Properties

Label 2-9065-1.1-c1-0-457
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.872·2-s + 2.26·3-s − 1.23·4-s + 5-s + 1.97·6-s − 2.82·8-s + 2.13·9-s + 0.872·10-s − 5.40·11-s − 2.80·12-s + 5.49·13-s + 2.26·15-s + 0.0113·16-s + 1.44·17-s + 1.86·18-s − 4.90·19-s − 1.23·20-s − 4.71·22-s − 3.85·23-s − 6.40·24-s + 25-s + 4.79·26-s − 1.95·27-s + 7.76·29-s + 1.97·30-s − 5.05·31-s + 5.66·32-s + ⋯
L(s)  = 1  + 0.617·2-s + 1.30·3-s − 0.619·4-s + 0.447·5-s + 0.807·6-s − 0.999·8-s + 0.712·9-s + 0.275·10-s − 1.62·11-s − 0.810·12-s + 1.52·13-s + 0.585·15-s + 0.00284·16-s + 0.351·17-s + 0.439·18-s − 1.12·19-s − 0.276·20-s − 1.00·22-s − 0.802·23-s − 1.30·24-s + 0.200·25-s + 0.940·26-s − 0.376·27-s + 1.44·29-s + 0.361·30-s − 0.908·31-s + 1.00·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 0.872T + 2T^{2} \)
3 \( 1 - 2.26T + 3T^{2} \)
11 \( 1 + 5.40T + 11T^{2} \)
13 \( 1 - 5.49T + 13T^{2} \)
17 \( 1 - 1.44T + 17T^{2} \)
19 \( 1 + 4.90T + 19T^{2} \)
23 \( 1 + 3.85T + 23T^{2} \)
29 \( 1 - 7.76T + 29T^{2} \)
31 \( 1 + 5.05T + 31T^{2} \)
41 \( 1 - 4.23T + 41T^{2} \)
43 \( 1 + 5.75T + 43T^{2} \)
47 \( 1 + 7.03T + 47T^{2} \)
53 \( 1 - 2.32T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 - 3.60T + 67T^{2} \)
71 \( 1 + 1.09T + 71T^{2} \)
73 \( 1 - 12.8T + 73T^{2} \)
79 \( 1 + 9.47T + 79T^{2} \)
83 \( 1 - 8.06T + 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 + 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71103030792923316361781844082, −6.50454828935170029586000690641, −5.94905752508148533508708944816, −5.25348876122445386966609330605, −4.47701861356375416563054595918, −3.74632138123028648290661452914, −3.09652747646929333541511574938, −2.50864242340050056634851800767, −1.53852229542559514013131566127, 0, 1.53852229542559514013131566127, 2.50864242340050056634851800767, 3.09652747646929333541511574938, 3.74632138123028648290661452914, 4.47701861356375416563054595918, 5.25348876122445386966609330605, 5.94905752508148533508708944816, 6.50454828935170029586000690641, 7.71103030792923316361781844082

Graph of the $Z$-function along the critical line