 q^{11} -12.4236 q^{12} -3.67583 q^{13} +10.4236 q^{14} +2.29298 q^{15} +14.5195 q^{16} -2.28688 q^{17} +6.14922 q^{18} -2.39037 q^{19} -5.41809 q^{20} -8.77545 q^{21} -12.0332 q^{22} -0.265251 q^{23} -21.3466 q^{24} +1.00000 q^{25} -10.0116 q^{26} +1.70198 q^{27} +20.7356 q^{28} -6.58595 q^{29} +6.24519 q^{30} +2.34076 q^{31} +20.9265 q^{32} +10.1306 q^{33} -6.22860 q^{34} -3.82710 q^{35} +12.2326 q^{36} +1.00000 q^{37} -6.51044 q^{38} +8.42859 q^{39} -9.30957 q^{40} -4.41809 q^{41} -23.9010 q^{42} +7.71249 q^{43} -23.9376 q^{44} -2.25774 q^{45} -0.722443 q^{46} +10.9285 q^{47} -33.2929 q^{48} +7.64669 q^{49} +2.72362 q^{50} +5.24377 q^{51} -19.9160 q^{52} -0.109574 q^{53} +4.63555 q^{54} +4.41809 q^{55} +35.6286 q^{56} +5.48105 q^{57} -17.9376 q^{58} -2.00504 q^{59} +12.4236 q^{60} +3.96271 q^{61} +6.37534 q^{62} +8.64059 q^{63} +27.9567 q^{64} +3.67583 q^{65} +27.5918 q^{66} +6.80664 q^{67} -12.3905 q^{68} +0.608215 q^{69} -10.4236 q^{70} -5.79485 q^{71} +21.0186 q^{72} -0.140654 q^{73} +2.72362 q^{74} -2.29298 q^{75} -12.9512 q^{76} -16.9085 q^{77} +22.9563 q^{78} -6.62418 q^{79} -14.5195 q^{80} -10.6758 q^{81} -12.0332 q^{82} +13.9904 q^{83} -47.5462 q^{84} +2.28688 q^{85} +21.0059 q^{86} +15.1014 q^{87} -41.1305 q^{88} +14.8139 q^{89} -6.14922 q^{90} -14.0678 q^{91} -1.43716 q^{92} -5.36731 q^{93} +29.7651 q^{94} +2.39037 q^{95} -47.9839 q^{96} -8.94394 q^{97} +20.8266 q^{98} -9.97490 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+3q3+10q45q56q6+11q7+6q8+6q92q105q112q12+4q138q143q15+16q16+2q184q1910q20+3q21+10q99+O(q100) 5 q + 2 q^{2} + 3 q^{3} + 10 q^{4} - 5 q^{5} - 6 q^{6} + 11 q^{7} + 6 q^{8} + 6 q^{9} - 2 q^{10} - 5 q^{11} - 2 q^{12} + 4 q^{13} - 8 q^{14} - 3 q^{15} + 16 q^{16} + 2 q^{18} - 4 q^{19} - 10 q^{20} + 3 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.72362 1.92589 0.962944 0.269701i 0.0869249π-0.0869249\pi
0.962944 + 0.269701i 0.0869249π0.0869249\pi
33 −2.29298 −1.32385 −0.661925 0.749570i 0.730260π-0.730260\pi
−0.661925 + 0.749570i 0.730260π0.730260\pi
44 5.41809 2.70905
55 −1.00000 −0.447214
66 −6.24519 −2.54959
77 3.82710 1.44651 0.723254 0.690582i 0.242646π-0.242646\pi
0.723254 + 0.690582i 0.242646π0.242646\pi
88 9.30957 3.29143
99 2.25774 0.752580
1010 −2.72362 −0.861283
1111 −4.41809 −1.33210 −0.666052 0.745905i 0.732017π-0.732017\pi
−0.666052 + 0.745905i 0.732017π0.732017\pi
1212 −12.4236 −3.58637
1313 −3.67583 −1.01949 −0.509746 0.860325i 0.670261π-0.670261\pi
−0.509746 + 0.860325i 0.670261π0.670261\pi
1414 10.4236 2.78581
1515 2.29298 0.592044
1616 14.5195 3.62988
1717 −2.28688 −0.554651 −0.277325 0.960776i 0.589448π-0.589448\pi
−0.277325 + 0.960776i 0.589448π0.589448\pi
1818 6.14922 1.44938
1919 −2.39037 −0.548387 −0.274194 0.961674i 0.588411π-0.588411\pi
−0.274194 + 0.961674i 0.588411π0.588411\pi
2020 −5.41809 −1.21152
2121 −8.77545 −1.91496
2222 −12.0332 −2.56548
2323 −0.265251 −0.0553087 −0.0276544 0.999618i 0.508804π-0.508804\pi
−0.0276544 + 0.999618i 0.508804π0.508804\pi
2424 −21.3466 −4.35736
2525 1.00000 0.200000
2626 −10.0116 −1.96343
2727 1.70198 0.327547
2828 20.7356 3.91865
2929 −6.58595 −1.22298 −0.611490 0.791252i 0.709430π-0.709430\pi
−0.611490 + 0.791252i 0.709430π0.709430\pi
3030 6.24519 1.14021
3131 2.34076 0.420413 0.210207 0.977657i 0.432586π-0.432586\pi
0.210207 + 0.977657i 0.432586π0.432586\pi
3232 20.9265 3.69931
3333 10.1306 1.76351
3434 −6.22860 −1.06820
3535 −3.82710 −0.646898
3636 12.2326 2.03877
3737 1.00000 0.164399
3838 −6.51044 −1.05613
3939 8.42859 1.34965
4040 −9.30957 −1.47197
4141 −4.41809 −0.689990 −0.344995 0.938605i 0.612119π-0.612119\pi
−0.344995 + 0.938605i 0.612119π0.612119\pi
4242 −23.9010 −3.68800
4343 7.71249 1.17614 0.588072 0.808809i 0.299887π-0.299887\pi
0.588072 + 0.808809i 0.299887π0.299887\pi
4444 −23.9376 −3.60873
4545 −2.25774 −0.336564
4646 −0.722443 −0.106518
4747 10.9285 1.59409 0.797045 0.603920i 0.206395π-0.206395\pi
0.797045 + 0.603920i 0.206395π0.206395\pi
4848 −33.2929 −4.80542
4949 7.64669 1.09238
5050 2.72362 0.385178
5151 5.24377 0.734275
5252 −19.9160 −2.76185
5353 −0.109574 −0.0150512 −0.00752559 0.999972i 0.502395π-0.502395\pi
−0.00752559 + 0.999972i 0.502395π0.502395\pi
5454 4.63555 0.630819
5555 4.41809 0.595735
5656 35.6286 4.76108
5757 5.48105 0.725983
5858 −17.9376 −2.35532
5959 −2.00504 −0.261034 −0.130517 0.991446i 0.541664π-0.541664\pi
−0.130517 + 0.991446i 0.541664π0.541664\pi
6060 12.4236 1.60387
6161 3.96271 0.507374 0.253687 0.967286i 0.418357π-0.418357\pi
0.253687 + 0.967286i 0.418357π0.418357\pi
6262 6.37534 0.809669
6363 8.64059 1.08861
6464 27.9567 3.49458
6565 3.67583 0.455931
6666 27.5918 3.39632
6767 6.80664 0.831563 0.415782 0.909464i 0.363508π-0.363508\pi
0.415782 + 0.909464i 0.363508π0.363508\pi
6868 −12.3905 −1.50257
6969 0.608215 0.0732205
7070 −10.4236 −1.24585
7171 −5.79485 −0.687722 −0.343861 0.939020i 0.611735π-0.611735\pi
−0.343861 + 0.939020i 0.611735π0.611735\pi
7272 21.0186 2.47706
7373 −0.140654 −0.0164623 −0.00823116 0.999966i 0.502620π-0.502620\pi
−0.00823116 + 0.999966i 0.502620π0.502620\pi
7474 2.72362 0.316614
7575 −2.29298 −0.264770
7676 −12.9512 −1.48561
7777 −16.9085 −1.92690
7878 22.9563 2.59928
7979 −6.62418 −0.745278 −0.372639 0.927976i 0.621547π-0.621547\pi
−0.372639 + 0.927976i 0.621547π0.621547\pi
8080 −14.5195 −1.62333
8181 −10.6758 −1.18620
8282 −12.0332 −1.32884
8383 13.9904 1.53565 0.767825 0.640660i 0.221339π-0.221339\pi
0.767825 + 0.640660i 0.221339π0.221339\pi
8484 −47.5462 −5.18771
8585 2.28688 0.248047
8686 21.0059 2.26512
8787 15.1014 1.61904
8888 −41.1305 −4.38453
8989 14.8139 1.57027 0.785136 0.619323i 0.212593π-0.212593\pi
0.785136 + 0.619323i 0.212593π0.212593\pi
9090 −6.14922 −0.648185
9191 −14.0678 −1.47470
9292 −1.43716 −0.149834
9393 −5.36731 −0.556565
9494 29.7651 3.07004
9595 2.39037 0.245246
9696 −47.9839 −4.89734
9797 −8.94394 −0.908119 −0.454060 0.890971i 0.650025π-0.650025\pi
−0.454060 + 0.890971i 0.650025π0.650025\pi
9898 20.8266 2.10381
9999 −9.97490 −1.00252
100100 5.41809 0.541809
101101 −11.5935 −1.15359 −0.576796 0.816888i 0.695697π-0.695697\pi
−0.576796 + 0.816888i 0.695697π0.695697\pi
102102 14.2820 1.41413
103103 −13.5918 −1.33924 −0.669620 0.742703i 0.733543π-0.733543\pi
−0.669620 + 0.742703i 0.733543π0.733543\pi
104104 −34.2204 −3.35559
105105 8.77545 0.856396
106106 −0.298438 −0.0289869
107107 6.66146 0.643988 0.321994 0.946742i 0.395647π-0.395647\pi
0.321994 + 0.946742i 0.395647π0.395647\pi
108108 9.22151 0.887340
109109 −4.85120 −0.464661 −0.232331 0.972637i 0.574635π-0.574635\pi
−0.232331 + 0.972637i 0.574635π0.574635\pi
110110 12.0332 1.14732
111111 −2.29298 −0.217640
112112 55.5676 5.25065
113113 −2.83965 −0.267132 −0.133566 0.991040i 0.542643π-0.542643\pi
−0.133566 + 0.991040i 0.542643π0.542643\pi
114114 14.9283 1.39816
115115 0.265251 0.0247348
116116 −35.6833 −3.31311
117117 −8.29907 −0.767249
118118 −5.46096 −0.502722
119119 −8.75213 −0.802306
120120 21.3466 1.94867
121121 8.51952 0.774502
122122 10.7929 0.977145
123123 10.1306 0.913443
124124 12.6825 1.13892
125125 −1.00000 −0.0894427
126126 23.5337 2.09655
127127 8.81853 0.782518 0.391259 0.920281i 0.372040π-0.372040\pi
0.391259 + 0.920281i 0.372040π0.372040\pi
128128 34.2903 3.03087
129129 −17.6845 −1.55704
130130 10.0116 0.878071
131131 4.61549 0.403257 0.201629 0.979462i 0.435377π-0.435377\pi
0.201629 + 0.979462i 0.435377π0.435377\pi
132132 54.8884 4.77742
133133 −9.14817 −0.793247
134134 18.5387 1.60150
135135 −1.70198 −0.146484
136136 −21.2899 −1.82559
137137 −14.1324 −1.20741 −0.603706 0.797207i 0.706310π-0.706310\pi
−0.603706 + 0.797207i 0.706310π0.706310\pi
138138 1.65655 0.141015
139139 13.2152 1.12090 0.560448 0.828190i 0.310629π-0.310629\pi
0.560448 + 0.828190i 0.310629π0.310629\pi
140140 −20.7356 −1.75248
141141 −25.0589 −2.11034
142142 −15.7830 −1.32448
143143 16.2402 1.35807
144144 32.7813 2.73178
145145 6.58595 0.546934
146146 −0.383088 −0.0317046
147147 −17.5337 −1.44615
148148 5.41809 0.445364
149149 6.99743 0.573252 0.286626 0.958043i 0.407466π-0.407466\pi
0.286626 + 0.958043i 0.407466π0.407466\pi
150150 −6.24519 −0.509918
151151 19.7185 1.60467 0.802333 0.596877i 0.203592π-0.203592\pi
0.802333 + 0.596877i 0.203592π0.203592\pi
152152 −22.2533 −1.80498
153153 −5.16319 −0.417419
154154 −46.0522 −3.71099
155155 −2.34076 −0.188015
156156 45.6669 3.65628
157157 12.9768 1.03566 0.517832 0.855482i 0.326739π-0.326739\pi
0.517832 + 0.855482i 0.326739π0.326739\pi
158158 −18.0417 −1.43532
159159 0.251251 0.0199255
160160 −20.9265 −1.65438
161161 −1.01514 −0.0800045
162162 −29.0769 −2.28450
163163 −2.33572 −0.182948 −0.0914740 0.995807i 0.529158π-0.529158\pi
−0.0914740 + 0.995807i 0.529158π0.529158\pi
164164 −23.9376 −1.86921
165165 −10.1306 −0.788664
166166 38.1046 2.95749
167167 −22.8816 −1.77063 −0.885314 0.464994i 0.846056π-0.846056\pi
−0.885314 + 0.464994i 0.846056π0.846056\pi
168168 −81.6956 −6.30295
169169 0.511728 0.0393637
170170 6.22860 0.477712
171171 −5.39682 −0.412705
172172 41.7869 3.18622
173173 14.0099 1.06515 0.532577 0.846382i 0.321224π-0.321224\pi
0.532577 + 0.846382i 0.321224π0.321224\pi
174174 41.1305 3.11810
175175 3.82710 0.289301
176176 −64.1486 −4.83538
177177 4.59751 0.345570
178178 40.3474 3.02417
179179 −14.7815 −1.10482 −0.552412 0.833571i 0.686292π-0.686292\pi
−0.552412 + 0.833571i 0.686292π0.686292\pi
180180 −12.2326 −0.911767
181181 −8.18949 −0.608720 −0.304360 0.952557i 0.598443π-0.598443\pi
−0.304360 + 0.952557i 0.598443π0.598443\pi
182182 −38.3152 −2.84011
183183 −9.08641 −0.671687
184184 −2.46938 −0.182045
185185 −1.00000 −0.0735215
186186 −14.6185 −1.07188
187187 10.1037 0.738853
188188 59.2118 4.31846
189189 6.51366 0.473799
190190 6.51044 0.472317
191191 19.8743 1.43805 0.719026 0.694983i 0.244588π-0.244588\pi
0.719026 + 0.694983i 0.244588π0.244588\pi
192192 −64.1040 −4.62631
193193 17.0390 1.22650 0.613249 0.789890i 0.289862π-0.289862\pi
0.613249 + 0.789890i 0.289862π0.289862\pi
194194 −24.3599 −1.74894
195195 −8.42859 −0.603584
196196 41.4304 2.95932
197197 −26.5277 −1.89002 −0.945011 0.327038i 0.893949π-0.893949\pi
−0.945011 + 0.327038i 0.893949π0.893949\pi
198198 −27.1678 −1.93073
199199 −5.05687 −0.358472 −0.179236 0.983806i 0.557363π-0.557363\pi
−0.179236 + 0.983806i 0.557363π0.557363\pi
200200 9.30957 0.658286
201201 −15.6075 −1.10087
202202 −31.5762 −2.22169
203203 −25.2051 −1.76905
204204 28.4112 1.98918
205205 4.41809 0.308573
206206 −37.0189 −2.57923
207207 −0.598869 −0.0416243
208208 −53.3713 −3.70063
209209 10.5609 0.730509
210210 23.9010 1.64932
211211 −19.6605 −1.35348 −0.676741 0.736221i 0.736608π-0.736608\pi
−0.676741 + 0.736221i 0.736608π0.736608\pi
212212 −0.593683 −0.0407743
213213 13.2875 0.910442
214214 18.1433 1.24025
215215 −7.71249 −0.525987
216216 15.8447 1.07810
217217 8.95833 0.608131
218218 −13.2128 −0.894885
219219 0.322517 0.0217937
220220 23.9376 1.61387
221221 8.40620 0.565462
222222 −6.24519 −0.419150
223223 −24.1933 −1.62010 −0.810052 0.586358i 0.800561π-0.800561\pi
−0.810052 + 0.586358i 0.800561π0.800561\pi
224224 80.0877 5.35109
225225 2.25774 0.150516
226226 −7.73412 −0.514466
227227 18.1013 1.20143 0.600713 0.799465i 0.294883π-0.294883\pi
0.600713 + 0.799465i 0.294883π0.294883\pi
228228 29.6968 1.96672
229229 19.6182 1.29641 0.648205 0.761466i 0.275520π-0.275520\pi
0.648205 + 0.761466i 0.275520π0.275520\pi
230230 0.722443 0.0476365
231231 38.7707 2.55093
232232 −61.3124 −4.02536
233233 −4.67013 −0.305951 −0.152975 0.988230i 0.548886π-0.548886\pi
−0.152975 + 0.988230i 0.548886π0.548886\pi
234234 −22.6035 −1.47764
235235 −10.9285 −0.712899
236236 −10.8635 −0.707152
237237 15.1891 0.986637
238238 −23.8375 −1.54515
239239 −9.64645 −0.623977 −0.311989 0.950086i 0.600995π-0.600995\pi
−0.311989 + 0.950086i 0.600995π0.600995\pi
240240 33.2929 2.14905
241241 1.59826 0.102953 0.0514764 0.998674i 0.483607π-0.483607\pi
0.0514764 + 0.998674i 0.483607π0.483607\pi
242242 23.2039 1.49160
243243 19.3735 1.24281
244244 21.4703 1.37450
245245 −7.64669 −0.488529
246246 27.5918 1.75919
247247 8.78658 0.559077
248248 21.7915 1.38376
249249 −32.0797 −2.03297
250250 −2.72362 −0.172257
251251 −6.49812 −0.410158 −0.205079 0.978745i 0.565745π-0.565745\pi
−0.205079 + 0.978745i 0.565745π0.565745\pi
252252 46.8155 2.94910
253253 1.17190 0.0736770
254254 24.0183 1.50704
255255 −5.24377 −0.328378
256256 37.4804 2.34252
257257 −4.01155 −0.250234 −0.125117 0.992142i 0.539931π-0.539931\pi
−0.125117 + 0.992142i 0.539931π0.539931\pi
258258 −48.1659 −2.99868
259259 3.82710 0.237804
260260 19.9160 1.23514
261261 −14.8694 −0.920391
262262 12.5708 0.776629
263263 −26.2537 −1.61887 −0.809436 0.587208i 0.800227π-0.800227\pi
−0.809436 + 0.587208i 0.800227π0.800227\pi
264264 94.3113 5.80446
265265 0.109574 0.00673109
266266 −24.9161 −1.52770
267267 −33.9680 −2.07881
268268 36.8790 2.25274
269269 3.00335 0.183117 0.0915587 0.995800i 0.470815π-0.470815\pi
0.0915587 + 0.995800i 0.470815π0.470815\pi
270270 −4.63555 −0.282111
271271 5.91480 0.359298 0.179649 0.983731i 0.442504π-0.442504\pi
0.179649 + 0.983731i 0.442504π0.442504\pi
272272 −33.2045 −2.01332
273273 32.2571 1.95229
274274 −38.4912 −2.32534
275275 −4.41809 −0.266421
276276 3.29537 0.198358
277277 12.2719 0.737345 0.368672 0.929559i 0.379812π-0.379812\pi
0.368672 + 0.929559i 0.379812π0.379812\pi
278278 35.9931 2.15872
279279 5.28483 0.316395
280280 −35.6286 −2.12922
281281 −3.42907 −0.204561 −0.102281 0.994756i 0.532614π-0.532614\pi
−0.102281 + 0.994756i 0.532614π0.532614\pi
282282 −68.2507 −4.06427
283283 −21.8283 −1.29756 −0.648780 0.760976i 0.724720π-0.724720\pi
−0.648780 + 0.760976i 0.724720π0.724720\pi
284284 −31.3970 −1.86307
285285 −5.48105 −0.324669
286286 44.2320 2.61549
287287 −16.9085 −0.998075
288288 47.2466 2.78403
289289 −11.7702 −0.692362
290290 17.9376 1.05333
291291 20.5082 1.20221
292292 −0.762077 −0.0445972
293293 −7.43221 −0.434194 −0.217097 0.976150i 0.569659π-0.569659\pi
−0.217097 + 0.976150i 0.569659π0.569659\pi
294294 −47.7550 −2.78513
295295 2.00504 0.116738
296296 9.30957 0.541108
297297 −7.51952 −0.436327
298298 19.0583 1.10402
299299 0.975019 0.0563868
300300 −12.4236 −0.717274
301301 29.5164 1.70130
302302 53.7055 3.09041
303303 26.5835 1.52718
304304 −34.7070 −1.99058
305305 −3.96271 −0.226904
306306 −14.0625 −0.803902
307307 0.195164 0.0111386 0.00556930 0.999984i 0.498227π-0.498227\pi
0.00556930 + 0.999984i 0.498227π0.498227\pi
308308 −91.6116 −5.22006
309309 31.1657 1.77295
310310 −6.37534 −0.362095
311311 −9.98641 −0.566277 −0.283139 0.959079i 0.591376π-0.591376\pi
−0.283139 + 0.959079i 0.591376π0.591376\pi
312312 78.4666 4.44229
313313 5.33350 0.301467 0.150734 0.988574i 0.451836π-0.451836\pi
0.150734 + 0.988574i 0.451836π0.451836\pi
314314 35.3439 1.99457
315315 −8.64059 −0.486842
316316 −35.8904 −2.01899
317317 24.8111 1.39353 0.696765 0.717300i 0.254622π-0.254622\pi
0.696765 + 0.717300i 0.254622π0.254622\pi
318318 0.684312 0.0383743
319319 29.0973 1.62914
320320 −27.9567 −1.56283
321321 −15.2746 −0.852544
322322 −2.76486 −0.154080
323323 5.46649 0.304164
324324 −57.8426 −3.21348
325325 −3.67583 −0.203898
326326 −6.36162 −0.352337
327327 11.1237 0.615142
328328 −41.1305 −2.27105
329329 41.8246 2.30586
330330 −27.5918 −1.51888
331331 −15.8959 −0.873717 −0.436859 0.899530i 0.643909π-0.643909\pi
−0.436859 + 0.899530i 0.643909π0.643909\pi
332332 75.8015 4.16015
333333 2.25774 0.123723
334334 −62.3206 −3.41003
335335 −6.80664 −0.371886
336336 −127.415 −6.95107
337337 25.2470 1.37529 0.687647 0.726045i 0.258644π-0.258644\pi
0.687647 + 0.726045i 0.258644π0.258644\pi
338338 1.39375 0.0758101
339339 6.51125 0.353642
340340 12.3905 0.671972
341341 −10.3417 −0.560035
342342 −14.6989 −0.794824
343343 2.47493 0.133634
344344 71.7999 3.87119
345345 −0.608215 −0.0327452
346346 38.1576 2.05137
347347 23.4864 1.26082 0.630408 0.776264i 0.282888π-0.282888\pi
0.630408 + 0.776264i 0.282888π0.282888\pi
348348 81.8209 4.38606
349349 −7.13314 −0.381828 −0.190914 0.981607i 0.561145π-0.561145\pi
−0.190914 + 0.981607i 0.561145π0.561145\pi
350350 10.4236 0.557162
351351 −6.25621 −0.333932
352352 −92.4551 −4.92787
353353 −1.49954 −0.0798126 −0.0399063 0.999203i 0.512706π-0.512706\pi
−0.0399063 + 0.999203i 0.512706π0.512706\pi
354354 12.5218 0.665529
355355 5.79485 0.307559
356356 80.2631 4.25394
357357 20.0684 1.06213
358358 −40.2593 −2.12777
359359 −6.47638 −0.341810 −0.170905 0.985287i 0.554669π-0.554669\pi
−0.170905 + 0.985287i 0.554669π0.554669\pi
360360 −21.0186 −1.10778
361361 −13.2862 −0.699271
362362 −22.3050 −1.17233
363363 −19.5351 −1.02532
364364 −76.2204 −3.99504
365365 0.140654 0.00736217
366366 −24.7479 −1.29359
367367 24.5122 1.27953 0.639763 0.768572i 0.279033π-0.279033\pi
0.639763 + 0.768572i 0.279033π0.279033\pi
368368 −3.85132 −0.200764
369369 −9.97490 −0.519272
370370 −2.72362 −0.141594
371371 −0.419351 −0.0217716
372372 −29.0806 −1.50776
373373 −18.9696 −0.982208 −0.491104 0.871101i 0.663407π-0.663407\pi
−0.491104 + 0.871101i 0.663407π0.663407\pi
374374 27.5185 1.42295
375375 2.29298 0.118409
376376 101.740 5.24684
377377 24.2088 1.24682
378378 17.7407 0.912485
379379 23.7286 1.21886 0.609428 0.792841i 0.291399π-0.291399\pi
0.609428 + 0.792841i 0.291399π0.291399\pi
380380 12.9512 0.664383
381381 −20.2207 −1.03594
382382 54.1299 2.76953
383383 −12.0392 −0.615173 −0.307586 0.951520i 0.599521π-0.599521\pi
−0.307586 + 0.951520i 0.599521π0.599521\pi
384384 −78.6269 −4.01241
385385 16.9085 0.861735
386386 46.4078 2.36210
387387 17.4128 0.885142
388388 −48.4591 −2.46014
389389 30.3044 1.53649 0.768247 0.640153i 0.221129π-0.221129\pi
0.768247 + 0.640153i 0.221129π0.221129\pi
390390 −22.9563 −1.16244
391391 0.606599 0.0306770
392392 71.1874 3.59550
393393 −10.5832 −0.533853
394394 −72.2514 −3.63997
395395 6.62418 0.333299
396396 −54.0449 −2.71586
397397 −26.5246 −1.33123 −0.665615 0.746295i 0.731831π-0.731831\pi
−0.665615 + 0.746295i 0.731831π0.731831\pi
398398 −13.7730 −0.690377
399399 20.9765 1.05014
400400 14.5195 0.725976
401401 15.7889 0.788462 0.394231 0.919011i 0.371011π-0.371011\pi
0.394231 + 0.919011i 0.371011π0.371011\pi
402402 −42.5088 −2.12014
403403 −8.60425 −0.428608
404404 −62.8144 −3.12513
405405 10.6758 0.530486
406406 −68.6490 −3.40699
407407 −4.41809 −0.218997
408408 48.8172 2.41681
409409 −9.75340 −0.482275 −0.241137 0.970491i 0.577520π-0.577520\pi
−0.241137 + 0.970491i 0.577520π0.577520\pi
410410 12.0332 0.594277
411411 32.4052 1.59843
412412 −73.6417 −3.62806
413413 −7.67348 −0.377587
414414 −1.63109 −0.0801637
415415 −13.9904 −0.686764
416416 −76.9222 −3.77142
417417 −30.3021 −1.48390
418418 28.7637 1.40688
419419 −9.64020 −0.470954 −0.235477 0.971880i 0.575665π-0.575665\pi
−0.235477 + 0.971880i 0.575665π0.575665\pi
420420 47.5462 2.32002
421421 −17.5464 −0.855161 −0.427581 0.903977i 0.640634π-0.640634\pi
−0.427581 + 0.903977i 0.640634π0.640634\pi
422422 −53.5476 −2.60666
423423 24.6738 1.19968
424424 −1.02009 −0.0495399
425425 −2.28688 −0.110930
426426 36.1899 1.75341
427427 15.1657 0.733920
428428 36.0924 1.74459
429429 −37.2383 −1.79788
430430 −21.0059 −1.01299
431431 2.48113 0.119512 0.0597558 0.998213i 0.480968π-0.480968\pi
0.0597558 + 0.998213i 0.480968π0.480968\pi
432432 24.7120 1.18896
433433 −18.3658 −0.882603 −0.441302 0.897359i 0.645483π-0.645483\pi
−0.441302 + 0.897359i 0.645483π0.645483\pi
434434 24.3991 1.17119
435435 −15.1014 −0.724058
436436 −26.2843 −1.25879
437437 0.634048 0.0303306
438438 0.878412 0.0419721
439439 23.5970 1.12622 0.563111 0.826381i 0.309604π-0.309604\pi
0.563111 + 0.826381i 0.309604π0.309604\pi
440440 41.1305 1.96082
441441 17.2642 0.822106
442442 22.8953 1.08902
443443 −1.45360 −0.0690625 −0.0345313 0.999404i 0.510994π-0.510994\pi
−0.0345313 + 0.999404i 0.510994π0.510994\pi
444444 −12.4236 −0.589596
445445 −14.8139 −0.702247
446446 −65.8933 −3.12014
447447 −16.0449 −0.758900
448448 106.993 5.05494
449449 −38.3957 −1.81200 −0.906001 0.423275i 0.860881π-0.860881\pi
−0.906001 + 0.423275i 0.860881π0.860881\pi
450450 6.14922 0.289877
451451 19.5195 0.919138
452452 −15.3855 −0.723672
453453 −45.2140 −2.12434
454454 49.3010 2.31381
455455 14.0678 0.659507
456456 51.0262 2.38952
457457 20.1534 0.942736 0.471368 0.881937i 0.343760π-0.343760\pi
0.471368 + 0.881937i 0.343760π0.343760\pi
458458 53.4326 2.49674
459459 −3.89224 −0.181674
460460 1.43716 0.0670078
461461 34.6000 1.61148 0.805742 0.592267i 0.201767π-0.201767\pi
0.805742 + 0.592267i 0.201767π0.201767\pi
462462 105.597 4.91280
463463 33.7416 1.56810 0.784052 0.620695i 0.213150π-0.213150\pi
0.784052 + 0.620695i 0.213150π0.213150\pi
464464 −95.6249 −4.43927
465465 5.36731 0.248903
466466 −12.7197 −0.589227
467467 −32.4863 −1.50329 −0.751643 0.659570i 0.770738π-0.770738\pi
−0.751643 + 0.659570i 0.770738π0.770738\pi
468468 −44.9651 −2.07851
469469 26.0497 1.20286
470470 −29.7651 −1.37296
471471 −29.7556 −1.37106
472472 −18.6661 −0.859175
473473 −34.0745 −1.56675
474474 41.3692 1.90015
475475 −2.39037 −0.109677
476476 −47.4198 −2.17348
477477 −0.247390 −0.0113272
478478 −26.2732 −1.20171
479479 19.3799 0.885492 0.442746 0.896647i 0.354004π-0.354004\pi
0.442746 + 0.896647i 0.354004π0.354004\pi
480480 47.9839 2.19016
481481 −3.67583 −0.167603
482482 4.35304 0.198276
483483 2.32770 0.105914
484484 46.1595 2.09816
485485 8.94394 0.406123
486486 52.7659 2.39351
487487 2.36162 0.107015 0.0535076 0.998567i 0.482960π-0.482960\pi
0.0535076 + 0.998567i 0.482960π0.482960\pi
488488 36.8912 1.66998
489489 5.35576 0.242196
490490 −20.8266 −0.940852
491491 14.1469 0.638442 0.319221 0.947680i 0.396579π-0.396579\pi
0.319221 + 0.947680i 0.396579π0.396579\pi
492492 54.8884 2.47456
493493 15.0613 0.678327
494494 23.9313 1.07672
495495 9.97490 0.448338
496496 33.9868 1.52605
497497 −22.1775 −0.994796
498498 −87.3729 −3.91528
499499 −31.1547 −1.39468 −0.697338 0.716743i 0.745632π-0.745632\pi
−0.697338 + 0.716743i 0.745632π0.745632\pi
500500 −5.41809 −0.242304
501501 52.4669 2.34405
502502 −17.6984 −0.789918
503503 −13.3094 −0.593438 −0.296719 0.954965i 0.595892π-0.595892\pi
−0.296719 + 0.954965i 0.595892π0.595892\pi
504504 80.4402 3.58309
505505 11.5935 0.515902
506506 3.19182 0.141894
507507 −1.17338 −0.0521117
508508 47.7796 2.11988
509509 24.4420 1.08337 0.541686 0.840581i 0.317786π-0.317786\pi
0.541686 + 0.840581i 0.317786π0.317786\pi
510510 −14.2820 −0.632419
511511 −0.538297 −0.0238129
512512 33.5015 1.48057
513513 −4.06837 −0.179623
514514 −10.9259 −0.481922
515515 13.5918 0.598927
516516 −95.8165 −4.21808
517517 −48.2832 −2.12349
518518 10.4236 0.457985
519519 −32.1244 −1.41010
520520 34.2204 1.50066
521521 21.2938 0.932897 0.466448 0.884548i 0.345533π-0.345533\pi
0.466448 + 0.884548i 0.345533π0.345533\pi
522522 −40.4985 −1.77257
523523 −4.62687 −0.202319 −0.101159 0.994870i 0.532255π-0.532255\pi
−0.101159 + 0.994870i 0.532255π0.532255\pi
524524 25.0072 1.09244
525525 −8.77545 −0.382992
526526 −71.5050 −3.11777
527527 −5.35305 −0.233183
528528 147.091 6.40132
529529 −22.9296 −0.996941
530530 0.298438 0.0129633
531531 −4.52686 −0.196449
532532 −49.5656 −2.14894
533533 16.2402 0.703439
534534 −92.5157 −4.00355
535535 −6.66146 −0.288000
536536 63.3669 2.73703
537537 33.8937 1.46262
538538 8.17997 0.352664
539539 −33.7838 −1.45517
540540 −9.22151 −0.396830
541541 −18.9838 −0.816179 −0.408089 0.912942i 0.633805π-0.633805\pi
−0.408089 + 0.912942i 0.633805π0.633805\pi
542542 16.1096 0.691968
543543 18.7783 0.805855
544544 −47.8564 −2.05183
545545 4.85120 0.207803
546546 87.8559 3.75988
547547 3.76479 0.160971 0.0804855 0.996756i 0.474353π-0.474353\pi
0.0804855 + 0.996756i 0.474353π0.474353\pi
548548 −76.5706 −3.27093
549549 8.94678 0.381839
550550 −12.0332 −0.513097
551551 15.7428 0.670667
552552 5.66222 0.241000
553553 −25.3514 −1.07805
554554 33.4239 1.42004
555555 2.29298 0.0973314
556556 71.6010 3.03656
557557 −29.2177 −1.23799 −0.618996 0.785394i 0.712460π-0.712460\pi
−0.618996 + 0.785394i 0.712460π0.712460\pi
558558 14.3939 0.609341
559559 −28.3498 −1.19907
560560 −55.5676 −2.34816
561561 −23.1675 −0.978131
562562 −9.33948 −0.393962
563563 −17.2201 −0.725741 −0.362871 0.931840i 0.618203π-0.618203\pi
−0.362871 + 0.931840i 0.618203π0.618203\pi
564564 −135.771 −5.71700
565565 2.83965 0.119465
566566 −59.4520 −2.49895
567567 −40.8575 −1.71585
568568 −53.9476 −2.26359
569569 −28.1495 −1.18009 −0.590045 0.807371i 0.700890π-0.700890\pi
−0.590045 + 0.807371i 0.700890π0.700890\pi
570570 −14.9283 −0.625277
571571 29.0284 1.21480 0.607401 0.794396i 0.292212π-0.292212\pi
0.607401 + 0.794396i 0.292212π0.292212\pi
572572 87.9906 3.67907
573573 −45.5713 −1.90377
574574 −46.0522 −1.92218
575575 −0.265251 −0.0110617
576576 63.1189 2.62995
577577 18.3603 0.764347 0.382174 0.924090i 0.375176π-0.375176\pi
0.382174 + 0.924090i 0.375176π0.375176\pi
578578 −32.0574 −1.33341
579579 −39.0701 −1.62370
580580 35.6833 1.48167
581581 53.5428 2.22133
582582 55.8566 2.31533
583583 0.484109 0.0200497
584584 −1.30943 −0.0541846
585585 8.29907 0.343124
586586 −20.2425 −0.836210
587587 −40.9523 −1.69028 −0.845141 0.534544i 0.820484π-0.820484\pi
−0.845141 + 0.534544i 0.820484π0.820484\pi
588588 −94.9990 −3.91769
589589 −5.59528 −0.230549
590590 5.46096 0.224824
591591 60.8275 2.50211
592592 14.5195 0.596749
593593 12.6520 0.519557 0.259778 0.965668i 0.416350π-0.416350\pi
0.259778 + 0.965668i 0.416350π0.416350\pi
594594 −20.4803 −0.840317
595595 8.75213 0.358802
596596 37.9127 1.55297
597597 11.5953 0.474563
598598 2.65558 0.108595
599599 −22.0493 −0.900910 −0.450455 0.892799i 0.648738π-0.648738\pi
−0.450455 + 0.892799i 0.648738π0.648738\pi
600600 −21.3466 −0.871472
601601 0.498980 0.0203538 0.0101769 0.999948i 0.496761π-0.496761\pi
0.0101769 + 0.999948i 0.496761π0.496761\pi
602602 80.3915 3.27651
603603 15.3676 0.625818
604604 106.836 4.34711
605605 −8.51952 −0.346368
606606 72.4034 2.94119
607607 41.2564 1.67455 0.837274 0.546784i 0.184148π-0.184148\pi
0.837274 + 0.546784i 0.184148π0.184148\pi
608608 −50.0219 −2.02866
609609 57.7947 2.34196
610610 −10.7929 −0.436992
611611 −40.1714 −1.62516
612612 −27.9746 −1.13081
613613 −4.13184 −0.166883 −0.0834417 0.996513i 0.526591π-0.526591\pi
−0.0834417 + 0.996513i 0.526591π0.526591\pi
614614 0.531552 0.0214517
615615 −10.1306 −0.408504
616616 −157.411 −6.34225
617617 37.7095 1.51813 0.759063 0.651017i 0.225657π-0.225657\pi
0.759063 + 0.651017i 0.225657π0.225657\pi
618618 84.8834 3.41451
619619 −23.7226 −0.953493 −0.476746 0.879041i 0.658184π-0.658184\pi
−0.476746 + 0.879041i 0.658184π0.658184\pi
620620 −12.6825 −0.509340
621621 −0.451454 −0.0181162
622622 −27.1992 −1.09059
623623 56.6943 2.27141
624624 122.379 4.89909
625625 1.00000 0.0400000
626626 14.5264 0.580592
627627 −24.2158 −0.967085
628628 70.3097 2.80566
629629 −2.28688 −0.0911840
630630 −23.5337 −0.937604
631631 21.4175 0.852615 0.426308 0.904578i 0.359814π-0.359814\pi
0.426308 + 0.904578i 0.359814π0.359814\pi
632632 −61.6682 −2.45303
633633 45.0810 1.79181
634634 67.5759 2.68378
635635 −8.81853 −0.349953
636636 1.36130 0.0539791
637637 −28.1079 −1.11368
638638 79.2500 3.13754
639639 −13.0833 −0.517566
640640 −34.2903 −1.35544
641641 −36.6406 −1.44722 −0.723608 0.690211i 0.757518π-0.757518\pi
−0.723608 + 0.690211i 0.757518π0.757518\pi
642642 −41.6021 −1.64190
643643 13.5452 0.534170 0.267085 0.963673i 0.413940π-0.413940\pi
0.267085 + 0.963673i 0.413940π0.413940\pi
644644 −5.50014 −0.216736
645645 17.6845 0.696328
646646 14.8886 0.585785
647647 18.8904 0.742657 0.371329 0.928502i 0.378902π-0.378902\pi
0.371329 + 0.928502i 0.378902π0.378902\pi
648648 −99.3874 −3.90431
649649 8.85844 0.347724
650650 −10.0116 −0.392685
651651 −20.5412 −0.805075
652652 −12.6552 −0.495614
653653 −7.44489 −0.291341 −0.145670 0.989333i 0.546534π-0.546534\pi
−0.145670 + 0.989333i 0.546534π0.546534\pi
654654 30.2967 1.18469
655655 −4.61549 −0.180342
656656 −64.1486 −2.50458
657657 −0.317560 −0.0123892
658658 113.914 4.44083
659659 5.00068 0.194799 0.0973993 0.995245i 0.468948π-0.468948\pi
0.0973993 + 0.995245i 0.468948π0.468948\pi
660660 −54.8884 −2.13653
661661 −7.47493 −0.290741 −0.145371 0.989377i 0.546437π-0.546437\pi
−0.145371 + 0.989377i 0.546437π0.546437\pi
662662 −43.2943 −1.68268
663663 −19.2752 −0.748587
664664 130.245 5.05448
665665 9.14817 0.354751
666666 6.14922 0.238277
667667 1.74693 0.0676415
668668 −123.974 −4.79671
669669 55.4747 2.14477
670670 −18.5387 −0.716212
671671 −17.5076 −0.675875
672672 −183.639 −7.08404
673673 −38.6412 −1.48951 −0.744755 0.667338i 0.767434π-0.767434\pi
−0.744755 + 0.667338i 0.767434π0.767434\pi
674674 68.7632 2.64866
675675 1.70198 0.0655094
676676 2.77259 0.106638
677677 43.8791 1.68641 0.843206 0.537590i 0.180665π-0.180665\pi
0.843206 + 0.537590i 0.180665π0.180665\pi
678678 17.7341 0.681076
679679 −34.2293 −1.31360
680680 21.2899 0.816431
681681 −41.5059 −1.59051
682682 −28.1668 −1.07856
683683 18.8393 0.720867 0.360433 0.932785i 0.382629π-0.382629\pi
0.360433 + 0.932785i 0.382629π0.382629\pi
684684 −29.2405 −1.11804
685685 14.1324 0.539971
686686 6.74077 0.257364
687687 −44.9842 −1.71625
688688 111.982 4.26926
689689 0.402776 0.0153445
690690 −1.65655 −0.0630636
691691 −42.3770 −1.61210 −0.806048 0.591850i 0.798398π-0.798398\pi
−0.806048 + 0.591850i 0.798398π0.798398\pi
692692 75.9069 2.88555
693693 −38.1749 −1.45015
694694 63.9680 2.42819
695695 −13.2152 −0.501280
696696 140.588 5.32897
697697 10.1037 0.382703
698698 −19.4279 −0.735359
699699 10.7085 0.405033
700700 20.7356 0.783731
701701 16.1386 0.609546 0.304773 0.952425i 0.401419π-0.401419\pi
0.304773 + 0.952425i 0.401419π0.401419\pi
702702 −17.0395 −0.643115
703703 −2.39037 −0.0901543
704704 −123.515 −4.65515
705705 25.0589 0.943771
706706 −4.08418 −0.153710
707707 −44.3693 −1.66868
708708 24.9097 0.936164
709709 −20.5619 −0.772218 −0.386109 0.922453i 0.626181π-0.626181\pi
−0.386109 + 0.922453i 0.626181π0.626181\pi
710710 15.7830 0.592324
711711 −14.9557 −0.560881
712712 137.911 5.16844
713713 −0.620891 −0.0232525
714714 54.6587 2.04555
715715 −16.2402 −0.607347
716716 −80.0877 −2.99302
717717 22.1191 0.826052
718718 −17.6392 −0.658288
719719 5.93966 0.221512 0.110756 0.993848i 0.464673π-0.464673\pi
0.110756 + 0.993848i 0.464673π0.464673\pi
720720 −32.7813 −1.22169
721721 −52.0172 −1.93722
722722 −36.1864 −1.34672
723723 −3.66477 −0.136294
724724 −44.3714 −1.64905
725725 −6.58595 −0.244596
726726 −53.2060 −1.97466
727727 −24.8976 −0.923401 −0.461701 0.887036i 0.652761π-0.652761\pi
−0.461701 + 0.887036i 0.652761π0.652761\pi
728728 −130.965 −4.85388
729729 −12.3954 −0.459089
730730 0.383088 0.0141787
731731 −17.6376 −0.652349
732732 −49.2310 −1.81963
733733 20.8362 0.769604 0.384802 0.922999i 0.374270π-0.374270\pi
0.384802 + 0.922999i 0.374270π0.374270\pi
734734 66.7618 2.46422
735735 17.5337 0.646739
736736 −5.55078 −0.204604
737737 −30.0724 −1.10773
738738 −27.1678 −1.00006
739739 −39.3500 −1.44751 −0.723756 0.690056i 0.757586π-0.757586\pi
−0.723756 + 0.690056i 0.757586π0.757586\pi
740740 −5.41809 −0.199173
741741 −20.1474 −0.740134
742742 −1.14215 −0.0419297
743743 3.25437 0.119391 0.0596955 0.998217i 0.480987π-0.480987\pi
0.0596955 + 0.998217i 0.480987π0.480987\pi
744744 −49.9674 −1.83189
745745 −6.99743 −0.256366
746746 −51.6659 −1.89162
747747 31.5868 1.15570
748748 54.7425 2.00159
749749 25.4941 0.931533
750750 6.24519 0.228042
751751 45.4895 1.65994 0.829968 0.557811i 0.188358π-0.188358\pi
0.829968 + 0.557811i 0.188358π0.188358\pi
752752 158.677 5.78636
753753 14.9000 0.542988
754754 65.9356 2.40123
755755 −19.7185 −0.717628
756756 35.2916 1.28354
757757 31.5740 1.14758 0.573788 0.819004i 0.305473π-0.305473\pi
0.573788 + 0.819004i 0.305473π0.305473\pi
758758 64.6276 2.34738
759759 −2.68715 −0.0975374
760760 22.2533 0.807211
761761 41.8552 1.51725 0.758626 0.651527i 0.225871π-0.225871\pi
0.758626 + 0.651527i 0.225871π0.225871\pi
762762 −55.0734 −1.99510
763763 −18.5660 −0.672136
764764 107.681 3.89575
765765 5.16319 0.186675
766766 −32.7901 −1.18475
767767 7.37018 0.266122
768768 −85.9416 −3.10115
769769 −22.1619 −0.799180 −0.399590 0.916694i 0.630848π-0.630848\pi
−0.399590 + 0.916694i 0.630848π0.630848\pi
770770 46.0522 1.65961
771771 9.19840 0.331272
772772 92.3191 3.32264
773773 19.3276 0.695165 0.347582 0.937649i 0.387003π-0.387003\pi
0.347582 + 0.937649i 0.387003π0.387003\pi
774774 47.4258 1.70468
775775 2.34076 0.0840827
776776 −83.2642 −2.98901
777777 −8.77545 −0.314817
778778 82.5376 2.95912
779779 10.5609 0.378382
780780 −45.6669 −1.63514
781781 25.6022 0.916118
782782 1.65214 0.0590806
783783 −11.2092 −0.400584
784784 111.026 3.96522
785785 −12.9768 −0.463163
786786 −28.8246 −1.02814
787787 19.5111 0.695496 0.347748 0.937588i 0.386946π-0.386946\pi
0.347748 + 0.937588i 0.386946π0.386946\pi
788788 −143.730 −5.12016
789789 60.1991 2.14314
790790 18.0417 0.641896
791791 −10.8676 −0.386408
792792 −92.8620 −3.29971
793793 −14.5663 −0.517263
794794 −72.2428 −2.56380
795795 −0.251251 −0.00891096
796796 −27.3986 −0.971117
797797 −22.2367 −0.787664 −0.393832 0.919183i 0.628851π-0.628851\pi
−0.393832 + 0.919183i 0.628851π0.628851\pi
798798 57.1320 2.02245
799799 −24.9923 −0.884163
800800 20.9265 0.739863
801801 33.4460 1.18176
802802 43.0030 1.51849
803803 0.621423 0.0219295
804804 −84.5627 −2.98229
805805 1.01514 0.0357791
806806 −23.4347 −0.825451
807807 −6.88661 −0.242420
808808 −107.930 −3.79697
809809 12.4896 0.439110 0.219555 0.975600i 0.429539π-0.429539\pi
0.219555 + 0.975600i 0.429539π0.429539\pi
810810 29.0769 1.02166
811811 −3.99535 −0.140296 −0.0701478 0.997537i 0.522347π-0.522347\pi
−0.0701478 + 0.997537i 0.522347π0.522347\pi
812812 −136.563 −4.79244
813813 −13.5625 −0.475657
814814 −12.0332 −0.421763
815815 2.33572 0.0818168
816816 76.1370 2.66533
817817 −18.4357 −0.644982
818818 −26.5645 −0.928807
819819 −31.7614 −1.10983
820820 23.9376 0.835938
821821 −1.51952 −0.0530317 −0.0265159 0.999648i 0.508441π-0.508441\pi
−0.0265159 + 0.999648i 0.508441π0.508441\pi
822822 88.2595 3.07840
823823 46.9850 1.63779 0.818897 0.573940i 0.194586π-0.194586\pi
0.818897 + 0.573940i 0.194586π0.194586\pi
824824 −126.534 −4.40802
825825 10.1306 0.352701
826826 −20.8996 −0.727191
827827 −10.5199 −0.365814 −0.182907 0.983130i 0.558551π-0.558551\pi
−0.182907 + 0.983130i 0.558551π0.558551\pi
828828 −3.24473 −0.112762
829829 −53.8789 −1.87129 −0.935645 0.352942i 0.885181π-0.885181\pi
−0.935645 + 0.352942i 0.885181π0.885181\pi
830830 −38.1046 −1.32263
831831 −28.1391 −0.976134
832832 −102.764 −3.56270
833833 −17.4871 −0.605892
834834 −82.5312 −2.85782
835835 22.8816 0.791849
836836 57.2196 1.97898
837837 3.98394 0.137705
838838 −26.2562 −0.907006
839839 12.0120 0.414699 0.207349 0.978267i 0.433516π-0.433516\pi
0.207349 + 0.978267i 0.433516π0.433516\pi
840840 81.6956 2.81877
841841 14.3748 0.495682
842842 −47.7898 −1.64694
843843 7.86278 0.270808
844844 −106.522 −3.66665
845845 −0.511728 −0.0176040
846846 67.2019 2.31045
847847 32.6051 1.12032
848848 −1.59096 −0.0546340
849849 50.0518 1.71777
850850 −6.22860 −0.213639
851851 −0.265251 −0.00909270
852852 71.9926 2.46643
853853 −0.967727 −0.0331343 −0.0165672 0.999863i 0.505274π-0.505274\pi
−0.0165672 + 0.999863i 0.505274π0.505274\pi
854854 41.3056 1.41345
855855 5.39682 0.184567
856856 62.0154 2.11964
857857 0.683897 0.0233615 0.0116807 0.999932i 0.496282π-0.496282\pi
0.0116807 + 0.999932i 0.496282π0.496282\pi
858858 −101.423 −3.46252
859859 23.9043 0.815605 0.407803 0.913070i 0.366295π-0.366295\pi
0.407803 + 0.913070i 0.366295π0.366295\pi
860860 −41.7869 −1.42492
861861 38.7707 1.32130
862862 6.75764 0.230166
863863 51.4456 1.75123 0.875614 0.483012i 0.160457π-0.160457\pi
0.875614 + 0.483012i 0.160457π0.160457\pi
864864 35.6166 1.21170
865865 −14.0099 −0.476351
866866 −50.0214 −1.69979
867867 26.9887 0.916584
868868 48.5371 1.64745
869869 29.2662 0.992788
870870 −41.1305 −1.39446
871871 −25.0201 −0.847772
872872 −45.1626 −1.52940
873873 −20.1931 −0.683433
874874 1.72690 0.0584134
875875 −3.82710 −0.129380
876876 1.74742 0.0590400
877877 −29.8721 −1.00871 −0.504354 0.863497i 0.668269π-0.668269\pi
−0.504354 + 0.863497i 0.668269π0.668269\pi
878878 64.2691 2.16898
879879 17.0419 0.574808
880880 64.1486 2.16245
881881 25.1190 0.846279 0.423140 0.906064i 0.360928π-0.360928\pi
0.423140 + 0.906064i 0.360928π0.360928\pi
882882 47.0211 1.58328
883883 39.3961 1.32578 0.662892 0.748715i 0.269329π-0.269329\pi
0.662892 + 0.748715i 0.269329π0.269329\pi
884884 45.5455 1.53186
885885 −4.59751 −0.154543
886886 −3.95904 −0.133007
887887 18.7079 0.628148 0.314074 0.949398i 0.398306π-0.398306\pi
0.314074 + 0.949398i 0.398306π0.398306\pi
888888 −21.3466 −0.716346
889889 33.7494 1.13192
890890 −40.3474 −1.35245
891891 47.1668 1.58015
892892 −131.082 −4.38893
893893 −26.1232 −0.874179
894894 −43.7003 −1.46156
895895 14.7815 0.494092
896896 131.232 4.38417
897897 −2.23570 −0.0746477
898898 −104.575 −3.48971
899899 −15.4162 −0.514158
900900 12.2326 0.407755
901901 0.250583 0.00834815
902902 53.1637 1.77016
903903 −67.6805 −2.25227
904904 −26.4359 −0.879245
905905 8.18949 0.272228
906906 −123.146 −4.09124
907907 16.8702 0.560164 0.280082 0.959976i 0.409638π-0.409638\pi
0.280082 + 0.959976i 0.409638π0.409638\pi
908908 98.0745 3.25472
909909 −26.1750 −0.868171
910910 38.3152 1.27014
911911 32.4128 1.07388 0.536941 0.843620i 0.319580π-0.319580\pi
0.536941 + 0.843620i 0.319580π0.319580\pi
912912 79.5823 2.63523
913913 −61.8110 −2.04565
914914 54.8901 1.81560
915915 9.08641 0.300387
916916 106.293 3.51203
917917 17.6639 0.583315
918918 −10.6010 −0.349884
919919 58.0857 1.91607 0.958035 0.286650i 0.0925418π-0.0925418\pi
0.958035 + 0.286650i 0.0925418π0.0925418\pi
920920 2.46938 0.0814129
921921 −0.447506 −0.0147458
922922 94.2372 3.10354
923923 21.3009 0.701127
924924 210.063 6.91057
925925 1.00000 0.0328798
926926 91.8991 3.01999
927927 −30.6868 −1.00789
928928 −137.821 −4.52419
929929 −7.38274 −0.242220 −0.121110 0.992639i 0.538645π-0.538645\pi
−0.121110 + 0.992639i 0.538645π0.538645\pi
930930 14.6185 0.479360
931931 −18.2784 −0.599050
932932 −25.3032 −0.828834
933933 22.8986 0.749666
934934 −88.4802 −2.89516
935935 −10.1037 −0.330425
936936 −77.2608 −2.52535
937937 −34.2781 −1.11982 −0.559908 0.828555i 0.689163π-0.689163\pi
−0.559908 + 0.828555i 0.689163π0.689163\pi
938938 70.9494 2.31658
939939 −12.2296 −0.399097
940940 −59.2118 −1.93127
941941 8.74328 0.285023 0.142511 0.989793i 0.454482π-0.454482\pi
0.142511 + 0.989793i 0.454482π0.454482\pi
942942 −81.0428 −2.64052
943943 1.17190 0.0381625
944944 −29.1122 −0.947522
945945 −6.51366 −0.211890
946946 −92.8058 −3.01738
947947 41.2549 1.34060 0.670302 0.742089i 0.266165π-0.266165\pi
0.670302 + 0.742089i 0.266165π0.266165\pi
948948 82.2958 2.67284
949949 0.517021 0.0167832
950950 −6.51044 −0.211227
951951 −56.8912 −1.84482
952952 −81.4786 −2.64074
953953 13.2048 0.427745 0.213873 0.976862i 0.431392π-0.431392\pi
0.213873 + 0.976862i 0.431392π0.431392\pi
954954 −0.673796 −0.0218149
955955 −19.8743 −0.643117
956956 −52.2654 −1.69038
957957 −66.7195 −2.15673
958958 52.7835 1.70536
959959 −54.0861 −1.74653
960960 64.1040 2.06895
961961 −25.5208 −0.823253
962962 −10.0116 −0.322785
963963 15.0399 0.484652
964964 8.65950 0.278904
965965 −17.0390 −0.548506
966966 6.33976 0.203979
967967 12.1924 0.392082 0.196041 0.980596i 0.437191π-0.437191\pi
0.196041 + 0.980596i 0.437191π0.437191\pi
968968 79.3131 2.54922
969969 −12.5345 −0.402667
970970 24.3599 0.782148
971971 6.80253 0.218303 0.109152 0.994025i 0.465187π-0.465187\pi
0.109152 + 0.994025i 0.465187π0.465187\pi
972972 104.967 3.36682
973973 50.5758 1.62138
974974 6.43214 0.206099
975975 8.42859 0.269931
976976 57.5367 1.84171
977977 55.4080 1.77266 0.886329 0.463056i 0.153247π-0.153247\pi
0.886329 + 0.463056i 0.153247π0.153247\pi
978978 14.5870 0.466442
979979 −65.4492 −2.09177
980980 −41.4304 −1.32345
981981 −10.9528 −0.349695
982982 38.5308 1.22957
983983 −13.4921 −0.430331 −0.215165 0.976578i 0.569029π-0.569029\pi
−0.215165 + 0.976578i 0.569029π0.569029\pi
984984 94.3113 3.00653
985985 26.5277 0.845244
986986 41.0212 1.30638
987987 −95.9027 −3.05262
988988 47.6065 1.51456
989989 −2.04575 −0.0650510
990990 27.1678 0.863450
991991 −2.47900 −0.0787481 −0.0393740 0.999225i 0.512536π-0.512536\pi
−0.0393740 + 0.999225i 0.512536π0.512536\pi
992992 48.9839 1.55524
993993 36.4489 1.15667
994994 −60.4029 −1.91587
995995 5.05687 0.160314
996996 −173.811 −5.50741
997997 −13.6685 −0.432885 −0.216443 0.976295i 0.569445π-0.569445\pi
−0.216443 + 0.976295i 0.569445π0.569445\pi
998998 −84.8534 −2.68599
999999 1.70198 0.0538484
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.a.e.1.5 5
3.2 odd 2 1665.2.a.p.1.1 5
4.3 odd 2 2960.2.a.w.1.5 5
5.2 odd 4 925.2.b.f.149.10 10
5.3 odd 4 925.2.b.f.149.1 10
5.4 even 2 925.2.a.f.1.1 5
7.6 odd 2 9065.2.a.k.1.5 5
15.14 odd 2 8325.2.a.ch.1.5 5
37.36 even 2 6845.2.a.f.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.e.1.5 5 1.1 even 1 trivial
925.2.a.f.1.1 5 5.4 even 2
925.2.b.f.149.1 10 5.3 odd 4
925.2.b.f.149.10 10 5.2 odd 4
1665.2.a.p.1.1 5 3.2 odd 2
2960.2.a.w.1.5 5 4.3 odd 2
6845.2.a.f.1.1 5 37.36 even 2
8325.2.a.ch.1.5 5 15.14 odd 2
9065.2.a.k.1.5 5 7.6 odd 2