gp: [N,k,chi] = [9065,2,Mod(1,9065)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9065.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9065, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [21,-3,-1,13,21,-6,0,-9,12,-3,-5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( -1 \)
\(7\)
\( -1 \)
\(37\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):
\( T_{2}^{21} + 3 T_{2}^{20} - 23 T_{2}^{19} - 71 T_{2}^{18} + 217 T_{2}^{17} + 696 T_{2}^{16} - 1085 T_{2}^{15} + \cdots - 17 \)
T2^21 + 3*T2^20 - 23*T2^19 - 71*T2^18 + 217*T2^17 + 696*T2^16 - 1085*T2^15 - 3668*T2^14 + 3113*T2^13 + 11308*T2^12 - 5269*T2^11 - 20882*T2^10 + 5506*T2^9 + 22915*T2^8 - 4167*T2^7 - 14444*T2^6 + 2649*T2^5 + 4734*T2^4 - 1156*T2^3 - 578*T2^2 + 212*T2 - 17
\( T_{3}^{21} + T_{3}^{20} - 37 T_{3}^{19} - 33 T_{3}^{18} + 569 T_{3}^{17} + 450 T_{3}^{16} - 4746 T_{3}^{15} + \cdots - 1 \)
T3^21 + T3^20 - 37*T3^19 - 33*T3^18 + 569*T3^17 + 450*T3^16 - 4746*T3^15 - 3351*T3^14 + 23430*T3^13 + 15006*T3^12 - 69906*T3^11 - 41270*T3^10 + 122885*T3^9 + 66666*T3^8 - 117445*T3^7 - 54316*T3^6 + 51738*T3^5 + 13542*T3^4 - 8978*T3^3 + 682*T3^2 + 57*T3 - 1
\( T_{11}^{21} + 5 T_{11}^{20} - 105 T_{11}^{19} - 557 T_{11}^{18} + 4212 T_{11}^{17} + 24857 T_{11}^{16} + \cdots + 20206416 \)
T11^21 + 5*T11^20 - 105*T11^19 - 557*T11^18 + 4212*T11^17 + 24857*T11^16 - 78199*T11^15 - 568945*T11^14 + 570598*T11^13 + 7101023*T11^12 + 1690296*T11^11 - 47289433*T11^10 - 51591952*T11^9 + 146141015*T11^8 + 288227233*T11^7 - 82376263*T11^6 - 562644566*T11^5 - 391422396*T11^4 + 127442850*T11^3 + 281552493*T11^2 + 129747864*T11 + 20206416