Properties

Label 2-9065-1.1-c1-0-224
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.635·2-s − 1.02·3-s − 1.59·4-s + 5-s + 0.654·6-s + 2.28·8-s − 1.93·9-s − 0.635·10-s − 0.745·11-s + 1.64·12-s − 5.62·13-s − 1.02·15-s + 1.74·16-s − 7.59·17-s + 1.23·18-s − 3.26·19-s − 1.59·20-s + 0.473·22-s + 6.27·23-s − 2.35·24-s + 25-s + 3.57·26-s + 5.08·27-s + 9.06·29-s + 0.654·30-s − 1.60·31-s − 5.67·32-s + ⋯
L(s)  = 1  − 0.449·2-s − 0.594·3-s − 0.798·4-s + 0.447·5-s + 0.267·6-s + 0.807·8-s − 0.646·9-s − 0.200·10-s − 0.224·11-s + 0.474·12-s − 1.55·13-s − 0.265·15-s + 0.435·16-s − 1.84·17-s + 0.290·18-s − 0.749·19-s − 0.356·20-s + 0.101·22-s + 1.30·23-s − 0.480·24-s + 0.200·25-s + 0.700·26-s + 0.978·27-s + 1.68·29-s + 0.119·30-s − 0.287·31-s − 1.00·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 0.635T + 2T^{2} \)
3 \( 1 + 1.02T + 3T^{2} \)
11 \( 1 + 0.745T + 11T^{2} \)
13 \( 1 + 5.62T + 13T^{2} \)
17 \( 1 + 7.59T + 17T^{2} \)
19 \( 1 + 3.26T + 19T^{2} \)
23 \( 1 - 6.27T + 23T^{2} \)
29 \( 1 - 9.06T + 29T^{2} \)
31 \( 1 + 1.60T + 31T^{2} \)
41 \( 1 + 1.57T + 41T^{2} \)
43 \( 1 - 10.1T + 43T^{2} \)
47 \( 1 - 9.10T + 47T^{2} \)
53 \( 1 + 4.40T + 53T^{2} \)
59 \( 1 - 15.1T + 59T^{2} \)
61 \( 1 + 0.303T + 61T^{2} \)
67 \( 1 - 10.9T + 67T^{2} \)
71 \( 1 + 8.19T + 71T^{2} \)
73 \( 1 + 4.17T + 73T^{2} \)
79 \( 1 + 4.85T + 79T^{2} \)
83 \( 1 + 9.64T + 83T^{2} \)
89 \( 1 - 4.44T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29086200662192028666890427922, −6.79587276473309495858848077466, −5.99620001835102302564400105307, −5.15822917737091538971763632491, −4.78143346300154003642346165460, −4.13585292810074944327989229574, −2.76558294309614881458473947205, −2.26041550275904103940740726942, −0.856188545227526054592878222341, 0, 0.856188545227526054592878222341, 2.26041550275904103940740726942, 2.76558294309614881458473947205, 4.13585292810074944327989229574, 4.78143346300154003642346165460, 5.15822917737091538971763632491, 5.99620001835102302564400105307, 6.79587276473309495858848077466, 7.29086200662192028666890427922

Graph of the $Z$-function along the critical line