Properties

Label 2-9065-1.1-c1-0-127
Degree $2$
Conductor $9065$
Sign $1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.19·2-s + 0.0386·3-s − 0.577·4-s + 5-s + 0.0461·6-s − 3.07·8-s − 2.99·9-s + 1.19·10-s + 4.80·11-s − 0.0223·12-s − 5.02·13-s + 0.0386·15-s − 2.51·16-s − 7.06·17-s − 3.57·18-s + 6.36·19-s − 0.577·20-s + 5.73·22-s + 5.82·23-s − 0.118·24-s + 25-s − 5.99·26-s − 0.232·27-s + 2.10·29-s + 0.0461·30-s + 4.56·31-s + 3.15·32-s + ⋯
L(s)  = 1  + 0.843·2-s + 0.0223·3-s − 0.288·4-s + 0.447·5-s + 0.0188·6-s − 1.08·8-s − 0.999·9-s + 0.377·10-s + 1.44·11-s − 0.00644·12-s − 1.39·13-s + 0.00999·15-s − 0.628·16-s − 1.71·17-s − 0.843·18-s + 1.46·19-s − 0.129·20-s + 1.22·22-s + 1.21·23-s − 0.0242·24-s + 0.200·25-s − 1.17·26-s − 0.0446·27-s + 0.390·29-s + 0.00842·30-s + 0.820·31-s + 0.557·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.282286439\)
\(L(\frac12)\) \(\approx\) \(2.282286439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
37 \( 1 - T \)
good2 \( 1 - 1.19T + 2T^{2} \)
3 \( 1 - 0.0386T + 3T^{2} \)
11 \( 1 - 4.80T + 11T^{2} \)
13 \( 1 + 5.02T + 13T^{2} \)
17 \( 1 + 7.06T + 17T^{2} \)
19 \( 1 - 6.36T + 19T^{2} \)
23 \( 1 - 5.82T + 23T^{2} \)
29 \( 1 - 2.10T + 29T^{2} \)
31 \( 1 - 4.56T + 31T^{2} \)
41 \( 1 + 9.81T + 41T^{2} \)
43 \( 1 - 1.88T + 43T^{2} \)
47 \( 1 + 11.2T + 47T^{2} \)
53 \( 1 - 1.66T + 53T^{2} \)
59 \( 1 + 2.79T + 59T^{2} \)
61 \( 1 + 2.43T + 61T^{2} \)
67 \( 1 + 8.99T + 67T^{2} \)
71 \( 1 + 1.51T + 71T^{2} \)
73 \( 1 - 2.42T + 73T^{2} \)
79 \( 1 - 7.52T + 79T^{2} \)
83 \( 1 + 0.303T + 83T^{2} \)
89 \( 1 - 16.1T + 89T^{2} \)
97 \( 1 - 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63340788880951819258876653250, −6.61370665491315142820995658935, −6.48645634755021992760387179116, −5.48092055995251825284710404722, −4.86635160056178930810686356427, −4.49258458643034140944045839015, −3.34243186214924424344959293192, −2.93405615646695865339834014661, −1.95130120951083666528438266516, −0.62529498861111031488872470588, 0.62529498861111031488872470588, 1.95130120951083666528438266516, 2.93405615646695865339834014661, 3.34243186214924424344959293192, 4.49258458643034140944045839015, 4.86635160056178930810686356427, 5.48092055995251825284710404722, 6.48645634755021992760387179116, 6.61370665491315142820995658935, 7.63340788880951819258876653250

Graph of the $Z$-function along the critical line