Properties

Label 9065.2.a.v.1.15
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,-3,-1,13,21,-6,0,-9,12,-3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.872576 q^{2} +2.26649 q^{3} -1.23861 q^{4} +1.00000 q^{5} +1.97769 q^{6} -2.82593 q^{8} +2.13699 q^{9} +0.872576 q^{10} -5.40482 q^{11} -2.80731 q^{12} +5.49607 q^{13} +2.26649 q^{15} +0.0113829 q^{16} +1.44877 q^{17} +1.86469 q^{18} -4.90666 q^{19} -1.23861 q^{20} -4.71611 q^{22} -3.85047 q^{23} -6.40496 q^{24} +1.00000 q^{25} +4.79574 q^{26} -1.95600 q^{27} +7.76996 q^{29} +1.97769 q^{30} -5.05646 q^{31} +5.66180 q^{32} -12.2500 q^{33} +1.26417 q^{34} -2.64690 q^{36} -1.00000 q^{37} -4.28143 q^{38} +12.4568 q^{39} -2.82593 q^{40} +4.23454 q^{41} -5.75256 q^{43} +6.69447 q^{44} +2.13699 q^{45} -3.35982 q^{46} -7.03986 q^{47} +0.0257993 q^{48} +0.872576 q^{50} +3.28364 q^{51} -6.80750 q^{52} +2.32608 q^{53} -1.70676 q^{54} -5.40482 q^{55} -11.1209 q^{57} +6.77988 q^{58} -11.5027 q^{59} -2.80731 q^{60} -13.6375 q^{61} -4.41214 q^{62} +4.91758 q^{64} +5.49607 q^{65} -10.6890 q^{66} +3.60950 q^{67} -1.79447 q^{68} -8.72706 q^{69} -1.09597 q^{71} -6.03900 q^{72} +12.8366 q^{73} -0.872576 q^{74} +2.26649 q^{75} +6.07745 q^{76} +10.8695 q^{78} -9.47305 q^{79} +0.0113829 q^{80} -10.8442 q^{81} +3.69495 q^{82} +8.06502 q^{83} +1.44877 q^{85} -5.01955 q^{86} +17.6106 q^{87} +15.2736 q^{88} -15.4238 q^{89} +1.86469 q^{90} +4.76924 q^{92} -11.4604 q^{93} -6.14281 q^{94} -4.90666 q^{95} +12.8324 q^{96} -18.1098 q^{97} -11.5501 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 3 q^{2} - q^{3} + 13 q^{4} + 21 q^{5} - 6 q^{6} - 9 q^{8} + 12 q^{9} - 3 q^{10} - 5 q^{11} - 4 q^{12} + q^{13} - q^{15} + q^{16} + 2 q^{17} - 11 q^{18} - 12 q^{19} + 13 q^{20} - 10 q^{22} - 20 q^{23}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.872576 0.617004 0.308502 0.951224i \(-0.400172\pi\)
0.308502 + 0.951224i \(0.400172\pi\)
\(3\) 2.26649 1.30856 0.654280 0.756252i \(-0.272972\pi\)
0.654280 + 0.756252i \(0.272972\pi\)
\(4\) −1.23861 −0.619306
\(5\) 1.00000 0.447214
\(6\) 1.97769 0.807387
\(7\) 0 0
\(8\) −2.82593 −0.999118
\(9\) 2.13699 0.712331
\(10\) 0.872576 0.275933
\(11\) −5.40482 −1.62961 −0.814807 0.579733i \(-0.803157\pi\)
−0.814807 + 0.579733i \(0.803157\pi\)
\(12\) −2.80731 −0.810399
\(13\) 5.49607 1.52434 0.762168 0.647379i \(-0.224135\pi\)
0.762168 + 0.647379i \(0.224135\pi\)
\(14\) 0 0
\(15\) 2.26649 0.585206
\(16\) 0.0113829 0.00284572
\(17\) 1.44877 0.351379 0.175690 0.984446i \(-0.443784\pi\)
0.175690 + 0.984446i \(0.443784\pi\)
\(18\) 1.86469 0.439511
\(19\) −4.90666 −1.12567 −0.562833 0.826571i \(-0.690289\pi\)
−0.562833 + 0.826571i \(0.690289\pi\)
\(20\) −1.23861 −0.276962
\(21\) 0 0
\(22\) −4.71611 −1.00548
\(23\) −3.85047 −0.802878 −0.401439 0.915886i \(-0.631490\pi\)
−0.401439 + 0.915886i \(0.631490\pi\)
\(24\) −6.40496 −1.30741
\(25\) 1.00000 0.200000
\(26\) 4.79574 0.940521
\(27\) −1.95600 −0.376432
\(28\) 0 0
\(29\) 7.76996 1.44284 0.721422 0.692495i \(-0.243489\pi\)
0.721422 + 0.692495i \(0.243489\pi\)
\(30\) 1.97769 0.361075
\(31\) −5.05646 −0.908167 −0.454084 0.890959i \(-0.650033\pi\)
−0.454084 + 0.890959i \(0.650033\pi\)
\(32\) 5.66180 1.00087
\(33\) −12.2500 −2.13245
\(34\) 1.26417 0.216803
\(35\) 0 0
\(36\) −2.64690 −0.441151
\(37\) −1.00000 −0.164399
\(38\) −4.28143 −0.694540
\(39\) 12.4568 1.99469
\(40\) −2.82593 −0.446819
\(41\) 4.23454 0.661324 0.330662 0.943749i \(-0.392728\pi\)
0.330662 + 0.943749i \(0.392728\pi\)
\(42\) 0 0
\(43\) −5.75256 −0.877258 −0.438629 0.898668i \(-0.644536\pi\)
−0.438629 + 0.898668i \(0.644536\pi\)
\(44\) 6.69447 1.00923
\(45\) 2.13699 0.318564
\(46\) −3.35982 −0.495379
\(47\) −7.03986 −1.02687 −0.513435 0.858129i \(-0.671627\pi\)
−0.513435 + 0.858129i \(0.671627\pi\)
\(48\) 0.0257993 0.00372380
\(49\) 0 0
\(50\) 0.872576 0.123401
\(51\) 3.28364 0.459801
\(52\) −6.80750 −0.944030
\(53\) 2.32608 0.319511 0.159756 0.987157i \(-0.448929\pi\)
0.159756 + 0.987157i \(0.448929\pi\)
\(54\) −1.70676 −0.232260
\(55\) −5.40482 −0.728785
\(56\) 0 0
\(57\) −11.1209 −1.47300
\(58\) 6.77988 0.890241
\(59\) −11.5027 −1.49752 −0.748759 0.662843i \(-0.769350\pi\)
−0.748759 + 0.662843i \(0.769350\pi\)
\(60\) −2.80731 −0.362422
\(61\) −13.6375 −1.74610 −0.873051 0.487628i \(-0.837862\pi\)
−0.873051 + 0.487628i \(0.837862\pi\)
\(62\) −4.41214 −0.560343
\(63\) 0 0
\(64\) 4.91758 0.614698
\(65\) 5.49607 0.681704
\(66\) −10.6890 −1.31573
\(67\) 3.60950 0.440971 0.220486 0.975390i \(-0.429236\pi\)
0.220486 + 0.975390i \(0.429236\pi\)
\(68\) −1.79447 −0.217611
\(69\) −8.72706 −1.05061
\(70\) 0 0
\(71\) −1.09597 −0.130068 −0.0650340 0.997883i \(-0.520716\pi\)
−0.0650340 + 0.997883i \(0.520716\pi\)
\(72\) −6.03900 −0.711703
\(73\) 12.8366 1.50241 0.751203 0.660071i \(-0.229474\pi\)
0.751203 + 0.660071i \(0.229474\pi\)
\(74\) −0.872576 −0.101435
\(75\) 2.26649 0.261712
\(76\) 6.07745 0.697131
\(77\) 0 0
\(78\) 10.8695 1.23073
\(79\) −9.47305 −1.06580 −0.532901 0.846178i \(-0.678898\pi\)
−0.532901 + 0.846178i \(0.678898\pi\)
\(80\) 0.0113829 0.00127265
\(81\) −10.8442 −1.20492
\(82\) 3.69495 0.408039
\(83\) 8.06502 0.885251 0.442626 0.896707i \(-0.354047\pi\)
0.442626 + 0.896707i \(0.354047\pi\)
\(84\) 0 0
\(85\) 1.44877 0.157142
\(86\) −5.01955 −0.541272
\(87\) 17.6106 1.88805
\(88\) 15.2736 1.62818
\(89\) −15.4238 −1.63492 −0.817461 0.575984i \(-0.804619\pi\)
−0.817461 + 0.575984i \(0.804619\pi\)
\(90\) 1.86469 0.196555
\(91\) 0 0
\(92\) 4.76924 0.497227
\(93\) −11.4604 −1.18839
\(94\) −6.14281 −0.633583
\(95\) −4.90666 −0.503413
\(96\) 12.8324 1.30970
\(97\) −18.1098 −1.83877 −0.919386 0.393356i \(-0.871314\pi\)
−0.919386 + 0.393356i \(0.871314\pi\)
\(98\) 0 0
\(99\) −11.5501 −1.16082
\(100\) −1.23861 −0.123861
\(101\) 16.2339 1.61534 0.807669 0.589636i \(-0.200729\pi\)
0.807669 + 0.589636i \(0.200729\pi\)
\(102\) 2.86522 0.283699
\(103\) 11.2969 1.11311 0.556557 0.830810i \(-0.312122\pi\)
0.556557 + 0.830810i \(0.312122\pi\)
\(104\) −15.5315 −1.52299
\(105\) 0 0
\(106\) 2.02968 0.197140
\(107\) −6.19187 −0.598591 −0.299295 0.954160i \(-0.596752\pi\)
−0.299295 + 0.954160i \(0.596752\pi\)
\(108\) 2.42272 0.233127
\(109\) −11.2632 −1.07882 −0.539410 0.842044i \(-0.681353\pi\)
−0.539410 + 0.842044i \(0.681353\pi\)
\(110\) −4.71611 −0.449663
\(111\) −2.26649 −0.215126
\(112\) 0 0
\(113\) −14.8020 −1.39245 −0.696227 0.717821i \(-0.745139\pi\)
−0.696227 + 0.717821i \(0.745139\pi\)
\(114\) −9.70384 −0.908848
\(115\) −3.85047 −0.359058
\(116\) −9.62396 −0.893562
\(117\) 11.7451 1.08583
\(118\) −10.0369 −0.923975
\(119\) 0 0
\(120\) −6.40496 −0.584690
\(121\) 18.2120 1.65564
\(122\) −11.8997 −1.07735
\(123\) 9.59755 0.865382
\(124\) 6.26299 0.562433
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.39298 0.389814 0.194907 0.980822i \(-0.437560\pi\)
0.194907 + 0.980822i \(0.437560\pi\)
\(128\) −7.03264 −0.621603
\(129\) −13.0381 −1.14794
\(130\) 4.79574 0.420614
\(131\) −15.7079 −1.37241 −0.686203 0.727410i \(-0.740724\pi\)
−0.686203 + 0.727410i \(0.740724\pi\)
\(132\) 15.1730 1.32064
\(133\) 0 0
\(134\) 3.14957 0.272081
\(135\) −1.95600 −0.168346
\(136\) −4.09414 −0.351070
\(137\) −0.773751 −0.0661060 −0.0330530 0.999454i \(-0.510523\pi\)
−0.0330530 + 0.999454i \(0.510523\pi\)
\(138\) −7.61502 −0.648234
\(139\) −9.68350 −0.821344 −0.410672 0.911783i \(-0.634706\pi\)
−0.410672 + 0.911783i \(0.634706\pi\)
\(140\) 0 0
\(141\) −15.9558 −1.34372
\(142\) −0.956318 −0.0802524
\(143\) −29.7052 −2.48408
\(144\) 0.0243252 0.00202710
\(145\) 7.76996 0.645260
\(146\) 11.2009 0.926991
\(147\) 0 0
\(148\) 1.23861 0.101813
\(149\) 4.53348 0.371397 0.185699 0.982607i \(-0.440545\pi\)
0.185699 + 0.982607i \(0.440545\pi\)
\(150\) 1.97769 0.161477
\(151\) 3.68593 0.299956 0.149978 0.988689i \(-0.452080\pi\)
0.149978 + 0.988689i \(0.452080\pi\)
\(152\) 13.8659 1.12467
\(153\) 3.09602 0.250298
\(154\) 0 0
\(155\) −5.05646 −0.406145
\(156\) −15.4292 −1.23532
\(157\) 2.15240 0.171780 0.0858901 0.996305i \(-0.472627\pi\)
0.0858901 + 0.996305i \(0.472627\pi\)
\(158\) −8.26595 −0.657604
\(159\) 5.27204 0.418100
\(160\) 5.66180 0.447605
\(161\) 0 0
\(162\) −9.46242 −0.743438
\(163\) 14.2599 1.11692 0.558462 0.829530i \(-0.311391\pi\)
0.558462 + 0.829530i \(0.311391\pi\)
\(164\) −5.24495 −0.409562
\(165\) −12.2500 −0.953660
\(166\) 7.03734 0.546204
\(167\) −14.0933 −1.09057 −0.545287 0.838250i \(-0.683579\pi\)
−0.545287 + 0.838250i \(0.683579\pi\)
\(168\) 0 0
\(169\) 17.2068 1.32360
\(170\) 1.26417 0.0969570
\(171\) −10.4855 −0.801847
\(172\) 7.12519 0.543291
\(173\) −16.7586 −1.27413 −0.637066 0.770809i \(-0.719852\pi\)
−0.637066 + 0.770809i \(0.719852\pi\)
\(174\) 15.3665 1.16493
\(175\) 0 0
\(176\) −0.0615224 −0.00463743
\(177\) −26.0707 −1.95959
\(178\) −13.4585 −1.00875
\(179\) −0.214819 −0.0160564 −0.00802818 0.999968i \(-0.502555\pi\)
−0.00802818 + 0.999968i \(0.502555\pi\)
\(180\) −2.64690 −0.197289
\(181\) −10.8076 −0.803325 −0.401662 0.915788i \(-0.631567\pi\)
−0.401662 + 0.915788i \(0.631567\pi\)
\(182\) 0 0
\(183\) −30.9093 −2.28488
\(184\) 10.8812 0.802170
\(185\) −1.00000 −0.0735215
\(186\) −10.0001 −0.733243
\(187\) −7.83036 −0.572612
\(188\) 8.71966 0.635946
\(189\) 0 0
\(190\) −4.28143 −0.310608
\(191\) −10.3541 −0.749195 −0.374598 0.927187i \(-0.622219\pi\)
−0.374598 + 0.927187i \(0.622219\pi\)
\(192\) 11.1457 0.804369
\(193\) −12.4078 −0.893135 −0.446567 0.894750i \(-0.647354\pi\)
−0.446567 + 0.894750i \(0.647354\pi\)
\(194\) −15.8022 −1.13453
\(195\) 12.4568 0.892051
\(196\) 0 0
\(197\) 8.67524 0.618085 0.309042 0.951048i \(-0.399991\pi\)
0.309042 + 0.951048i \(0.399991\pi\)
\(198\) −10.0783 −0.716233
\(199\) 21.8456 1.54859 0.774295 0.632825i \(-0.218105\pi\)
0.774295 + 0.632825i \(0.218105\pi\)
\(200\) −2.82593 −0.199824
\(201\) 8.18092 0.577038
\(202\) 14.1653 0.996670
\(203\) 0 0
\(204\) −4.06715 −0.284758
\(205\) 4.23454 0.295753
\(206\) 9.85737 0.686796
\(207\) −8.22843 −0.571915
\(208\) 0.0625612 0.00433784
\(209\) 26.5196 1.83440
\(210\) 0 0
\(211\) −14.7366 −1.01451 −0.507255 0.861796i \(-0.669340\pi\)
−0.507255 + 0.861796i \(0.669340\pi\)
\(212\) −2.88111 −0.197875
\(213\) −2.48401 −0.170202
\(214\) −5.40288 −0.369333
\(215\) −5.75256 −0.392322
\(216\) 5.52752 0.376100
\(217\) 0 0
\(218\) −9.82800 −0.665636
\(219\) 29.0940 1.96599
\(220\) 6.69447 0.451341
\(221\) 7.96257 0.535620
\(222\) −1.97769 −0.132734
\(223\) −2.29486 −0.153675 −0.0768376 0.997044i \(-0.524482\pi\)
−0.0768376 + 0.997044i \(0.524482\pi\)
\(224\) 0 0
\(225\) 2.13699 0.142466
\(226\) −12.9159 −0.859150
\(227\) 9.51861 0.631772 0.315886 0.948797i \(-0.397698\pi\)
0.315886 + 0.948797i \(0.397698\pi\)
\(228\) 13.7745 0.912239
\(229\) 6.04664 0.399573 0.199787 0.979839i \(-0.435975\pi\)
0.199787 + 0.979839i \(0.435975\pi\)
\(230\) −3.35982 −0.221540
\(231\) 0 0
\(232\) −21.9574 −1.44157
\(233\) 15.9764 1.04665 0.523323 0.852134i \(-0.324692\pi\)
0.523323 + 0.852134i \(0.324692\pi\)
\(234\) 10.2485 0.669963
\(235\) −7.03986 −0.459230
\(236\) 14.2473 0.927421
\(237\) −21.4706 −1.39467
\(238\) 0 0
\(239\) 26.1360 1.69060 0.845298 0.534295i \(-0.179423\pi\)
0.845298 + 0.534295i \(0.179423\pi\)
\(240\) 0.0257993 0.00166533
\(241\) −21.0790 −1.35782 −0.678910 0.734222i \(-0.737547\pi\)
−0.678910 + 0.734222i \(0.737547\pi\)
\(242\) 15.8914 1.02154
\(243\) −18.7104 −1.20027
\(244\) 16.8916 1.08137
\(245\) 0 0
\(246\) 8.37459 0.533944
\(247\) −26.9674 −1.71589
\(248\) 14.2892 0.907367
\(249\) 18.2793 1.15840
\(250\) 0.872576 0.0551865
\(251\) −13.2932 −0.839057 −0.419528 0.907742i \(-0.637805\pi\)
−0.419528 + 0.907742i \(0.637805\pi\)
\(252\) 0 0
\(253\) 20.8111 1.30838
\(254\) 3.83320 0.240517
\(255\) 3.28364 0.205629
\(256\) −15.9717 −0.998230
\(257\) 4.70785 0.293668 0.146834 0.989161i \(-0.453092\pi\)
0.146834 + 0.989161i \(0.453092\pi\)
\(258\) −11.3768 −0.708287
\(259\) 0 0
\(260\) −6.80750 −0.422183
\(261\) 16.6043 1.02778
\(262\) −13.7063 −0.846781
\(263\) −26.4699 −1.63221 −0.816103 0.577907i \(-0.803870\pi\)
−0.816103 + 0.577907i \(0.803870\pi\)
\(264\) 34.6176 2.13057
\(265\) 2.32608 0.142890
\(266\) 0 0
\(267\) −34.9580 −2.13940
\(268\) −4.47078 −0.273096
\(269\) 24.8461 1.51489 0.757445 0.652898i \(-0.226447\pi\)
0.757445 + 0.652898i \(0.226447\pi\)
\(270\) −1.70676 −0.103870
\(271\) 15.7458 0.956489 0.478244 0.878227i \(-0.341273\pi\)
0.478244 + 0.878227i \(0.341273\pi\)
\(272\) 0.0164912 0.000999929 0
\(273\) 0 0
\(274\) −0.675157 −0.0407877
\(275\) −5.40482 −0.325923
\(276\) 10.8094 0.650652
\(277\) −2.58291 −0.155192 −0.0775961 0.996985i \(-0.524724\pi\)
−0.0775961 + 0.996985i \(0.524724\pi\)
\(278\) −8.44958 −0.506772
\(279\) −10.8056 −0.646916
\(280\) 0 0
\(281\) 26.0538 1.55424 0.777120 0.629353i \(-0.216680\pi\)
0.777120 + 0.629353i \(0.216680\pi\)
\(282\) −13.9226 −0.829082
\(283\) −14.0353 −0.834313 −0.417156 0.908835i \(-0.636973\pi\)
−0.417156 + 0.908835i \(0.636973\pi\)
\(284\) 1.35748 0.0805518
\(285\) −11.1209 −0.658746
\(286\) −25.9201 −1.53269
\(287\) 0 0
\(288\) 12.0992 0.712954
\(289\) −14.9011 −0.876533
\(290\) 6.77988 0.398128
\(291\) −41.0458 −2.40615
\(292\) −15.8995 −0.930449
\(293\) 9.29101 0.542787 0.271393 0.962469i \(-0.412516\pi\)
0.271393 + 0.962469i \(0.412516\pi\)
\(294\) 0 0
\(295\) −11.5027 −0.669710
\(296\) 2.82593 0.164254
\(297\) 10.5718 0.613439
\(298\) 3.95581 0.229154
\(299\) −21.1624 −1.22386
\(300\) −2.80731 −0.162080
\(301\) 0 0
\(302\) 3.21625 0.185074
\(303\) 36.7941 2.11377
\(304\) −0.0558520 −0.00320333
\(305\) −13.6375 −0.780881
\(306\) 2.70151 0.154435
\(307\) 18.2744 1.04297 0.521486 0.853260i \(-0.325378\pi\)
0.521486 + 0.853260i \(0.325378\pi\)
\(308\) 0 0
\(309\) 25.6043 1.45658
\(310\) −4.41214 −0.250593
\(311\) −28.8779 −1.63752 −0.818758 0.574138i \(-0.805337\pi\)
−0.818758 + 0.574138i \(0.805337\pi\)
\(312\) −35.2021 −1.99293
\(313\) −10.0722 −0.569314 −0.284657 0.958629i \(-0.591880\pi\)
−0.284657 + 0.958629i \(0.591880\pi\)
\(314\) 1.87813 0.105989
\(315\) 0 0
\(316\) 11.7334 0.660057
\(317\) −11.7781 −0.661524 −0.330762 0.943714i \(-0.607306\pi\)
−0.330762 + 0.943714i \(0.607306\pi\)
\(318\) 4.60025 0.257969
\(319\) −41.9952 −2.35128
\(320\) 4.91758 0.274901
\(321\) −14.0338 −0.783292
\(322\) 0 0
\(323\) −7.10865 −0.395536
\(324\) 13.4318 0.746211
\(325\) 5.49607 0.304867
\(326\) 12.4429 0.689147
\(327\) −25.5280 −1.41170
\(328\) −11.9665 −0.660741
\(329\) 0 0
\(330\) −10.6890 −0.588412
\(331\) −16.4942 −0.906604 −0.453302 0.891357i \(-0.649754\pi\)
−0.453302 + 0.891357i \(0.649754\pi\)
\(332\) −9.98943 −0.548241
\(333\) −2.13699 −0.117107
\(334\) −12.2975 −0.672888
\(335\) 3.60950 0.197208
\(336\) 0 0
\(337\) 9.15608 0.498763 0.249382 0.968405i \(-0.419773\pi\)
0.249382 + 0.968405i \(0.419773\pi\)
\(338\) 15.0142 0.816666
\(339\) −33.5486 −1.82211
\(340\) −1.79447 −0.0973187
\(341\) 27.3292 1.47996
\(342\) −9.14940 −0.494743
\(343\) 0 0
\(344\) 16.2564 0.876484
\(345\) −8.72706 −0.469849
\(346\) −14.6231 −0.786145
\(347\) −12.4922 −0.670616 −0.335308 0.942109i \(-0.608840\pi\)
−0.335308 + 0.942109i \(0.608840\pi\)
\(348\) −21.8126 −1.16928
\(349\) 19.1322 1.02412 0.512062 0.858948i \(-0.328882\pi\)
0.512062 + 0.858948i \(0.328882\pi\)
\(350\) 0 0
\(351\) −10.7503 −0.573809
\(352\) −30.6010 −1.63104
\(353\) −18.3652 −0.977481 −0.488740 0.872429i \(-0.662543\pi\)
−0.488740 + 0.872429i \(0.662543\pi\)
\(354\) −22.7486 −1.20908
\(355\) −1.09597 −0.0581681
\(356\) 19.1041 1.01252
\(357\) 0 0
\(358\) −0.187446 −0.00990684
\(359\) 0.493019 0.0260206 0.0130103 0.999915i \(-0.495859\pi\)
0.0130103 + 0.999915i \(0.495859\pi\)
\(360\) −6.03900 −0.318283
\(361\) 5.07534 0.267123
\(362\) −9.43048 −0.495655
\(363\) 41.2774 2.16650
\(364\) 0 0
\(365\) 12.8366 0.671896
\(366\) −26.9707 −1.40978
\(367\) 25.9495 1.35456 0.677278 0.735728i \(-0.263160\pi\)
0.677278 + 0.735728i \(0.263160\pi\)
\(368\) −0.0438295 −0.00228477
\(369\) 9.04918 0.471081
\(370\) −0.872576 −0.0453630
\(371\) 0 0
\(372\) 14.1950 0.735978
\(373\) 2.25019 0.116510 0.0582551 0.998302i \(-0.481446\pi\)
0.0582551 + 0.998302i \(0.481446\pi\)
\(374\) −6.83258 −0.353304
\(375\) 2.26649 0.117041
\(376\) 19.8942 1.02596
\(377\) 42.7042 2.19938
\(378\) 0 0
\(379\) −6.14943 −0.315875 −0.157937 0.987449i \(-0.550484\pi\)
−0.157937 + 0.987449i \(0.550484\pi\)
\(380\) 6.07745 0.311767
\(381\) 9.95665 0.510095
\(382\) −9.03472 −0.462257
\(383\) −4.74296 −0.242354 −0.121177 0.992631i \(-0.538667\pi\)
−0.121177 + 0.992631i \(0.538667\pi\)
\(384\) −15.9394 −0.813405
\(385\) 0 0
\(386\) −10.8268 −0.551068
\(387\) −12.2932 −0.624898
\(388\) 22.4310 1.13876
\(389\) 36.1324 1.83199 0.915993 0.401194i \(-0.131405\pi\)
0.915993 + 0.401194i \(0.131405\pi\)
\(390\) 10.8695 0.550399
\(391\) −5.57846 −0.282115
\(392\) 0 0
\(393\) −35.6019 −1.79588
\(394\) 7.56980 0.381361
\(395\) −9.47305 −0.476641
\(396\) 14.3060 0.718905
\(397\) −8.53534 −0.428377 −0.214188 0.976792i \(-0.568711\pi\)
−0.214188 + 0.976792i \(0.568711\pi\)
\(398\) 19.0619 0.955486
\(399\) 0 0
\(400\) 0.0113829 0.000569145 0
\(401\) 7.71974 0.385505 0.192753 0.981247i \(-0.438258\pi\)
0.192753 + 0.981247i \(0.438258\pi\)
\(402\) 7.13847 0.356035
\(403\) −27.7907 −1.38435
\(404\) −20.1076 −1.00039
\(405\) −10.8442 −0.538855
\(406\) 0 0
\(407\) 5.40482 0.267907
\(408\) −9.27934 −0.459396
\(409\) 15.4958 0.766220 0.383110 0.923703i \(-0.374853\pi\)
0.383110 + 0.923703i \(0.374853\pi\)
\(410\) 3.69495 0.182481
\(411\) −1.75370 −0.0865038
\(412\) −13.9924 −0.689358
\(413\) 0 0
\(414\) −7.17992 −0.352874
\(415\) 8.06502 0.395896
\(416\) 31.1177 1.52567
\(417\) −21.9476 −1.07478
\(418\) 23.1404 1.13183
\(419\) 23.3708 1.14174 0.570868 0.821042i \(-0.306607\pi\)
0.570868 + 0.821042i \(0.306607\pi\)
\(420\) 0 0
\(421\) −32.9042 −1.60365 −0.801826 0.597558i \(-0.796138\pi\)
−0.801826 + 0.597558i \(0.796138\pi\)
\(422\) −12.8588 −0.625957
\(423\) −15.0441 −0.731471
\(424\) −6.57334 −0.319230
\(425\) 1.44877 0.0702759
\(426\) −2.16749 −0.105015
\(427\) 0 0
\(428\) 7.66933 0.370711
\(429\) −67.3268 −3.25057
\(430\) −5.01955 −0.242064
\(431\) 23.3272 1.12363 0.561815 0.827263i \(-0.310103\pi\)
0.561815 + 0.827263i \(0.310103\pi\)
\(432\) −0.0222649 −0.00107122
\(433\) −27.3135 −1.31260 −0.656302 0.754498i \(-0.727880\pi\)
−0.656302 + 0.754498i \(0.727880\pi\)
\(434\) 0 0
\(435\) 17.6106 0.844362
\(436\) 13.9507 0.668119
\(437\) 18.8930 0.903772
\(438\) 25.3867 1.21302
\(439\) 38.1754 1.82201 0.911005 0.412394i \(-0.135307\pi\)
0.911005 + 0.412394i \(0.135307\pi\)
\(440\) 15.2736 0.728143
\(441\) 0 0
\(442\) 6.94794 0.330480
\(443\) −28.0017 −1.33040 −0.665199 0.746666i \(-0.731654\pi\)
−0.665199 + 0.746666i \(0.731654\pi\)
\(444\) 2.80731 0.133229
\(445\) −15.4238 −0.731160
\(446\) −2.00244 −0.0948182
\(447\) 10.2751 0.485996
\(448\) 0 0
\(449\) −6.19759 −0.292482 −0.146241 0.989249i \(-0.546718\pi\)
−0.146241 + 0.989249i \(0.546718\pi\)
\(450\) 1.86469 0.0879022
\(451\) −22.8869 −1.07770
\(452\) 18.3339 0.862355
\(453\) 8.35413 0.392511
\(454\) 8.30570 0.389806
\(455\) 0 0
\(456\) 31.4270 1.47170
\(457\) −16.6654 −0.779574 −0.389787 0.920905i \(-0.627451\pi\)
−0.389787 + 0.920905i \(0.627451\pi\)
\(458\) 5.27615 0.246538
\(459\) −2.83380 −0.132271
\(460\) 4.76924 0.222367
\(461\) −0.732995 −0.0341390 −0.0170695 0.999854i \(-0.505434\pi\)
−0.0170695 + 0.999854i \(0.505434\pi\)
\(462\) 0 0
\(463\) 21.1445 0.982670 0.491335 0.870971i \(-0.336509\pi\)
0.491335 + 0.870971i \(0.336509\pi\)
\(464\) 0.0884446 0.00410594
\(465\) −11.4604 −0.531465
\(466\) 13.9406 0.645785
\(467\) −19.5651 −0.905366 −0.452683 0.891671i \(-0.649533\pi\)
−0.452683 + 0.891671i \(0.649533\pi\)
\(468\) −14.5476 −0.672462
\(469\) 0 0
\(470\) −6.14281 −0.283347
\(471\) 4.87840 0.224785
\(472\) 32.5057 1.49620
\(473\) 31.0915 1.42959
\(474\) −18.7347 −0.860515
\(475\) −4.90666 −0.225133
\(476\) 0 0
\(477\) 4.97081 0.227598
\(478\) 22.8056 1.04310
\(479\) 12.8217 0.585838 0.292919 0.956137i \(-0.405373\pi\)
0.292919 + 0.956137i \(0.405373\pi\)
\(480\) 12.8324 0.585718
\(481\) −5.49607 −0.250599
\(482\) −18.3930 −0.837780
\(483\) 0 0
\(484\) −22.5576 −1.02535
\(485\) −18.1098 −0.822324
\(486\) −16.3262 −0.740573
\(487\) −5.36154 −0.242954 −0.121477 0.992594i \(-0.538763\pi\)
−0.121477 + 0.992594i \(0.538763\pi\)
\(488\) 38.5387 1.74456
\(489\) 32.3201 1.46156
\(490\) 0 0
\(491\) −5.54338 −0.250169 −0.125085 0.992146i \(-0.539920\pi\)
−0.125085 + 0.992146i \(0.539920\pi\)
\(492\) −11.8876 −0.535936
\(493\) 11.2569 0.506986
\(494\) −23.5311 −1.05871
\(495\) −11.5501 −0.519136
\(496\) −0.0575572 −0.00258439
\(497\) 0 0
\(498\) 15.9501 0.714741
\(499\) 7.32107 0.327736 0.163868 0.986482i \(-0.447603\pi\)
0.163868 + 0.986482i \(0.447603\pi\)
\(500\) −1.23861 −0.0553924
\(501\) −31.9424 −1.42708
\(502\) −11.5993 −0.517701
\(503\) 24.6636 1.09969 0.549847 0.835265i \(-0.314686\pi\)
0.549847 + 0.835265i \(0.314686\pi\)
\(504\) 0 0
\(505\) 16.2339 0.722401
\(506\) 18.1592 0.807276
\(507\) 38.9991 1.73201
\(508\) −5.44119 −0.241414
\(509\) −17.5381 −0.777363 −0.388681 0.921372i \(-0.627069\pi\)
−0.388681 + 0.921372i \(0.627069\pi\)
\(510\) 2.86522 0.126874
\(511\) 0 0
\(512\) 0.128782 0.00569143
\(513\) 9.59743 0.423737
\(514\) 4.10795 0.181194
\(515\) 11.2969 0.497799
\(516\) 16.1492 0.710929
\(517\) 38.0492 1.67340
\(518\) 0 0
\(519\) −37.9832 −1.66728
\(520\) −15.5315 −0.681103
\(521\) 21.4468 0.939600 0.469800 0.882773i \(-0.344326\pi\)
0.469800 + 0.882773i \(0.344326\pi\)
\(522\) 14.4885 0.634146
\(523\) −4.77447 −0.208773 −0.104386 0.994537i \(-0.533288\pi\)
−0.104386 + 0.994537i \(0.533288\pi\)
\(524\) 19.4560 0.849940
\(525\) 0 0
\(526\) −23.0970 −1.00708
\(527\) −7.32567 −0.319111
\(528\) −0.139440 −0.00606836
\(529\) −8.17389 −0.355387
\(530\) 2.02968 0.0881636
\(531\) −24.5811 −1.06673
\(532\) 0 0
\(533\) 23.2733 1.00808
\(534\) −30.5035 −1.32002
\(535\) −6.19187 −0.267698
\(536\) −10.2002 −0.440582
\(537\) −0.486887 −0.0210107
\(538\) 21.6801 0.934694
\(539\) 0 0
\(540\) 2.42272 0.104257
\(541\) −10.4077 −0.447461 −0.223731 0.974651i \(-0.571824\pi\)
−0.223731 + 0.974651i \(0.571824\pi\)
\(542\) 13.7394 0.590158
\(543\) −24.4954 −1.05120
\(544\) 8.20267 0.351687
\(545\) −11.2632 −0.482463
\(546\) 0 0
\(547\) 31.5603 1.34942 0.674710 0.738083i \(-0.264269\pi\)
0.674710 + 0.738083i \(0.264269\pi\)
\(548\) 0.958378 0.0409399
\(549\) −29.1432 −1.24380
\(550\) −4.71611 −0.201096
\(551\) −38.1246 −1.62416
\(552\) 24.6621 1.04969
\(553\) 0 0
\(554\) −2.25379 −0.0957542
\(555\) −2.26649 −0.0962073
\(556\) 11.9941 0.508663
\(557\) 38.8042 1.64419 0.822094 0.569351i \(-0.192806\pi\)
0.822094 + 0.569351i \(0.192806\pi\)
\(558\) −9.42872 −0.399150
\(559\) −31.6165 −1.33724
\(560\) 0 0
\(561\) −17.7475 −0.749298
\(562\) 22.7339 0.958972
\(563\) −35.9014 −1.51306 −0.756531 0.653958i \(-0.773107\pi\)
−0.756531 + 0.653958i \(0.773107\pi\)
\(564\) 19.7630 0.832175
\(565\) −14.8020 −0.622725
\(566\) −12.2469 −0.514774
\(567\) 0 0
\(568\) 3.09714 0.129953
\(569\) 1.47574 0.0618662 0.0309331 0.999521i \(-0.490152\pi\)
0.0309331 + 0.999521i \(0.490152\pi\)
\(570\) −9.70384 −0.406449
\(571\) 32.3600 1.35422 0.677111 0.735881i \(-0.263232\pi\)
0.677111 + 0.735881i \(0.263232\pi\)
\(572\) 36.7933 1.53840
\(573\) −23.4675 −0.980368
\(574\) 0 0
\(575\) −3.85047 −0.160576
\(576\) 10.5088 0.437868
\(577\) 23.6419 0.984224 0.492112 0.870532i \(-0.336225\pi\)
0.492112 + 0.870532i \(0.336225\pi\)
\(578\) −13.0023 −0.540824
\(579\) −28.1223 −1.16872
\(580\) −9.62396 −0.399613
\(581\) 0 0
\(582\) −35.8155 −1.48460
\(583\) −12.5720 −0.520680
\(584\) −36.2753 −1.50108
\(585\) 11.7451 0.485599
\(586\) 8.10711 0.334902
\(587\) 32.8786 1.35704 0.678522 0.734580i \(-0.262621\pi\)
0.678522 + 0.734580i \(0.262621\pi\)
\(588\) 0 0
\(589\) 24.8103 1.02229
\(590\) −10.0369 −0.413214
\(591\) 19.6624 0.808802
\(592\) −0.0113829 −0.000467834 0
\(593\) −15.8650 −0.651498 −0.325749 0.945456i \(-0.605616\pi\)
−0.325749 + 0.945456i \(0.605616\pi\)
\(594\) 9.22471 0.378494
\(595\) 0 0
\(596\) −5.61522 −0.230009
\(597\) 49.5128 2.02642
\(598\) −18.4658 −0.755124
\(599\) 37.9014 1.54861 0.774304 0.632814i \(-0.218100\pi\)
0.774304 + 0.632814i \(0.218100\pi\)
\(600\) −6.40496 −0.261481
\(601\) −8.42327 −0.343593 −0.171796 0.985133i \(-0.554957\pi\)
−0.171796 + 0.985133i \(0.554957\pi\)
\(602\) 0 0
\(603\) 7.71349 0.314117
\(604\) −4.56543 −0.185765
\(605\) 18.2120 0.740424
\(606\) 32.1057 1.30420
\(607\) −21.7124 −0.881281 −0.440640 0.897684i \(-0.645249\pi\)
−0.440640 + 0.897684i \(0.645249\pi\)
\(608\) −27.7805 −1.12665
\(609\) 0 0
\(610\) −11.8997 −0.481807
\(611\) −38.6916 −1.56529
\(612\) −3.83477 −0.155011
\(613\) 20.9592 0.846534 0.423267 0.906005i \(-0.360883\pi\)
0.423267 + 0.906005i \(0.360883\pi\)
\(614\) 15.9458 0.643518
\(615\) 9.59755 0.387011
\(616\) 0 0
\(617\) −12.7620 −0.513778 −0.256889 0.966441i \(-0.582697\pi\)
−0.256889 + 0.966441i \(0.582697\pi\)
\(618\) 22.3417 0.898714
\(619\) −10.2303 −0.411189 −0.205595 0.978637i \(-0.565913\pi\)
−0.205595 + 0.978637i \(0.565913\pi\)
\(620\) 6.26299 0.251528
\(621\) 7.53151 0.302229
\(622\) −25.1982 −1.01035
\(623\) 0 0
\(624\) 0.141795 0.00567632
\(625\) 1.00000 0.0400000
\(626\) −8.78874 −0.351269
\(627\) 60.1065 2.40042
\(628\) −2.66599 −0.106385
\(629\) −1.44877 −0.0577664
\(630\) 0 0
\(631\) −21.1580 −0.842287 −0.421143 0.906994i \(-0.638371\pi\)
−0.421143 + 0.906994i \(0.638371\pi\)
\(632\) 26.7702 1.06486
\(633\) −33.4005 −1.32755
\(634\) −10.2773 −0.408163
\(635\) 4.39298 0.174330
\(636\) −6.53001 −0.258932
\(637\) 0 0
\(638\) −36.6440 −1.45075
\(639\) −2.34208 −0.0926514
\(640\) −7.03264 −0.277989
\(641\) −10.5859 −0.418117 −0.209059 0.977903i \(-0.567040\pi\)
−0.209059 + 0.977903i \(0.567040\pi\)
\(642\) −12.2456 −0.483295
\(643\) 9.09491 0.358668 0.179334 0.983788i \(-0.442606\pi\)
0.179334 + 0.983788i \(0.442606\pi\)
\(644\) 0 0
\(645\) −13.0381 −0.513377
\(646\) −6.20283 −0.244047
\(647\) 3.83139 0.150627 0.0753137 0.997160i \(-0.476004\pi\)
0.0753137 + 0.997160i \(0.476004\pi\)
\(648\) 30.6451 1.20385
\(649\) 62.1697 2.44037
\(650\) 4.79574 0.188104
\(651\) 0 0
\(652\) −17.6625 −0.691718
\(653\) 6.42255 0.251334 0.125667 0.992072i \(-0.459893\pi\)
0.125667 + 0.992072i \(0.459893\pi\)
\(654\) −22.2751 −0.871025
\(655\) −15.7079 −0.613759
\(656\) 0.0482013 0.00188194
\(657\) 27.4316 1.07021
\(658\) 0 0
\(659\) 28.9307 1.12698 0.563490 0.826123i \(-0.309459\pi\)
0.563490 + 0.826123i \(0.309459\pi\)
\(660\) 15.1730 0.590607
\(661\) −2.75652 −0.107216 −0.0536082 0.998562i \(-0.517072\pi\)
−0.0536082 + 0.998562i \(0.517072\pi\)
\(662\) −14.3924 −0.559378
\(663\) 18.0471 0.700891
\(664\) −22.7912 −0.884471
\(665\) 0 0
\(666\) −1.86469 −0.0722552
\(667\) −29.9180 −1.15843
\(668\) 17.4561 0.675398
\(669\) −5.20129 −0.201093
\(670\) 3.14957 0.121678
\(671\) 73.7082 2.84547
\(672\) 0 0
\(673\) 2.91328 0.112299 0.0561493 0.998422i \(-0.482118\pi\)
0.0561493 + 0.998422i \(0.482118\pi\)
\(674\) 7.98937 0.307739
\(675\) −1.95600 −0.0752865
\(676\) −21.3125 −0.819713
\(677\) 2.56979 0.0987650 0.0493825 0.998780i \(-0.484275\pi\)
0.0493825 + 0.998780i \(0.484275\pi\)
\(678\) −29.2737 −1.12425
\(679\) 0 0
\(680\) −4.09414 −0.157003
\(681\) 21.5739 0.826712
\(682\) 23.8468 0.913142
\(683\) −20.3232 −0.777646 −0.388823 0.921313i \(-0.627118\pi\)
−0.388823 + 0.921313i \(0.627118\pi\)
\(684\) 12.9875 0.496588
\(685\) −0.773751 −0.0295635
\(686\) 0 0
\(687\) 13.7047 0.522866
\(688\) −0.0654808 −0.00249643
\(689\) 12.7843 0.487043
\(690\) −7.61502 −0.289899
\(691\) 11.9672 0.455255 0.227627 0.973748i \(-0.426903\pi\)
0.227627 + 0.973748i \(0.426903\pi\)
\(692\) 20.7574 0.789077
\(693\) 0 0
\(694\) −10.9004 −0.413773
\(695\) −9.68350 −0.367316
\(696\) −49.7663 −1.88639
\(697\) 6.13489 0.232375
\(698\) 16.6943 0.631889
\(699\) 36.2103 1.36960
\(700\) 0 0
\(701\) 29.2734 1.10564 0.552821 0.833300i \(-0.313551\pi\)
0.552821 + 0.833300i \(0.313551\pi\)
\(702\) −9.38046 −0.354043
\(703\) 4.90666 0.185058
\(704\) −26.5786 −1.00172
\(705\) −15.9558 −0.600930
\(706\) −16.0250 −0.603110
\(707\) 0 0
\(708\) 32.2915 1.21359
\(709\) 26.3528 0.989701 0.494851 0.868978i \(-0.335223\pi\)
0.494851 + 0.868978i \(0.335223\pi\)
\(710\) −0.956318 −0.0358900
\(711\) −20.2438 −0.759203
\(712\) 43.5867 1.63348
\(713\) 19.4697 0.729148
\(714\) 0 0
\(715\) −29.7052 −1.11091
\(716\) 0.266078 0.00994380
\(717\) 59.2370 2.21225
\(718\) 0.430197 0.0160548
\(719\) 31.7692 1.18479 0.592395 0.805648i \(-0.298182\pi\)
0.592395 + 0.805648i \(0.298182\pi\)
\(720\) 0.0243252 0.000906545 0
\(721\) 0 0
\(722\) 4.42862 0.164816
\(723\) −47.7755 −1.77679
\(724\) 13.3865 0.497504
\(725\) 7.76996 0.288569
\(726\) 36.0177 1.33674
\(727\) −34.4510 −1.27772 −0.638859 0.769324i \(-0.720593\pi\)
−0.638859 + 0.769324i \(0.720593\pi\)
\(728\) 0 0
\(729\) −9.87429 −0.365714
\(730\) 11.2009 0.414563
\(731\) −8.33417 −0.308250
\(732\) 38.2846 1.41504
\(733\) 17.1054 0.631801 0.315901 0.948792i \(-0.397693\pi\)
0.315901 + 0.948792i \(0.397693\pi\)
\(734\) 22.6429 0.835766
\(735\) 0 0
\(736\) −21.8006 −0.803580
\(737\) −19.5087 −0.718612
\(738\) 7.89609 0.290659
\(739\) −33.9110 −1.24744 −0.623718 0.781650i \(-0.714378\pi\)
−0.623718 + 0.781650i \(0.714378\pi\)
\(740\) 1.23861 0.0455323
\(741\) −61.1214 −2.24535
\(742\) 0 0
\(743\) −5.27721 −0.193602 −0.0968010 0.995304i \(-0.530861\pi\)
−0.0968010 + 0.995304i \(0.530861\pi\)
\(744\) 32.3864 1.18734
\(745\) 4.53348 0.166094
\(746\) 1.96346 0.0718873
\(747\) 17.2349 0.630592
\(748\) 9.69877 0.354622
\(749\) 0 0
\(750\) 1.97769 0.0722149
\(751\) −45.8235 −1.67212 −0.836061 0.548636i \(-0.815147\pi\)
−0.836061 + 0.548636i \(0.815147\pi\)
\(752\) −0.0801340 −0.00292219
\(753\) −30.1289 −1.09796
\(754\) 37.2627 1.35703
\(755\) 3.68593 0.134145
\(756\) 0 0
\(757\) −14.5832 −0.530036 −0.265018 0.964243i \(-0.585378\pi\)
−0.265018 + 0.964243i \(0.585378\pi\)
\(758\) −5.36584 −0.194896
\(759\) 47.1682 1.71210
\(760\) 13.8659 0.502969
\(761\) 38.7629 1.40515 0.702577 0.711607i \(-0.252032\pi\)
0.702577 + 0.711607i \(0.252032\pi\)
\(762\) 8.68793 0.314731
\(763\) 0 0
\(764\) 12.8247 0.463981
\(765\) 3.09602 0.111937
\(766\) −4.13859 −0.149533
\(767\) −63.2194 −2.28272
\(768\) −36.1997 −1.30624
\(769\) −7.31877 −0.263921 −0.131961 0.991255i \(-0.542127\pi\)
−0.131961 + 0.991255i \(0.542127\pi\)
\(770\) 0 0
\(771\) 10.6703 0.384282
\(772\) 15.3685 0.553124
\(773\) −7.48899 −0.269360 −0.134680 0.990889i \(-0.543001\pi\)
−0.134680 + 0.990889i \(0.543001\pi\)
\(774\) −10.7267 −0.385565
\(775\) −5.05646 −0.181633
\(776\) 51.1771 1.83715
\(777\) 0 0
\(778\) 31.5283 1.13034
\(779\) −20.7774 −0.744429
\(780\) −15.4292 −0.552452
\(781\) 5.92352 0.211960
\(782\) −4.86763 −0.174066
\(783\) −15.1980 −0.543133
\(784\) 0 0
\(785\) 2.15240 0.0768225
\(786\) −31.0653 −1.10806
\(787\) −45.1825 −1.61058 −0.805291 0.592880i \(-0.797991\pi\)
−0.805291 + 0.592880i \(0.797991\pi\)
\(788\) −10.7452 −0.382784
\(789\) −59.9939 −2.13584
\(790\) −8.26595 −0.294089
\(791\) 0 0
\(792\) 32.6397 1.15980
\(793\) −74.9527 −2.66165
\(794\) −7.44773 −0.264310
\(795\) 5.27204 0.186980
\(796\) −27.0582 −0.959051
\(797\) −4.91928 −0.174250 −0.0871250 0.996197i \(-0.527768\pi\)
−0.0871250 + 0.996197i \(0.527768\pi\)
\(798\) 0 0
\(799\) −10.1992 −0.360821
\(800\) 5.66180 0.200175
\(801\) −32.9606 −1.16461
\(802\) 6.73606 0.237858
\(803\) −69.3792 −2.44834
\(804\) −10.1330 −0.357363
\(805\) 0 0
\(806\) −24.2495 −0.854151
\(807\) 56.3134 1.98233
\(808\) −45.8760 −1.61391
\(809\) 13.4001 0.471124 0.235562 0.971859i \(-0.424307\pi\)
0.235562 + 0.971859i \(0.424307\pi\)
\(810\) −9.46242 −0.332476
\(811\) 24.6127 0.864267 0.432134 0.901810i \(-0.357761\pi\)
0.432134 + 0.901810i \(0.357761\pi\)
\(812\) 0 0
\(813\) 35.6877 1.25162
\(814\) 4.71611 0.165300
\(815\) 14.2599 0.499504
\(816\) 0.0373773 0.00130847
\(817\) 28.2259 0.987499
\(818\) 13.5213 0.472761
\(819\) 0 0
\(820\) −5.24495 −0.183162
\(821\) 42.7476 1.49190 0.745951 0.666001i \(-0.231995\pi\)
0.745951 + 0.666001i \(0.231995\pi\)
\(822\) −1.53024 −0.0533732
\(823\) −17.2878 −0.602613 −0.301307 0.953527i \(-0.597423\pi\)
−0.301307 + 0.953527i \(0.597423\pi\)
\(824\) −31.9242 −1.11213
\(825\) −12.2500 −0.426490
\(826\) 0 0
\(827\) −4.24836 −0.147730 −0.0738650 0.997268i \(-0.523533\pi\)
−0.0738650 + 0.997268i \(0.523533\pi\)
\(828\) 10.1918 0.354190
\(829\) −24.1597 −0.839101 −0.419551 0.907732i \(-0.637812\pi\)
−0.419551 + 0.907732i \(0.637812\pi\)
\(830\) 7.03734 0.244270
\(831\) −5.85416 −0.203078
\(832\) 27.0274 0.937006
\(833\) 0 0
\(834\) −19.1509 −0.663142
\(835\) −14.0933 −0.487719
\(836\) −32.8475 −1.13605
\(837\) 9.89043 0.341863
\(838\) 20.3928 0.704456
\(839\) 18.3474 0.633424 0.316712 0.948522i \(-0.397421\pi\)
0.316712 + 0.948522i \(0.397421\pi\)
\(840\) 0 0
\(841\) 31.3722 1.08180
\(842\) −28.7114 −0.989460
\(843\) 59.0508 2.03382
\(844\) 18.2530 0.628293
\(845\) 17.2068 0.591932
\(846\) −13.1271 −0.451321
\(847\) 0 0
\(848\) 0.0264775 0.000909241 0
\(849\) −31.8109 −1.09175
\(850\) 1.26417 0.0433605
\(851\) 3.85047 0.131992
\(852\) 3.07673 0.105407
\(853\) 53.1321 1.81921 0.909604 0.415476i \(-0.136385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(854\) 0 0
\(855\) −10.4855 −0.358597
\(856\) 17.4978 0.598063
\(857\) −24.6816 −0.843108 −0.421554 0.906803i \(-0.638515\pi\)
−0.421554 + 0.906803i \(0.638515\pi\)
\(858\) −58.7477 −2.00561
\(859\) 35.1531 1.19941 0.599704 0.800222i \(-0.295285\pi\)
0.599704 + 0.800222i \(0.295285\pi\)
\(860\) 7.12519 0.242967
\(861\) 0 0
\(862\) 20.3547 0.693284
\(863\) −16.7311 −0.569532 −0.284766 0.958597i \(-0.591916\pi\)
−0.284766 + 0.958597i \(0.591916\pi\)
\(864\) −11.0745 −0.376761
\(865\) −16.7586 −0.569809
\(866\) −23.8331 −0.809882
\(867\) −33.7731 −1.14700
\(868\) 0 0
\(869\) 51.2001 1.73684
\(870\) 15.3665 0.520975
\(871\) 19.8381 0.672188
\(872\) 31.8291 1.07787
\(873\) −38.7005 −1.30981
\(874\) 16.4855 0.557631
\(875\) 0 0
\(876\) −36.0362 −1.21755
\(877\) −2.29029 −0.0773374 −0.0386687 0.999252i \(-0.512312\pi\)
−0.0386687 + 0.999252i \(0.512312\pi\)
\(878\) 33.3109 1.12419
\(879\) 21.0580 0.710269
\(880\) −0.0615224 −0.00207392
\(881\) −1.51818 −0.0511488 −0.0255744 0.999673i \(-0.508141\pi\)
−0.0255744 + 0.999673i \(0.508141\pi\)
\(882\) 0 0
\(883\) −2.62124 −0.0882118 −0.0441059 0.999027i \(-0.514044\pi\)
−0.0441059 + 0.999027i \(0.514044\pi\)
\(884\) −9.86253 −0.331713
\(885\) −26.0707 −0.876356
\(886\) −24.4336 −0.820862
\(887\) 41.3577 1.38866 0.694328 0.719659i \(-0.255702\pi\)
0.694328 + 0.719659i \(0.255702\pi\)
\(888\) 6.40496 0.214936
\(889\) 0 0
\(890\) −13.4585 −0.451128
\(891\) 58.6111 1.96355
\(892\) 2.84244 0.0951720
\(893\) 34.5422 1.15591
\(894\) 8.96581 0.299861
\(895\) −0.214819 −0.00718062
\(896\) 0 0
\(897\) −47.9646 −1.60149
\(898\) −5.40786 −0.180463
\(899\) −39.2885 −1.31034
\(900\) −2.64690 −0.0882302
\(901\) 3.36996 0.112270
\(902\) −19.9705 −0.664946
\(903\) 0 0
\(904\) 41.8295 1.39123
\(905\) −10.8076 −0.359258
\(906\) 7.28961 0.242181
\(907\) −45.8658 −1.52295 −0.761475 0.648194i \(-0.775524\pi\)
−0.761475 + 0.648194i \(0.775524\pi\)
\(908\) −11.7899 −0.391260
\(909\) 34.6918 1.15066
\(910\) 0 0
\(911\) 32.0100 1.06054 0.530269 0.847829i \(-0.322091\pi\)
0.530269 + 0.847829i \(0.322091\pi\)
\(912\) −0.126588 −0.00419176
\(913\) −43.5900 −1.44262
\(914\) −14.5418 −0.481000
\(915\) −30.9093 −1.02183
\(916\) −7.48944 −0.247458
\(917\) 0 0
\(918\) −2.47271 −0.0816115
\(919\) −34.9721 −1.15362 −0.576811 0.816877i \(-0.695703\pi\)
−0.576811 + 0.816877i \(0.695703\pi\)
\(920\) 10.8812 0.358742
\(921\) 41.4187 1.36479
\(922\) −0.639594 −0.0210639
\(923\) −6.02354 −0.198267
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 18.4502 0.606312
\(927\) 24.1413 0.792905
\(928\) 43.9919 1.44411
\(929\) 21.3491 0.700441 0.350221 0.936667i \(-0.386107\pi\)
0.350221 + 0.936667i \(0.386107\pi\)
\(930\) −10.0001 −0.327916
\(931\) 0 0
\(932\) −19.7885 −0.648194
\(933\) −65.4516 −2.14279
\(934\) −17.0721 −0.558615
\(935\) −7.83036 −0.256080
\(936\) −33.1908 −1.08487
\(937\) −43.2352 −1.41243 −0.706217 0.707996i \(-0.749600\pi\)
−0.706217 + 0.707996i \(0.749600\pi\)
\(938\) 0 0
\(939\) −22.8285 −0.744981
\(940\) 8.71966 0.284404
\(941\) −30.1810 −0.983873 −0.491936 0.870631i \(-0.663711\pi\)
−0.491936 + 0.870631i \(0.663711\pi\)
\(942\) 4.25677 0.138693
\(943\) −16.3050 −0.530962
\(944\) −0.130933 −0.00426152
\(945\) 0 0
\(946\) 27.1297 0.882063
\(947\) −17.8343 −0.579536 −0.289768 0.957097i \(-0.593578\pi\)
−0.289768 + 0.957097i \(0.593578\pi\)
\(948\) 26.5938 0.863725
\(949\) 70.5507 2.29017
\(950\) −4.28143 −0.138908
\(951\) −26.6950 −0.865644
\(952\) 0 0
\(953\) −23.3165 −0.755295 −0.377648 0.925949i \(-0.623267\pi\)
−0.377648 + 0.925949i \(0.623267\pi\)
\(954\) 4.33741 0.140429
\(955\) −10.3541 −0.335050
\(956\) −32.3723 −1.04700
\(957\) −95.1818 −3.07679
\(958\) 11.1879 0.361464
\(959\) 0 0
\(960\) 11.1457 0.359725
\(961\) −5.43221 −0.175232
\(962\) −4.79574 −0.154621
\(963\) −13.2320 −0.426395
\(964\) 26.1087 0.840906
\(965\) −12.4078 −0.399422
\(966\) 0 0
\(967\) 56.1130 1.80447 0.902237 0.431241i \(-0.141924\pi\)
0.902237 + 0.431241i \(0.141924\pi\)
\(968\) −51.4660 −1.65418
\(969\) −16.1117 −0.517582
\(970\) −15.8022 −0.507377
\(971\) −19.3788 −0.621896 −0.310948 0.950427i \(-0.600647\pi\)
−0.310948 + 0.950427i \(0.600647\pi\)
\(972\) 23.1749 0.743336
\(973\) 0 0
\(974\) −4.67834 −0.149904
\(975\) 12.4568 0.398937
\(976\) −0.155234 −0.00496893
\(977\) −37.0688 −1.18594 −0.592969 0.805225i \(-0.702044\pi\)
−0.592969 + 0.805225i \(0.702044\pi\)
\(978\) 28.2017 0.901791
\(979\) 83.3629 2.66429
\(980\) 0 0
\(981\) −24.0694 −0.768476
\(982\) −4.83702 −0.154355
\(983\) 23.0679 0.735753 0.367877 0.929875i \(-0.380085\pi\)
0.367877 + 0.929875i \(0.380085\pi\)
\(984\) −27.1220 −0.864619
\(985\) 8.67524 0.276416
\(986\) 9.82251 0.312812
\(987\) 0 0
\(988\) 33.4021 1.06266
\(989\) 22.1501 0.704331
\(990\) −10.0783 −0.320309
\(991\) 16.0128 0.508663 0.254331 0.967117i \(-0.418145\pi\)
0.254331 + 0.967117i \(0.418145\pi\)
\(992\) −28.6287 −0.908961
\(993\) −37.3840 −1.18635
\(994\) 0 0
\(995\) 21.8456 0.692551
\(996\) −22.6410 −0.717407
\(997\) −2.06423 −0.0653749 −0.0326875 0.999466i \(-0.510407\pi\)
−0.0326875 + 0.999466i \(0.510407\pi\)
\(998\) 6.38819 0.202215
\(999\) 1.95600 0.0618851
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.v.1.15 21
7.3 odd 6 1295.2.j.b.926.7 yes 42
7.5 odd 6 1295.2.j.b.186.7 42
7.6 odd 2 9065.2.a.w.1.15 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.b.186.7 42 7.5 odd 6
1295.2.j.b.926.7 yes 42 7.3 odd 6
9065.2.a.v.1.15 21 1.1 even 1 trivial
9065.2.a.w.1.15 21 7.6 odd 2