Properties

Label 9065.2.a.p.1.5
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,1,-1,13,17,-4,0,-3,8,1,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 23 x^{15} + 23 x^{14} + 209 x^{13} - 205 x^{12} - 971 x^{11} + 907 x^{10} + 2497 x^{9} + \cdots + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.39989\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39989 q^{2} -3.04811 q^{3} -0.0403202 q^{4} +1.00000 q^{5} +4.26700 q^{6} +2.85621 q^{8} +6.29096 q^{9} -1.39989 q^{10} -3.64714 q^{11} +0.122900 q^{12} +4.84416 q^{13} -3.04811 q^{15} -3.91773 q^{16} -5.93954 q^{17} -8.80662 q^{18} +2.80285 q^{19} -0.0403202 q^{20} +5.10558 q^{22} +6.78095 q^{23} -8.70605 q^{24} +1.00000 q^{25} -6.78127 q^{26} -10.0312 q^{27} +2.56349 q^{29} +4.26700 q^{30} +8.03902 q^{31} -0.228051 q^{32} +11.1169 q^{33} +8.31468 q^{34} -0.253653 q^{36} -1.00000 q^{37} -3.92368 q^{38} -14.7655 q^{39} +2.85621 q^{40} -5.29308 q^{41} -2.79133 q^{43} +0.147054 q^{44} +6.29096 q^{45} -9.49256 q^{46} -4.66023 q^{47} +11.9417 q^{48} -1.39989 q^{50} +18.1044 q^{51} -0.195317 q^{52} +5.56644 q^{53} +14.0425 q^{54} -3.64714 q^{55} -8.54340 q^{57} -3.58860 q^{58} -2.97995 q^{59} +0.122900 q^{60} -13.4537 q^{61} -11.2537 q^{62} +8.15471 q^{64} +4.84416 q^{65} -15.5624 q^{66} -9.91515 q^{67} +0.239484 q^{68} -20.6691 q^{69} +5.93981 q^{71} +17.9683 q^{72} +9.66860 q^{73} +1.39989 q^{74} -3.04811 q^{75} -0.113012 q^{76} +20.6700 q^{78} -14.6739 q^{79} -3.91773 q^{80} +11.7033 q^{81} +7.40970 q^{82} +9.83911 q^{83} -5.93954 q^{85} +3.90755 q^{86} -7.81380 q^{87} -10.4170 q^{88} -0.523456 q^{89} -8.80662 q^{90} -0.273409 q^{92} -24.5038 q^{93} +6.52379 q^{94} +2.80285 q^{95} +0.695123 q^{96} -7.05294 q^{97} -22.9440 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + q^{2} - q^{3} + 13 q^{4} + 17 q^{5} - 4 q^{6} - 3 q^{8} + 8 q^{9} + q^{10} - 19 q^{11} - 4 q^{12} - 11 q^{13} - q^{15} + 9 q^{16} - 13 q^{17} - 2 q^{18} - 20 q^{19} + 13 q^{20} + 16 q^{22} + 4 q^{23}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39989 −0.989869 −0.494934 0.868930i \(-0.664808\pi\)
−0.494934 + 0.868930i \(0.664808\pi\)
\(3\) −3.04811 −1.75983 −0.879913 0.475135i \(-0.842399\pi\)
−0.879913 + 0.475135i \(0.842399\pi\)
\(4\) −0.0403202 −0.0201601
\(5\) 1.00000 0.447214
\(6\) 4.26700 1.74200
\(7\) 0 0
\(8\) 2.85621 1.00982
\(9\) 6.29096 2.09699
\(10\) −1.39989 −0.442683
\(11\) −3.64714 −1.09966 −0.549828 0.835278i \(-0.685307\pi\)
−0.549828 + 0.835278i \(0.685307\pi\)
\(12\) 0.122900 0.0354783
\(13\) 4.84416 1.34353 0.671764 0.740765i \(-0.265537\pi\)
0.671764 + 0.740765i \(0.265537\pi\)
\(14\) 0 0
\(15\) −3.04811 −0.787018
\(16\) −3.91773 −0.979433
\(17\) −5.93954 −1.44055 −0.720275 0.693689i \(-0.755984\pi\)
−0.720275 + 0.693689i \(0.755984\pi\)
\(18\) −8.80662 −2.07574
\(19\) 2.80285 0.643019 0.321509 0.946906i \(-0.395810\pi\)
0.321509 + 0.946906i \(0.395810\pi\)
\(20\) −0.0403202 −0.00901587
\(21\) 0 0
\(22\) 5.10558 1.08851
\(23\) 6.78095 1.41393 0.706963 0.707250i \(-0.250065\pi\)
0.706963 + 0.707250i \(0.250065\pi\)
\(24\) −8.70605 −1.77711
\(25\) 1.00000 0.200000
\(26\) −6.78127 −1.32992
\(27\) −10.0312 −1.93050
\(28\) 0 0
\(29\) 2.56349 0.476029 0.238014 0.971262i \(-0.423503\pi\)
0.238014 + 0.971262i \(0.423503\pi\)
\(30\) 4.26700 0.779044
\(31\) 8.03902 1.44385 0.721925 0.691971i \(-0.243257\pi\)
0.721925 + 0.691971i \(0.243257\pi\)
\(32\) −0.228051 −0.0403140
\(33\) 11.1169 1.93520
\(34\) 8.31468 1.42596
\(35\) 0 0
\(36\) −0.253653 −0.0422755
\(37\) −1.00000 −0.164399
\(38\) −3.92368 −0.636504
\(39\) −14.7655 −2.36437
\(40\) 2.85621 0.451607
\(41\) −5.29308 −0.826640 −0.413320 0.910586i \(-0.635631\pi\)
−0.413320 + 0.910586i \(0.635631\pi\)
\(42\) 0 0
\(43\) −2.79133 −0.425675 −0.212837 0.977088i \(-0.568270\pi\)
−0.212837 + 0.977088i \(0.568270\pi\)
\(44\) 0.147054 0.0221692
\(45\) 6.29096 0.937801
\(46\) −9.49256 −1.39960
\(47\) −4.66023 −0.679764 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(48\) 11.9417 1.72363
\(49\) 0 0
\(50\) −1.39989 −0.197974
\(51\) 18.1044 2.53512
\(52\) −0.195317 −0.0270857
\(53\) 5.56644 0.764609 0.382305 0.924036i \(-0.375130\pi\)
0.382305 + 0.924036i \(0.375130\pi\)
\(54\) 14.0425 1.91095
\(55\) −3.64714 −0.491781
\(56\) 0 0
\(57\) −8.54340 −1.13160
\(58\) −3.58860 −0.471206
\(59\) −2.97995 −0.387956 −0.193978 0.981006i \(-0.562139\pi\)
−0.193978 + 0.981006i \(0.562139\pi\)
\(60\) 0.122900 0.0158664
\(61\) −13.4537 −1.72257 −0.861285 0.508122i \(-0.830340\pi\)
−0.861285 + 0.508122i \(0.830340\pi\)
\(62\) −11.2537 −1.42922
\(63\) 0 0
\(64\) 8.15471 1.01934
\(65\) 4.84416 0.600844
\(66\) −15.5624 −1.91559
\(67\) −9.91515 −1.21133 −0.605664 0.795720i \(-0.707092\pi\)
−0.605664 + 0.795720i \(0.707092\pi\)
\(68\) 0.239484 0.0290416
\(69\) −20.6691 −2.48826
\(70\) 0 0
\(71\) 5.93981 0.704926 0.352463 0.935826i \(-0.385344\pi\)
0.352463 + 0.935826i \(0.385344\pi\)
\(72\) 17.9683 2.11759
\(73\) 9.66860 1.13162 0.565812 0.824534i \(-0.308563\pi\)
0.565812 + 0.824534i \(0.308563\pi\)
\(74\) 1.39989 0.162733
\(75\) −3.04811 −0.351965
\(76\) −0.113012 −0.0129633
\(77\) 0 0
\(78\) 20.6700 2.34042
\(79\) −14.6739 −1.65094 −0.825470 0.564446i \(-0.809090\pi\)
−0.825470 + 0.564446i \(0.809090\pi\)
\(80\) −3.91773 −0.438016
\(81\) 11.7033 1.30036
\(82\) 7.40970 0.818265
\(83\) 9.83911 1.07998 0.539991 0.841670i \(-0.318427\pi\)
0.539991 + 0.841670i \(0.318427\pi\)
\(84\) 0 0
\(85\) −5.93954 −0.644234
\(86\) 3.90755 0.421362
\(87\) −7.81380 −0.837728
\(88\) −10.4170 −1.11046
\(89\) −0.523456 −0.0554863 −0.0277431 0.999615i \(-0.508832\pi\)
−0.0277431 + 0.999615i \(0.508832\pi\)
\(90\) −8.80662 −0.928299
\(91\) 0 0
\(92\) −0.273409 −0.0285049
\(93\) −24.5038 −2.54093
\(94\) 6.52379 0.672877
\(95\) 2.80285 0.287567
\(96\) 0.695123 0.0709456
\(97\) −7.05294 −0.716117 −0.358059 0.933699i \(-0.616561\pi\)
−0.358059 + 0.933699i \(0.616561\pi\)
\(98\) 0 0
\(99\) −22.9440 −2.30596
\(100\) −0.0403202 −0.00403202
\(101\) −2.39273 −0.238086 −0.119043 0.992889i \(-0.537983\pi\)
−0.119043 + 0.992889i \(0.537983\pi\)
\(102\) −25.3440 −2.50943
\(103\) −19.5679 −1.92808 −0.964041 0.265755i \(-0.914379\pi\)
−0.964041 + 0.265755i \(0.914379\pi\)
\(104\) 13.8360 1.35673
\(105\) 0 0
\(106\) −7.79238 −0.756863
\(107\) 13.2493 1.28086 0.640429 0.768018i \(-0.278757\pi\)
0.640429 + 0.768018i \(0.278757\pi\)
\(108\) 0.404460 0.0389192
\(109\) −5.78796 −0.554386 −0.277193 0.960814i \(-0.589404\pi\)
−0.277193 + 0.960814i \(0.589404\pi\)
\(110\) 5.10558 0.486798
\(111\) 3.04811 0.289314
\(112\) 0 0
\(113\) 9.65310 0.908087 0.454044 0.890979i \(-0.349981\pi\)
0.454044 + 0.890979i \(0.349981\pi\)
\(114\) 11.9598 1.12014
\(115\) 6.78095 0.632327
\(116\) −0.103361 −0.00959679
\(117\) 30.4744 2.81736
\(118\) 4.17158 0.384025
\(119\) 0 0
\(120\) −8.70605 −0.794750
\(121\) 2.30165 0.209241
\(122\) 18.8336 1.70512
\(123\) 16.1339 1.45474
\(124\) −0.324135 −0.0291082
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.0645 −0.893084 −0.446542 0.894763i \(-0.647345\pi\)
−0.446542 + 0.894763i \(0.647345\pi\)
\(128\) −10.9596 −0.968698
\(129\) 8.50829 0.749113
\(130\) −6.78127 −0.594756
\(131\) −18.8692 −1.64861 −0.824303 0.566148i \(-0.808433\pi\)
−0.824303 + 0.566148i \(0.808433\pi\)
\(132\) −0.448235 −0.0390139
\(133\) 0 0
\(134\) 13.8801 1.19906
\(135\) −10.0312 −0.863348
\(136\) −16.9646 −1.45470
\(137\) −5.74501 −0.490830 −0.245415 0.969418i \(-0.578924\pi\)
−0.245415 + 0.969418i \(0.578924\pi\)
\(138\) 28.9343 2.46305
\(139\) −11.6048 −0.984310 −0.492155 0.870508i \(-0.663791\pi\)
−0.492155 + 0.870508i \(0.663791\pi\)
\(140\) 0 0
\(141\) 14.2049 1.19627
\(142\) −8.31505 −0.697784
\(143\) −17.6673 −1.47742
\(144\) −24.6463 −2.05386
\(145\) 2.56349 0.212887
\(146\) −13.5349 −1.12016
\(147\) 0 0
\(148\) 0.0403202 0.00331430
\(149\) 12.3462 1.01144 0.505721 0.862697i \(-0.331226\pi\)
0.505721 + 0.862697i \(0.331226\pi\)
\(150\) 4.26700 0.348399
\(151\) 12.4619 1.01413 0.507067 0.861907i \(-0.330730\pi\)
0.507067 + 0.861907i \(0.330730\pi\)
\(152\) 8.00556 0.649336
\(153\) −37.3654 −3.02081
\(154\) 0 0
\(155\) 8.03902 0.645710
\(156\) 0.595348 0.0476660
\(157\) 6.62753 0.528934 0.264467 0.964395i \(-0.414804\pi\)
0.264467 + 0.964395i \(0.414804\pi\)
\(158\) 20.5417 1.63421
\(159\) −16.9671 −1.34558
\(160\) −0.228051 −0.0180290
\(161\) 0 0
\(162\) −16.3832 −1.28719
\(163\) −13.4708 −1.05511 −0.527557 0.849520i \(-0.676892\pi\)
−0.527557 + 0.849520i \(0.676892\pi\)
\(164\) 0.213418 0.0166651
\(165\) 11.1169 0.865448
\(166\) −13.7736 −1.06904
\(167\) −17.8404 −1.38053 −0.690267 0.723554i \(-0.742507\pi\)
−0.690267 + 0.723554i \(0.742507\pi\)
\(168\) 0 0
\(169\) 10.4659 0.805066
\(170\) 8.31468 0.637707
\(171\) 17.6326 1.34840
\(172\) 0.112547 0.00858164
\(173\) 26.2854 1.99844 0.999220 0.0394945i \(-0.0125748\pi\)
0.999220 + 0.0394945i \(0.0125748\pi\)
\(174\) 10.9384 0.829240
\(175\) 0 0
\(176\) 14.2885 1.07704
\(177\) 9.08320 0.682735
\(178\) 0.732779 0.0549241
\(179\) −17.7463 −1.32642 −0.663209 0.748435i \(-0.730806\pi\)
−0.663209 + 0.748435i \(0.730806\pi\)
\(180\) −0.253653 −0.0189062
\(181\) −15.3108 −1.13804 −0.569021 0.822323i \(-0.692678\pi\)
−0.569021 + 0.822323i \(0.692678\pi\)
\(182\) 0 0
\(183\) 41.0083 3.03142
\(184\) 19.3679 1.42782
\(185\) −1.00000 −0.0735215
\(186\) 34.3025 2.51518
\(187\) 21.6624 1.58411
\(188\) 0.187901 0.0137041
\(189\) 0 0
\(190\) −3.92368 −0.284653
\(191\) −9.37242 −0.678164 −0.339082 0.940757i \(-0.610116\pi\)
−0.339082 + 0.940757i \(0.610116\pi\)
\(192\) −24.8564 −1.79386
\(193\) 20.8859 1.50340 0.751700 0.659506i \(-0.229234\pi\)
0.751700 + 0.659506i \(0.229234\pi\)
\(194\) 9.87330 0.708862
\(195\) −14.7655 −1.05738
\(196\) 0 0
\(197\) 25.4155 1.81078 0.905388 0.424585i \(-0.139580\pi\)
0.905388 + 0.424585i \(0.139580\pi\)
\(198\) 32.1190 2.28260
\(199\) −9.58159 −0.679221 −0.339611 0.940566i \(-0.610295\pi\)
−0.339611 + 0.940566i \(0.610295\pi\)
\(200\) 2.85621 0.201965
\(201\) 30.2224 2.13173
\(202\) 3.34955 0.235674
\(203\) 0 0
\(204\) −0.729971 −0.0511082
\(205\) −5.29308 −0.369685
\(206\) 27.3928 1.90855
\(207\) 42.6587 2.96498
\(208\) −18.9781 −1.31590
\(209\) −10.2224 −0.707099
\(210\) 0 0
\(211\) 26.4828 1.82315 0.911576 0.411132i \(-0.134867\pi\)
0.911576 + 0.411132i \(0.134867\pi\)
\(212\) −0.224440 −0.0154146
\(213\) −18.1052 −1.24055
\(214\) −18.5475 −1.26788
\(215\) −2.79133 −0.190367
\(216\) −28.6512 −1.94947
\(217\) 0 0
\(218\) 8.10248 0.548769
\(219\) −29.4709 −1.99146
\(220\) 0.147054 0.00991435
\(221\) −28.7721 −1.93542
\(222\) −4.26700 −0.286382
\(223\) −5.66767 −0.379536 −0.189768 0.981829i \(-0.560774\pi\)
−0.189768 + 0.981829i \(0.560774\pi\)
\(224\) 0 0
\(225\) 6.29096 0.419397
\(226\) −13.5132 −0.898887
\(227\) 21.7868 1.44604 0.723021 0.690826i \(-0.242753\pi\)
0.723021 + 0.690826i \(0.242753\pi\)
\(228\) 0.344472 0.0228132
\(229\) −11.8799 −0.785045 −0.392522 0.919742i \(-0.628397\pi\)
−0.392522 + 0.919742i \(0.628397\pi\)
\(230\) −9.49256 −0.625921
\(231\) 0 0
\(232\) 7.32189 0.480706
\(233\) 13.9670 0.915007 0.457503 0.889208i \(-0.348744\pi\)
0.457503 + 0.889208i \(0.348744\pi\)
\(234\) −42.6607 −2.78881
\(235\) −4.66023 −0.304000
\(236\) 0.120152 0.00782123
\(237\) 44.7275 2.90537
\(238\) 0 0
\(239\) 3.79988 0.245794 0.122897 0.992419i \(-0.460782\pi\)
0.122897 + 0.992419i \(0.460782\pi\)
\(240\) 11.9417 0.770832
\(241\) 3.06191 0.197235 0.0986174 0.995125i \(-0.468558\pi\)
0.0986174 + 0.995125i \(0.468558\pi\)
\(242\) −3.22205 −0.207121
\(243\) −5.57926 −0.357910
\(244\) 0.542456 0.0347272
\(245\) 0 0
\(246\) −22.5856 −1.44000
\(247\) 13.5775 0.863914
\(248\) 22.9612 1.45804
\(249\) −29.9907 −1.90058
\(250\) −1.39989 −0.0885365
\(251\) −15.8041 −0.997544 −0.498772 0.866733i \(-0.666215\pi\)
−0.498772 + 0.866733i \(0.666215\pi\)
\(252\) 0 0
\(253\) −24.7311 −1.55483
\(254\) 14.0892 0.884036
\(255\) 18.1044 1.13374
\(256\) −0.967289 −0.0604556
\(257\) 6.34024 0.395494 0.197747 0.980253i \(-0.436638\pi\)
0.197747 + 0.980253i \(0.436638\pi\)
\(258\) −11.9106 −0.741523
\(259\) 0 0
\(260\) −0.195317 −0.0121131
\(261\) 16.1268 0.998226
\(262\) 26.4147 1.63190
\(263\) 24.2607 1.49598 0.747988 0.663712i \(-0.231020\pi\)
0.747988 + 0.663712i \(0.231020\pi\)
\(264\) 31.7522 1.95421
\(265\) 5.56644 0.341944
\(266\) 0 0
\(267\) 1.59555 0.0976462
\(268\) 0.399781 0.0244205
\(269\) 10.6715 0.650654 0.325327 0.945602i \(-0.394526\pi\)
0.325327 + 0.945602i \(0.394526\pi\)
\(270\) 14.0425 0.854601
\(271\) −3.12586 −0.189882 −0.0949411 0.995483i \(-0.530266\pi\)
−0.0949411 + 0.995483i \(0.530266\pi\)
\(272\) 23.2695 1.41092
\(273\) 0 0
\(274\) 8.04236 0.485857
\(275\) −3.64714 −0.219931
\(276\) 0.833381 0.0501636
\(277\) 15.4510 0.928362 0.464181 0.885740i \(-0.346349\pi\)
0.464181 + 0.885740i \(0.346349\pi\)
\(278\) 16.2455 0.974337
\(279\) 50.5731 3.02773
\(280\) 0 0
\(281\) 9.86108 0.588263 0.294131 0.955765i \(-0.404970\pi\)
0.294131 + 0.955765i \(0.404970\pi\)
\(282\) −19.8852 −1.18415
\(283\) −9.95956 −0.592034 −0.296017 0.955183i \(-0.595659\pi\)
−0.296017 + 0.955183i \(0.595659\pi\)
\(284\) −0.239494 −0.0142114
\(285\) −8.54340 −0.506067
\(286\) 24.7322 1.46245
\(287\) 0 0
\(288\) −1.43466 −0.0845379
\(289\) 18.2781 1.07518
\(290\) −3.58860 −0.210730
\(291\) 21.4981 1.26024
\(292\) −0.389840 −0.0228137
\(293\) −12.1366 −0.709026 −0.354513 0.935051i \(-0.615353\pi\)
−0.354513 + 0.935051i \(0.615353\pi\)
\(294\) 0 0
\(295\) −2.97995 −0.173499
\(296\) −2.85621 −0.166014
\(297\) 36.5852 2.12289
\(298\) −17.2833 −1.00120
\(299\) 32.8480 1.89965
\(300\) 0.122900 0.00709565
\(301\) 0 0
\(302\) −17.4452 −1.00386
\(303\) 7.29331 0.418990
\(304\) −10.9808 −0.629794
\(305\) −13.4537 −0.770357
\(306\) 52.3073 2.99021
\(307\) 5.55093 0.316808 0.158404 0.987374i \(-0.449365\pi\)
0.158404 + 0.987374i \(0.449365\pi\)
\(308\) 0 0
\(309\) 59.6450 3.39309
\(310\) −11.2537 −0.639168
\(311\) 3.09306 0.175391 0.0876956 0.996147i \(-0.472050\pi\)
0.0876956 + 0.996147i \(0.472050\pi\)
\(312\) −42.1735 −2.38760
\(313\) 24.9749 1.41166 0.705832 0.708380i \(-0.250574\pi\)
0.705832 + 0.708380i \(0.250574\pi\)
\(314\) −9.27778 −0.523575
\(315\) 0 0
\(316\) 0.591654 0.0332831
\(317\) −12.5972 −0.707529 −0.353765 0.935335i \(-0.615099\pi\)
−0.353765 + 0.935335i \(0.615099\pi\)
\(318\) 23.7520 1.33195
\(319\) −9.34943 −0.523468
\(320\) 8.15471 0.455862
\(321\) −40.3853 −2.25409
\(322\) 0 0
\(323\) −16.6477 −0.926301
\(324\) −0.471878 −0.0262155
\(325\) 4.84416 0.268705
\(326\) 18.8576 1.04442
\(327\) 17.6423 0.975623
\(328\) −15.1182 −0.834761
\(329\) 0 0
\(330\) −15.5624 −0.856680
\(331\) 32.8035 1.80304 0.901521 0.432736i \(-0.142452\pi\)
0.901521 + 0.432736i \(0.142452\pi\)
\(332\) −0.396715 −0.0217726
\(333\) −6.29096 −0.344742
\(334\) 24.9746 1.36655
\(335\) −9.91515 −0.541722
\(336\) 0 0
\(337\) −7.88075 −0.429292 −0.214646 0.976692i \(-0.568860\pi\)
−0.214646 + 0.976692i \(0.568860\pi\)
\(338\) −14.6510 −0.796910
\(339\) −29.4237 −1.59807
\(340\) 0.239484 0.0129878
\(341\) −29.3195 −1.58774
\(342\) −24.6837 −1.33474
\(343\) 0 0
\(344\) −7.97265 −0.429857
\(345\) −20.6691 −1.11279
\(346\) −36.7965 −1.97819
\(347\) 17.2018 0.923442 0.461721 0.887025i \(-0.347232\pi\)
0.461721 + 0.887025i \(0.347232\pi\)
\(348\) 0.315054 0.0168887
\(349\) 19.5847 1.04834 0.524172 0.851613i \(-0.324375\pi\)
0.524172 + 0.851613i \(0.324375\pi\)
\(350\) 0 0
\(351\) −48.5927 −2.59368
\(352\) 0.831733 0.0443315
\(353\) 5.04907 0.268735 0.134367 0.990932i \(-0.457100\pi\)
0.134367 + 0.990932i \(0.457100\pi\)
\(354\) −12.7154 −0.675818
\(355\) 5.93981 0.315252
\(356\) 0.0211059 0.00111861
\(357\) 0 0
\(358\) 24.8427 1.31298
\(359\) 18.4078 0.971528 0.485764 0.874090i \(-0.338541\pi\)
0.485764 + 0.874090i \(0.338541\pi\)
\(360\) 17.9683 0.947014
\(361\) −11.1440 −0.586527
\(362\) 21.4334 1.12651
\(363\) −7.01569 −0.368228
\(364\) 0 0
\(365\) 9.66860 0.506078
\(366\) −57.4070 −3.00071
\(367\) −15.1703 −0.791885 −0.395943 0.918275i \(-0.629582\pi\)
−0.395943 + 0.918275i \(0.629582\pi\)
\(368\) −26.5660 −1.38485
\(369\) −33.2985 −1.73345
\(370\) 1.39989 0.0727766
\(371\) 0 0
\(372\) 0.987998 0.0512253
\(373\) −11.4128 −0.590935 −0.295467 0.955353i \(-0.595475\pi\)
−0.295467 + 0.955353i \(0.595475\pi\)
\(374\) −30.3248 −1.56806
\(375\) −3.04811 −0.157404
\(376\) −13.3106 −0.686442
\(377\) 12.4180 0.639558
\(378\) 0 0
\(379\) −25.7791 −1.32419 −0.662093 0.749422i \(-0.730331\pi\)
−0.662093 + 0.749422i \(0.730331\pi\)
\(380\) −0.113012 −0.00579738
\(381\) 30.6778 1.57167
\(382\) 13.1203 0.671294
\(383\) −35.9013 −1.83447 −0.917236 0.398345i \(-0.869585\pi\)
−0.917236 + 0.398345i \(0.869585\pi\)
\(384\) 33.4059 1.70474
\(385\) 0 0
\(386\) −29.2379 −1.48817
\(387\) −17.5602 −0.892633
\(388\) 0.284376 0.0144370
\(389\) 13.7326 0.696270 0.348135 0.937444i \(-0.386815\pi\)
0.348135 + 0.937444i \(0.386815\pi\)
\(390\) 20.6700 1.04667
\(391\) −40.2757 −2.03683
\(392\) 0 0
\(393\) 57.5152 2.90126
\(394\) −35.5787 −1.79243
\(395\) −14.6739 −0.738323
\(396\) 0.925108 0.0464884
\(397\) −11.4068 −0.572489 −0.286244 0.958157i \(-0.592407\pi\)
−0.286244 + 0.958157i \(0.592407\pi\)
\(398\) 13.4131 0.672340
\(399\) 0 0
\(400\) −3.91773 −0.195887
\(401\) −2.75338 −0.137497 −0.0687485 0.997634i \(-0.521901\pi\)
−0.0687485 + 0.997634i \(0.521901\pi\)
\(402\) −42.3080 −2.11013
\(403\) 38.9423 1.93985
\(404\) 0.0964755 0.00479984
\(405\) 11.7033 0.581540
\(406\) 0 0
\(407\) 3.64714 0.180782
\(408\) 51.7099 2.56002
\(409\) −8.95246 −0.442671 −0.221335 0.975198i \(-0.571042\pi\)
−0.221335 + 0.975198i \(0.571042\pi\)
\(410\) 7.40970 0.365939
\(411\) 17.5114 0.863775
\(412\) 0.788981 0.0388703
\(413\) 0 0
\(414\) −59.7173 −2.93494
\(415\) 9.83911 0.482983
\(416\) −1.10471 −0.0541630
\(417\) 35.3728 1.73221
\(418\) 14.3102 0.699935
\(419\) −11.6889 −0.571038 −0.285519 0.958373i \(-0.592166\pi\)
−0.285519 + 0.958373i \(0.592166\pi\)
\(420\) 0 0
\(421\) −10.1867 −0.496468 −0.248234 0.968700i \(-0.579850\pi\)
−0.248234 + 0.968700i \(0.579850\pi\)
\(422\) −37.0729 −1.80468
\(423\) −29.3173 −1.42546
\(424\) 15.8989 0.772121
\(425\) −5.93954 −0.288110
\(426\) 25.3452 1.22798
\(427\) 0 0
\(428\) −0.534214 −0.0258222
\(429\) 53.8519 2.60000
\(430\) 3.90755 0.188439
\(431\) −32.1101 −1.54669 −0.773344 0.633986i \(-0.781418\pi\)
−0.773344 + 0.633986i \(0.781418\pi\)
\(432\) 39.2995 1.89080
\(433\) 21.8491 1.05000 0.525001 0.851102i \(-0.324065\pi\)
0.525001 + 0.851102i \(0.324065\pi\)
\(434\) 0 0
\(435\) −7.81380 −0.374643
\(436\) 0.233372 0.0111765
\(437\) 19.0060 0.909181
\(438\) 41.2559 1.97128
\(439\) −36.1376 −1.72475 −0.862376 0.506268i \(-0.831025\pi\)
−0.862376 + 0.506268i \(0.831025\pi\)
\(440\) −10.4170 −0.496612
\(441\) 0 0
\(442\) 40.2776 1.91581
\(443\) −5.66883 −0.269334 −0.134667 0.990891i \(-0.542997\pi\)
−0.134667 + 0.990891i \(0.542997\pi\)
\(444\) −0.122900 −0.00583259
\(445\) −0.523456 −0.0248142
\(446\) 7.93410 0.375690
\(447\) −37.6326 −1.77996
\(448\) 0 0
\(449\) −2.14411 −0.101187 −0.0505935 0.998719i \(-0.516111\pi\)
−0.0505935 + 0.998719i \(0.516111\pi\)
\(450\) −8.80662 −0.415148
\(451\) 19.3046 0.909019
\(452\) −0.389215 −0.0183071
\(453\) −37.9851 −1.78470
\(454\) −30.4991 −1.43139
\(455\) 0 0
\(456\) −24.4018 −1.14272
\(457\) 3.63740 0.170150 0.0850752 0.996375i \(-0.472887\pi\)
0.0850752 + 0.996375i \(0.472887\pi\)
\(458\) 16.6305 0.777091
\(459\) 59.5807 2.78099
\(460\) −0.273409 −0.0127478
\(461\) −15.1913 −0.707530 −0.353765 0.935334i \(-0.615099\pi\)
−0.353765 + 0.935334i \(0.615099\pi\)
\(462\) 0 0
\(463\) 13.1805 0.612548 0.306274 0.951943i \(-0.400918\pi\)
0.306274 + 0.951943i \(0.400918\pi\)
\(464\) −10.0431 −0.466239
\(465\) −24.5038 −1.13634
\(466\) −19.5522 −0.905737
\(467\) 16.8444 0.779467 0.389733 0.920928i \(-0.372567\pi\)
0.389733 + 0.920928i \(0.372567\pi\)
\(468\) −1.22873 −0.0567982
\(469\) 0 0
\(470\) 6.52379 0.300920
\(471\) −20.2014 −0.930832
\(472\) −8.51137 −0.391767
\(473\) 10.1804 0.468095
\(474\) −62.6134 −2.87593
\(475\) 2.80285 0.128604
\(476\) 0 0
\(477\) 35.0182 1.60337
\(478\) −5.31939 −0.243303
\(479\) −18.9907 −0.867706 −0.433853 0.900984i \(-0.642846\pi\)
−0.433853 + 0.900984i \(0.642846\pi\)
\(480\) 0.695123 0.0317279
\(481\) −4.84416 −0.220875
\(482\) −4.28632 −0.195236
\(483\) 0 0
\(484\) −0.0928031 −0.00421832
\(485\) −7.05294 −0.320257
\(486\) 7.81033 0.354284
\(487\) −36.5957 −1.65831 −0.829156 0.559018i \(-0.811178\pi\)
−0.829156 + 0.559018i \(0.811178\pi\)
\(488\) −38.4267 −1.73949
\(489\) 41.0604 1.85682
\(490\) 0 0
\(491\) −36.8339 −1.66229 −0.831146 0.556054i \(-0.812315\pi\)
−0.831146 + 0.556054i \(0.812315\pi\)
\(492\) −0.650521 −0.0293278
\(493\) −15.2260 −0.685743
\(494\) −19.0069 −0.855161
\(495\) −22.9440 −1.03126
\(496\) −31.4947 −1.41416
\(497\) 0 0
\(498\) 41.9835 1.88133
\(499\) 3.91663 0.175332 0.0876661 0.996150i \(-0.472059\pi\)
0.0876661 + 0.996150i \(0.472059\pi\)
\(500\) −0.0403202 −0.00180317
\(501\) 54.3796 2.42950
\(502\) 22.1239 0.987437
\(503\) −11.3334 −0.505331 −0.252665 0.967554i \(-0.581307\pi\)
−0.252665 + 0.967554i \(0.581307\pi\)
\(504\) 0 0
\(505\) −2.39273 −0.106475
\(506\) 34.6207 1.53908
\(507\) −31.9011 −1.41678
\(508\) 0.405805 0.0180047
\(509\) −18.0185 −0.798656 −0.399328 0.916808i \(-0.630756\pi\)
−0.399328 + 0.916808i \(0.630756\pi\)
\(510\) −25.3440 −1.12225
\(511\) 0 0
\(512\) 23.2732 1.02854
\(513\) −28.1160 −1.24135
\(514\) −8.87562 −0.391487
\(515\) −19.5679 −0.862264
\(516\) −0.343056 −0.0151022
\(517\) 16.9965 0.747506
\(518\) 0 0
\(519\) −80.1206 −3.51690
\(520\) 13.8360 0.606747
\(521\) −11.1708 −0.489403 −0.244702 0.969598i \(-0.578690\pi\)
−0.244702 + 0.969598i \(0.578690\pi\)
\(522\) −22.5757 −0.988112
\(523\) −20.7450 −0.907115 −0.453557 0.891227i \(-0.649845\pi\)
−0.453557 + 0.891227i \(0.649845\pi\)
\(524\) 0.760809 0.0332361
\(525\) 0 0
\(526\) −33.9621 −1.48082
\(527\) −47.7481 −2.07994
\(528\) −43.5530 −1.89540
\(529\) 22.9813 0.999187
\(530\) −7.79238 −0.338479
\(531\) −18.7467 −0.813538
\(532\) 0 0
\(533\) −25.6405 −1.11061
\(534\) −2.23359 −0.0966569
\(535\) 13.2493 0.572817
\(536\) −28.3198 −1.22323
\(537\) 54.0925 2.33426
\(538\) −14.9389 −0.644062
\(539\) 0 0
\(540\) 0.404460 0.0174052
\(541\) −15.4967 −0.666257 −0.333128 0.942881i \(-0.608104\pi\)
−0.333128 + 0.942881i \(0.608104\pi\)
\(542\) 4.37584 0.187958
\(543\) 46.6689 2.00276
\(544\) 1.35452 0.0580744
\(545\) −5.78796 −0.247929
\(546\) 0 0
\(547\) 15.7560 0.673677 0.336838 0.941562i \(-0.390642\pi\)
0.336838 + 0.941562i \(0.390642\pi\)
\(548\) 0.231640 0.00989518
\(549\) −84.6366 −3.61220
\(550\) 5.10558 0.217703
\(551\) 7.18510 0.306096
\(552\) −59.0353 −2.51271
\(553\) 0 0
\(554\) −21.6297 −0.918956
\(555\) 3.04811 0.129385
\(556\) 0.467910 0.0198438
\(557\) −20.8340 −0.882765 −0.441382 0.897319i \(-0.645512\pi\)
−0.441382 + 0.897319i \(0.645512\pi\)
\(558\) −70.7966 −2.99706
\(559\) −13.5217 −0.571905
\(560\) 0 0
\(561\) −66.0292 −2.78775
\(562\) −13.8044 −0.582303
\(563\) −17.5363 −0.739066 −0.369533 0.929218i \(-0.620482\pi\)
−0.369533 + 0.929218i \(0.620482\pi\)
\(564\) −0.572744 −0.0241169
\(565\) 9.65310 0.406109
\(566\) 13.9422 0.586036
\(567\) 0 0
\(568\) 16.9654 0.711851
\(569\) 27.6209 1.15793 0.578964 0.815353i \(-0.303457\pi\)
0.578964 + 0.815353i \(0.303457\pi\)
\(570\) 11.9598 0.500940
\(571\) 6.93846 0.290366 0.145183 0.989405i \(-0.453623\pi\)
0.145183 + 0.989405i \(0.453623\pi\)
\(572\) 0.712351 0.0297849
\(573\) 28.5681 1.19345
\(574\) 0 0
\(575\) 6.78095 0.282785
\(576\) 51.3009 2.13754
\(577\) 17.6589 0.735151 0.367576 0.929994i \(-0.380188\pi\)
0.367576 + 0.929994i \(0.380188\pi\)
\(578\) −25.5873 −1.06429
\(579\) −63.6624 −2.64572
\(580\) −0.103361 −0.00429182
\(581\) 0 0
\(582\) −30.0949 −1.24747
\(583\) −20.3016 −0.840806
\(584\) 27.6156 1.14274
\(585\) 30.4744 1.25996
\(586\) 16.9898 0.701843
\(587\) 1.32023 0.0544918 0.0272459 0.999629i \(-0.491326\pi\)
0.0272459 + 0.999629i \(0.491326\pi\)
\(588\) 0 0
\(589\) 22.5322 0.928423
\(590\) 4.17158 0.171741
\(591\) −77.4690 −3.18665
\(592\) 3.91773 0.161018
\(593\) 26.0840 1.07114 0.535572 0.844490i \(-0.320096\pi\)
0.535572 + 0.844490i \(0.320096\pi\)
\(594\) −51.2151 −2.10138
\(595\) 0 0
\(596\) −0.497803 −0.0203908
\(597\) 29.2057 1.19531
\(598\) −45.9834 −1.88040
\(599\) 28.0723 1.14700 0.573502 0.819204i \(-0.305585\pi\)
0.573502 + 0.819204i \(0.305585\pi\)
\(600\) −8.70605 −0.355423
\(601\) 23.9728 0.977873 0.488936 0.872319i \(-0.337385\pi\)
0.488936 + 0.872319i \(0.337385\pi\)
\(602\) 0 0
\(603\) −62.3758 −2.54014
\(604\) −0.502466 −0.0204450
\(605\) 2.30165 0.0935755
\(606\) −10.2098 −0.414745
\(607\) −44.5284 −1.80735 −0.903675 0.428219i \(-0.859141\pi\)
−0.903675 + 0.428219i \(0.859141\pi\)
\(608\) −0.639193 −0.0259227
\(609\) 0 0
\(610\) 18.8336 0.762552
\(611\) −22.5749 −0.913282
\(612\) 1.50658 0.0608999
\(613\) −1.95068 −0.0787871 −0.0393936 0.999224i \(-0.512543\pi\)
−0.0393936 + 0.999224i \(0.512543\pi\)
\(614\) −7.77067 −0.313599
\(615\) 16.1339 0.650580
\(616\) 0 0
\(617\) −35.3685 −1.42388 −0.711940 0.702240i \(-0.752183\pi\)
−0.711940 + 0.702240i \(0.752183\pi\)
\(618\) −83.4962 −3.35871
\(619\) −4.35625 −0.175093 −0.0875463 0.996160i \(-0.527903\pi\)
−0.0875463 + 0.996160i \(0.527903\pi\)
\(620\) −0.324135 −0.0130176
\(621\) −68.0210 −2.72959
\(622\) −4.32993 −0.173614
\(623\) 0 0
\(624\) 57.8473 2.31575
\(625\) 1.00000 0.0400000
\(626\) −34.9620 −1.39736
\(627\) 31.1590 1.24437
\(628\) −0.267223 −0.0106634
\(629\) 5.93954 0.236825
\(630\) 0 0
\(631\) 26.0056 1.03526 0.517632 0.855603i \(-0.326813\pi\)
0.517632 + 0.855603i \(0.326813\pi\)
\(632\) −41.9117 −1.66716
\(633\) −80.7224 −3.20843
\(634\) 17.6346 0.700361
\(635\) −10.0645 −0.399399
\(636\) 0.684117 0.0271270
\(637\) 0 0
\(638\) 13.0881 0.518164
\(639\) 37.3671 1.47822
\(640\) −10.9596 −0.433215
\(641\) 2.10114 0.0829900 0.0414950 0.999139i \(-0.486788\pi\)
0.0414950 + 0.999139i \(0.486788\pi\)
\(642\) 56.5348 2.23125
\(643\) −20.8643 −0.822807 −0.411403 0.911453i \(-0.634961\pi\)
−0.411403 + 0.911453i \(0.634961\pi\)
\(644\) 0 0
\(645\) 8.50829 0.335013
\(646\) 23.3048 0.916916
\(647\) 25.4420 1.00023 0.500113 0.865960i \(-0.333292\pi\)
0.500113 + 0.865960i \(0.333292\pi\)
\(648\) 33.4271 1.31314
\(649\) 10.8683 0.426618
\(650\) −6.78127 −0.265983
\(651\) 0 0
\(652\) 0.543145 0.0212712
\(653\) 31.2907 1.22450 0.612249 0.790665i \(-0.290265\pi\)
0.612249 + 0.790665i \(0.290265\pi\)
\(654\) −24.6972 −0.965738
\(655\) −18.8692 −0.737279
\(656\) 20.7369 0.809639
\(657\) 60.8247 2.37300
\(658\) 0 0
\(659\) 35.9609 1.40084 0.700419 0.713732i \(-0.252997\pi\)
0.700419 + 0.713732i \(0.252997\pi\)
\(660\) −0.448235 −0.0174475
\(661\) −43.9179 −1.70821 −0.854104 0.520102i \(-0.825894\pi\)
−0.854104 + 0.520102i \(0.825894\pi\)
\(662\) −45.9211 −1.78477
\(663\) 87.7003 3.40600
\(664\) 28.1026 1.09059
\(665\) 0 0
\(666\) 8.80662 0.341250
\(667\) 17.3829 0.673070
\(668\) 0.719330 0.0278317
\(669\) 17.2757 0.667916
\(670\) 13.8801 0.536234
\(671\) 49.0676 1.89423
\(672\) 0 0
\(673\) −26.5814 −1.02464 −0.512319 0.858796i \(-0.671213\pi\)
−0.512319 + 0.858796i \(0.671213\pi\)
\(674\) 11.0321 0.424942
\(675\) −10.0312 −0.386101
\(676\) −0.421986 −0.0162302
\(677\) 40.9319 1.57314 0.786571 0.617500i \(-0.211855\pi\)
0.786571 + 0.617500i \(0.211855\pi\)
\(678\) 41.1898 1.58188
\(679\) 0 0
\(680\) −16.9646 −0.650563
\(681\) −66.4086 −2.54478
\(682\) 41.0439 1.57165
\(683\) −21.6347 −0.827830 −0.413915 0.910315i \(-0.635839\pi\)
−0.413915 + 0.910315i \(0.635839\pi\)
\(684\) −0.710952 −0.0271839
\(685\) −5.74501 −0.219506
\(686\) 0 0
\(687\) 36.2112 1.38154
\(688\) 10.9357 0.416920
\(689\) 26.9647 1.02727
\(690\) 28.9343 1.10151
\(691\) 5.20391 0.197966 0.0989830 0.995089i \(-0.468441\pi\)
0.0989830 + 0.995089i \(0.468441\pi\)
\(692\) −1.05983 −0.0402888
\(693\) 0 0
\(694\) −24.0806 −0.914086
\(695\) −11.6048 −0.440197
\(696\) −22.3179 −0.845958
\(697\) 31.4385 1.19082
\(698\) −27.4163 −1.03772
\(699\) −42.5728 −1.61025
\(700\) 0 0
\(701\) −9.61311 −0.363082 −0.181541 0.983383i \(-0.558109\pi\)
−0.181541 + 0.983383i \(0.558109\pi\)
\(702\) 68.0242 2.56741
\(703\) −2.80285 −0.105712
\(704\) −29.7414 −1.12092
\(705\) 14.2049 0.534987
\(706\) −7.06812 −0.266012
\(707\) 0 0
\(708\) −0.366236 −0.0137640
\(709\) 28.4078 1.06688 0.533439 0.845839i \(-0.320899\pi\)
0.533439 + 0.845839i \(0.320899\pi\)
\(710\) −8.31505 −0.312058
\(711\) −92.3127 −3.46200
\(712\) −1.49510 −0.0560314
\(713\) 54.5122 2.04150
\(714\) 0 0
\(715\) −17.6673 −0.660721
\(716\) 0.715533 0.0267407
\(717\) −11.5824 −0.432554
\(718\) −25.7689 −0.961685
\(719\) 7.83731 0.292282 0.146141 0.989264i \(-0.453315\pi\)
0.146141 + 0.989264i \(0.453315\pi\)
\(720\) −24.6463 −0.918513
\(721\) 0 0
\(722\) 15.6003 0.580584
\(723\) −9.33302 −0.347099
\(724\) 0.617335 0.0229431
\(725\) 2.56349 0.0952058
\(726\) 9.82116 0.364497
\(727\) −26.6047 −0.986712 −0.493356 0.869827i \(-0.664230\pi\)
−0.493356 + 0.869827i \(0.664230\pi\)
\(728\) 0 0
\(729\) −18.1036 −0.670505
\(730\) −13.5349 −0.500950
\(731\) 16.5792 0.613205
\(732\) −1.65346 −0.0611138
\(733\) 53.3717 1.97133 0.985664 0.168718i \(-0.0539627\pi\)
0.985664 + 0.168718i \(0.0539627\pi\)
\(734\) 21.2367 0.783862
\(735\) 0 0
\(736\) −1.54640 −0.0570011
\(737\) 36.1620 1.33204
\(738\) 46.6141 1.71589
\(739\) −19.9661 −0.734466 −0.367233 0.930129i \(-0.619695\pi\)
−0.367233 + 0.930129i \(0.619695\pi\)
\(740\) 0.0403202 0.00148220
\(741\) −41.3856 −1.52034
\(742\) 0 0
\(743\) 4.54143 0.166609 0.0833044 0.996524i \(-0.473453\pi\)
0.0833044 + 0.996524i \(0.473453\pi\)
\(744\) −69.9881 −2.56589
\(745\) 12.3462 0.452331
\(746\) 15.9767 0.584948
\(747\) 61.8974 2.26471
\(748\) −0.873431 −0.0319358
\(749\) 0 0
\(750\) 4.26700 0.155809
\(751\) −15.2284 −0.555692 −0.277846 0.960626i \(-0.589620\pi\)
−0.277846 + 0.960626i \(0.589620\pi\)
\(752\) 18.2575 0.665784
\(753\) 48.1725 1.75550
\(754\) −17.3837 −0.633078
\(755\) 12.4619 0.453534
\(756\) 0 0
\(757\) −32.8000 −1.19214 −0.596069 0.802934i \(-0.703271\pi\)
−0.596069 + 0.802934i \(0.703271\pi\)
\(758\) 36.0878 1.31077
\(759\) 75.3830 2.73623
\(760\) 8.00556 0.290392
\(761\) −41.4805 −1.50367 −0.751834 0.659352i \(-0.770831\pi\)
−0.751834 + 0.659352i \(0.770831\pi\)
\(762\) −42.9454 −1.55575
\(763\) 0 0
\(764\) 0.377898 0.0136719
\(765\) −37.3654 −1.35095
\(766\) 50.2577 1.81589
\(767\) −14.4353 −0.521229
\(768\) 2.94840 0.106391
\(769\) −4.98364 −0.179715 −0.0898574 0.995955i \(-0.528641\pi\)
−0.0898574 + 0.995955i \(0.528641\pi\)
\(770\) 0 0
\(771\) −19.3257 −0.696000
\(772\) −0.842123 −0.0303087
\(773\) 7.58656 0.272869 0.136435 0.990649i \(-0.456436\pi\)
0.136435 + 0.990649i \(0.456436\pi\)
\(774\) 24.5822 0.883590
\(775\) 8.03902 0.288770
\(776\) −20.1447 −0.723153
\(777\) 0 0
\(778\) −19.2241 −0.689216
\(779\) −14.8357 −0.531545
\(780\) 0.595348 0.0213169
\(781\) −21.6633 −0.775175
\(782\) 56.3814 2.01620
\(783\) −25.7149 −0.918975
\(784\) 0 0
\(785\) 6.62753 0.236547
\(786\) −80.5148 −2.87187
\(787\) 10.9337 0.389744 0.194872 0.980829i \(-0.437571\pi\)
0.194872 + 0.980829i \(0.437571\pi\)
\(788\) −1.02476 −0.0365054
\(789\) −73.9491 −2.63266
\(790\) 20.5417 0.730842
\(791\) 0 0
\(792\) −65.5331 −2.32862
\(793\) −65.1718 −2.31432
\(794\) 15.9682 0.566689
\(795\) −16.9671 −0.601761
\(796\) 0.386332 0.0136932
\(797\) 6.03515 0.213776 0.106888 0.994271i \(-0.465911\pi\)
0.106888 + 0.994271i \(0.465911\pi\)
\(798\) 0 0
\(799\) 27.6796 0.979234
\(800\) −0.228051 −0.00806280
\(801\) −3.29304 −0.116354
\(802\) 3.85441 0.136104
\(803\) −35.2628 −1.24440
\(804\) −1.21857 −0.0429758
\(805\) 0 0
\(806\) −54.5147 −1.92020
\(807\) −32.5279 −1.14504
\(808\) −6.83416 −0.240425
\(809\) −38.0682 −1.33841 −0.669203 0.743080i \(-0.733364\pi\)
−0.669203 + 0.743080i \(0.733364\pi\)
\(810\) −16.3832 −0.575649
\(811\) −48.0542 −1.68741 −0.843705 0.536807i \(-0.819630\pi\)
−0.843705 + 0.536807i \(0.819630\pi\)
\(812\) 0 0
\(813\) 9.52794 0.334160
\(814\) −5.10558 −0.178951
\(815\) −13.4708 −0.471861
\(816\) −70.9280 −2.48298
\(817\) −7.82371 −0.273717
\(818\) 12.5324 0.438186
\(819\) 0 0
\(820\) 0.213418 0.00745288
\(821\) −36.5629 −1.27605 −0.638027 0.770014i \(-0.720249\pi\)
−0.638027 + 0.770014i \(0.720249\pi\)
\(822\) −24.5140 −0.855023
\(823\) −39.2913 −1.36961 −0.684804 0.728727i \(-0.740112\pi\)
−0.684804 + 0.728727i \(0.740112\pi\)
\(824\) −55.8901 −1.94702
\(825\) 11.1169 0.387040
\(826\) 0 0
\(827\) −2.05042 −0.0713002 −0.0356501 0.999364i \(-0.511350\pi\)
−0.0356501 + 0.999364i \(0.511350\pi\)
\(828\) −1.72001 −0.0597744
\(829\) 8.56716 0.297550 0.148775 0.988871i \(-0.452467\pi\)
0.148775 + 0.988871i \(0.452467\pi\)
\(830\) −13.7736 −0.478090
\(831\) −47.0964 −1.63375
\(832\) 39.5027 1.36951
\(833\) 0 0
\(834\) −49.5179 −1.71466
\(835\) −17.8404 −0.617394
\(836\) 0.412170 0.0142552
\(837\) −80.6410 −2.78736
\(838\) 16.3631 0.565253
\(839\) 3.02431 0.104411 0.0522053 0.998636i \(-0.483375\pi\)
0.0522053 + 0.998636i \(0.483375\pi\)
\(840\) 0 0
\(841\) −22.4285 −0.773397
\(842\) 14.2602 0.491438
\(843\) −30.0576 −1.03524
\(844\) −1.06779 −0.0367549
\(845\) 10.4659 0.360036
\(846\) 41.0409 1.41101
\(847\) 0 0
\(848\) −21.8078 −0.748884
\(849\) 30.3578 1.04188
\(850\) 8.31468 0.285191
\(851\) −6.78095 −0.232448
\(852\) 0.730005 0.0250095
\(853\) −34.8869 −1.19451 −0.597253 0.802053i \(-0.703741\pi\)
−0.597253 + 0.802053i \(0.703741\pi\)
\(854\) 0 0
\(855\) 17.6326 0.603024
\(856\) 37.8428 1.29344
\(857\) 1.35026 0.0461240 0.0230620 0.999734i \(-0.492658\pi\)
0.0230620 + 0.999734i \(0.492658\pi\)
\(858\) −75.3865 −2.57365
\(859\) 31.2917 1.06766 0.533829 0.845592i \(-0.320753\pi\)
0.533829 + 0.845592i \(0.320753\pi\)
\(860\) 0.112547 0.00383783
\(861\) 0 0
\(862\) 44.9505 1.53102
\(863\) 14.1149 0.480476 0.240238 0.970714i \(-0.422774\pi\)
0.240238 + 0.970714i \(0.422774\pi\)
\(864\) 2.28762 0.0778264
\(865\) 26.2854 0.893729
\(866\) −30.5863 −1.03936
\(867\) −55.7137 −1.89214
\(868\) 0 0
\(869\) 53.5177 1.81546
\(870\) 10.9384 0.370848
\(871\) −48.0305 −1.62745
\(872\) −16.5317 −0.559833
\(873\) −44.3697 −1.50169
\(874\) −26.6063 −0.899970
\(875\) 0 0
\(876\) 1.18827 0.0401480
\(877\) 40.0006 1.35072 0.675361 0.737487i \(-0.263988\pi\)
0.675361 + 0.737487i \(0.263988\pi\)
\(878\) 50.5885 1.70728
\(879\) 36.9936 1.24776
\(880\) 14.2885 0.481666
\(881\) 29.8247 1.00482 0.502409 0.864630i \(-0.332447\pi\)
0.502409 + 0.864630i \(0.332447\pi\)
\(882\) 0 0
\(883\) −32.7577 −1.10239 −0.551193 0.834378i \(-0.685827\pi\)
−0.551193 + 0.834378i \(0.685827\pi\)
\(884\) 1.16010 0.0390182
\(885\) 9.08320 0.305328
\(886\) 7.93572 0.266606
\(887\) −14.6579 −0.492164 −0.246082 0.969249i \(-0.579143\pi\)
−0.246082 + 0.969249i \(0.579143\pi\)
\(888\) 8.70605 0.292156
\(889\) 0 0
\(890\) 0.732779 0.0245628
\(891\) −42.6835 −1.42995
\(892\) 0.228522 0.00765148
\(893\) −13.0619 −0.437101
\(894\) 52.6814 1.76193
\(895\) −17.7463 −0.593192
\(896\) 0 0
\(897\) −100.124 −3.34305
\(898\) 3.00151 0.100162
\(899\) 20.6080 0.687315
\(900\) −0.253653 −0.00845509
\(901\) −33.0621 −1.10146
\(902\) −27.0243 −0.899809
\(903\) 0 0
\(904\) 27.5713 0.917009
\(905\) −15.3108 −0.508948
\(906\) 53.1748 1.76662
\(907\) 9.66145 0.320803 0.160402 0.987052i \(-0.448721\pi\)
0.160402 + 0.987052i \(0.448721\pi\)
\(908\) −0.878449 −0.0291524
\(909\) −15.0526 −0.499263
\(910\) 0 0
\(911\) 15.1053 0.500460 0.250230 0.968186i \(-0.419494\pi\)
0.250230 + 0.968186i \(0.419494\pi\)
\(912\) 33.4708 1.10833
\(913\) −35.8847 −1.18761
\(914\) −5.09195 −0.168427
\(915\) 41.0083 1.35569
\(916\) 0.478999 0.0158266
\(917\) 0 0
\(918\) −83.4061 −2.75281
\(919\) −44.7051 −1.47469 −0.737343 0.675519i \(-0.763920\pi\)
−0.737343 + 0.675519i \(0.763920\pi\)
\(920\) 19.3679 0.638539
\(921\) −16.9198 −0.557527
\(922\) 21.2661 0.700361
\(923\) 28.7734 0.947087
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) −18.4511 −0.606342
\(927\) −123.101 −4.04316
\(928\) −0.584606 −0.0191906
\(929\) −17.9099 −0.587606 −0.293803 0.955866i \(-0.594921\pi\)
−0.293803 + 0.955866i \(0.594921\pi\)
\(930\) 34.3025 1.12482
\(931\) 0 0
\(932\) −0.563151 −0.0184466
\(933\) −9.42797 −0.308658
\(934\) −23.5803 −0.771569
\(935\) 21.6624 0.708435
\(936\) 87.0414 2.84504
\(937\) 23.6483 0.772557 0.386279 0.922382i \(-0.373760\pi\)
0.386279 + 0.922382i \(0.373760\pi\)
\(938\) 0 0
\(939\) −76.1261 −2.48428
\(940\) 0.187901 0.00612867
\(941\) 58.6328 1.91138 0.955688 0.294381i \(-0.0951135\pi\)
0.955688 + 0.294381i \(0.0951135\pi\)
\(942\) 28.2797 0.921401
\(943\) −35.8921 −1.16881
\(944\) 11.6746 0.379977
\(945\) 0 0
\(946\) −14.2514 −0.463353
\(947\) 38.8086 1.26111 0.630556 0.776144i \(-0.282827\pi\)
0.630556 + 0.776144i \(0.282827\pi\)
\(948\) −1.80342 −0.0585725
\(949\) 46.8362 1.52037
\(950\) −3.92368 −0.127301
\(951\) 38.3976 1.24513
\(952\) 0 0
\(953\) 28.7794 0.932255 0.466127 0.884718i \(-0.345649\pi\)
0.466127 + 0.884718i \(0.345649\pi\)
\(954\) −49.0215 −1.58713
\(955\) −9.37242 −0.303284
\(956\) −0.153212 −0.00495522
\(957\) 28.4981 0.921211
\(958\) 26.5848 0.858915
\(959\) 0 0
\(960\) −24.8564 −0.802238
\(961\) 33.6259 1.08471
\(962\) 6.78127 0.218637
\(963\) 83.3507 2.68594
\(964\) −0.123457 −0.00397627
\(965\) 20.8859 0.672341
\(966\) 0 0
\(967\) 49.8680 1.60365 0.801823 0.597562i \(-0.203864\pi\)
0.801823 + 0.597562i \(0.203864\pi\)
\(968\) 6.57402 0.211297
\(969\) 50.7439 1.63013
\(970\) 9.87330 0.317013
\(971\) −27.2949 −0.875935 −0.437968 0.898991i \(-0.644302\pi\)
−0.437968 + 0.898991i \(0.644302\pi\)
\(972\) 0.224957 0.00721550
\(973\) 0 0
\(974\) 51.2298 1.64151
\(975\) −14.7655 −0.472875
\(976\) 52.7080 1.68714
\(977\) 3.98645 0.127538 0.0637689 0.997965i \(-0.479688\pi\)
0.0637689 + 0.997965i \(0.479688\pi\)
\(978\) −57.4799 −1.83800
\(979\) 1.90912 0.0610158
\(980\) 0 0
\(981\) −36.4118 −1.16254
\(982\) 51.5633 1.64545
\(983\) −23.8553 −0.760865 −0.380432 0.924809i \(-0.624225\pi\)
−0.380432 + 0.924809i \(0.624225\pi\)
\(984\) 46.0818 1.46903
\(985\) 25.4155 0.809804
\(986\) 21.3146 0.678796
\(987\) 0 0
\(988\) −0.547446 −0.0174166
\(989\) −18.9279 −0.601872
\(990\) 32.1190 1.02081
\(991\) 27.1694 0.863064 0.431532 0.902098i \(-0.357973\pi\)
0.431532 + 0.902098i \(0.357973\pi\)
\(992\) −1.83330 −0.0582074
\(993\) −99.9885 −3.17304
\(994\) 0 0
\(995\) −9.58159 −0.303757
\(996\) 1.20923 0.0383159
\(997\) 43.2163 1.36867 0.684336 0.729166i \(-0.260092\pi\)
0.684336 + 0.729166i \(0.260092\pi\)
\(998\) −5.48283 −0.173556
\(999\) 10.0312 0.317373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.p.1.5 17
7.6 odd 2 9065.2.a.q.1.5 yes 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.p.1.5 17 1.1 even 1 trivial
9065.2.a.q.1.5 yes 17 7.6 odd 2