Properties

Label 9065.2.a.o.1.3
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1,1,23,15,-6,0,-3,30,-1,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.26763\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.26763 q^{2} +2.33889 q^{3} +3.14213 q^{4} +1.00000 q^{5} -5.30373 q^{6} -2.58991 q^{8} +2.47041 q^{9} -2.26763 q^{10} +2.79940 q^{11} +7.34909 q^{12} -6.33892 q^{13} +2.33889 q^{15} -0.411300 q^{16} +5.73746 q^{17} -5.60196 q^{18} -5.46034 q^{19} +3.14213 q^{20} -6.34799 q^{22} -6.62426 q^{23} -6.05752 q^{24} +1.00000 q^{25} +14.3743 q^{26} -1.23866 q^{27} +7.31892 q^{29} -5.30373 q^{30} +5.72336 q^{31} +6.11250 q^{32} +6.54749 q^{33} -13.0104 q^{34} +7.76233 q^{36} +1.00000 q^{37} +12.3820 q^{38} -14.8260 q^{39} -2.58991 q^{40} +7.32058 q^{41} -8.56324 q^{43} +8.79606 q^{44} +2.47041 q^{45} +15.0213 q^{46} +1.83555 q^{47} -0.961985 q^{48} -2.26763 q^{50} +13.4193 q^{51} -19.9177 q^{52} +2.39441 q^{53} +2.80882 q^{54} +2.79940 q^{55} -12.7711 q^{57} -16.5966 q^{58} +5.54706 q^{59} +7.34909 q^{60} -6.78124 q^{61} -12.9784 q^{62} -13.0383 q^{64} -6.33892 q^{65} -14.8472 q^{66} +1.71727 q^{67} +18.0278 q^{68} -15.4934 q^{69} +5.11520 q^{71} -6.39814 q^{72} +5.64803 q^{73} -2.26763 q^{74} +2.33889 q^{75} -17.1571 q^{76} +33.6199 q^{78} +2.53359 q^{79} -0.411300 q^{80} -10.3083 q^{81} -16.6003 q^{82} +1.76178 q^{83} +5.73746 q^{85} +19.4182 q^{86} +17.1182 q^{87} -7.25020 q^{88} +13.0580 q^{89} -5.60196 q^{90} -20.8143 q^{92} +13.3863 q^{93} -4.16235 q^{94} -5.46034 q^{95} +14.2965 q^{96} -13.1335 q^{97} +6.91566 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} + q^{3} + 23 q^{4} + 15 q^{5} - 6 q^{6} - 3 q^{8} + 30 q^{9} - q^{10} + 17 q^{11} - 8 q^{12} + 5 q^{13} + q^{15} + 39 q^{16} + 7 q^{17} + 12 q^{18} - 6 q^{19} + 23 q^{20} + 18 q^{22} - 2 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.26763 −1.60345 −0.801727 0.597691i \(-0.796085\pi\)
−0.801727 + 0.597691i \(0.796085\pi\)
\(3\) 2.33889 1.35036 0.675179 0.737654i \(-0.264066\pi\)
0.675179 + 0.737654i \(0.264066\pi\)
\(4\) 3.14213 1.57106
\(5\) 1.00000 0.447214
\(6\) −5.30373 −2.16524
\(7\) 0 0
\(8\) −2.58991 −0.915672
\(9\) 2.47041 0.823469
\(10\) −2.26763 −0.717086
\(11\) 2.79940 0.844051 0.422025 0.906584i \(-0.361319\pi\)
0.422025 + 0.906584i \(0.361319\pi\)
\(12\) 7.34909 2.12150
\(13\) −6.33892 −1.75810 −0.879050 0.476730i \(-0.841822\pi\)
−0.879050 + 0.476730i \(0.841822\pi\)
\(14\) 0 0
\(15\) 2.33889 0.603899
\(16\) −0.411300 −0.102825
\(17\) 5.73746 1.39154 0.695769 0.718266i \(-0.255064\pi\)
0.695769 + 0.718266i \(0.255064\pi\)
\(18\) −5.60196 −1.32039
\(19\) −5.46034 −1.25269 −0.626344 0.779547i \(-0.715449\pi\)
−0.626344 + 0.779547i \(0.715449\pi\)
\(20\) 3.14213 0.702601
\(21\) 0 0
\(22\) −6.34799 −1.35340
\(23\) −6.62426 −1.38125 −0.690627 0.723211i \(-0.742665\pi\)
−0.690627 + 0.723211i \(0.742665\pi\)
\(24\) −6.05752 −1.23649
\(25\) 1.00000 0.200000
\(26\) 14.3743 2.81903
\(27\) −1.23866 −0.238380
\(28\) 0 0
\(29\) 7.31892 1.35909 0.679545 0.733634i \(-0.262177\pi\)
0.679545 + 0.733634i \(0.262177\pi\)
\(30\) −5.30373 −0.968324
\(31\) 5.72336 1.02795 0.513973 0.857806i \(-0.328173\pi\)
0.513973 + 0.857806i \(0.328173\pi\)
\(32\) 6.11250 1.08055
\(33\) 6.54749 1.13977
\(34\) −13.0104 −2.23127
\(35\) 0 0
\(36\) 7.76233 1.29372
\(37\) 1.00000 0.164399
\(38\) 12.3820 2.00863
\(39\) −14.8260 −2.37407
\(40\) −2.58991 −0.409501
\(41\) 7.32058 1.14328 0.571641 0.820504i \(-0.306307\pi\)
0.571641 + 0.820504i \(0.306307\pi\)
\(42\) 0 0
\(43\) −8.56324 −1.30588 −0.652941 0.757409i \(-0.726465\pi\)
−0.652941 + 0.757409i \(0.726465\pi\)
\(44\) 8.79606 1.32606
\(45\) 2.47041 0.368267
\(46\) 15.0213 2.21478
\(47\) 1.83555 0.267743 0.133871 0.990999i \(-0.457259\pi\)
0.133871 + 0.990999i \(0.457259\pi\)
\(48\) −0.961985 −0.138851
\(49\) 0 0
\(50\) −2.26763 −0.320691
\(51\) 13.4193 1.87908
\(52\) −19.9177 −2.76208
\(53\) 2.39441 0.328898 0.164449 0.986386i \(-0.447415\pi\)
0.164449 + 0.986386i \(0.447415\pi\)
\(54\) 2.80882 0.382231
\(55\) 2.79940 0.377471
\(56\) 0 0
\(57\) −12.7711 −1.69158
\(58\) −16.5966 −2.17924
\(59\) 5.54706 0.722165 0.361083 0.932534i \(-0.382407\pi\)
0.361083 + 0.932534i \(0.382407\pi\)
\(60\) 7.34909 0.948763
\(61\) −6.78124 −0.868249 −0.434125 0.900853i \(-0.642942\pi\)
−0.434125 + 0.900853i \(0.642942\pi\)
\(62\) −12.9784 −1.64826
\(63\) 0 0
\(64\) −13.0383 −1.62978
\(65\) −6.33892 −0.786246
\(66\) −14.8472 −1.82757
\(67\) 1.71727 0.209798 0.104899 0.994483i \(-0.466548\pi\)
0.104899 + 0.994483i \(0.466548\pi\)
\(68\) 18.0278 2.18619
\(69\) −15.4934 −1.86519
\(70\) 0 0
\(71\) 5.11520 0.607063 0.303531 0.952821i \(-0.401834\pi\)
0.303531 + 0.952821i \(0.401834\pi\)
\(72\) −6.39814 −0.754028
\(73\) 5.64803 0.661052 0.330526 0.943797i \(-0.392774\pi\)
0.330526 + 0.943797i \(0.392774\pi\)
\(74\) −2.26763 −0.263606
\(75\) 2.33889 0.270072
\(76\) −17.1571 −1.96805
\(77\) 0 0
\(78\) 33.6199 3.80670
\(79\) 2.53359 0.285052 0.142526 0.989791i \(-0.454478\pi\)
0.142526 + 0.989791i \(0.454478\pi\)
\(80\) −0.411300 −0.0459847
\(81\) −10.3083 −1.14537
\(82\) −16.6003 −1.83320
\(83\) 1.76178 0.193381 0.0966903 0.995315i \(-0.469174\pi\)
0.0966903 + 0.995315i \(0.469174\pi\)
\(84\) 0 0
\(85\) 5.73746 0.622315
\(86\) 19.4182 2.09392
\(87\) 17.1182 1.83526
\(88\) −7.25020 −0.772874
\(89\) 13.0580 1.38415 0.692075 0.721826i \(-0.256697\pi\)
0.692075 + 0.721826i \(0.256697\pi\)
\(90\) −5.60196 −0.590498
\(91\) 0 0
\(92\) −20.8143 −2.17004
\(93\) 13.3863 1.38810
\(94\) −4.16235 −0.429313
\(95\) −5.46034 −0.560219
\(96\) 14.2965 1.45913
\(97\) −13.1335 −1.33351 −0.666753 0.745279i \(-0.732316\pi\)
−0.666753 + 0.745279i \(0.732316\pi\)
\(98\) 0 0
\(99\) 6.91566 0.695050
\(100\) 3.14213 0.314213
\(101\) −1.86164 −0.185240 −0.0926202 0.995702i \(-0.529524\pi\)
−0.0926202 + 0.995702i \(0.529524\pi\)
\(102\) −30.4299 −3.01301
\(103\) 0.996582 0.0981961 0.0490981 0.998794i \(-0.484365\pi\)
0.0490981 + 0.998794i \(0.484365\pi\)
\(104\) 16.4172 1.60984
\(105\) 0 0
\(106\) −5.42964 −0.527373
\(107\) 12.2285 1.18218 0.591088 0.806607i \(-0.298699\pi\)
0.591088 + 0.806607i \(0.298699\pi\)
\(108\) −3.89202 −0.374510
\(109\) 17.7562 1.70074 0.850369 0.526186i \(-0.176379\pi\)
0.850369 + 0.526186i \(0.176379\pi\)
\(110\) −6.34799 −0.605257
\(111\) 2.33889 0.221998
\(112\) 0 0
\(113\) 12.1725 1.14509 0.572547 0.819872i \(-0.305956\pi\)
0.572547 + 0.819872i \(0.305956\pi\)
\(114\) 28.9601 2.71237
\(115\) −6.62426 −0.617716
\(116\) 22.9970 2.13522
\(117\) −15.6597 −1.44774
\(118\) −12.5786 −1.15796
\(119\) 0 0
\(120\) −6.05752 −0.552973
\(121\) −3.16336 −0.287579
\(122\) 15.3773 1.39220
\(123\) 17.1220 1.54384
\(124\) 17.9835 1.61497
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 18.8092 1.66905 0.834524 0.550972i \(-0.185743\pi\)
0.834524 + 0.550972i \(0.185743\pi\)
\(128\) 17.3409 1.53273
\(129\) −20.0285 −1.76341
\(130\) 14.3743 1.26071
\(131\) −12.3299 −1.07727 −0.538635 0.842539i \(-0.681060\pi\)
−0.538635 + 0.842539i \(0.681060\pi\)
\(132\) 20.5730 1.79065
\(133\) 0 0
\(134\) −3.89413 −0.336402
\(135\) −1.23866 −0.106607
\(136\) −14.8595 −1.27419
\(137\) 0.877770 0.0749929 0.0374965 0.999297i \(-0.488062\pi\)
0.0374965 + 0.999297i \(0.488062\pi\)
\(138\) 35.1333 2.99074
\(139\) 0.549892 0.0466412 0.0233206 0.999728i \(-0.492576\pi\)
0.0233206 + 0.999728i \(0.492576\pi\)
\(140\) 0 0
\(141\) 4.29316 0.361549
\(142\) −11.5994 −0.973397
\(143\) −17.7452 −1.48393
\(144\) −1.01608 −0.0846731
\(145\) 7.31892 0.607803
\(146\) −12.8076 −1.05997
\(147\) 0 0
\(148\) 3.14213 0.258281
\(149\) 3.38365 0.277200 0.138600 0.990348i \(-0.455740\pi\)
0.138600 + 0.990348i \(0.455740\pi\)
\(150\) −5.30373 −0.433047
\(151\) 10.2026 0.830277 0.415138 0.909758i \(-0.363733\pi\)
0.415138 + 0.909758i \(0.363733\pi\)
\(152\) 14.1418 1.14705
\(153\) 14.1739 1.14589
\(154\) 0 0
\(155\) 5.72336 0.459711
\(156\) −46.5853 −3.72981
\(157\) −22.7953 −1.81926 −0.909632 0.415415i \(-0.863637\pi\)
−0.909632 + 0.415415i \(0.863637\pi\)
\(158\) −5.74524 −0.457067
\(159\) 5.60027 0.444131
\(160\) 6.11250 0.483235
\(161\) 0 0
\(162\) 23.3754 1.83654
\(163\) −6.32276 −0.495237 −0.247618 0.968858i \(-0.579648\pi\)
−0.247618 + 0.968858i \(0.579648\pi\)
\(164\) 23.0022 1.79617
\(165\) 6.54749 0.509721
\(166\) −3.99506 −0.310077
\(167\) 6.36601 0.492617 0.246308 0.969192i \(-0.420782\pi\)
0.246308 + 0.969192i \(0.420782\pi\)
\(168\) 0 0
\(169\) 27.1819 2.09091
\(170\) −13.0104 −0.997853
\(171\) −13.4893 −1.03155
\(172\) −26.9068 −2.05162
\(173\) 12.8684 0.978370 0.489185 0.872180i \(-0.337294\pi\)
0.489185 + 0.872180i \(0.337294\pi\)
\(174\) −38.8176 −2.94275
\(175\) 0 0
\(176\) −1.15139 −0.0867894
\(177\) 12.9740 0.975182
\(178\) −29.6107 −2.21942
\(179\) −23.1405 −1.72960 −0.864800 0.502117i \(-0.832555\pi\)
−0.864800 + 0.502117i \(0.832555\pi\)
\(180\) 7.76233 0.578570
\(181\) 6.33145 0.470613 0.235306 0.971921i \(-0.424391\pi\)
0.235306 + 0.971921i \(0.424391\pi\)
\(182\) 0 0
\(183\) −15.8606 −1.17245
\(184\) 17.1563 1.26478
\(185\) 1.00000 0.0735215
\(186\) −30.3551 −2.22575
\(187\) 16.0614 1.17453
\(188\) 5.76754 0.420641
\(189\) 0 0
\(190\) 12.3820 0.898285
\(191\) 0.0775449 0.00561095 0.00280547 0.999996i \(-0.499107\pi\)
0.00280547 + 0.999996i \(0.499107\pi\)
\(192\) −30.4950 −2.20079
\(193\) 22.6338 1.62922 0.814610 0.580010i \(-0.196951\pi\)
0.814610 + 0.580010i \(0.196951\pi\)
\(194\) 29.7819 2.13822
\(195\) −14.8260 −1.06171
\(196\) 0 0
\(197\) 0.320922 0.0228647 0.0114324 0.999935i \(-0.496361\pi\)
0.0114324 + 0.999935i \(0.496361\pi\)
\(198\) −15.6821 −1.11448
\(199\) 12.2904 0.871243 0.435622 0.900130i \(-0.356529\pi\)
0.435622 + 0.900130i \(0.356529\pi\)
\(200\) −2.58991 −0.183134
\(201\) 4.01651 0.283303
\(202\) 4.22151 0.297024
\(203\) 0 0
\(204\) 42.1651 2.95215
\(205\) 7.32058 0.511291
\(206\) −2.25987 −0.157453
\(207\) −16.3646 −1.13742
\(208\) 2.60720 0.180776
\(209\) −15.2857 −1.05733
\(210\) 0 0
\(211\) 17.3974 1.19769 0.598844 0.800865i \(-0.295627\pi\)
0.598844 + 0.800865i \(0.295627\pi\)
\(212\) 7.52355 0.516720
\(213\) 11.9639 0.819753
\(214\) −27.7297 −1.89556
\(215\) −8.56324 −0.584008
\(216\) 3.20802 0.218278
\(217\) 0 0
\(218\) −40.2645 −2.72705
\(219\) 13.2101 0.892658
\(220\) 8.79606 0.593030
\(221\) −36.3693 −2.44646
\(222\) −5.30373 −0.355963
\(223\) 24.1348 1.61618 0.808092 0.589056i \(-0.200500\pi\)
0.808092 + 0.589056i \(0.200500\pi\)
\(224\) 0 0
\(225\) 2.47041 0.164694
\(226\) −27.6027 −1.83610
\(227\) −0.703144 −0.0466693 −0.0233346 0.999728i \(-0.507428\pi\)
−0.0233346 + 0.999728i \(0.507428\pi\)
\(228\) −40.1285 −2.65757
\(229\) 5.35876 0.354117 0.177058 0.984200i \(-0.443342\pi\)
0.177058 + 0.984200i \(0.443342\pi\)
\(230\) 15.0213 0.990478
\(231\) 0 0
\(232\) −18.9554 −1.24448
\(233\) −6.51843 −0.427036 −0.213518 0.976939i \(-0.568492\pi\)
−0.213518 + 0.976939i \(0.568492\pi\)
\(234\) 35.5104 2.32138
\(235\) 1.83555 0.119738
\(236\) 17.4295 1.13457
\(237\) 5.92580 0.384922
\(238\) 0 0
\(239\) 26.8208 1.73489 0.867447 0.497530i \(-0.165759\pi\)
0.867447 + 0.497530i \(0.165759\pi\)
\(240\) −0.961985 −0.0620959
\(241\) −15.1452 −0.975587 −0.487794 0.872959i \(-0.662198\pi\)
−0.487794 + 0.872959i \(0.662198\pi\)
\(242\) 7.17333 0.461119
\(243\) −20.3940 −1.30828
\(244\) −21.3075 −1.36407
\(245\) 0 0
\(246\) −38.8264 −2.47548
\(247\) 34.6126 2.20235
\(248\) −14.8230 −0.941261
\(249\) 4.12061 0.261133
\(250\) −2.26763 −0.143417
\(251\) 27.1608 1.71437 0.857186 0.515007i \(-0.172211\pi\)
0.857186 + 0.515007i \(0.172211\pi\)
\(252\) 0 0
\(253\) −18.5440 −1.16585
\(254\) −42.6522 −2.67624
\(255\) 13.4193 0.840348
\(256\) −13.2461 −0.827883
\(257\) −17.0377 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(258\) 45.4171 2.82754
\(259\) 0 0
\(260\) −19.9177 −1.23524
\(261\) 18.0807 1.11917
\(262\) 27.9597 1.72735
\(263\) −10.2405 −0.631457 −0.315728 0.948850i \(-0.602249\pi\)
−0.315728 + 0.948850i \(0.602249\pi\)
\(264\) −16.9574 −1.04366
\(265\) 2.39441 0.147088
\(266\) 0 0
\(267\) 30.5413 1.86910
\(268\) 5.39588 0.329606
\(269\) 0.495295 0.0301987 0.0150993 0.999886i \(-0.495194\pi\)
0.0150993 + 0.999886i \(0.495194\pi\)
\(270\) 2.80882 0.170939
\(271\) 8.96689 0.544700 0.272350 0.962198i \(-0.412199\pi\)
0.272350 + 0.962198i \(0.412199\pi\)
\(272\) −2.35981 −0.143085
\(273\) 0 0
\(274\) −1.99045 −0.120248
\(275\) 2.79940 0.168810
\(276\) −48.6823 −2.93033
\(277\) −5.66110 −0.340143 −0.170071 0.985432i \(-0.554400\pi\)
−0.170071 + 0.985432i \(0.554400\pi\)
\(278\) −1.24695 −0.0747870
\(279\) 14.1390 0.846481
\(280\) 0 0
\(281\) 5.72083 0.341276 0.170638 0.985334i \(-0.445417\pi\)
0.170638 + 0.985334i \(0.445417\pi\)
\(282\) −9.73527 −0.579727
\(283\) −25.0451 −1.48878 −0.744388 0.667748i \(-0.767258\pi\)
−0.744388 + 0.667748i \(0.767258\pi\)
\(284\) 16.0726 0.953734
\(285\) −12.7711 −0.756497
\(286\) 40.2394 2.37940
\(287\) 0 0
\(288\) 15.1004 0.889797
\(289\) 15.9184 0.936378
\(290\) −16.5966 −0.974584
\(291\) −30.7178 −1.80071
\(292\) 17.7468 1.03855
\(293\) −21.0069 −1.22724 −0.613619 0.789602i \(-0.710287\pi\)
−0.613619 + 0.789602i \(0.710287\pi\)
\(294\) 0 0
\(295\) 5.54706 0.322962
\(296\) −2.58991 −0.150536
\(297\) −3.46750 −0.201205
\(298\) −7.67286 −0.444477
\(299\) 41.9907 2.42838
\(300\) 7.34909 0.424300
\(301\) 0 0
\(302\) −23.1357 −1.33131
\(303\) −4.35418 −0.250141
\(304\) 2.24584 0.128808
\(305\) −6.78124 −0.388293
\(306\) −32.1410 −1.83738
\(307\) 19.2470 1.09848 0.549241 0.835664i \(-0.314917\pi\)
0.549241 + 0.835664i \(0.314917\pi\)
\(308\) 0 0
\(309\) 2.33090 0.132600
\(310\) −12.9784 −0.737126
\(311\) 27.5686 1.56327 0.781635 0.623737i \(-0.214386\pi\)
0.781635 + 0.623737i \(0.214386\pi\)
\(312\) 38.3981 2.17387
\(313\) 4.99170 0.282148 0.141074 0.989999i \(-0.454944\pi\)
0.141074 + 0.989999i \(0.454944\pi\)
\(314\) 51.6912 2.91711
\(315\) 0 0
\(316\) 7.96087 0.447834
\(317\) 32.9576 1.85108 0.925542 0.378646i \(-0.123610\pi\)
0.925542 + 0.378646i \(0.123610\pi\)
\(318\) −12.6993 −0.712143
\(319\) 20.4886 1.14714
\(320\) −13.0383 −0.728861
\(321\) 28.6012 1.59636
\(322\) 0 0
\(323\) −31.3285 −1.74316
\(324\) −32.3900 −1.79944
\(325\) −6.33892 −0.351620
\(326\) 14.3376 0.794089
\(327\) 41.5299 2.29661
\(328\) −18.9597 −1.04687
\(329\) 0 0
\(330\) −14.8472 −0.817314
\(331\) −31.3772 −1.72465 −0.862324 0.506357i \(-0.830992\pi\)
−0.862324 + 0.506357i \(0.830992\pi\)
\(332\) 5.53574 0.303813
\(333\) 2.47041 0.135377
\(334\) −14.4357 −0.789888
\(335\) 1.71727 0.0938246
\(336\) 0 0
\(337\) 24.9408 1.35861 0.679306 0.733856i \(-0.262281\pi\)
0.679306 + 0.733856i \(0.262281\pi\)
\(338\) −61.6383 −3.35268
\(339\) 28.4702 1.54629
\(340\) 18.0278 0.977695
\(341\) 16.0220 0.867638
\(342\) 30.5886 1.65404
\(343\) 0 0
\(344\) 22.1780 1.19576
\(345\) −15.4934 −0.834138
\(346\) −29.1808 −1.56877
\(347\) 24.3317 1.30619 0.653096 0.757275i \(-0.273470\pi\)
0.653096 + 0.757275i \(0.273470\pi\)
\(348\) 53.7874 2.88331
\(349\) −17.9676 −0.961783 −0.480892 0.876780i \(-0.659687\pi\)
−0.480892 + 0.876780i \(0.659687\pi\)
\(350\) 0 0
\(351\) 7.85176 0.419096
\(352\) 17.1113 0.912037
\(353\) −25.6470 −1.36505 −0.682526 0.730861i \(-0.739119\pi\)
−0.682526 + 0.730861i \(0.739119\pi\)
\(354\) −29.4201 −1.56366
\(355\) 5.11520 0.271487
\(356\) 41.0300 2.17459
\(357\) 0 0
\(358\) 52.4739 2.77333
\(359\) 12.7052 0.670556 0.335278 0.942119i \(-0.391170\pi\)
0.335278 + 0.942119i \(0.391170\pi\)
\(360\) −6.39814 −0.337211
\(361\) 10.8153 0.569226
\(362\) −14.3573 −0.754605
\(363\) −7.39876 −0.388334
\(364\) 0 0
\(365\) 5.64803 0.295632
\(366\) 35.9659 1.87997
\(367\) 13.6395 0.711976 0.355988 0.934491i \(-0.384144\pi\)
0.355988 + 0.934491i \(0.384144\pi\)
\(368\) 2.72456 0.142027
\(369\) 18.0848 0.941458
\(370\) −2.26763 −0.117888
\(371\) 0 0
\(372\) 42.0615 2.18078
\(373\) 31.5785 1.63507 0.817537 0.575876i \(-0.195339\pi\)
0.817537 + 0.575876i \(0.195339\pi\)
\(374\) −36.4213 −1.88330
\(375\) 2.33889 0.120780
\(376\) −4.75392 −0.245165
\(377\) −46.3941 −2.38942
\(378\) 0 0
\(379\) 3.33671 0.171395 0.0856977 0.996321i \(-0.472688\pi\)
0.0856977 + 0.996321i \(0.472688\pi\)
\(380\) −17.1571 −0.880139
\(381\) 43.9927 2.25381
\(382\) −0.175843 −0.00899690
\(383\) 19.7865 1.01104 0.505521 0.862815i \(-0.331300\pi\)
0.505521 + 0.862815i \(0.331300\pi\)
\(384\) 40.5584 2.06974
\(385\) 0 0
\(386\) −51.3251 −2.61238
\(387\) −21.1547 −1.07535
\(388\) −41.2671 −2.09502
\(389\) 37.7879 1.91592 0.957962 0.286894i \(-0.0926229\pi\)
0.957962 + 0.286894i \(0.0926229\pi\)
\(390\) 33.6199 1.70241
\(391\) −38.0064 −1.92207
\(392\) 0 0
\(393\) −28.8383 −1.45470
\(394\) −0.727730 −0.0366625
\(395\) 2.53359 0.127479
\(396\) 21.7299 1.09197
\(397\) −26.2198 −1.31594 −0.657968 0.753046i \(-0.728584\pi\)
−0.657968 + 0.753046i \(0.728584\pi\)
\(398\) −27.8700 −1.39700
\(399\) 0 0
\(400\) −0.411300 −0.0205650
\(401\) −26.1126 −1.30400 −0.652000 0.758219i \(-0.726070\pi\)
−0.652000 + 0.758219i \(0.726070\pi\)
\(402\) −9.10794 −0.454263
\(403\) −36.2799 −1.80723
\(404\) −5.84952 −0.291024
\(405\) −10.3083 −0.512224
\(406\) 0 0
\(407\) 2.79940 0.138761
\(408\) −34.7548 −1.72062
\(409\) 6.79254 0.335869 0.167935 0.985798i \(-0.446290\pi\)
0.167935 + 0.985798i \(0.446290\pi\)
\(410\) −16.6003 −0.819832
\(411\) 2.05301 0.101267
\(412\) 3.13138 0.154272
\(413\) 0 0
\(414\) 37.1088 1.82380
\(415\) 1.76178 0.0864824
\(416\) −38.7466 −1.89971
\(417\) 1.28614 0.0629824
\(418\) 34.6622 1.69538
\(419\) 2.49664 0.121969 0.0609844 0.998139i \(-0.480576\pi\)
0.0609844 + 0.998139i \(0.480576\pi\)
\(420\) 0 0
\(421\) −30.5515 −1.48899 −0.744494 0.667629i \(-0.767309\pi\)
−0.744494 + 0.667629i \(0.767309\pi\)
\(422\) −39.4509 −1.92044
\(423\) 4.53456 0.220478
\(424\) −6.20132 −0.301163
\(425\) 5.73746 0.278308
\(426\) −27.1296 −1.31444
\(427\) 0 0
\(428\) 38.4236 1.85727
\(429\) −41.5040 −2.00383
\(430\) 19.4182 0.936430
\(431\) −0.189462 −0.00912608 −0.00456304 0.999990i \(-0.501452\pi\)
−0.00456304 + 0.999990i \(0.501452\pi\)
\(432\) 0.509460 0.0245114
\(433\) −15.3070 −0.735610 −0.367805 0.929903i \(-0.619891\pi\)
−0.367805 + 0.929903i \(0.619891\pi\)
\(434\) 0 0
\(435\) 17.1182 0.820753
\(436\) 55.7923 2.67197
\(437\) 36.1707 1.73028
\(438\) −29.9556 −1.43134
\(439\) −35.1270 −1.67652 −0.838261 0.545270i \(-0.816427\pi\)
−0.838261 + 0.545270i \(0.816427\pi\)
\(440\) −7.25020 −0.345640
\(441\) 0 0
\(442\) 82.4719 3.92279
\(443\) 40.2651 1.91305 0.956526 0.291647i \(-0.0942033\pi\)
0.956526 + 0.291647i \(0.0942033\pi\)
\(444\) 7.34909 0.348772
\(445\) 13.0580 0.619010
\(446\) −54.7286 −2.59148
\(447\) 7.91399 0.374319
\(448\) 0 0
\(449\) −9.30052 −0.438919 −0.219459 0.975622i \(-0.570429\pi\)
−0.219459 + 0.975622i \(0.570429\pi\)
\(450\) −5.60196 −0.264079
\(451\) 20.4932 0.964988
\(452\) 38.2475 1.79901
\(453\) 23.8628 1.12117
\(454\) 1.59447 0.0748320
\(455\) 0 0
\(456\) 33.0761 1.54893
\(457\) −33.6074 −1.57209 −0.786045 0.618169i \(-0.787875\pi\)
−0.786045 + 0.618169i \(0.787875\pi\)
\(458\) −12.1516 −0.567809
\(459\) −7.10676 −0.331715
\(460\) −20.8143 −0.970470
\(461\) −15.2698 −0.711187 −0.355594 0.934641i \(-0.615721\pi\)
−0.355594 + 0.934641i \(0.615721\pi\)
\(462\) 0 0
\(463\) −19.5853 −0.910206 −0.455103 0.890439i \(-0.650398\pi\)
−0.455103 + 0.890439i \(0.650398\pi\)
\(464\) −3.01027 −0.139748
\(465\) 13.3863 0.620775
\(466\) 14.7814 0.684733
\(467\) −16.3744 −0.757717 −0.378859 0.925455i \(-0.623683\pi\)
−0.378859 + 0.925455i \(0.623683\pi\)
\(468\) −49.2048 −2.27449
\(469\) 0 0
\(470\) −4.16235 −0.191995
\(471\) −53.3157 −2.45666
\(472\) −14.3664 −0.661267
\(473\) −23.9719 −1.10223
\(474\) −13.4375 −0.617205
\(475\) −5.46034 −0.250538
\(476\) 0 0
\(477\) 5.91518 0.270837
\(478\) −60.8195 −2.78182
\(479\) −0.805367 −0.0367982 −0.0183991 0.999831i \(-0.505857\pi\)
−0.0183991 + 0.999831i \(0.505857\pi\)
\(480\) 14.2965 0.652541
\(481\) −6.33892 −0.289030
\(482\) 34.3436 1.56431
\(483\) 0 0
\(484\) −9.93969 −0.451804
\(485\) −13.1335 −0.596362
\(486\) 46.2460 2.09776
\(487\) −7.55283 −0.342252 −0.171126 0.985249i \(-0.554740\pi\)
−0.171126 + 0.985249i \(0.554740\pi\)
\(488\) 17.5628 0.795032
\(489\) −14.7882 −0.668747
\(490\) 0 0
\(491\) 30.6550 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(492\) 53.7996 2.42547
\(493\) 41.9920 1.89123
\(494\) −78.4885 −3.53137
\(495\) 6.91566 0.310836
\(496\) −2.35402 −0.105698
\(497\) 0 0
\(498\) −9.34400 −0.418715
\(499\) 24.4146 1.09295 0.546475 0.837475i \(-0.315969\pi\)
0.546475 + 0.837475i \(0.315969\pi\)
\(500\) 3.14213 0.140520
\(501\) 14.8894 0.665209
\(502\) −61.5904 −2.74892
\(503\) 1.19590 0.0533227 0.0266613 0.999645i \(-0.491512\pi\)
0.0266613 + 0.999645i \(0.491512\pi\)
\(504\) 0 0
\(505\) −1.86164 −0.0828420
\(506\) 42.0507 1.86938
\(507\) 63.5755 2.82349
\(508\) 59.1009 2.62218
\(509\) −10.6289 −0.471117 −0.235558 0.971860i \(-0.575692\pi\)
−0.235558 + 0.971860i \(0.575692\pi\)
\(510\) −30.4299 −1.34746
\(511\) 0 0
\(512\) −4.64453 −0.205261
\(513\) 6.76350 0.298616
\(514\) 38.6351 1.70412
\(515\) 0.996582 0.0439146
\(516\) −62.9320 −2.77043
\(517\) 5.13844 0.225989
\(518\) 0 0
\(519\) 30.0979 1.32115
\(520\) 16.4172 0.719944
\(521\) −28.5436 −1.25052 −0.625258 0.780418i \(-0.715006\pi\)
−0.625258 + 0.780418i \(0.715006\pi\)
\(522\) −41.0003 −1.79453
\(523\) 16.5675 0.724447 0.362224 0.932091i \(-0.382018\pi\)
0.362224 + 0.932091i \(0.382018\pi\)
\(524\) −38.7422 −1.69246
\(525\) 0 0
\(526\) 23.2216 1.01251
\(527\) 32.8375 1.43043
\(528\) −2.69298 −0.117197
\(529\) 20.8808 0.907862
\(530\) −5.42964 −0.235848
\(531\) 13.7035 0.594681
\(532\) 0 0
\(533\) −46.4046 −2.01000
\(534\) −69.2563 −2.99701
\(535\) 12.2285 0.528685
\(536\) −4.44758 −0.192106
\(537\) −54.1230 −2.33558
\(538\) −1.12314 −0.0484222
\(539\) 0 0
\(540\) −3.89202 −0.167486
\(541\) 14.8297 0.637580 0.318790 0.947825i \(-0.396723\pi\)
0.318790 + 0.947825i \(0.396723\pi\)
\(542\) −20.3336 −0.873401
\(543\) 14.8086 0.635496
\(544\) 35.0702 1.50362
\(545\) 17.7562 0.760593
\(546\) 0 0
\(547\) −28.3226 −1.21099 −0.605493 0.795851i \(-0.707024\pi\)
−0.605493 + 0.795851i \(0.707024\pi\)
\(548\) 2.75806 0.117819
\(549\) −16.7524 −0.714976
\(550\) −6.34799 −0.270679
\(551\) −39.9638 −1.70252
\(552\) 40.1266 1.70790
\(553\) 0 0
\(554\) 12.8373 0.545403
\(555\) 2.33889 0.0992804
\(556\) 1.72783 0.0732763
\(557\) 21.2463 0.900236 0.450118 0.892969i \(-0.351382\pi\)
0.450118 + 0.892969i \(0.351382\pi\)
\(558\) −32.0620 −1.35729
\(559\) 54.2817 2.29587
\(560\) 0 0
\(561\) 37.5659 1.58603
\(562\) −12.9727 −0.547221
\(563\) −19.3839 −0.816932 −0.408466 0.912774i \(-0.633936\pi\)
−0.408466 + 0.912774i \(0.633936\pi\)
\(564\) 13.4896 0.568016
\(565\) 12.1725 0.512101
\(566\) 56.7928 2.38718
\(567\) 0 0
\(568\) −13.2479 −0.555871
\(569\) 0.848892 0.0355874 0.0177937 0.999842i \(-0.494336\pi\)
0.0177937 + 0.999842i \(0.494336\pi\)
\(570\) 28.9601 1.21301
\(571\) 27.8653 1.16613 0.583063 0.812427i \(-0.301854\pi\)
0.583063 + 0.812427i \(0.301854\pi\)
\(572\) −55.7575 −2.33134
\(573\) 0.181369 0.00757679
\(574\) 0 0
\(575\) −6.62426 −0.276251
\(576\) −32.2098 −1.34208
\(577\) −6.82820 −0.284262 −0.142131 0.989848i \(-0.545395\pi\)
−0.142131 + 0.989848i \(0.545395\pi\)
\(578\) −36.0970 −1.50144
\(579\) 52.9381 2.20003
\(580\) 22.9970 0.954897
\(581\) 0 0
\(582\) 69.6566 2.88736
\(583\) 6.70292 0.277607
\(584\) −14.6279 −0.605307
\(585\) −15.6597 −0.647449
\(586\) 47.6359 1.96782
\(587\) −19.8166 −0.817918 −0.408959 0.912553i \(-0.634108\pi\)
−0.408959 + 0.912553i \(0.634108\pi\)
\(588\) 0 0
\(589\) −31.2515 −1.28769
\(590\) −12.5786 −0.517855
\(591\) 0.750600 0.0308756
\(592\) −0.411300 −0.0169043
\(593\) −43.2139 −1.77458 −0.887290 0.461212i \(-0.847415\pi\)
−0.887290 + 0.461212i \(0.847415\pi\)
\(594\) 7.86300 0.322623
\(595\) 0 0
\(596\) 10.6319 0.435498
\(597\) 28.7459 1.17649
\(598\) −95.2191 −3.89380
\(599\) 22.1144 0.903570 0.451785 0.892127i \(-0.350787\pi\)
0.451785 + 0.892127i \(0.350787\pi\)
\(600\) −6.05752 −0.247297
\(601\) −0.0269834 −0.00110068 −0.000550339 1.00000i \(-0.500175\pi\)
−0.000550339 1.00000i \(0.500175\pi\)
\(602\) 0 0
\(603\) 4.24236 0.172762
\(604\) 32.0579 1.30442
\(605\) −3.16336 −0.128609
\(606\) 9.87365 0.401090
\(607\) 31.2344 1.26777 0.633883 0.773429i \(-0.281460\pi\)
0.633883 + 0.773429i \(0.281460\pi\)
\(608\) −33.3763 −1.35359
\(609\) 0 0
\(610\) 15.3773 0.622610
\(611\) −11.6354 −0.470719
\(612\) 44.5360 1.80026
\(613\) −33.1657 −1.33955 −0.669774 0.742565i \(-0.733609\pi\)
−0.669774 + 0.742565i \(0.733609\pi\)
\(614\) −43.6449 −1.76136
\(615\) 17.1220 0.690427
\(616\) 0 0
\(617\) −16.9802 −0.683599 −0.341799 0.939773i \(-0.611036\pi\)
−0.341799 + 0.939773i \(0.611036\pi\)
\(618\) −5.28560 −0.212618
\(619\) −35.6539 −1.43305 −0.716525 0.697561i \(-0.754269\pi\)
−0.716525 + 0.697561i \(0.754269\pi\)
\(620\) 17.9835 0.722235
\(621\) 8.20520 0.329264
\(622\) −62.5151 −2.50663
\(623\) 0 0
\(624\) 6.09794 0.244113
\(625\) 1.00000 0.0400000
\(626\) −11.3193 −0.452411
\(627\) −35.7515 −1.42778
\(628\) −71.6257 −2.85818
\(629\) 5.73746 0.228767
\(630\) 0 0
\(631\) −0.441024 −0.0175569 −0.00877844 0.999961i \(-0.502794\pi\)
−0.00877844 + 0.999961i \(0.502794\pi\)
\(632\) −6.56179 −0.261014
\(633\) 40.6907 1.61731
\(634\) −74.7355 −2.96813
\(635\) 18.8092 0.746421
\(636\) 17.5968 0.697757
\(637\) 0 0
\(638\) −46.4604 −1.83939
\(639\) 12.6366 0.499897
\(640\) 17.3409 0.685459
\(641\) −13.2345 −0.522733 −0.261367 0.965240i \(-0.584173\pi\)
−0.261367 + 0.965240i \(0.584173\pi\)
\(642\) −64.8567 −2.55969
\(643\) −17.1263 −0.675396 −0.337698 0.941254i \(-0.609648\pi\)
−0.337698 + 0.941254i \(0.609648\pi\)
\(644\) 0 0
\(645\) −20.0285 −0.788621
\(646\) 71.0412 2.79508
\(647\) 1.53143 0.0602067 0.0301033 0.999547i \(-0.490416\pi\)
0.0301033 + 0.999547i \(0.490416\pi\)
\(648\) 26.6976 1.04878
\(649\) 15.5284 0.609544
\(650\) 14.3743 0.563806
\(651\) 0 0
\(652\) −19.8669 −0.778048
\(653\) 17.3691 0.679704 0.339852 0.940479i \(-0.389623\pi\)
0.339852 + 0.940479i \(0.389623\pi\)
\(654\) −94.1742 −3.68250
\(655\) −12.3299 −0.481770
\(656\) −3.01095 −0.117558
\(657\) 13.9529 0.544356
\(658\) 0 0
\(659\) 40.9466 1.59505 0.797526 0.603284i \(-0.206142\pi\)
0.797526 + 0.603284i \(0.206142\pi\)
\(660\) 20.5730 0.800804
\(661\) 17.6456 0.686336 0.343168 0.939274i \(-0.388500\pi\)
0.343168 + 0.939274i \(0.388500\pi\)
\(662\) 71.1518 2.76539
\(663\) −85.0638 −3.30360
\(664\) −4.56286 −0.177073
\(665\) 0 0
\(666\) −5.60196 −0.217071
\(667\) −48.4825 −1.87725
\(668\) 20.0028 0.773932
\(669\) 56.4486 2.18243
\(670\) −3.89413 −0.150443
\(671\) −18.9834 −0.732846
\(672\) 0 0
\(673\) −1.69907 −0.0654945 −0.0327472 0.999464i \(-0.510426\pi\)
−0.0327472 + 0.999464i \(0.510426\pi\)
\(674\) −56.5564 −2.17847
\(675\) −1.23866 −0.0476760
\(676\) 85.4089 3.28496
\(677\) −47.3233 −1.81878 −0.909390 0.415944i \(-0.863451\pi\)
−0.909390 + 0.415944i \(0.863451\pi\)
\(678\) −64.5597 −2.47940
\(679\) 0 0
\(680\) −14.8595 −0.569836
\(681\) −1.64458 −0.0630203
\(682\) −36.3318 −1.39122
\(683\) −11.1193 −0.425468 −0.212734 0.977110i \(-0.568237\pi\)
−0.212734 + 0.977110i \(0.568237\pi\)
\(684\) −42.3849 −1.62063
\(685\) 0.877770 0.0335379
\(686\) 0 0
\(687\) 12.5335 0.478184
\(688\) 3.52206 0.134277
\(689\) −15.1780 −0.578236
\(690\) 35.1333 1.33750
\(691\) −6.09962 −0.232041 −0.116020 0.993247i \(-0.537014\pi\)
−0.116020 + 0.993247i \(0.537014\pi\)
\(692\) 40.4343 1.53708
\(693\) 0 0
\(694\) −55.1751 −2.09442
\(695\) 0.549892 0.0208586
\(696\) −44.3345 −1.68050
\(697\) 42.0015 1.59092
\(698\) 40.7438 1.54217
\(699\) −15.2459 −0.576652
\(700\) 0 0
\(701\) −34.3205 −1.29627 −0.648134 0.761526i \(-0.724451\pi\)
−0.648134 + 0.761526i \(0.724451\pi\)
\(702\) −17.8049 −0.672001
\(703\) −5.46034 −0.205941
\(704\) −36.4993 −1.37562
\(705\) 4.29316 0.161690
\(706\) 58.1578 2.18880
\(707\) 0 0
\(708\) 40.7658 1.53207
\(709\) 21.9943 0.826013 0.413006 0.910728i \(-0.364479\pi\)
0.413006 + 0.910728i \(0.364479\pi\)
\(710\) −11.5994 −0.435316
\(711\) 6.25901 0.234731
\(712\) −33.8192 −1.26743
\(713\) −37.9130 −1.41985
\(714\) 0 0
\(715\) −17.7452 −0.663631
\(716\) −72.7102 −2.71731
\(717\) 62.7309 2.34273
\(718\) −28.8107 −1.07520
\(719\) −33.1549 −1.23647 −0.618234 0.785994i \(-0.712152\pi\)
−0.618234 + 0.785994i \(0.712152\pi\)
\(720\) −1.01608 −0.0378670
\(721\) 0 0
\(722\) −24.5250 −0.912728
\(723\) −35.4229 −1.31739
\(724\) 19.8942 0.739362
\(725\) 7.31892 0.271818
\(726\) 16.7776 0.622676
\(727\) 18.2312 0.676158 0.338079 0.941118i \(-0.390223\pi\)
0.338079 + 0.941118i \(0.390223\pi\)
\(728\) 0 0
\(729\) −16.7745 −0.621276
\(730\) −12.8076 −0.474032
\(731\) −49.1312 −1.81718
\(732\) −49.8359 −1.84199
\(733\) −6.20286 −0.229108 −0.114554 0.993417i \(-0.536544\pi\)
−0.114554 + 0.993417i \(0.536544\pi\)
\(734\) −30.9293 −1.14162
\(735\) 0 0
\(736\) −40.4908 −1.49251
\(737\) 4.80733 0.177080
\(738\) −41.0096 −1.50958
\(739\) −30.7511 −1.13120 −0.565598 0.824681i \(-0.691355\pi\)
−0.565598 + 0.824681i \(0.691355\pi\)
\(740\) 3.14213 0.115507
\(741\) 80.9552 2.97396
\(742\) 0 0
\(743\) −26.2672 −0.963650 −0.481825 0.876268i \(-0.660026\pi\)
−0.481825 + 0.876268i \(0.660026\pi\)
\(744\) −34.6694 −1.27104
\(745\) 3.38365 0.123967
\(746\) −71.6083 −2.62177
\(747\) 4.35232 0.159243
\(748\) 50.4670 1.84526
\(749\) 0 0
\(750\) −5.30373 −0.193665
\(751\) 28.6757 1.04639 0.523195 0.852213i \(-0.324740\pi\)
0.523195 + 0.852213i \(0.324740\pi\)
\(752\) −0.754962 −0.0275306
\(753\) 63.5260 2.31502
\(754\) 105.204 3.83132
\(755\) 10.2026 0.371311
\(756\) 0 0
\(757\) −30.1764 −1.09678 −0.548389 0.836223i \(-0.684759\pi\)
−0.548389 + 0.836223i \(0.684759\pi\)
\(758\) −7.56642 −0.274825
\(759\) −43.3723 −1.57431
\(760\) 14.1418 0.512977
\(761\) 43.0936 1.56214 0.781071 0.624442i \(-0.214674\pi\)
0.781071 + 0.624442i \(0.214674\pi\)
\(762\) −99.7589 −3.61388
\(763\) 0 0
\(764\) 0.243656 0.00881515
\(765\) 14.1739 0.512457
\(766\) −44.8683 −1.62116
\(767\) −35.1623 −1.26964
\(768\) −30.9812 −1.11794
\(769\) 16.8603 0.607997 0.303999 0.952672i \(-0.401678\pi\)
0.303999 + 0.952672i \(0.401678\pi\)
\(770\) 0 0
\(771\) −39.8493 −1.43514
\(772\) 71.1184 2.55961
\(773\) −34.4543 −1.23923 −0.619617 0.784904i \(-0.712712\pi\)
−0.619617 + 0.784904i \(0.712712\pi\)
\(774\) 47.9709 1.72428
\(775\) 5.72336 0.205589
\(776\) 34.0146 1.22105
\(777\) 0 0
\(778\) −85.6889 −3.07210
\(779\) −39.9728 −1.43218
\(780\) −46.5853 −1.66802
\(781\) 14.3195 0.512392
\(782\) 86.1843 3.08195
\(783\) −9.06565 −0.323980
\(784\) 0 0
\(785\) −22.7953 −0.813600
\(786\) 65.3946 2.33255
\(787\) −3.43686 −0.122511 −0.0612554 0.998122i \(-0.519510\pi\)
−0.0612554 + 0.998122i \(0.519510\pi\)
\(788\) 1.00838 0.0359219
\(789\) −23.9514 −0.852693
\(790\) −5.74524 −0.204407
\(791\) 0 0
\(792\) −17.9109 −0.636438
\(793\) 42.9858 1.52647
\(794\) 59.4567 2.11004
\(795\) 5.60027 0.198621
\(796\) 38.6180 1.36878
\(797\) 37.3130 1.32169 0.660847 0.750520i \(-0.270197\pi\)
0.660847 + 0.750520i \(0.270197\pi\)
\(798\) 0 0
\(799\) 10.5314 0.372574
\(800\) 6.11250 0.216109
\(801\) 32.2587 1.13980
\(802\) 59.2135 2.09090
\(803\) 15.8111 0.557962
\(804\) 12.6204 0.445087
\(805\) 0 0
\(806\) 82.2692 2.89781
\(807\) 1.15844 0.0407791
\(808\) 4.82149 0.169620
\(809\) 12.4049 0.436132 0.218066 0.975934i \(-0.430025\pi\)
0.218066 + 0.975934i \(0.430025\pi\)
\(810\) 23.3754 0.821327
\(811\) 44.1420 1.55004 0.775018 0.631939i \(-0.217741\pi\)
0.775018 + 0.631939i \(0.217741\pi\)
\(812\) 0 0
\(813\) 20.9726 0.735540
\(814\) −6.34799 −0.222497
\(815\) −6.32276 −0.221477
\(816\) −5.51935 −0.193216
\(817\) 46.7582 1.63586
\(818\) −15.4029 −0.538551
\(819\) 0 0
\(820\) 23.0022 0.803271
\(821\) −6.07487 −0.212014 −0.106007 0.994365i \(-0.533807\pi\)
−0.106007 + 0.994365i \(0.533807\pi\)
\(822\) −4.65545 −0.162377
\(823\) −35.5628 −1.23964 −0.619821 0.784743i \(-0.712795\pi\)
−0.619821 + 0.784743i \(0.712795\pi\)
\(824\) −2.58106 −0.0899155
\(825\) 6.54749 0.227954
\(826\) 0 0
\(827\) 12.7340 0.442805 0.221403 0.975183i \(-0.428937\pi\)
0.221403 + 0.975183i \(0.428937\pi\)
\(828\) −51.4197 −1.78696
\(829\) 18.1704 0.631084 0.315542 0.948912i \(-0.397814\pi\)
0.315542 + 0.948912i \(0.397814\pi\)
\(830\) −3.99506 −0.138671
\(831\) −13.2407 −0.459314
\(832\) 82.6484 2.86532
\(833\) 0 0
\(834\) −2.91648 −0.100989
\(835\) 6.36601 0.220305
\(836\) −48.0295 −1.66113
\(837\) −7.08929 −0.245042
\(838\) −5.66144 −0.195571
\(839\) −25.2744 −0.872570 −0.436285 0.899809i \(-0.643706\pi\)
−0.436285 + 0.899809i \(0.643706\pi\)
\(840\) 0 0
\(841\) 24.5666 0.847125
\(842\) 69.2793 2.38752
\(843\) 13.3804 0.460845
\(844\) 54.6649 1.88164
\(845\) 27.1819 0.935085
\(846\) −10.2827 −0.353526
\(847\) 0 0
\(848\) −0.984822 −0.0338189
\(849\) −58.5777 −2.01038
\(850\) −13.0104 −0.446253
\(851\) −6.62426 −0.227077
\(852\) 37.5921 1.28788
\(853\) −9.01117 −0.308537 −0.154268 0.988029i \(-0.549302\pi\)
−0.154268 + 0.988029i \(0.549302\pi\)
\(854\) 0 0
\(855\) −13.4893 −0.461323
\(856\) −31.6708 −1.08249
\(857\) 5.12017 0.174902 0.0874509 0.996169i \(-0.472128\pi\)
0.0874509 + 0.996169i \(0.472128\pi\)
\(858\) 94.1155 3.21305
\(859\) −23.7331 −0.809765 −0.404882 0.914369i \(-0.632687\pi\)
−0.404882 + 0.914369i \(0.632687\pi\)
\(860\) −26.9068 −0.917513
\(861\) 0 0
\(862\) 0.429630 0.0146332
\(863\) −30.7629 −1.04718 −0.523591 0.851970i \(-0.675408\pi\)
−0.523591 + 0.851970i \(0.675408\pi\)
\(864\) −7.57130 −0.257581
\(865\) 12.8684 0.437540
\(866\) 34.7106 1.17952
\(867\) 37.2314 1.26445
\(868\) 0 0
\(869\) 7.09254 0.240598
\(870\) −38.8176 −1.31604
\(871\) −10.8857 −0.368846
\(872\) −45.9871 −1.55732
\(873\) −32.4451 −1.09810
\(874\) −82.0216 −2.77442
\(875\) 0 0
\(876\) 41.5079 1.40242
\(877\) 10.2878 0.347393 0.173696 0.984799i \(-0.444429\pi\)
0.173696 + 0.984799i \(0.444429\pi\)
\(878\) 79.6549 2.68822
\(879\) −49.1329 −1.65721
\(880\) −1.15139 −0.0388134
\(881\) 10.5360 0.354967 0.177483 0.984124i \(-0.443204\pi\)
0.177483 + 0.984124i \(0.443204\pi\)
\(882\) 0 0
\(883\) −19.3672 −0.651759 −0.325879 0.945411i \(-0.605660\pi\)
−0.325879 + 0.945411i \(0.605660\pi\)
\(884\) −114.277 −3.84355
\(885\) 12.9740 0.436115
\(886\) −91.3061 −3.06749
\(887\) −8.62651 −0.289650 −0.144825 0.989457i \(-0.546262\pi\)
−0.144825 + 0.989457i \(0.546262\pi\)
\(888\) −6.05752 −0.203277
\(889\) 0 0
\(890\) −29.6107 −0.992554
\(891\) −28.8571 −0.966748
\(892\) 75.8345 2.53913
\(893\) −10.0227 −0.335398
\(894\) −17.9460 −0.600203
\(895\) −23.1405 −0.773500
\(896\) 0 0
\(897\) 98.2115 3.27919
\(898\) 21.0901 0.703786
\(899\) 41.8888 1.39707
\(900\) 7.76233 0.258744
\(901\) 13.7379 0.457674
\(902\) −46.4710 −1.54731
\(903\) 0 0
\(904\) −31.5257 −1.04853
\(905\) 6.33145 0.210464
\(906\) −54.1119 −1.79775
\(907\) 14.2661 0.473698 0.236849 0.971546i \(-0.423885\pi\)
0.236849 + 0.971546i \(0.423885\pi\)
\(908\) −2.20937 −0.0733204
\(909\) −4.59902 −0.152540
\(910\) 0 0
\(911\) 13.4933 0.447054 0.223527 0.974698i \(-0.428243\pi\)
0.223527 + 0.974698i \(0.428243\pi\)
\(912\) 5.25276 0.173936
\(913\) 4.93193 0.163223
\(914\) 76.2091 2.52077
\(915\) −15.8606 −0.524335
\(916\) 16.8379 0.556339
\(917\) 0 0
\(918\) 16.1155 0.531890
\(919\) 4.46309 0.147224 0.0736118 0.997287i \(-0.476547\pi\)
0.0736118 + 0.997287i \(0.476547\pi\)
\(920\) 17.1563 0.565625
\(921\) 45.0165 1.48335
\(922\) 34.6263 1.14036
\(923\) −32.4249 −1.06728
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 44.4121 1.45947
\(927\) 2.46196 0.0808615
\(928\) 44.7369 1.46856
\(929\) −38.9438 −1.27771 −0.638853 0.769329i \(-0.720591\pi\)
−0.638853 + 0.769329i \(0.720591\pi\)
\(930\) −30.3551 −0.995384
\(931\) 0 0
\(932\) −20.4817 −0.670901
\(933\) 64.4798 2.11097
\(934\) 37.1310 1.21496
\(935\) 16.0614 0.525265
\(936\) 40.5573 1.32566
\(937\) 50.8106 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(938\) 0 0
\(939\) 11.6750 0.381001
\(940\) 5.76754 0.188116
\(941\) −48.0236 −1.56553 −0.782763 0.622320i \(-0.786190\pi\)
−0.782763 + 0.622320i \(0.786190\pi\)
\(942\) 120.900 3.93914
\(943\) −48.4934 −1.57916
\(944\) −2.28150 −0.0742566
\(945\) 0 0
\(946\) 54.3594 1.76738
\(947\) −10.6956 −0.347562 −0.173781 0.984784i \(-0.555598\pi\)
−0.173781 + 0.984784i \(0.555598\pi\)
\(948\) 18.6196 0.604737
\(949\) −35.8024 −1.16220
\(950\) 12.3820 0.401725
\(951\) 77.0842 2.49963
\(952\) 0 0
\(953\) 5.38151 0.174324 0.0871621 0.996194i \(-0.472220\pi\)
0.0871621 + 0.996194i \(0.472220\pi\)
\(954\) −13.4134 −0.434275
\(955\) 0.0775449 0.00250929
\(956\) 84.2743 2.72563
\(957\) 47.9206 1.54905
\(958\) 1.82627 0.0590042
\(959\) 0 0
\(960\) −30.4950 −0.984223
\(961\) 1.75684 0.0566723
\(962\) 14.3743 0.463446
\(963\) 30.2094 0.973485
\(964\) −47.5881 −1.53271
\(965\) 22.6338 0.728609
\(966\) 0 0
\(967\) 16.5761 0.533050 0.266525 0.963828i \(-0.414124\pi\)
0.266525 + 0.963828i \(0.414124\pi\)
\(968\) 8.19284 0.263328
\(969\) −73.2738 −2.35389
\(970\) 29.7819 0.956239
\(971\) −43.3305 −1.39054 −0.695270 0.718748i \(-0.744715\pi\)
−0.695270 + 0.718748i \(0.744715\pi\)
\(972\) −64.0806 −2.05539
\(973\) 0 0
\(974\) 17.1270 0.548784
\(975\) −14.8260 −0.474813
\(976\) 2.78912 0.0892777
\(977\) 0.629398 0.0201362 0.0100681 0.999949i \(-0.496795\pi\)
0.0100681 + 0.999949i \(0.496795\pi\)
\(978\) 33.5342 1.07230
\(979\) 36.5547 1.16829
\(980\) 0 0
\(981\) 43.8651 1.40051
\(982\) −69.5140 −2.21828
\(983\) 59.1378 1.88620 0.943101 0.332507i \(-0.107895\pi\)
0.943101 + 0.332507i \(0.107895\pi\)
\(984\) −44.3446 −1.41365
\(985\) 0.320922 0.0102254
\(986\) −95.2222 −3.03249
\(987\) 0 0
\(988\) 108.757 3.46003
\(989\) 56.7251 1.80375
\(990\) −15.6821 −0.498410
\(991\) 26.7223 0.848861 0.424431 0.905460i \(-0.360474\pi\)
0.424431 + 0.905460i \(0.360474\pi\)
\(992\) 34.9840 1.11074
\(993\) −73.3878 −2.32889
\(994\) 0 0
\(995\) 12.2904 0.389632
\(996\) 12.9475 0.410257
\(997\) 33.5537 1.06266 0.531329 0.847166i \(-0.321693\pi\)
0.531329 + 0.847166i \(0.321693\pi\)
\(998\) −55.3633 −1.75249
\(999\) −1.23866 −0.0391895
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.o.1.3 15
7.6 odd 2 1295.2.a.j.1.3 15
35.34 odd 2 6475.2.a.u.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.j.1.3 15 7.6 odd 2
6475.2.a.u.1.13 15 35.34 odd 2
9065.2.a.o.1.3 15 1.1 even 1 trivial