Properties

Label 9065.2.a.p
Level $9065$
Weight $2$
Character orbit 9065.a
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,1,-1,13,17,-4,0,-3,8,1,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 23 x^{15} + 23 x^{14} + 209 x^{13} - 205 x^{12} - 971 x^{11} + 907 x^{10} + 2497 x^{9} + \cdots + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{13} q^{3} + (\beta_{2} + 1) q^{4} + q^{5} - \beta_{11} q^{6} + (\beta_{7} + \beta_{6} + \beta_1 - 1) q^{8} + (\beta_{16} + \beta_{15} - \beta_{13} + \cdots - 2) q^{9} + \beta_1 q^{10}+ \cdots + ( - 2 \beta_{16} - \beta_{15} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + q^{2} - q^{3} + 13 q^{4} + 17 q^{5} - 4 q^{6} - 3 q^{8} + 8 q^{9} + q^{10} - 19 q^{11} - 4 q^{12} - 11 q^{13} - q^{15} + 9 q^{16} - 13 q^{17} - 2 q^{18} - 20 q^{19} + 13 q^{20} + 16 q^{22} + 4 q^{23}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - x^{16} - 23 x^{15} + 23 x^{14} + 209 x^{13} - 205 x^{12} - 971 x^{11} + 907 x^{10} + 2497 x^{9} + \cdots + 14 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8907 \nu^{16} + 3003 \nu^{15} - 212375 \nu^{14} - 81971 \nu^{13} + 2014126 \nu^{12} + 929475 \nu^{11} + \cdots - 1202107 ) / 41143 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13900 \nu^{16} - 834 \nu^{15} + 330336 \nu^{14} + 25519 \nu^{13} - 3124085 \nu^{12} + \cdots + 608988 ) / 41143 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 14779 \nu^{16} - 6519 \nu^{15} - 347650 \nu^{14} + 135980 \nu^{13} + 3249407 \nu^{12} + \cdots - 375292 ) / 41143 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 20929 \nu^{16} + 6150 \nu^{15} + 487886 \nu^{14} - 133717 \nu^{13} - 4510141 \nu^{12} + \cdots + 246922 ) / 41143 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 20929 \nu^{16} - 6150 \nu^{15} - 487886 \nu^{14} + 133717 \nu^{13} + 4510141 \nu^{12} + \cdots - 205779 ) / 41143 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 25776 \nu^{16} + 4838 \nu^{15} - 586074 \nu^{14} - 107385 \nu^{13} + 5261013 \nu^{12} + \cdots - 1046079 ) / 41143 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 26967 \nu^{16} + 4142 \nu^{15} + 639443 \nu^{14} - 68329 \nu^{13} - 6030270 \nu^{12} + \cdots + 1075006 ) / 41143 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 32817 \nu^{16} + 3791 \nu^{15} + 749758 \nu^{14} - 98288 \nu^{13} - 6758869 \nu^{12} + \cdots + 126024 ) / 41143 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 35534 \nu^{16} + 9388 \nu^{15} + 828879 \nu^{14} - 192934 \nu^{13} - 7660739 \nu^{12} + \cdots + 751884 ) / 41143 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 49888 \nu^{16} - 4639 \nu^{15} + 1158141 \nu^{14} + 112297 \nu^{13} - 10667147 \nu^{12} + \cdots + 2172650 ) / 41143 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 53706 \nu^{16} + 18172 \nu^{15} + 1244626 \nu^{14} - 406359 \nu^{13} - 11417488 \nu^{12} + \cdots - 2527 ) / 41143 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 56802 \nu^{16} + 31152 \nu^{15} + 1304907 \nu^{14} - 702493 \nu^{13} - 11832075 \nu^{12} + \cdots - 786049 ) / 41143 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 68557 \nu^{16} - 34561 \nu^{15} - 1587937 \nu^{14} + 779818 \nu^{13} + 14555978 \nu^{12} + \cdots + 959162 ) / 41143 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 78874 \nu^{16} + 1441 \nu^{15} - 1821626 \nu^{14} - 37827 \nu^{13} + 16664273 \nu^{12} + \cdots - 2215472 ) / 41143 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} + 5\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} - \beta_{11} + \beta_{7} - \beta_{6} - \beta_{5} - \beta_{3} + 8\beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{15} - 2\beta_{13} + \beta_{10} + \beta_{9} + 10\beta_{7} + 9\beta_{6} + 31\beta _1 - 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - \beta_{16} + 10 \beta_{13} - \beta_{12} - 12 \beta_{11} + \beta_{10} + 2 \beta_{9} + \beta_{8} + \cdots + 88 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{16} - 13 \beta_{15} - \beta_{14} - 24 \beta_{13} - \beta_{12} + \beta_{11} + 12 \beta_{10} + \cdots - 76 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 15 \beta_{16} + 2 \beta_{15} + \beta_{14} + 81 \beta_{13} - 12 \beta_{12} - 109 \beta_{11} + \cdots + 555 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 18 \beta_{16} - 124 \beta_{15} - 15 \beta_{14} - 217 \beta_{13} - 15 \beta_{12} + 17 \beta_{11} + \cdots - 528 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 161 \beta_{16} + 35 \beta_{15} + 18 \beta_{14} + 620 \beta_{13} - 107 \beta_{12} - 901 \beta_{11} + \cdots + 3655 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 214 \beta_{16} - 1058 \beta_{15} - 157 \beta_{14} - 1781 \beta_{13} - 155 \beta_{12} + 197 \beta_{11} + \cdots - 3532 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 1502 \beta_{16} + 411 \beta_{15} + 214 \beta_{14} + 4669 \beta_{13} - 861 \beta_{12} - 7144 \beta_{11} + \cdots + 24781 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 2131 \beta_{16} - 8573 \beta_{15} - 1429 \beta_{14} - 14008 \beta_{13} - 1385 \beta_{12} + 1942 \beta_{11} + \cdots - 23256 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 12996 \beta_{16} + 4069 \beta_{15} + 2127 \beta_{14} + 35022 \beta_{13} - 6627 \beta_{12} + \cdots + 171548 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 19296 \beta_{16} - 67586 \beta_{15} - 12133 \beta_{14} - 107854 \beta_{13} - 11524 \beta_{12} + \cdots - 152447 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 107476 \beta_{16} + 36711 \beta_{15} + 19192 \beta_{14} + 262542 \beta_{13} - 49956 \beta_{12} + \cdots + 1206120 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.73034
−2.43819
−1.76952
−1.62951
−1.39989
−1.06032
−0.635391
−0.193652
−0.154938
0.846570
0.860727
1.04553
1.66207
1.84982
1.97186
2.04084
2.73432
−2.73034 −1.31730 5.45475 1.00000 3.59668 0 −9.43265 −1.26471 −2.73034
1.2 −2.43819 1.64223 3.94477 1.00000 −4.00408 0 −4.74171 −0.303065 −2.43819
1.3 −1.76952 2.60485 1.13121 1.00000 −4.60935 0 1.53734 3.78527 −1.76952
1.4 −1.62951 0.786801 0.655295 1.00000 −1.28210 0 2.19121 −2.38094 −1.62951
1.5 −1.39989 −3.04811 −0.0403202 1.00000 4.26700 0 2.85621 6.29096 −1.39989
1.6 −1.06032 −0.385754 −0.875718 1.00000 0.409024 0 3.04919 −2.85119 −1.06032
1.7 −0.635391 −1.02963 −1.59628 1.00000 0.654216 0 2.28504 −1.93987 −0.635391
1.8 −0.193652 −2.10787 −1.96250 1.00000 0.408193 0 0.767346 1.44311 −0.193652
1.9 −0.154938 1.82884 −1.97599 1.00000 −0.283356 0 0.616032 0.344640 −0.154938
1.10 0.846570 0.429369 −1.28332 1.00000 0.363491 0 −2.77956 −2.81564 0.846570
1.11 0.860727 3.44167 −1.25915 1.00000 2.96234 0 −2.80524 8.84510 0.860727
1.12 1.04553 −1.71638 −0.906859 1.00000 −1.79453 0 −3.03922 −0.0540515 1.04553
1.13 1.66207 0.197771 0.762469 1.00000 0.328708 0 −2.05686 −2.96089 1.66207
1.14 1.84982 1.68709 1.42185 1.00000 3.12081 0 −1.06948 −0.153738 1.84982
1.15 1.97186 −3.27267 1.88824 1.00000 −6.45325 0 −0.220383 7.71036 1.97186
1.16 2.04084 −0.493323 2.16504 1.00000 −1.00680 0 0.336816 −2.75663 2.04084
1.17 2.73432 −0.247596 5.47652 1.00000 −0.677008 0 9.50592 −2.93870 2.73432
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9065.2.a.p 17
7.b odd 2 1 9065.2.a.q yes 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9065.2.a.p 17 1.a even 1 1 trivial
9065.2.a.q yes 17 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):

\( T_{2}^{17} - T_{2}^{16} - 23 T_{2}^{15} + 23 T_{2}^{14} + 209 T_{2}^{13} - 205 T_{2}^{12} - 971 T_{2}^{11} + \cdots + 14 \) Copy content Toggle raw display
\( T_{3}^{17} + T_{3}^{16} - 29 T_{3}^{15} - 27 T_{3}^{14} + 311 T_{3}^{13} + 261 T_{3}^{12} - 1578 T_{3}^{11} + \cdots + 7 \) Copy content Toggle raw display
\( T_{11}^{17} + 19 T_{11}^{16} + 81 T_{11}^{15} - 553 T_{11}^{14} - 4943 T_{11}^{13} - 229 T_{11}^{12} + \cdots + 1236544 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} - T^{16} + \cdots + 14 \) Copy content Toggle raw display
$3$ \( T^{17} + T^{16} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( (T - 1)^{17} \) Copy content Toggle raw display
$7$ \( T^{17} \) Copy content Toggle raw display
$11$ \( T^{17} + 19 T^{16} + \cdots + 1236544 \) Copy content Toggle raw display
$13$ \( T^{17} + 11 T^{16} + \cdots + 36608 \) Copy content Toggle raw display
$17$ \( T^{17} + 13 T^{16} + \cdots - 9284864 \) Copy content Toggle raw display
$19$ \( T^{17} + \cdots - 1469997566 \) Copy content Toggle raw display
$23$ \( T^{17} - 4 T^{16} + \cdots - 2115298 \) Copy content Toggle raw display
$29$ \( T^{17} + 5 T^{16} + \cdots - 74887168 \) Copy content Toggle raw display
$31$ \( T^{17} + 30 T^{16} + \cdots + 90586496 \) Copy content Toggle raw display
$37$ \( (T + 1)^{17} \) Copy content Toggle raw display
$41$ \( T^{17} + \cdots - 703029248 \) Copy content Toggle raw display
$43$ \( T^{17} - 8 T^{16} + \cdots + 18606592 \) Copy content Toggle raw display
$47$ \( T^{17} + \cdots + 4475365939 \) Copy content Toggle raw display
$53$ \( T^{17} + \cdots + 223821363318272 \) Copy content Toggle raw display
$59$ \( T^{17} + \cdots - 1764811976746 \) Copy content Toggle raw display
$61$ \( T^{17} + \cdots - 9283118649064 \) Copy content Toggle raw display
$67$ \( T^{17} + \cdots + 110314715766784 \) Copy content Toggle raw display
$71$ \( T^{17} + \cdots + 40473310647476 \) Copy content Toggle raw display
$73$ \( T^{17} + \cdots - 3310413712384 \) Copy content Toggle raw display
$79$ \( T^{17} + \cdots + 457261413496576 \) Copy content Toggle raw display
$83$ \( T^{17} + \cdots - 3281445661696 \) Copy content Toggle raw display
$89$ \( T^{17} + \cdots + 13605670582144 \) Copy content Toggle raw display
$97$ \( T^{17} + \cdots + 4203581231104 \) Copy content Toggle raw display
show more
show less