Properties

Label 9065.2.a.q.1.5
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,1,1,13,-17,4,0,-3,8,-1,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 23 x^{15} + 23 x^{14} + 209 x^{13} - 205 x^{12} - 971 x^{11} + 907 x^{10} + 2497 x^{9} + \cdots + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.39989\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39989 q^{2} +3.04811 q^{3} -0.0403202 q^{4} -1.00000 q^{5} -4.26700 q^{6} +2.85621 q^{8} +6.29096 q^{9} +1.39989 q^{10} -3.64714 q^{11} -0.122900 q^{12} -4.84416 q^{13} -3.04811 q^{15} -3.91773 q^{16} +5.93954 q^{17} -8.80662 q^{18} -2.80285 q^{19} +0.0403202 q^{20} +5.10558 q^{22} +6.78095 q^{23} +8.70605 q^{24} +1.00000 q^{25} +6.78127 q^{26} +10.0312 q^{27} +2.56349 q^{29} +4.26700 q^{30} -8.03902 q^{31} -0.228051 q^{32} -11.1169 q^{33} -8.31468 q^{34} -0.253653 q^{36} -1.00000 q^{37} +3.92368 q^{38} -14.7655 q^{39} -2.85621 q^{40} +5.29308 q^{41} -2.79133 q^{43} +0.147054 q^{44} -6.29096 q^{45} -9.49256 q^{46} +4.66023 q^{47} -11.9417 q^{48} -1.39989 q^{50} +18.1044 q^{51} +0.195317 q^{52} +5.56644 q^{53} -14.0425 q^{54} +3.64714 q^{55} -8.54340 q^{57} -3.58860 q^{58} +2.97995 q^{59} +0.122900 q^{60} +13.4537 q^{61} +11.2537 q^{62} +8.15471 q^{64} +4.84416 q^{65} +15.5624 q^{66} -9.91515 q^{67} -0.239484 q^{68} +20.6691 q^{69} +5.93981 q^{71} +17.9683 q^{72} -9.66860 q^{73} +1.39989 q^{74} +3.04811 q^{75} +0.113012 q^{76} +20.6700 q^{78} -14.6739 q^{79} +3.91773 q^{80} +11.7033 q^{81} -7.40970 q^{82} -9.83911 q^{83} -5.93954 q^{85} +3.90755 q^{86} +7.81380 q^{87} -10.4170 q^{88} +0.523456 q^{89} +8.80662 q^{90} -0.273409 q^{92} -24.5038 q^{93} -6.52379 q^{94} +2.80285 q^{95} -0.695123 q^{96} +7.05294 q^{97} -22.9440 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + q^{2} + q^{3} + 13 q^{4} - 17 q^{5} + 4 q^{6} - 3 q^{8} + 8 q^{9} - q^{10} - 19 q^{11} + 4 q^{12} + 11 q^{13} - q^{15} + 9 q^{16} + 13 q^{17} - 2 q^{18} + 20 q^{19} - 13 q^{20} + 16 q^{22} + 4 q^{23}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39989 −0.989869 −0.494934 0.868930i \(-0.664808\pi\)
−0.494934 + 0.868930i \(0.664808\pi\)
\(3\) 3.04811 1.75983 0.879913 0.475135i \(-0.157601\pi\)
0.879913 + 0.475135i \(0.157601\pi\)
\(4\) −0.0403202 −0.0201601
\(5\) −1.00000 −0.447214
\(6\) −4.26700 −1.74200
\(7\) 0 0
\(8\) 2.85621 1.00982
\(9\) 6.29096 2.09699
\(10\) 1.39989 0.442683
\(11\) −3.64714 −1.09966 −0.549828 0.835278i \(-0.685307\pi\)
−0.549828 + 0.835278i \(0.685307\pi\)
\(12\) −0.122900 −0.0354783
\(13\) −4.84416 −1.34353 −0.671764 0.740765i \(-0.734463\pi\)
−0.671764 + 0.740765i \(0.734463\pi\)
\(14\) 0 0
\(15\) −3.04811 −0.787018
\(16\) −3.91773 −0.979433
\(17\) 5.93954 1.44055 0.720275 0.693689i \(-0.244016\pi\)
0.720275 + 0.693689i \(0.244016\pi\)
\(18\) −8.80662 −2.07574
\(19\) −2.80285 −0.643019 −0.321509 0.946906i \(-0.604190\pi\)
−0.321509 + 0.946906i \(0.604190\pi\)
\(20\) 0.0403202 0.00901587
\(21\) 0 0
\(22\) 5.10558 1.08851
\(23\) 6.78095 1.41393 0.706963 0.707250i \(-0.250065\pi\)
0.706963 + 0.707250i \(0.250065\pi\)
\(24\) 8.70605 1.77711
\(25\) 1.00000 0.200000
\(26\) 6.78127 1.32992
\(27\) 10.0312 1.93050
\(28\) 0 0
\(29\) 2.56349 0.476029 0.238014 0.971262i \(-0.423503\pi\)
0.238014 + 0.971262i \(0.423503\pi\)
\(30\) 4.26700 0.779044
\(31\) −8.03902 −1.44385 −0.721925 0.691971i \(-0.756743\pi\)
−0.721925 + 0.691971i \(0.756743\pi\)
\(32\) −0.228051 −0.0403140
\(33\) −11.1169 −1.93520
\(34\) −8.31468 −1.42596
\(35\) 0 0
\(36\) −0.253653 −0.0422755
\(37\) −1.00000 −0.164399
\(38\) 3.92368 0.636504
\(39\) −14.7655 −2.36437
\(40\) −2.85621 −0.451607
\(41\) 5.29308 0.826640 0.413320 0.910586i \(-0.364369\pi\)
0.413320 + 0.910586i \(0.364369\pi\)
\(42\) 0 0
\(43\) −2.79133 −0.425675 −0.212837 0.977088i \(-0.568270\pi\)
−0.212837 + 0.977088i \(0.568270\pi\)
\(44\) 0.147054 0.0221692
\(45\) −6.29096 −0.937801
\(46\) −9.49256 −1.39960
\(47\) 4.66023 0.679764 0.339882 0.940468i \(-0.389613\pi\)
0.339882 + 0.940468i \(0.389613\pi\)
\(48\) −11.9417 −1.72363
\(49\) 0 0
\(50\) −1.39989 −0.197974
\(51\) 18.1044 2.53512
\(52\) 0.195317 0.0270857
\(53\) 5.56644 0.764609 0.382305 0.924036i \(-0.375130\pi\)
0.382305 + 0.924036i \(0.375130\pi\)
\(54\) −14.0425 −1.91095
\(55\) 3.64714 0.491781
\(56\) 0 0
\(57\) −8.54340 −1.13160
\(58\) −3.58860 −0.471206
\(59\) 2.97995 0.387956 0.193978 0.981006i \(-0.437861\pi\)
0.193978 + 0.981006i \(0.437861\pi\)
\(60\) 0.122900 0.0158664
\(61\) 13.4537 1.72257 0.861285 0.508122i \(-0.169660\pi\)
0.861285 + 0.508122i \(0.169660\pi\)
\(62\) 11.2537 1.42922
\(63\) 0 0
\(64\) 8.15471 1.01934
\(65\) 4.84416 0.600844
\(66\) 15.5624 1.91559
\(67\) −9.91515 −1.21133 −0.605664 0.795720i \(-0.707092\pi\)
−0.605664 + 0.795720i \(0.707092\pi\)
\(68\) −0.239484 −0.0290416
\(69\) 20.6691 2.48826
\(70\) 0 0
\(71\) 5.93981 0.704926 0.352463 0.935826i \(-0.385344\pi\)
0.352463 + 0.935826i \(0.385344\pi\)
\(72\) 17.9683 2.11759
\(73\) −9.66860 −1.13162 −0.565812 0.824534i \(-0.691437\pi\)
−0.565812 + 0.824534i \(0.691437\pi\)
\(74\) 1.39989 0.162733
\(75\) 3.04811 0.351965
\(76\) 0.113012 0.0129633
\(77\) 0 0
\(78\) 20.6700 2.34042
\(79\) −14.6739 −1.65094 −0.825470 0.564446i \(-0.809090\pi\)
−0.825470 + 0.564446i \(0.809090\pi\)
\(80\) 3.91773 0.438016
\(81\) 11.7033 1.30036
\(82\) −7.40970 −0.818265
\(83\) −9.83911 −1.07998 −0.539991 0.841670i \(-0.681573\pi\)
−0.539991 + 0.841670i \(0.681573\pi\)
\(84\) 0 0
\(85\) −5.93954 −0.644234
\(86\) 3.90755 0.421362
\(87\) 7.81380 0.837728
\(88\) −10.4170 −1.11046
\(89\) 0.523456 0.0554863 0.0277431 0.999615i \(-0.491168\pi\)
0.0277431 + 0.999615i \(0.491168\pi\)
\(90\) 8.80662 0.928299
\(91\) 0 0
\(92\) −0.273409 −0.0285049
\(93\) −24.5038 −2.54093
\(94\) −6.52379 −0.672877
\(95\) 2.80285 0.287567
\(96\) −0.695123 −0.0709456
\(97\) 7.05294 0.716117 0.358059 0.933699i \(-0.383439\pi\)
0.358059 + 0.933699i \(0.383439\pi\)
\(98\) 0 0
\(99\) −22.9440 −2.30596
\(100\) −0.0403202 −0.00403202
\(101\) 2.39273 0.238086 0.119043 0.992889i \(-0.462017\pi\)
0.119043 + 0.992889i \(0.462017\pi\)
\(102\) −25.3440 −2.50943
\(103\) 19.5679 1.92808 0.964041 0.265755i \(-0.0856211\pi\)
0.964041 + 0.265755i \(0.0856211\pi\)
\(104\) −13.8360 −1.35673
\(105\) 0 0
\(106\) −7.79238 −0.756863
\(107\) 13.2493 1.28086 0.640429 0.768018i \(-0.278757\pi\)
0.640429 + 0.768018i \(0.278757\pi\)
\(108\) −0.404460 −0.0389192
\(109\) −5.78796 −0.554386 −0.277193 0.960814i \(-0.589404\pi\)
−0.277193 + 0.960814i \(0.589404\pi\)
\(110\) −5.10558 −0.486798
\(111\) −3.04811 −0.289314
\(112\) 0 0
\(113\) 9.65310 0.908087 0.454044 0.890979i \(-0.349981\pi\)
0.454044 + 0.890979i \(0.349981\pi\)
\(114\) 11.9598 1.12014
\(115\) −6.78095 −0.632327
\(116\) −0.103361 −0.00959679
\(117\) −30.4744 −2.81736
\(118\) −4.17158 −0.384025
\(119\) 0 0
\(120\) −8.70605 −0.794750
\(121\) 2.30165 0.209241
\(122\) −18.8336 −1.70512
\(123\) 16.1339 1.45474
\(124\) 0.324135 0.0291082
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.0645 −0.893084 −0.446542 0.894763i \(-0.647345\pi\)
−0.446542 + 0.894763i \(0.647345\pi\)
\(128\) −10.9596 −0.968698
\(129\) −8.50829 −0.749113
\(130\) −6.78127 −0.594756
\(131\) 18.8692 1.64861 0.824303 0.566148i \(-0.191567\pi\)
0.824303 + 0.566148i \(0.191567\pi\)
\(132\) 0.448235 0.0390139
\(133\) 0 0
\(134\) 13.8801 1.19906
\(135\) −10.0312 −0.863348
\(136\) 16.9646 1.45470
\(137\) −5.74501 −0.490830 −0.245415 0.969418i \(-0.578924\pi\)
−0.245415 + 0.969418i \(0.578924\pi\)
\(138\) −28.9343 −2.46305
\(139\) 11.6048 0.984310 0.492155 0.870508i \(-0.336209\pi\)
0.492155 + 0.870508i \(0.336209\pi\)
\(140\) 0 0
\(141\) 14.2049 1.19627
\(142\) −8.31505 −0.697784
\(143\) 17.6673 1.47742
\(144\) −24.6463 −2.05386
\(145\) −2.56349 −0.212887
\(146\) 13.5349 1.12016
\(147\) 0 0
\(148\) 0.0403202 0.00331430
\(149\) 12.3462 1.01144 0.505721 0.862697i \(-0.331226\pi\)
0.505721 + 0.862697i \(0.331226\pi\)
\(150\) −4.26700 −0.348399
\(151\) 12.4619 1.01413 0.507067 0.861907i \(-0.330730\pi\)
0.507067 + 0.861907i \(0.330730\pi\)
\(152\) −8.00556 −0.649336
\(153\) 37.3654 3.02081
\(154\) 0 0
\(155\) 8.03902 0.645710
\(156\) 0.595348 0.0476660
\(157\) −6.62753 −0.528934 −0.264467 0.964395i \(-0.585196\pi\)
−0.264467 + 0.964395i \(0.585196\pi\)
\(158\) 20.5417 1.63421
\(159\) 16.9671 1.34558
\(160\) 0.228051 0.0180290
\(161\) 0 0
\(162\) −16.3832 −1.28719
\(163\) −13.4708 −1.05511 −0.527557 0.849520i \(-0.676892\pi\)
−0.527557 + 0.849520i \(0.676892\pi\)
\(164\) −0.213418 −0.0166651
\(165\) 11.1169 0.865448
\(166\) 13.7736 1.06904
\(167\) 17.8404 1.38053 0.690267 0.723554i \(-0.257493\pi\)
0.690267 + 0.723554i \(0.257493\pi\)
\(168\) 0 0
\(169\) 10.4659 0.805066
\(170\) 8.31468 0.637707
\(171\) −17.6326 −1.34840
\(172\) 0.112547 0.00858164
\(173\) −26.2854 −1.99844 −0.999220 0.0394945i \(-0.987425\pi\)
−0.999220 + 0.0394945i \(0.987425\pi\)
\(174\) −10.9384 −0.829240
\(175\) 0 0
\(176\) 14.2885 1.07704
\(177\) 9.08320 0.682735
\(178\) −0.732779 −0.0549241
\(179\) −17.7463 −1.32642 −0.663209 0.748435i \(-0.730806\pi\)
−0.663209 + 0.748435i \(0.730806\pi\)
\(180\) 0.253653 0.0189062
\(181\) 15.3108 1.13804 0.569021 0.822323i \(-0.307322\pi\)
0.569021 + 0.822323i \(0.307322\pi\)
\(182\) 0 0
\(183\) 41.0083 3.03142
\(184\) 19.3679 1.42782
\(185\) 1.00000 0.0735215
\(186\) 34.3025 2.51518
\(187\) −21.6624 −1.58411
\(188\) −0.187901 −0.0137041
\(189\) 0 0
\(190\) −3.92368 −0.284653
\(191\) −9.37242 −0.678164 −0.339082 0.940757i \(-0.610116\pi\)
−0.339082 + 0.940757i \(0.610116\pi\)
\(192\) 24.8564 1.79386
\(193\) 20.8859 1.50340 0.751700 0.659506i \(-0.229234\pi\)
0.751700 + 0.659506i \(0.229234\pi\)
\(194\) −9.87330 −0.708862
\(195\) 14.7655 1.05738
\(196\) 0 0
\(197\) 25.4155 1.81078 0.905388 0.424585i \(-0.139580\pi\)
0.905388 + 0.424585i \(0.139580\pi\)
\(198\) 32.1190 2.28260
\(199\) 9.58159 0.679221 0.339611 0.940566i \(-0.389705\pi\)
0.339611 + 0.940566i \(0.389705\pi\)
\(200\) 2.85621 0.201965
\(201\) −30.2224 −2.13173
\(202\) −3.34955 −0.235674
\(203\) 0 0
\(204\) −0.729971 −0.0511082
\(205\) −5.29308 −0.369685
\(206\) −27.3928 −1.90855
\(207\) 42.6587 2.96498
\(208\) 18.9781 1.31590
\(209\) 10.2224 0.707099
\(210\) 0 0
\(211\) 26.4828 1.82315 0.911576 0.411132i \(-0.134867\pi\)
0.911576 + 0.411132i \(0.134867\pi\)
\(212\) −0.224440 −0.0154146
\(213\) 18.1052 1.24055
\(214\) −18.5475 −1.26788
\(215\) 2.79133 0.190367
\(216\) 28.6512 1.94947
\(217\) 0 0
\(218\) 8.10248 0.548769
\(219\) −29.4709 −1.99146
\(220\) −0.147054 −0.00991435
\(221\) −28.7721 −1.93542
\(222\) 4.26700 0.286382
\(223\) 5.66767 0.379536 0.189768 0.981829i \(-0.439226\pi\)
0.189768 + 0.981829i \(0.439226\pi\)
\(224\) 0 0
\(225\) 6.29096 0.419397
\(226\) −13.5132 −0.898887
\(227\) −21.7868 −1.44604 −0.723021 0.690826i \(-0.757247\pi\)
−0.723021 + 0.690826i \(0.757247\pi\)
\(228\) 0.344472 0.0228132
\(229\) 11.8799 0.785045 0.392522 0.919742i \(-0.371603\pi\)
0.392522 + 0.919742i \(0.371603\pi\)
\(230\) 9.49256 0.625921
\(231\) 0 0
\(232\) 7.32189 0.480706
\(233\) 13.9670 0.915007 0.457503 0.889208i \(-0.348744\pi\)
0.457503 + 0.889208i \(0.348744\pi\)
\(234\) 42.6607 2.78881
\(235\) −4.66023 −0.304000
\(236\) −0.120152 −0.00782123
\(237\) −44.7275 −2.90537
\(238\) 0 0
\(239\) 3.79988 0.245794 0.122897 0.992419i \(-0.460782\pi\)
0.122897 + 0.992419i \(0.460782\pi\)
\(240\) 11.9417 0.770832
\(241\) −3.06191 −0.197235 −0.0986174 0.995125i \(-0.531442\pi\)
−0.0986174 + 0.995125i \(0.531442\pi\)
\(242\) −3.22205 −0.207121
\(243\) 5.57926 0.357910
\(244\) −0.542456 −0.0347272
\(245\) 0 0
\(246\) −22.5856 −1.44000
\(247\) 13.5775 0.863914
\(248\) −22.9612 −1.45804
\(249\) −29.9907 −1.90058
\(250\) 1.39989 0.0885365
\(251\) 15.8041 0.997544 0.498772 0.866733i \(-0.333785\pi\)
0.498772 + 0.866733i \(0.333785\pi\)
\(252\) 0 0
\(253\) −24.7311 −1.55483
\(254\) 14.0892 0.884036
\(255\) −18.1044 −1.13374
\(256\) −0.967289 −0.0604556
\(257\) −6.34024 −0.395494 −0.197747 0.980253i \(-0.563362\pi\)
−0.197747 + 0.980253i \(0.563362\pi\)
\(258\) 11.9106 0.741523
\(259\) 0 0
\(260\) −0.195317 −0.0121131
\(261\) 16.1268 0.998226
\(262\) −26.4147 −1.63190
\(263\) 24.2607 1.49598 0.747988 0.663712i \(-0.231020\pi\)
0.747988 + 0.663712i \(0.231020\pi\)
\(264\) −31.7522 −1.95421
\(265\) −5.56644 −0.341944
\(266\) 0 0
\(267\) 1.59555 0.0976462
\(268\) 0.399781 0.0244205
\(269\) −10.6715 −0.650654 −0.325327 0.945602i \(-0.605474\pi\)
−0.325327 + 0.945602i \(0.605474\pi\)
\(270\) 14.0425 0.854601
\(271\) 3.12586 0.189882 0.0949411 0.995483i \(-0.469734\pi\)
0.0949411 + 0.995483i \(0.469734\pi\)
\(272\) −23.2695 −1.41092
\(273\) 0 0
\(274\) 8.04236 0.485857
\(275\) −3.64714 −0.219931
\(276\) −0.833381 −0.0501636
\(277\) 15.4510 0.928362 0.464181 0.885740i \(-0.346349\pi\)
0.464181 + 0.885740i \(0.346349\pi\)
\(278\) −16.2455 −0.974337
\(279\) −50.5731 −3.02773
\(280\) 0 0
\(281\) 9.86108 0.588263 0.294131 0.955765i \(-0.404970\pi\)
0.294131 + 0.955765i \(0.404970\pi\)
\(282\) −19.8852 −1.18415
\(283\) 9.95956 0.592034 0.296017 0.955183i \(-0.404341\pi\)
0.296017 + 0.955183i \(0.404341\pi\)
\(284\) −0.239494 −0.0142114
\(285\) 8.54340 0.506067
\(286\) −24.7322 −1.46245
\(287\) 0 0
\(288\) −1.43466 −0.0845379
\(289\) 18.2781 1.07518
\(290\) 3.58860 0.210730
\(291\) 21.4981 1.26024
\(292\) 0.389840 0.0228137
\(293\) 12.1366 0.709026 0.354513 0.935051i \(-0.384647\pi\)
0.354513 + 0.935051i \(0.384647\pi\)
\(294\) 0 0
\(295\) −2.97995 −0.173499
\(296\) −2.85621 −0.166014
\(297\) −36.5852 −2.12289
\(298\) −17.2833 −1.00120
\(299\) −32.8480 −1.89965
\(300\) −0.122900 −0.00709565
\(301\) 0 0
\(302\) −17.4452 −1.00386
\(303\) 7.29331 0.418990
\(304\) 10.9808 0.629794
\(305\) −13.4537 −0.770357
\(306\) −52.3073 −2.99021
\(307\) −5.55093 −0.316808 −0.158404 0.987374i \(-0.550635\pi\)
−0.158404 + 0.987374i \(0.550635\pi\)
\(308\) 0 0
\(309\) 59.6450 3.39309
\(310\) −11.2537 −0.639168
\(311\) −3.09306 −0.175391 −0.0876956 0.996147i \(-0.527950\pi\)
−0.0876956 + 0.996147i \(0.527950\pi\)
\(312\) −42.1735 −2.38760
\(313\) −24.9749 −1.41166 −0.705832 0.708380i \(-0.749426\pi\)
−0.705832 + 0.708380i \(0.749426\pi\)
\(314\) 9.27778 0.523575
\(315\) 0 0
\(316\) 0.591654 0.0332831
\(317\) −12.5972 −0.707529 −0.353765 0.935335i \(-0.615099\pi\)
−0.353765 + 0.935335i \(0.615099\pi\)
\(318\) −23.7520 −1.33195
\(319\) −9.34943 −0.523468
\(320\) −8.15471 −0.455862
\(321\) 40.3853 2.25409
\(322\) 0 0
\(323\) −16.6477 −0.926301
\(324\) −0.471878 −0.0262155
\(325\) −4.84416 −0.268705
\(326\) 18.8576 1.04442
\(327\) −17.6423 −0.975623
\(328\) 15.1182 0.834761
\(329\) 0 0
\(330\) −15.5624 −0.856680
\(331\) 32.8035 1.80304 0.901521 0.432736i \(-0.142452\pi\)
0.901521 + 0.432736i \(0.142452\pi\)
\(332\) 0.396715 0.0217726
\(333\) −6.29096 −0.344742
\(334\) −24.9746 −1.36655
\(335\) 9.91515 0.541722
\(336\) 0 0
\(337\) −7.88075 −0.429292 −0.214646 0.976692i \(-0.568860\pi\)
−0.214646 + 0.976692i \(0.568860\pi\)
\(338\) −14.6510 −0.796910
\(339\) 29.4237 1.59807
\(340\) 0.239484 0.0129878
\(341\) 29.3195 1.58774
\(342\) 24.6837 1.33474
\(343\) 0 0
\(344\) −7.97265 −0.429857
\(345\) −20.6691 −1.11279
\(346\) 36.7965 1.97819
\(347\) 17.2018 0.923442 0.461721 0.887025i \(-0.347232\pi\)
0.461721 + 0.887025i \(0.347232\pi\)
\(348\) −0.315054 −0.0168887
\(349\) −19.5847 −1.04834 −0.524172 0.851613i \(-0.675625\pi\)
−0.524172 + 0.851613i \(0.675625\pi\)
\(350\) 0 0
\(351\) −48.5927 −2.59368
\(352\) 0.831733 0.0443315
\(353\) −5.04907 −0.268735 −0.134367 0.990932i \(-0.542900\pi\)
−0.134367 + 0.990932i \(0.542900\pi\)
\(354\) −12.7154 −0.675818
\(355\) −5.93981 −0.315252
\(356\) −0.0211059 −0.00111861
\(357\) 0 0
\(358\) 24.8427 1.31298
\(359\) 18.4078 0.971528 0.485764 0.874090i \(-0.338541\pi\)
0.485764 + 0.874090i \(0.338541\pi\)
\(360\) −17.9683 −0.947014
\(361\) −11.1440 −0.586527
\(362\) −21.4334 −1.12651
\(363\) 7.01569 0.368228
\(364\) 0 0
\(365\) 9.66860 0.506078
\(366\) −57.4070 −3.00071
\(367\) 15.1703 0.791885 0.395943 0.918275i \(-0.370418\pi\)
0.395943 + 0.918275i \(0.370418\pi\)
\(368\) −26.5660 −1.38485
\(369\) 33.2985 1.73345
\(370\) −1.39989 −0.0727766
\(371\) 0 0
\(372\) 0.987998 0.0512253
\(373\) −11.4128 −0.590935 −0.295467 0.955353i \(-0.595475\pi\)
−0.295467 + 0.955353i \(0.595475\pi\)
\(374\) 30.3248 1.56806
\(375\) −3.04811 −0.157404
\(376\) 13.3106 0.686442
\(377\) −12.4180 −0.639558
\(378\) 0 0
\(379\) −25.7791 −1.32419 −0.662093 0.749422i \(-0.730331\pi\)
−0.662093 + 0.749422i \(0.730331\pi\)
\(380\) −0.113012 −0.00579738
\(381\) −30.6778 −1.57167
\(382\) 13.1203 0.671294
\(383\) 35.9013 1.83447 0.917236 0.398345i \(-0.130415\pi\)
0.917236 + 0.398345i \(0.130415\pi\)
\(384\) −33.4059 −1.70474
\(385\) 0 0
\(386\) −29.2379 −1.48817
\(387\) −17.5602 −0.892633
\(388\) −0.284376 −0.0144370
\(389\) 13.7326 0.696270 0.348135 0.937444i \(-0.386815\pi\)
0.348135 + 0.937444i \(0.386815\pi\)
\(390\) −20.6700 −1.04667
\(391\) 40.2757 2.03683
\(392\) 0 0
\(393\) 57.5152 2.90126
\(394\) −35.5787 −1.79243
\(395\) 14.6739 0.738323
\(396\) 0.925108 0.0464884
\(397\) 11.4068 0.572489 0.286244 0.958157i \(-0.407593\pi\)
0.286244 + 0.958157i \(0.407593\pi\)
\(398\) −13.4131 −0.672340
\(399\) 0 0
\(400\) −3.91773 −0.195887
\(401\) −2.75338 −0.137497 −0.0687485 0.997634i \(-0.521901\pi\)
−0.0687485 + 0.997634i \(0.521901\pi\)
\(402\) 42.3080 2.11013
\(403\) 38.9423 1.93985
\(404\) −0.0964755 −0.00479984
\(405\) −11.7033 −0.581540
\(406\) 0 0
\(407\) 3.64714 0.180782
\(408\) 51.7099 2.56002
\(409\) 8.95246 0.442671 0.221335 0.975198i \(-0.428958\pi\)
0.221335 + 0.975198i \(0.428958\pi\)
\(410\) 7.40970 0.365939
\(411\) −17.5114 −0.863775
\(412\) −0.788981 −0.0388703
\(413\) 0 0
\(414\) −59.7173 −2.93494
\(415\) 9.83911 0.482983
\(416\) 1.10471 0.0541630
\(417\) 35.3728 1.73221
\(418\) −14.3102 −0.699935
\(419\) 11.6889 0.571038 0.285519 0.958373i \(-0.407834\pi\)
0.285519 + 0.958373i \(0.407834\pi\)
\(420\) 0 0
\(421\) −10.1867 −0.496468 −0.248234 0.968700i \(-0.579850\pi\)
−0.248234 + 0.968700i \(0.579850\pi\)
\(422\) −37.0729 −1.80468
\(423\) 29.3173 1.42546
\(424\) 15.8989 0.772121
\(425\) 5.93954 0.288110
\(426\) −25.3452 −1.22798
\(427\) 0 0
\(428\) −0.534214 −0.0258222
\(429\) 53.8519 2.60000
\(430\) −3.90755 −0.188439
\(431\) −32.1101 −1.54669 −0.773344 0.633986i \(-0.781418\pi\)
−0.773344 + 0.633986i \(0.781418\pi\)
\(432\) −39.2995 −1.89080
\(433\) −21.8491 −1.05000 −0.525001 0.851102i \(-0.675935\pi\)
−0.525001 + 0.851102i \(0.675935\pi\)
\(434\) 0 0
\(435\) −7.81380 −0.374643
\(436\) 0.233372 0.0111765
\(437\) −19.0060 −0.909181
\(438\) 41.2559 1.97128
\(439\) 36.1376 1.72475 0.862376 0.506268i \(-0.168975\pi\)
0.862376 + 0.506268i \(0.168975\pi\)
\(440\) 10.4170 0.496612
\(441\) 0 0
\(442\) 40.2776 1.91581
\(443\) −5.66883 −0.269334 −0.134667 0.990891i \(-0.542997\pi\)
−0.134667 + 0.990891i \(0.542997\pi\)
\(444\) 0.122900 0.00583259
\(445\) −0.523456 −0.0248142
\(446\) −7.93410 −0.375690
\(447\) 37.6326 1.77996
\(448\) 0 0
\(449\) −2.14411 −0.101187 −0.0505935 0.998719i \(-0.516111\pi\)
−0.0505935 + 0.998719i \(0.516111\pi\)
\(450\) −8.80662 −0.415148
\(451\) −19.3046 −0.909019
\(452\) −0.389215 −0.0183071
\(453\) 37.9851 1.78470
\(454\) 30.4991 1.43139
\(455\) 0 0
\(456\) −24.4018 −1.14272
\(457\) 3.63740 0.170150 0.0850752 0.996375i \(-0.472887\pi\)
0.0850752 + 0.996375i \(0.472887\pi\)
\(458\) −16.6305 −0.777091
\(459\) 59.5807 2.78099
\(460\) 0.273409 0.0127478
\(461\) 15.1913 0.707530 0.353765 0.935334i \(-0.384901\pi\)
0.353765 + 0.935334i \(0.384901\pi\)
\(462\) 0 0
\(463\) 13.1805 0.612548 0.306274 0.951943i \(-0.400918\pi\)
0.306274 + 0.951943i \(0.400918\pi\)
\(464\) −10.0431 −0.466239
\(465\) 24.5038 1.13634
\(466\) −19.5522 −0.905737
\(467\) −16.8444 −0.779467 −0.389733 0.920928i \(-0.627433\pi\)
−0.389733 + 0.920928i \(0.627433\pi\)
\(468\) 1.22873 0.0567982
\(469\) 0 0
\(470\) 6.52379 0.300920
\(471\) −20.2014 −0.930832
\(472\) 8.51137 0.391767
\(473\) 10.1804 0.468095
\(474\) 62.6134 2.87593
\(475\) −2.80285 −0.128604
\(476\) 0 0
\(477\) 35.0182 1.60337
\(478\) −5.31939 −0.243303
\(479\) 18.9907 0.867706 0.433853 0.900984i \(-0.357154\pi\)
0.433853 + 0.900984i \(0.357154\pi\)
\(480\) 0.695123 0.0317279
\(481\) 4.84416 0.220875
\(482\) 4.28632 0.195236
\(483\) 0 0
\(484\) −0.0928031 −0.00421832
\(485\) −7.05294 −0.320257
\(486\) −7.81033 −0.354284
\(487\) −36.5957 −1.65831 −0.829156 0.559018i \(-0.811178\pi\)
−0.829156 + 0.559018i \(0.811178\pi\)
\(488\) 38.4267 1.73949
\(489\) −41.0604 −1.85682
\(490\) 0 0
\(491\) −36.8339 −1.66229 −0.831146 0.556054i \(-0.812315\pi\)
−0.831146 + 0.556054i \(0.812315\pi\)
\(492\) −0.650521 −0.0293278
\(493\) 15.2260 0.685743
\(494\) −19.0069 −0.855161
\(495\) 22.9440 1.03126
\(496\) 31.4947 1.41416
\(497\) 0 0
\(498\) 41.9835 1.88133
\(499\) 3.91663 0.175332 0.0876661 0.996150i \(-0.472059\pi\)
0.0876661 + 0.996150i \(0.472059\pi\)
\(500\) 0.0403202 0.00180317
\(501\) 54.3796 2.42950
\(502\) −22.1239 −0.987437
\(503\) 11.3334 0.505331 0.252665 0.967554i \(-0.418693\pi\)
0.252665 + 0.967554i \(0.418693\pi\)
\(504\) 0 0
\(505\) −2.39273 −0.106475
\(506\) 34.6207 1.53908
\(507\) 31.9011 1.41678
\(508\) 0.405805 0.0180047
\(509\) 18.0185 0.798656 0.399328 0.916808i \(-0.369244\pi\)
0.399328 + 0.916808i \(0.369244\pi\)
\(510\) 25.3440 1.12225
\(511\) 0 0
\(512\) 23.2732 1.02854
\(513\) −28.1160 −1.24135
\(514\) 8.87562 0.391487
\(515\) −19.5679 −0.862264
\(516\) 0.343056 0.0151022
\(517\) −16.9965 −0.747506
\(518\) 0 0
\(519\) −80.1206 −3.51690
\(520\) 13.8360 0.606747
\(521\) 11.1708 0.489403 0.244702 0.969598i \(-0.421310\pi\)
0.244702 + 0.969598i \(0.421310\pi\)
\(522\) −22.5757 −0.988112
\(523\) 20.7450 0.907115 0.453557 0.891227i \(-0.350155\pi\)
0.453557 + 0.891227i \(0.350155\pi\)
\(524\) −0.760809 −0.0332361
\(525\) 0 0
\(526\) −33.9621 −1.48082
\(527\) −47.7481 −2.07994
\(528\) 43.5530 1.89540
\(529\) 22.9813 0.999187
\(530\) 7.79238 0.338479
\(531\) 18.7467 0.813538
\(532\) 0 0
\(533\) −25.6405 −1.11061
\(534\) −2.23359 −0.0966569
\(535\) −13.2493 −0.572817
\(536\) −28.3198 −1.22323
\(537\) −54.0925 −2.33426
\(538\) 14.9389 0.644062
\(539\) 0 0
\(540\) 0.404460 0.0174052
\(541\) −15.4967 −0.666257 −0.333128 0.942881i \(-0.608104\pi\)
−0.333128 + 0.942881i \(0.608104\pi\)
\(542\) −4.37584 −0.187958
\(543\) 46.6689 2.00276
\(544\) −1.35452 −0.0580744
\(545\) 5.78796 0.247929
\(546\) 0 0
\(547\) 15.7560 0.673677 0.336838 0.941562i \(-0.390642\pi\)
0.336838 + 0.941562i \(0.390642\pi\)
\(548\) 0.231640 0.00989518
\(549\) 84.6366 3.61220
\(550\) 5.10558 0.217703
\(551\) −7.18510 −0.306096
\(552\) 59.0353 2.51271
\(553\) 0 0
\(554\) −21.6297 −0.918956
\(555\) 3.04811 0.129385
\(556\) −0.467910 −0.0198438
\(557\) −20.8340 −0.882765 −0.441382 0.897319i \(-0.645512\pi\)
−0.441382 + 0.897319i \(0.645512\pi\)
\(558\) 70.7966 2.99706
\(559\) 13.5217 0.571905
\(560\) 0 0
\(561\) −66.0292 −2.78775
\(562\) −13.8044 −0.582303
\(563\) 17.5363 0.739066 0.369533 0.929218i \(-0.379518\pi\)
0.369533 + 0.929218i \(0.379518\pi\)
\(564\) −0.572744 −0.0241169
\(565\) −9.65310 −0.406109
\(566\) −13.9422 −0.586036
\(567\) 0 0
\(568\) 16.9654 0.711851
\(569\) 27.6209 1.15793 0.578964 0.815353i \(-0.303457\pi\)
0.578964 + 0.815353i \(0.303457\pi\)
\(570\) −11.9598 −0.500940
\(571\) 6.93846 0.290366 0.145183 0.989405i \(-0.453623\pi\)
0.145183 + 0.989405i \(0.453623\pi\)
\(572\) −0.712351 −0.0297849
\(573\) −28.5681 −1.19345
\(574\) 0 0
\(575\) 6.78095 0.282785
\(576\) 51.3009 2.13754
\(577\) −17.6589 −0.735151 −0.367576 0.929994i \(-0.619812\pi\)
−0.367576 + 0.929994i \(0.619812\pi\)
\(578\) −25.5873 −1.06429
\(579\) 63.6624 2.64572
\(580\) 0.103361 0.00429182
\(581\) 0 0
\(582\) −30.0949 −1.24747
\(583\) −20.3016 −0.840806
\(584\) −27.6156 −1.14274
\(585\) 30.4744 1.25996
\(586\) −16.9898 −0.701843
\(587\) −1.32023 −0.0544918 −0.0272459 0.999629i \(-0.508674\pi\)
−0.0272459 + 0.999629i \(0.508674\pi\)
\(588\) 0 0
\(589\) 22.5322 0.928423
\(590\) 4.17158 0.171741
\(591\) 77.4690 3.18665
\(592\) 3.91773 0.161018
\(593\) −26.0840 −1.07114 −0.535572 0.844490i \(-0.679904\pi\)
−0.535572 + 0.844490i \(0.679904\pi\)
\(594\) 51.2151 2.10138
\(595\) 0 0
\(596\) −0.497803 −0.0203908
\(597\) 29.2057 1.19531
\(598\) 45.9834 1.88040
\(599\) 28.0723 1.14700 0.573502 0.819204i \(-0.305585\pi\)
0.573502 + 0.819204i \(0.305585\pi\)
\(600\) 8.70605 0.355423
\(601\) −23.9728 −0.977873 −0.488936 0.872319i \(-0.662615\pi\)
−0.488936 + 0.872319i \(0.662615\pi\)
\(602\) 0 0
\(603\) −62.3758 −2.54014
\(604\) −0.502466 −0.0204450
\(605\) −2.30165 −0.0935755
\(606\) −10.2098 −0.414745
\(607\) 44.5284 1.80735 0.903675 0.428219i \(-0.140859\pi\)
0.903675 + 0.428219i \(0.140859\pi\)
\(608\) 0.639193 0.0259227
\(609\) 0 0
\(610\) 18.8336 0.762552
\(611\) −22.5749 −0.913282
\(612\) −1.50658 −0.0608999
\(613\) −1.95068 −0.0787871 −0.0393936 0.999224i \(-0.512543\pi\)
−0.0393936 + 0.999224i \(0.512543\pi\)
\(614\) 7.77067 0.313599
\(615\) −16.1339 −0.650580
\(616\) 0 0
\(617\) −35.3685 −1.42388 −0.711940 0.702240i \(-0.752183\pi\)
−0.711940 + 0.702240i \(0.752183\pi\)
\(618\) −83.4962 −3.35871
\(619\) 4.35625 0.175093 0.0875463 0.996160i \(-0.472097\pi\)
0.0875463 + 0.996160i \(0.472097\pi\)
\(620\) −0.324135 −0.0130176
\(621\) 68.0210 2.72959
\(622\) 4.32993 0.173614
\(623\) 0 0
\(624\) 57.8473 2.31575
\(625\) 1.00000 0.0400000
\(626\) 34.9620 1.39736
\(627\) 31.1590 1.24437
\(628\) 0.267223 0.0106634
\(629\) −5.93954 −0.236825
\(630\) 0 0
\(631\) 26.0056 1.03526 0.517632 0.855603i \(-0.326813\pi\)
0.517632 + 0.855603i \(0.326813\pi\)
\(632\) −41.9117 −1.66716
\(633\) 80.7224 3.20843
\(634\) 17.6346 0.700361
\(635\) 10.0645 0.399399
\(636\) −0.684117 −0.0271270
\(637\) 0 0
\(638\) 13.0881 0.518164
\(639\) 37.3671 1.47822
\(640\) 10.9596 0.433215
\(641\) 2.10114 0.0829900 0.0414950 0.999139i \(-0.486788\pi\)
0.0414950 + 0.999139i \(0.486788\pi\)
\(642\) −56.5348 −2.23125
\(643\) 20.8643 0.822807 0.411403 0.911453i \(-0.365039\pi\)
0.411403 + 0.911453i \(0.365039\pi\)
\(644\) 0 0
\(645\) 8.50829 0.335013
\(646\) 23.3048 0.916916
\(647\) −25.4420 −1.00023 −0.500113 0.865960i \(-0.666708\pi\)
−0.500113 + 0.865960i \(0.666708\pi\)
\(648\) 33.4271 1.31314
\(649\) −10.8683 −0.426618
\(650\) 6.78127 0.265983
\(651\) 0 0
\(652\) 0.543145 0.0212712
\(653\) 31.2907 1.22450 0.612249 0.790665i \(-0.290265\pi\)
0.612249 + 0.790665i \(0.290265\pi\)
\(654\) 24.6972 0.965738
\(655\) −18.8692 −0.737279
\(656\) −20.7369 −0.809639
\(657\) −60.8247 −2.37300
\(658\) 0 0
\(659\) 35.9609 1.40084 0.700419 0.713732i \(-0.252997\pi\)
0.700419 + 0.713732i \(0.252997\pi\)
\(660\) −0.448235 −0.0174475
\(661\) 43.9179 1.70821 0.854104 0.520102i \(-0.174106\pi\)
0.854104 + 0.520102i \(0.174106\pi\)
\(662\) −45.9211 −1.78477
\(663\) −87.7003 −3.40600
\(664\) −28.1026 −1.09059
\(665\) 0 0
\(666\) 8.80662 0.341250
\(667\) 17.3829 0.673070
\(668\) −0.719330 −0.0278317
\(669\) 17.2757 0.667916
\(670\) −13.8801 −0.536234
\(671\) −49.0676 −1.89423
\(672\) 0 0
\(673\) −26.5814 −1.02464 −0.512319 0.858796i \(-0.671213\pi\)
−0.512319 + 0.858796i \(0.671213\pi\)
\(674\) 11.0321 0.424942
\(675\) 10.0312 0.386101
\(676\) −0.421986 −0.0162302
\(677\) −40.9319 −1.57314 −0.786571 0.617500i \(-0.788145\pi\)
−0.786571 + 0.617500i \(0.788145\pi\)
\(678\) −41.1898 −1.58188
\(679\) 0 0
\(680\) −16.9646 −0.650563
\(681\) −66.4086 −2.54478
\(682\) −41.0439 −1.57165
\(683\) −21.6347 −0.827830 −0.413915 0.910315i \(-0.635839\pi\)
−0.413915 + 0.910315i \(0.635839\pi\)
\(684\) 0.710952 0.0271839
\(685\) 5.74501 0.219506
\(686\) 0 0
\(687\) 36.2112 1.38154
\(688\) 10.9357 0.416920
\(689\) −26.9647 −1.02727
\(690\) 28.9343 1.10151
\(691\) −5.20391 −0.197966 −0.0989830 0.995089i \(-0.531559\pi\)
−0.0989830 + 0.995089i \(0.531559\pi\)
\(692\) 1.05983 0.0402888
\(693\) 0 0
\(694\) −24.0806 −0.914086
\(695\) −11.6048 −0.440197
\(696\) 22.3179 0.845958
\(697\) 31.4385 1.19082
\(698\) 27.4163 1.03772
\(699\) 42.5728 1.61025
\(700\) 0 0
\(701\) −9.61311 −0.363082 −0.181541 0.983383i \(-0.558109\pi\)
−0.181541 + 0.983383i \(0.558109\pi\)
\(702\) 68.0242 2.56741
\(703\) 2.80285 0.105712
\(704\) −29.7414 −1.12092
\(705\) −14.2049 −0.534987
\(706\) 7.06812 0.266012
\(707\) 0 0
\(708\) −0.366236 −0.0137640
\(709\) 28.4078 1.06688 0.533439 0.845839i \(-0.320899\pi\)
0.533439 + 0.845839i \(0.320899\pi\)
\(710\) 8.31505 0.312058
\(711\) −92.3127 −3.46200
\(712\) 1.49510 0.0560314
\(713\) −54.5122 −2.04150
\(714\) 0 0
\(715\) −17.6673 −0.660721
\(716\) 0.715533 0.0267407
\(717\) 11.5824 0.432554
\(718\) −25.7689 −0.961685
\(719\) −7.83731 −0.292282 −0.146141 0.989264i \(-0.546685\pi\)
−0.146141 + 0.989264i \(0.546685\pi\)
\(720\) 24.6463 0.918513
\(721\) 0 0
\(722\) 15.6003 0.580584
\(723\) −9.33302 −0.347099
\(724\) −0.617335 −0.0229431
\(725\) 2.56349 0.0952058
\(726\) −9.82116 −0.364497
\(727\) 26.6047 0.986712 0.493356 0.869827i \(-0.335770\pi\)
0.493356 + 0.869827i \(0.335770\pi\)
\(728\) 0 0
\(729\) −18.1036 −0.670505
\(730\) −13.5349 −0.500950
\(731\) −16.5792 −0.613205
\(732\) −1.65346 −0.0611138
\(733\) −53.3717 −1.97133 −0.985664 0.168718i \(-0.946037\pi\)
−0.985664 + 0.168718i \(0.946037\pi\)
\(734\) −21.2367 −0.783862
\(735\) 0 0
\(736\) −1.54640 −0.0570011
\(737\) 36.1620 1.33204
\(738\) −46.6141 −1.71589
\(739\) −19.9661 −0.734466 −0.367233 0.930129i \(-0.619695\pi\)
−0.367233 + 0.930129i \(0.619695\pi\)
\(740\) −0.0403202 −0.00148220
\(741\) 41.3856 1.52034
\(742\) 0 0
\(743\) 4.54143 0.166609 0.0833044 0.996524i \(-0.473453\pi\)
0.0833044 + 0.996524i \(0.473453\pi\)
\(744\) −69.9881 −2.56589
\(745\) −12.3462 −0.452331
\(746\) 15.9767 0.584948
\(747\) −61.8974 −2.26471
\(748\) 0.873431 0.0319358
\(749\) 0 0
\(750\) 4.26700 0.155809
\(751\) −15.2284 −0.555692 −0.277846 0.960626i \(-0.589620\pi\)
−0.277846 + 0.960626i \(0.589620\pi\)
\(752\) −18.2575 −0.665784
\(753\) 48.1725 1.75550
\(754\) 17.3837 0.633078
\(755\) −12.4619 −0.453534
\(756\) 0 0
\(757\) −32.8000 −1.19214 −0.596069 0.802934i \(-0.703271\pi\)
−0.596069 + 0.802934i \(0.703271\pi\)
\(758\) 36.0878 1.31077
\(759\) −75.3830 −2.73623
\(760\) 8.00556 0.290392
\(761\) 41.4805 1.50367 0.751834 0.659352i \(-0.229169\pi\)
0.751834 + 0.659352i \(0.229169\pi\)
\(762\) 42.9454 1.55575
\(763\) 0 0
\(764\) 0.377898 0.0136719
\(765\) −37.3654 −1.35095
\(766\) −50.2577 −1.81589
\(767\) −14.4353 −0.521229
\(768\) −2.94840 −0.106391
\(769\) 4.98364 0.179715 0.0898574 0.995955i \(-0.471359\pi\)
0.0898574 + 0.995955i \(0.471359\pi\)
\(770\) 0 0
\(771\) −19.3257 −0.696000
\(772\) −0.842123 −0.0303087
\(773\) −7.58656 −0.272869 −0.136435 0.990649i \(-0.543564\pi\)
−0.136435 + 0.990649i \(0.543564\pi\)
\(774\) 24.5822 0.883590
\(775\) −8.03902 −0.288770
\(776\) 20.1447 0.723153
\(777\) 0 0
\(778\) −19.2241 −0.689216
\(779\) −14.8357 −0.531545
\(780\) −0.595348 −0.0213169
\(781\) −21.6633 −0.775175
\(782\) −56.3814 −2.01620
\(783\) 25.7149 0.918975
\(784\) 0 0
\(785\) 6.62753 0.236547
\(786\) −80.5148 −2.87187
\(787\) −10.9337 −0.389744 −0.194872 0.980829i \(-0.562429\pi\)
−0.194872 + 0.980829i \(0.562429\pi\)
\(788\) −1.02476 −0.0365054
\(789\) 73.9491 2.63266
\(790\) −20.5417 −0.730842
\(791\) 0 0
\(792\) −65.5331 −2.32862
\(793\) −65.1718 −2.31432
\(794\) −15.9682 −0.566689
\(795\) −16.9671 −0.601761
\(796\) −0.386332 −0.0136932
\(797\) −6.03515 −0.213776 −0.106888 0.994271i \(-0.534089\pi\)
−0.106888 + 0.994271i \(0.534089\pi\)
\(798\) 0 0
\(799\) 27.6796 0.979234
\(800\) −0.228051 −0.00806280
\(801\) 3.29304 0.116354
\(802\) 3.85441 0.136104
\(803\) 35.2628 1.24440
\(804\) 1.21857 0.0429758
\(805\) 0 0
\(806\) −54.5147 −1.92020
\(807\) −32.5279 −1.14504
\(808\) 6.83416 0.240425
\(809\) −38.0682 −1.33841 −0.669203 0.743080i \(-0.733364\pi\)
−0.669203 + 0.743080i \(0.733364\pi\)
\(810\) 16.3832 0.575649
\(811\) 48.0542 1.68741 0.843705 0.536807i \(-0.180370\pi\)
0.843705 + 0.536807i \(0.180370\pi\)
\(812\) 0 0
\(813\) 9.52794 0.334160
\(814\) −5.10558 −0.178951
\(815\) 13.4708 0.471861
\(816\) −70.9280 −2.48298
\(817\) 7.82371 0.273717
\(818\) −12.5324 −0.438186
\(819\) 0 0
\(820\) 0.213418 0.00745288
\(821\) −36.5629 −1.27605 −0.638027 0.770014i \(-0.720249\pi\)
−0.638027 + 0.770014i \(0.720249\pi\)
\(822\) 24.5140 0.855023
\(823\) −39.2913 −1.36961 −0.684804 0.728727i \(-0.740112\pi\)
−0.684804 + 0.728727i \(0.740112\pi\)
\(824\) 55.8901 1.94702
\(825\) −11.1169 −0.387040
\(826\) 0 0
\(827\) −2.05042 −0.0713002 −0.0356501 0.999364i \(-0.511350\pi\)
−0.0356501 + 0.999364i \(0.511350\pi\)
\(828\) −1.72001 −0.0597744
\(829\) −8.56716 −0.297550 −0.148775 0.988871i \(-0.547533\pi\)
−0.148775 + 0.988871i \(0.547533\pi\)
\(830\) −13.7736 −0.478090
\(831\) 47.0964 1.63375
\(832\) −39.5027 −1.36951
\(833\) 0 0
\(834\) −49.5179 −1.71466
\(835\) −17.8404 −0.617394
\(836\) −0.412170 −0.0142552
\(837\) −80.6410 −2.78736
\(838\) −16.3631 −0.565253
\(839\) −3.02431 −0.104411 −0.0522053 0.998636i \(-0.516625\pi\)
−0.0522053 + 0.998636i \(0.516625\pi\)
\(840\) 0 0
\(841\) −22.4285 −0.773397
\(842\) 14.2602 0.491438
\(843\) 30.0576 1.03524
\(844\) −1.06779 −0.0367549
\(845\) −10.4659 −0.360036
\(846\) −41.0409 −1.41101
\(847\) 0 0
\(848\) −21.8078 −0.748884
\(849\) 30.3578 1.04188
\(850\) −8.31468 −0.285191
\(851\) −6.78095 −0.232448
\(852\) −0.730005 −0.0250095
\(853\) 34.8869 1.19451 0.597253 0.802053i \(-0.296259\pi\)
0.597253 + 0.802053i \(0.296259\pi\)
\(854\) 0 0
\(855\) 17.6326 0.603024
\(856\) 37.8428 1.29344
\(857\) −1.35026 −0.0461240 −0.0230620 0.999734i \(-0.507342\pi\)
−0.0230620 + 0.999734i \(0.507342\pi\)
\(858\) −75.3865 −2.57365
\(859\) −31.2917 −1.06766 −0.533829 0.845592i \(-0.679247\pi\)
−0.533829 + 0.845592i \(0.679247\pi\)
\(860\) −0.112547 −0.00383783
\(861\) 0 0
\(862\) 44.9505 1.53102
\(863\) 14.1149 0.480476 0.240238 0.970714i \(-0.422774\pi\)
0.240238 + 0.970714i \(0.422774\pi\)
\(864\) −2.28762 −0.0778264
\(865\) 26.2854 0.893729
\(866\) 30.5863 1.03936
\(867\) 55.7137 1.89214
\(868\) 0 0
\(869\) 53.5177 1.81546
\(870\) 10.9384 0.370848
\(871\) 48.0305 1.62745
\(872\) −16.5317 −0.559833
\(873\) 44.3697 1.50169
\(874\) 26.6063 0.899970
\(875\) 0 0
\(876\) 1.18827 0.0401480
\(877\) 40.0006 1.35072 0.675361 0.737487i \(-0.263988\pi\)
0.675361 + 0.737487i \(0.263988\pi\)
\(878\) −50.5885 −1.70728
\(879\) 36.9936 1.24776
\(880\) −14.2885 −0.481666
\(881\) −29.8247 −1.00482 −0.502409 0.864630i \(-0.667553\pi\)
−0.502409 + 0.864630i \(0.667553\pi\)
\(882\) 0 0
\(883\) −32.7577 −1.10239 −0.551193 0.834378i \(-0.685827\pi\)
−0.551193 + 0.834378i \(0.685827\pi\)
\(884\) 1.16010 0.0390182
\(885\) −9.08320 −0.305328
\(886\) 7.93572 0.266606
\(887\) 14.6579 0.492164 0.246082 0.969249i \(-0.420857\pi\)
0.246082 + 0.969249i \(0.420857\pi\)
\(888\) −8.70605 −0.292156
\(889\) 0 0
\(890\) 0.732779 0.0245628
\(891\) −42.6835 −1.42995
\(892\) −0.228522 −0.00765148
\(893\) −13.0619 −0.437101
\(894\) −52.6814 −1.76193
\(895\) 17.7463 0.593192
\(896\) 0 0
\(897\) −100.124 −3.34305
\(898\) 3.00151 0.100162
\(899\) −20.6080 −0.687315
\(900\) −0.253653 −0.00845509
\(901\) 33.0621 1.10146
\(902\) 27.0243 0.899809
\(903\) 0 0
\(904\) 27.5713 0.917009
\(905\) −15.3108 −0.508948
\(906\) −53.1748 −1.76662
\(907\) 9.66145 0.320803 0.160402 0.987052i \(-0.448721\pi\)
0.160402 + 0.987052i \(0.448721\pi\)
\(908\) 0.878449 0.0291524
\(909\) 15.0526 0.499263
\(910\) 0 0
\(911\) 15.1053 0.500460 0.250230 0.968186i \(-0.419494\pi\)
0.250230 + 0.968186i \(0.419494\pi\)
\(912\) 33.4708 1.10833
\(913\) 35.8847 1.18761
\(914\) −5.09195 −0.168427
\(915\) −41.0083 −1.35569
\(916\) −0.478999 −0.0158266
\(917\) 0 0
\(918\) −83.4061 −2.75281
\(919\) −44.7051 −1.47469 −0.737343 0.675519i \(-0.763920\pi\)
−0.737343 + 0.675519i \(0.763920\pi\)
\(920\) −19.3679 −0.638539
\(921\) −16.9198 −0.557527
\(922\) −21.2661 −0.700361
\(923\) −28.7734 −0.947087
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) −18.4511 −0.606342
\(927\) 123.101 4.04316
\(928\) −0.584606 −0.0191906
\(929\) 17.9099 0.587606 0.293803 0.955866i \(-0.405079\pi\)
0.293803 + 0.955866i \(0.405079\pi\)
\(930\) −34.3025 −1.12482
\(931\) 0 0
\(932\) −0.563151 −0.0184466
\(933\) −9.42797 −0.308658
\(934\) 23.5803 0.771569
\(935\) 21.6624 0.708435
\(936\) −87.0414 −2.84504
\(937\) −23.6483 −0.772557 −0.386279 0.922382i \(-0.626240\pi\)
−0.386279 + 0.922382i \(0.626240\pi\)
\(938\) 0 0
\(939\) −76.1261 −2.48428
\(940\) 0.187901 0.00612867
\(941\) −58.6328 −1.91138 −0.955688 0.294381i \(-0.904886\pi\)
−0.955688 + 0.294381i \(0.904886\pi\)
\(942\) 28.2797 0.921401
\(943\) 35.8921 1.16881
\(944\) −11.6746 −0.379977
\(945\) 0 0
\(946\) −14.2514 −0.463353
\(947\) 38.8086 1.26111 0.630556 0.776144i \(-0.282827\pi\)
0.630556 + 0.776144i \(0.282827\pi\)
\(948\) 1.80342 0.0585725
\(949\) 46.8362 1.52037
\(950\) 3.92368 0.127301
\(951\) −38.3976 −1.24513
\(952\) 0 0
\(953\) 28.7794 0.932255 0.466127 0.884718i \(-0.345649\pi\)
0.466127 + 0.884718i \(0.345649\pi\)
\(954\) −49.0215 −1.58713
\(955\) 9.37242 0.303284
\(956\) −0.153212 −0.00495522
\(957\) −28.4981 −0.921211
\(958\) −26.5848 −0.858915
\(959\) 0 0
\(960\) −24.8564 −0.802238
\(961\) 33.6259 1.08471
\(962\) −6.78127 −0.218637
\(963\) 83.3507 2.68594
\(964\) 0.123457 0.00397627
\(965\) −20.8859 −0.672341
\(966\) 0 0
\(967\) 49.8680 1.60365 0.801823 0.597562i \(-0.203864\pi\)
0.801823 + 0.597562i \(0.203864\pi\)
\(968\) 6.57402 0.211297
\(969\) −50.7439 −1.63013
\(970\) 9.87330 0.317013
\(971\) 27.2949 0.875935 0.437968 0.898991i \(-0.355698\pi\)
0.437968 + 0.898991i \(0.355698\pi\)
\(972\) −0.224957 −0.00721550
\(973\) 0 0
\(974\) 51.2298 1.64151
\(975\) −14.7655 −0.472875
\(976\) −52.7080 −1.68714
\(977\) 3.98645 0.127538 0.0637689 0.997965i \(-0.479688\pi\)
0.0637689 + 0.997965i \(0.479688\pi\)
\(978\) 57.4799 1.83800
\(979\) −1.90912 −0.0610158
\(980\) 0 0
\(981\) −36.4118 −1.16254
\(982\) 51.5633 1.64545
\(983\) 23.8553 0.760865 0.380432 0.924809i \(-0.375775\pi\)
0.380432 + 0.924809i \(0.375775\pi\)
\(984\) 46.0818 1.46903
\(985\) −25.4155 −0.809804
\(986\) −21.3146 −0.678796
\(987\) 0 0
\(988\) −0.547446 −0.0174166
\(989\) −18.9279 −0.601872
\(990\) −32.1190 −1.02081
\(991\) 27.1694 0.863064 0.431532 0.902098i \(-0.357973\pi\)
0.431532 + 0.902098i \(0.357973\pi\)
\(992\) 1.83330 0.0582074
\(993\) 99.9885 3.17304
\(994\) 0 0
\(995\) −9.58159 −0.303757
\(996\) 1.20923 0.0383159
\(997\) −43.2163 −1.36867 −0.684336 0.729166i \(-0.739908\pi\)
−0.684336 + 0.729166i \(0.739908\pi\)
\(998\) −5.48283 −0.173556
\(999\) −10.0312 −0.317373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.q.1.5 yes 17
7.6 odd 2 9065.2.a.p.1.5 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.p.1.5 17 7.6 odd 2
9065.2.a.q.1.5 yes 17 1.1 even 1 trivial