Properties

Label 9065.2.a.o
Level $9065$
Weight $2$
Character orbit 9065.a
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1,1,23,15,-6,0,-3,30,-1,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{14}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{7} q^{3} + (\beta_{2} + 2) q^{4} + q^{5} + ( - \beta_{10} - \beta_{7} + \beta_{5} + \cdots - 1) q^{6} + ( - \beta_{12} + \beta_{10} + \cdots - \beta_1) q^{8} + ( - \beta_{9} + \beta_{6} + 2) q^{9}+ \cdots + ( - \beta_{14} + 2 \beta_{13} + \cdots + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} + q^{3} + 23 q^{4} + 15 q^{5} - 6 q^{6} - 3 q^{8} + 30 q^{9} - q^{10} + 17 q^{11} - 8 q^{12} + 5 q^{13} + q^{15} + 39 q^{16} + 7 q^{17} + 12 q^{18} - 6 q^{19} + 23 q^{20} + 18 q^{22} - 2 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13885 \nu^{14} - 92473 \nu^{13} - 245409 \nu^{12} + 2219889 \nu^{11} + 984050 \nu^{10} + \cdots - 5632185 ) / 501919 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17739 \nu^{14} + 1011 \nu^{13} - 456233 \nu^{12} - 62904 \nu^{11} + 4559762 \nu^{10} + \cdots + 3326114 ) / 45629 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 230988 \nu^{14} - 43885 \nu^{13} + 6018929 \nu^{12} + 1502450 \nu^{11} - 61212587 \nu^{10} + \cdots - 20523869 ) / 501919 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 239608 \nu^{14} + 13885 \nu^{13} + 6151220 \nu^{12} + 155219 \nu^{11} - 61360620 \nu^{10} + \cdots - 34735474 ) / 501919 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 260988 \nu^{14} - 79232 \nu^{13} + 6800753 \nu^{12} + 2450110 \nu^{11} - 69062089 \nu^{10} + \cdots - 43132127 ) / 501919 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 270767 \nu^{14} - 31745 \nu^{13} + 7049177 \nu^{12} + 1285716 \nu^{11} - 71564182 \nu^{10} + \cdots - 34293396 ) / 501919 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 271358 \nu^{14} + 144821 \nu^{13} - 7179418 \nu^{12} - 4086020 \nu^{11} + 74327491 \nu^{10} + \cdots + 47143506 ) / 501919 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 356335 \nu^{14} + 112755 \nu^{13} - 9250237 \nu^{12} - 3528268 \nu^{11} + 93562495 \nu^{10} + \cdots + 70982304 ) / 501919 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 49606 \nu^{14} - 13947 \nu^{13} + 1292261 \nu^{12} + 442628 \nu^{11} - 13126296 \nu^{10} + \cdots - 8215608 ) / 45629 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 610987 \nu^{14} + 16680 \nu^{13} - 15762999 \nu^{12} - 1646435 \nu^{11} + 158261225 \nu^{10} + \cdots + 75027581 ) / 501919 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 707761 \nu^{14} - 22589 \nu^{13} + 18286613 \nu^{12} + 1987011 \nu^{11} - 183915222 \nu^{10} + \cdots - 90790934 ) / 501919 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 742461 \nu^{14} - 45070 \nu^{13} + 19170846 \nu^{12} + 2614680 \nu^{11} - 192616367 \nu^{10} + \cdots - 103800913 ) / 501919 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{12} - \beta_{10} + \beta_{8} - \beta_{7} + \beta_{5} - \beta_{3} - \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{14} + \beta_{13} + \beta_{11} + \beta_{9} - \beta_{6} + 8\beta_{2} + 23 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10 \beta_{12} - \beta_{11} - 10 \beta_{10} - \beta_{9} + 9 \beta_{8} - 9 \beta_{7} + 2 \beta_{6} + \cdots + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 15 \beta_{14} + 13 \beta_{13} - 2 \beta_{12} + 14 \beta_{11} + 3 \beta_{10} + 13 \beta_{9} + \cdots + 150 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{14} + 83 \beta_{12} - 17 \beta_{11} - 85 \beta_{10} - 15 \beta_{9} + 70 \beta_{8} - 68 \beta_{7} + \cdots + 17 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 159 \beta_{14} + 126 \beta_{13} - 35 \beta_{12} + 144 \beta_{11} + 47 \beta_{10} + 128 \beta_{9} + \cdots + 1034 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 21 \beta_{14} - 3 \beta_{13} + 658 \beta_{12} - 199 \beta_{11} - 693 \beta_{10} - 164 \beta_{9} + \cdots + 190 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 1474 \beta_{14} + 1100 \beta_{13} - 414 \beta_{12} + 1316 \beta_{11} + 521 \beta_{10} + 1136 \beta_{9} + \cdots + 7343 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 284 \beta_{14} - 63 \beta_{13} + 5147 \beta_{12} - 1993 \beta_{11} - 5563 \beta_{10} - 1587 \beta_{9} + \cdots + 1779 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 12790 \beta_{14} + 9154 \beta_{13} - 4169 \beta_{12} + 11337 \beta_{11} + 5043 \beta_{10} + \cdots + 53162 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 3162 \beta_{14} - 851 \beta_{13} + 40093 \beta_{12} - 18385 \beta_{11} - 44300 \beta_{10} - 14420 \beta_{9} + \cdots + 15099 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 106947 \beta_{14} + 74286 \beta_{13} - 38635 \beta_{12} + 94428 \beta_{11} + 45568 \beta_{10} + \cdots + 390290 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.78012
2.71485
2.26763
1.76603
1.44547
1.11780
1.11140
−0.217863
−0.347681
−1.19283
−1.28924
−1.54002
−2.37325
−2.43860
−2.80381
−2.78012 −2.49546 5.72907 1.00000 6.93769 0 −10.3673 3.22733 −2.78012
1.2 −2.71485 1.40009 5.37043 1.00000 −3.80103 0 −9.15021 −1.03976 −2.71485
1.3 −2.26763 2.33889 3.14213 1.00000 −5.30373 0 −2.58991 2.47041 −2.26763
1.4 −1.76603 −1.25337 1.11887 1.00000 2.21348 0 1.55611 −1.42907 −1.76603
1.5 −1.44547 3.38423 0.0893801 1.00000 −4.89180 0 2.76174 8.45300 −1.44547
1.6 −1.11780 −2.63196 −0.750532 1.00000 2.94200 0 3.07453 3.92722 −1.11780
1.7 −1.11140 0.528459 −0.764787 1.00000 −0.587330 0 3.07279 −2.72073 −1.11140
1.8 0.217863 1.49352 −1.95254 1.00000 0.325383 0 −0.861110 −0.769386 0.217863
1.9 0.347681 0.0759576 −1.87912 1.00000 0.0264090 0 −1.34870 −2.99423 0.347681
1.10 1.19283 0.0386931 −0.577162 1.00000 0.0461542 0 −3.07411 −2.99850 1.19283
1.11 1.28924 −3.37140 −0.337867 1.00000 −4.34654 0 −3.01407 8.36634 1.28924
1.12 1.54002 3.41172 0.371666 1.00000 5.25412 0 −2.50767 8.63984 1.54002
1.13 2.37325 −3.18420 3.63232 1.00000 −7.55690 0 3.87391 7.13912 2.37325
1.14 2.43860 2.20221 3.94679 1.00000 5.37032 0 4.74745 1.84974 2.43860
1.15 2.80381 −0.937381 5.86135 1.00000 −2.62824 0 10.8265 −2.12132 2.80381
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.15
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9065.2.a.o 15
7.b odd 2 1 1295.2.a.j 15
35.c odd 2 1 6475.2.a.u 15
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1295.2.a.j 15 7.b odd 2 1
6475.2.a.u 15 35.c odd 2 1
9065.2.a.o 15 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):

\( T_{2}^{15} + T_{2}^{14} - 26 T_{2}^{13} - 24 T_{2}^{12} + 266 T_{2}^{11} + 222 T_{2}^{10} - 1368 T_{2}^{9} + \cdots + 158 \) Copy content Toggle raw display
\( T_{3}^{15} - T_{3}^{14} - 37 T_{3}^{13} + 37 T_{3}^{12} + 522 T_{3}^{11} - 532 T_{3}^{10} - 3497 T_{3}^{9} + \cdots - 16 \) Copy content Toggle raw display
\( T_{11}^{15} - 17 T_{11}^{14} + 11 T_{11}^{13} + 1325 T_{11}^{12} - 6534 T_{11}^{11} - 27490 T_{11}^{10} + \cdots - 83533568 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{15} + T^{14} + \cdots + 158 \) Copy content Toggle raw display
$3$ \( T^{15} - T^{14} + \cdots - 16 \) Copy content Toggle raw display
$5$ \( (T - 1)^{15} \) Copy content Toggle raw display
$7$ \( T^{15} \) Copy content Toggle raw display
$11$ \( T^{15} - 17 T^{14} + \cdots - 83533568 \) Copy content Toggle raw display
$13$ \( T^{15} + \cdots - 115659776 \) Copy content Toggle raw display
$17$ \( T^{15} - 7 T^{14} + \cdots - 6575104 \) Copy content Toggle raw display
$19$ \( T^{15} + \cdots - 115847552 \) Copy content Toggle raw display
$23$ \( T^{15} + \cdots + 532537216 \) Copy content Toggle raw display
$29$ \( T^{15} + \cdots + 127761408 \) Copy content Toggle raw display
$31$ \( T^{15} + \cdots + 756503552 \) Copy content Toggle raw display
$37$ \( (T - 1)^{15} \) Copy content Toggle raw display
$41$ \( T^{15} + \cdots + 198148096 \) Copy content Toggle raw display
$43$ \( T^{15} + \cdots + 214502062592 \) Copy content Toggle raw display
$47$ \( T^{15} + \cdots + 4284762304 \) Copy content Toggle raw display
$53$ \( T^{15} + \cdots - 1364707328 \) Copy content Toggle raw display
$59$ \( T^{15} + \cdots + 1694452410496 \) Copy content Toggle raw display
$61$ \( T^{15} + \cdots - 4722102304 \) Copy content Toggle raw display
$67$ \( T^{15} + \cdots + 133074509824 \) Copy content Toggle raw display
$71$ \( T^{15} + \cdots + 131794019584 \) Copy content Toggle raw display
$73$ \( T^{15} + \cdots - 99835887104 \) Copy content Toggle raw display
$79$ \( T^{15} + \cdots + 159723487232 \) Copy content Toggle raw display
$83$ \( T^{15} - 6 T^{14} + \cdots + 62968832 \) Copy content Toggle raw display
$89$ \( T^{15} + \cdots - 413093256704 \) Copy content Toggle raw display
$97$ \( T^{15} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
show more
show less