Properties

Label 2-9065-1.1-c1-0-363
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.62·2-s + 0.786·3-s + 0.655·4-s + 5-s − 1.28·6-s + 2.19·8-s − 2.38·9-s − 1.62·10-s + 2.85·11-s + 0.515·12-s − 3.28·13-s + 0.786·15-s − 4.88·16-s + 4.78·17-s + 3.87·18-s − 2.67·19-s + 0.655·20-s − 4.65·22-s + 2.62·23-s + 1.72·24-s + 25-s + 5.35·26-s − 4.23·27-s + 0.965·29-s − 1.28·30-s + 2.64·31-s + 3.57·32-s + ⋯
L(s)  = 1  − 1.15·2-s + 0.454·3-s + 0.327·4-s + 0.447·5-s − 0.523·6-s + 0.774·8-s − 0.793·9-s − 0.515·10-s + 0.861·11-s + 0.148·12-s − 0.912·13-s + 0.203·15-s − 1.22·16-s + 1.16·17-s + 0.914·18-s − 0.613·19-s + 0.146·20-s − 0.992·22-s + 0.547·23-s + 0.351·24-s + 0.200·25-s + 1.05·26-s − 0.814·27-s + 0.179·29-s − 0.234·30-s + 0.475·31-s + 0.631·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 1.62T + 2T^{2} \)
3 \( 1 - 0.786T + 3T^{2} \)
11 \( 1 - 2.85T + 11T^{2} \)
13 \( 1 + 3.28T + 13T^{2} \)
17 \( 1 - 4.78T + 17T^{2} \)
19 \( 1 + 2.67T + 19T^{2} \)
23 \( 1 - 2.62T + 23T^{2} \)
29 \( 1 - 0.965T + 29T^{2} \)
31 \( 1 - 2.64T + 31T^{2} \)
41 \( 1 + 11.3T + 41T^{2} \)
43 \( 1 - 4.21T + 43T^{2} \)
47 \( 1 + 8.43T + 47T^{2} \)
53 \( 1 + 5.19T + 53T^{2} \)
59 \( 1 - 1.19T + 59T^{2} \)
61 \( 1 - 7.89T + 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 + 3.26T + 71T^{2} \)
73 \( 1 + 3.11T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 - 1.32T + 83T^{2} \)
89 \( 1 - 5.35T + 89T^{2} \)
97 \( 1 + 5.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61165199031268850931849592713, −6.89566220051243292266263693900, −6.23765635951370644293754104040, −5.29704685022406180311011242214, −4.69219426818055998876196057827, −3.66826369856273570858767011473, −2.86511042638927222989909954401, −1.98165899804819769039305854928, −1.17591318669493316178497818846, 0, 1.17591318669493316178497818846, 1.98165899804819769039305854928, 2.86511042638927222989909954401, 3.66826369856273570858767011473, 4.69219426818055998876196057827, 5.29704685022406180311011242214, 6.23765635951370644293754104040, 6.89566220051243292266263693900, 7.61165199031268850931849592713

Graph of the $Z$-function along the critical line